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Zur Theorie der Richtstrahlung' mit Parabolspiegeln
von F. Lüdi, Brown, Boveri & Cie., Baden.

(29. VI. 1944)

Inhalt: Mittels der Kirchhoff'schen Beugungsformel wird die Richtstrahlung
für dm- und cm-Wellen durch ein Rotationsparaboloid berechnet und verglichen
mit derjenigen anderer Richtantennen, beispielsweise elektromagnetisches Horn
und Sägezahnantenne.

Einleitung: Beim optischen Scheinwerfer ist für die Divergenz a
des Lichtkegels die Ausdehnung der Lichtquelle a (Krater) im
Verhältnis zur Spiegelbrennweite / gemäss der bekannten Beziehung

a
tg<x= -r—rs 2/

massgebend; die Beugung tritt wegen des kleinen Verhältnisses von
Wellenlänge und Spiegelöffnung ganz zurück. Nicht dagegen bei
den viel grösseren Mikrowellen der Hochfrequenztechnik, wo dieses
Verhältnis für die Divergenz des Strahlkegels ausschlaggebend ist.
Es erfolgt hier eine Berechnung auf optischer Grundlage. Der
wesentliche Unterschied ist neben der viel grösseren Wellenlänge die
Polarisation der vom Brennpunkt ausgehenden Kugelwelle. Für den
Strahlengang ist wie bei den Lichtwellen die geometrische Optik
zuständig. Die vom Brennpunkt ausgehende Kugelstrahlung wird
am Paraboloid reflektiert und verlässt die Spiegelöffnung als
„Parallelstrahlung". Erinnert man sich der geometrischen Eigenschaft
der Parabel, dass die Strahllänge vom Brennpunkt zum Paraboloid
und zurück auf eine Fläche senkrecht zur Hauptachse z. B. die
Deckfläche konstant ist, so bekommt man die wichtigste
Eigenschaft, nämlich die Gleichphasigkeit der die Öffnung verlassenden
„ebenen" Welle. Dies muss auch so sein, weil das Paraboloid für
den Brennpunkt ein optisch abbildendes System ist. Wir können
deshalb die Parabel und den Dipol ersetzen durch eine ebene Welle,
welche auf eine kreisrunde Öffnung trifft und an dieser gebeugt wird.
Für die Intensitätsverteilung über den Öffnungswinkel ist nun die
Amplitudenverteilung der elektromagnetischen Feldstärke auf der
beugenden Öffnung massgebend. Weil wir eine polarisierte
Dipolstrahlung betrachten, so tritt im Gegensatz zum Licht, wo die strah-
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lenden Dipole (die Atome) alle möglichen Richtungen haben, eine
charakteristische Verschiedenheit der Erregung in der beugenden
Öffnung auf. Sie äussert sich in der unterschiedlichen
Horizontalcharakteristik (senkrecht zum Dipol) und Vertikalcharakteristik (in
der Ebene Dipol und Spiegelachse) der Strahlung.

Die Anwendung der Kirchhoff'sehen Formel läuft darauf hinaus,

die Erregung in der Zwischenebene der beugenden Öffnung
zu kennen. Durch eine Reihe plausibler Vereinfachungen werden
wir uns dabei auf die wesentliche Abhängigkeit der Feldverteilung
in der Zwischenebene beschränken und so auf einfache geschlossen
integrierbare Ausdrücke kommen. Sie stimmen einerseits mit den
Messwerten mit relativ guter Genauigkeit überein und führen
andererseits auf einen direkten analytischen Vergleich mit den
Formeln für das Horn und die Sägezahnantenne, wodurch der
technische Vorzug des einen oder andern Richtgebildes bewertet werden
kann. Die Kirchhoff'sche Formel muss als exakte Fassung des

Huygens'sehen Prinzips nicht nur die relative Intensitätsverteilung
über den Beugungswinkel 0 geben, sondern auch die absolute
Intensität, d. h. die Verstärkung gegenüber der ungerichteten
Dipolstrahlung, sofern die Erregung der Zwischenebene auf den
Kugelstrahler im Brennpunkt bezogen ist. Auch dies ist von technischer
Bedeutung, da ja die Richtantennen neben der eigentlichen
Richtwirkung auch aus Gründen der Verstärkung der relativ kleinen
Mikrowellenenergien benützt werden. Für Horn und Sägezahnantenne

ist die Aufstellung einer Beziehung der Feldstärke in der
Zwischenebene auf den einzelnen Dipol nicht gut möglich ; trotzdem
erlaubt die vorliegende Untersuchung, auch die Verstärkung dieser
Richtgebilde gerade im Vergleich zum Paraboloid anzugeben. Noch
eine Bemerkung analytischer Natur. Die hier geformte Problemstellung,

Ersetzen des Spiegels und Dipols durch eine ebene kon-
phase Welle, die an einer Schirmöffnung gebeugt wird, führt bei
Anwendung der Kirchhoff'schen Formel auf die Frauenhofer'sehen
Beugungserscheinungen (Lichtquelle im Unendlichen), wobei im
Exponenten des Kirchhoff'schen Ausdrucks nur lineare Glieder
auftreten und wodurch die Integrale besonders einfach auszuwerten
sind. Lichtquelle nahe der beugenden Öffnung führt bekanntlich
auf Fresnel'sche Beugungsintegrale (quadratische Glieder im
Exponenten), vgl. G. Joos, Lehrbuch der theoretischen Physik.

Die folgenden Paragraphen geben die Rechnung der hier
skizzierten Methode; § 3 enthält die Zusammenstellung der Resultate
und § 4 den Vergleich mit andern Theorien, welche mir während
und nach der Untersuchung bekannt wurden.
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§ 1. Die Feldverteilung in der Zwisehenebene.

Zur Orientierung diene Fig. 1. Aus später ersichtlichen Gründen

wählen wir ein Paraboloid, dessen Brennpunkt in der
Deckfläche liegt und die als Zwischenebene betrachtet wird. Es gilt dann
für die Brennweite

f=hR.
Zwischenebene

df

rR

Fie. 1.

Der Ursprung des kartesischen Koordinatensystems 0 sei im
Brennpunkt, wo sich auch der erregende Dipol befinde. Die x-Rich-
tung fällt mit der Spiegelachse zusammen und die ^-Richtung ist
senkrecht auf der Zeichenebene zu denken. Die Figur ist ein
Axialschnitt durch das Paraboloid in der x-y-~Ebene. Ein Aufpunkt P,
der sich in dieser Vertikalebene in grossem Abstand r vom erregenden

Flächenelement df der Zwischenebene befindet, schliesst mit
der Spiegelachse den Winkel 0 ein. Der Gangunterschied A gegenüber

dem erregenden Flächenelement in 0 beträgt

A y ¦ sin 0

Diese Gangunterschiede bestimmen im wesentlichen die Beugung
durch die Begrenzung der strahlenden Fläche.

Der Dipol in 0 sende eine Kugelwelle aus. Die Brennweite sei

genügend gross, dass sich die Spiegelfläche schon in der Fernzone
befindet und die Feldstärke beim Auftreffen durch

u —5- cos &
e

(1)

gegeben sei; u0 gleich Dipolstärke. Die Abhängigkeit der
Feldamplitude von der Entfernung vom Mittelpunkt 0 auf der
Zwischenfläche ist durch zwei Gründe verursacht.

1. Auch bei unpolarisierter Strahlung (Licht) findet eine
Schwächung der Amplitude nach der Begrenzung der Zwischenfläche

statt durch die Vergrösserung von o gegen den Rand des

Spiegels. Durch die parabolische Reflexion entstehen parallele
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Bündel, welche keine weitere Schwächung hervorrufen. Eine
einfache Rechnung mit Hilfe der Parabelgleichung ergibt nach der
Fig.l

dy__ f+2f(f+x) + (f+x)2
d& r f+(f+x)

Die Flächenhelligkeit in der Zwischenebene nimmt also nach

dem Rand in dem Mass ab wie -Ar zunimmt und zwar gerade auf die

Hälfte von x= — / bis x 0. Dies gilt für alle Flächenelemente in
gleichem Abstand sjy2 + z2 um die x-Achse. Trotzdem vernachlässigen

wir diese Abhängigkeit und ersetzen sie durch eine mittlere
Feldstärke entsprechend dem mittleren Abstand "q f R

AAan~ 3 R
«rf

wodurch bereits eine wesentliche Vereinfachung im Kirchhoff'schen
Integralausdruck bewirkt wird.

2. Weitaus die wichtigere Abhängigkeit der Feldamplitude
entsteht durch die Winkelabhängigkeit # bei linear polarisierter Strahlung.

In der a;-0-Ebene (& 0) besteht keine solche; dagegen in der
x-y-~Ëbene nimmt die Flächenhelligkeit nach dem Rand mit cos #
ab und wird Null am Rande selbst. Diese Abhängigkeit werde
berücksichtigt, jedoch wieder aus rechnerischen Gründen in bezug auf
das Beugungsintegral vereinfacht in der Weise, dass statt dem cos
des Winkels &

n ycos ^-
2 R

genommen werde. Für kleine Winkel &, wo die Feldamplitude noch
gross ist, nimmt dieser Ausdruck ab wie cos &; erst für grössere
Winkel, wo die Feldbeiträge kleiner werden, tritt eine stärkere
Abweichung auf. Diese y-Abhängigkeit sei für alle z-Werte dieselbe.
Auch das bedeutet eine Annäherung an die Wirklichkeit im Sinne
einer Vereinfachung, weil bei seitlicher Ausschwenkung aus der
x-y-HA>ene auch eine ^-Komponente auf Kosten der y-Komponente
entsteht und am einfachsten durch Fig. 2 der Aufsicht auf den
Spiegel veranschaulicht wird. Der Spiegel werde an 4
symmetrischen Punkten je von einem Strahl getroffen. Weil der elektrische
Vektor immer in der Meridianebene durch den Dipol liegt, enthält
er vor der Reflexion die «-Komponenten, welche sich jedoch sowohl
in der y-Richtung wie in der «-Richtung aufheben. Dies wird aus
Symmetriegründen auch nach der Reflexion der Fall sein, so dass
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wir in der Zwischenebene nur ein Feld in der «/-Richtung gemäss
der erwähnten Verteilung zu betrachten brauchen.

3. Eine letzte Vereinfachung werde dadurch getroffen, dass

man die kreisförmige Öffnung durch eine quadratische gleicher
Fläche (a -s/n • R) ersetzt; dadurch ist Separation der
Integrationsvariablen möglich, wodurch, die Integration besonders einfach
wird und zugleich auf den Vergleich mit dem Horn führt. Trotzdem
die angeführten Vereinfachungen etwas rigoros erscheinen, werden
wir doch sehen, dass die errechneten Resultate in brauchbarer
Übereinstimmung mit den Messungen sind und vor allem die
charakteristischen Merkmale wiedergeben.

y

/ 1

f 1

J i\
*

\ /R Li/'
< 3 — »

Fig. 2.

Wir setzen also für die Erregung der Zwischenfläche unter
Berücksichtigung der Phase:

4 u,
— o cos n — ¦ e-ikriSB a

y von bis (2)
2 2

wo fe 2 n/X und rq der Weg vom Brennpunkt auf die Deckfläche ist

§ 2. Berechnung des Feldes im Aufpunkt P.

Der allgemeine Ausdruck der Kirchhoff'schen Formel lautet

1

4n grad u — u grad
iir

d f (3)

wo u eine Vektorgrösse, in unserem Fall der elektrische Feldvektor
ist. u ist die Erregung in der Zwischenfläche, also hier der
Deckfläche, r der Abstand vom erregten Flächenelement df zum
Aufpunkt P, df das vektorielle Flächenelement mit der
Flächennormalen nach aussen von der Strahlungsquelle weg. Zur Berechnung

der Verstärkung kommt es auf die Absolutgrösse des
Ausdrucks an.
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Es ist:

grad
-ihr

e-ikr+jjJ{e-ikr \ r ^ ik -,-ikr

für grosse Abstände von P -^— ; r0 ist der Einheitsvektor

Richtung P. Ferner ist mit (2)

m

grad ux ¦¦

• 7 -r 4 u0 nyu-.ik-x„ - tfe— ^=7 cos ——1 "" SR a
e-%lcrq j.

r„o Einheitsvektor in der Strahlrichtung auf die Zwischenfläche,
also senkrecht wegen der Spiegelwirkung. Setzt man diese
Ausdrücke in den Kirchhoff'schen Integralausdruck ein, so folgt:

U-p
ik Ur, -i*2/
n SR

cos ny -ihr
(cos 0+1) df (4)

wenn berücksichtigt wird, dass rq konst. 2 / ist und für (t0,d f)
und (rBo, df) die cos des Strahlvektors mit der Flächennormalen tt
d. h. cos 0 resp. — 1 geschrieben werden (— 1, weil die vom Spiegel
kommenden Strahlen parallel mit der nach aussen gerichteten
Flächennormalen auf die Zwischenebene fallen).

pfrYZ)

'//
V

Fig. 3.

Führen wir jetzt Polarkoordinaten ein. Dann sind die
Koordinaten des Aufpunktes P, Fig. 3

X Y cos 0
Y Y sin 0 • sin cp

Z ¥ sin 0 • cos cp

und der Abstand des Aufpunktes vom Flächenelement mit den
Koordinaten y, z'

r ]/X2 + (Y-y)2+(Z-z)2,



380 F. Lüdi.

wird bei grossem Abstand r angenähert,

r f& r — sin 0 (y • sin cp + z cos cp)

Wir setzen dies im Ausdruck (4) ein, wobei r im Nenner durch 7
ersetzt werden kann (nicht aber im Exponenten, wo die Phase
entscheidend wirkt) und (cos 07-1) als langsam veränderlich vor das

Integral gesetzt werden darf.
2 3t .„.,_, +a/2 +«/2

•«sq^.,„W)/ r«.i?SR Xr y ' J •> V a
-a/2 —a/2

+ Ì —r— {y • sin <p + z cos <p) sin &
¦ e ¦ dydz. (5)

2 nHierbei ist noch df dy dz und fe —^-gesetzt und die Integration
erstrecke sich über die Quadratfläche gemäss Fig. 2. Durch diese
Vereinfachungen wird nun der Integralausdruck für ein beliebiges
Azimut cp in einfacher Weise lösbar.

Wird cos n y/a durch
oiy ny
a „ a

e + e

ersetzt, dann bekommt man eine innere und äussere Integration
(Separation), wobei für die innere z konst. und für die äussere y
konstant ist. Die Integrale sind von der Form

sin a a/2
a —

a.-a/2

Das Schlussresultat nach Phase und Amplitude heisst :

2 a2 -i\*?-w+r>+*\ (cos 071) sin (-^-cos y sing)

cos m • sin 0

A-a/2

i piu.% dx
{„iazl+afz r,ia.(ii2 c—iaa/2

-2a/2e e,' 2%a.a/2J
os/2 ta

Up % Ur, eP °SRX¥ 2 YYA
X

sm Ina _ 7î\ / na „ jt\'I—j- sm cp • sm 0 + y] (sm ^r sm 9? ' sm c> —- y I

71 (l y-. 71 71 IX ^. 71

—j- sm cp • sxn 0 + y ~y~ sm 9? sm 0 — y
(6)

wobei also für a \/~, • R in den weiteren Ausrechnungen zu
setzen ist. Im Exponenten ist noch der Phasensprung n, der bei der
Reflexion auftritt, berücksichtigt.
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§ 3. Diskussion der Gleichung (6).

Dieser Ausdruck ergibt nun die Richtdiagramme in absoluter
Grösse in bezug auf die Dipolstärke u0, enthält also auch die
Verstärkung. Er vereinfacht sich sofort bedeutend, wenn man das

Strahlungsdiagramm in zwei charakteristischen Ebenen, der
Horizontalebene und der Vertikalebene betrachtet vgl. Fig. 3.

a) Horizontalebene cp 0 dann wird die Winkelabhängigkeit
des Absolutwertes der Feldstärke mit a yTr • R

8 R cos 071 sinLT3/2xsin0)
I up % -r- -r= r i—= (7)

3 Àr 2 n*l*~sin&
Das erste Minimum bestimmt sich aus :

ns!2 — sin 0 tt
X

zu
1

0 arc • sin
¦\Jn • R

b) Vertikalebene cp n/2. Man erhält für | uP | aus (6) nach
einfacher Umformung:

2» B cos 071 "^008 (^f^)
' Pl ° 3 *' 2 "(^4sin0)2-(f)2

Die beiden Ausdrücke (7) und (8) werden für 0=0 identisch wie
es sein muss. Der Winkel für das erste Minimum folgt aus

7t3/2 sin 0 — n
X 2

(nicht n/2, weil dafür auch der Nenner 0 wird) zu

3 X
0 arc • sin

2 VrB
Für kleine Winkel ist also der Öffnungswinkel des Hauptkegels

in der Vertikalebene l,5mal grösser als in der Horizontalebene.
Dafür sind die Nebenmaxima bedeutend kleiner, vgl. Fig. 4, wo

2 TU

die beiden Richtdiagramme für eine Apertur —j— 12 nach Glei-
COS 04-1

chung (7) und (8) aufgetragen sind. „ kann für kleine Winkel

durch 1 ersetzt werden. Die Verstärkung ist für dieses Beispiel
nach Gleichung (9) 16fach für die Feldstärke.
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c) ^Verstärkung in der Spiegelachse (0 0). Aus (6) folgt mit
a -\/n • R

u0 R

Ï7, 5?

0'

ISSE &\>S

Feldstänke in Honizontalebene

Fe'dsväpre in Vertikalebene

14« 12 10 8 6 4 2 0 2 4 6 3 10 ,Z U°
©< >¦©

Fig. 4.

; Messpunkte nach Staa] Berechnung nach Gleichung (7) und (8).
2 R

für Spiegelöffnung —-— 12.

Vergleichen wir diesen Wert mit der freien Dipolstrahlung
senkrecht zum Dipol (& 0) im Abstand r~, Gleichung (1)

u

so folgt für die Verstärkung:

V

7

x
2,65

R_

X
(9)

ein äusserst einfacher Ausdruck, der vor allem zeigt, dass diese
durch dasselbe Verhältnis R/X wie der Öffnungswinkel bestimmt ist.
Das ist auch einleuchtend, denn die grössere Verstärkung wird durch
die stärkere Bündelung erzielt. Weil die durch einen Senderdipol
im Abstand r erzeugte Feldstärke proportional mit der Quadratwurzel

der Leistung zunimmt, ist es bemerkenswert, dass ein Spiegel

des dreifachen Durchmessers dieselbe Verstärkungssteigerung
bewirkt wie ein Sender neunfacher Leistung!

d) Das elektromagnetische Horn. Ein Wellenleiter quadratischen

Querschnitts werde mit einer H01-Welle erregt. Das
charakteristische dieses Wellentyps ist das Vorhandensein nur dreier
Feldkomponenten, zwei magnetische in der Achsrichtung und eine
elektrische senkrecht dazu, z. B. in der y-Richtung. Die Randbedingun-
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gen ergeben eine Amplitudenverteilung der elektrischen Feldstärke
in der 0-Richtung gemäss

nz
UnCOS

und zwar ist dies die exakte Abhängigkeit.
Man kann sich nun vorstellen, dass durch einen aufgesetzten

Trichter keine Veränderung im stetigen Feldverlauf eintritt (keine
weitere Knotenbildung), sondern lediglich eine ähnliche Vergrösserung

auf die Trichtermündung erfolgt, wo die Feldverteilung jetzt

nz
Ux cos

ÊÉ

/•.

Hm

Fig. 5.

ist, die für z + a/2 verschwindet. Die Feldverteilung ist in Fig. 5

wie in Fig. 3 durch die Länge der Pfeile angedeutet. Vergleichen
wir jetzt mit dem Spiegel bei den oben gemachten Vereinfachungen,
so erkennen wir, dass die Feldverteilung dieselbe ist und damit die
Winkelabhängigkeit der Strahlung bei gleicher Strahlungsfläche
dieselbesein muss (in den Formeln tritt an Stelle von n3!2 R/X einfach
n a/X) mit dem einzigen Unterschied, dass Vertikal- und
Horizontalcharakteristik vertauscht sind, weil hier die cos-Abhängigkeit senkrecht

zur Dipolrichtung erfolgt.
e) Die Sägezahnantenne. Dieser ebenfalls bekannte

Richtstrahler ist ein Drahtgebilde nach Fig. 6, welches in der Mitte durch
eine Lecherleitung gespiesen wird. Die Schenkellänge X/2 bewirkt,
dass die durch die Pfeilrichtung angedeutete Stromverteilung J
zustande kommt. Da sich die Horizontalkomponenten sowohl in der
z- als auch in der ^-Richtung aufheben, kann der Strahler durch die
darunter gezeichnete gleichphasig schwingende „Dipolfläche" und
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bei genügend grosser Schenkelzahl durch eine homogene Feldverteilung

ersetzt werden. Als Zwischenebene zur Berechnung der
Beugung nach der Kirchhoff'schen Formel kann die Dipolebene
selbst genommen werden. Ein zweites Gebilde gleicher Form im
Abstand X/2 wirkt als Reflektorantenne, so dass die Fläche nur nach
vorn strahlt. Bei konstanter Feldverteilung resultiert für die

Winkelabhängigkeit Gleichung (7), wo wieder statt n*^-rr —r— zu

setzen ist. Es sei hier bemerkt, dass dies der bekannte Ausdruck
der Optik für die Lichtbeugung an einem Spalt der Breite a ist,
wodurch die volle Analogie mit dieser hervortritt. Durch die Strah-
lungsclämpfung werden die äusseren Schenkel etwas schwächer als
die inneren erregt sein, so dass im äussersten Fall mit einer cos-
Verteilung gerechnet werden kann, dann gilt Gleichung (8). Man
kann sagen, das Richtdiagramm wird bei gleicher Strahlungsfläche
nahezu dasselbe wie für Horn und Spiegel.

U
% ^'/ ^
^ /j\x As

Fig. 6.

Zur direkten Bestimmung der Verstärkung würde beim Horn
wie bei der Sägezahnantenne eine Beziehung der Feldamplitude in
der „Zwischenebene" auf den freistehenden Dipol erforderlich sein,
die aber in den beiden Fällen nicht leicht anzugeben ist. Jedoch
gibt folgende Überlegung eine indirekte Bestimmung der Verstärkung

: Weil gezeigt wurde, dass die Strahlungsdiagramme bei gleich
gross strahlender Fläche von Spiegel, Horn und Sägezahnantenne
nahezu gleich sind, so muss bei gleicher Senderleistung bei ange-
passter Antenne die Verstärkung gleich sein wie beim Spiegel, also

V-
3 \/nX

denn die zugeführte Generatorleistung kommt ja bis auf die
vernachlässigbaren Leitungsverluste als Strahlungsleistung zum Vor-
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schein, welche mittels des Poynting'sehen Vektors («s | uP\2) als

Flächenintegration über das Strahlungsdiagramm erhalten wird.
Jedoch mit einem Unterschied: dass die Verstärkung der beiden
letzteren Richtstrahler noch um etwa einen Faktor \/2 besser ist
als die des Spiegels gleicher Richtfläche. Dies aus dem Grunde, weil
bei diesem nach Fig. 1 nur die hintere Halbkugel der Dipolstrahlung
ohne zusätzliche Verwendung eines Reflektordipols oder -spiegeis
gerichtet wird. Man kann also bei kurzen Wellen für die
Richtwirkung mit ebenso gutem Vorteil die einfacheren Drahtgebilde
an Stelle der teuren und umständlichen Parabolspiegel benützen.

§ 4. Vergleich mit anderen Theorien.

Die Theorie von Darbord behandelt bereits die Verstärkung
des Parabolspiegels in exakter Weise1). Staal2) berechnete dann
auf Grund der Darbord'schen Theorie das Strahlungsdiagramm und
führte auch Messungen zum Vergleich mit der Theorie aus. Metschl 3)

gibt in seinem Referat einen guten Überblick über die Methoden der
Berechnung.

Weil Darbord nicht die Kirchhoff'sehe Formel benützt, muss
er auf einem Umweg, um im Hinblick auf die Verstärkung die

charakteristische -—r- Abhängigkeit nach Gleichung (6) zu bekommen,

die Beugung (Diffraktion) der einzelnen Spiegelelemente mittels

Energiesatz und Poynting'scher Strahlung berechnen.
Die exakte Verstärkungsformel, welche auch noch di*

Abhängigkeit von der Brennweite p 2f enthält, lautet

Faa»p| r*+^ R*
X \ \ p2 } (p2+R2)2\

Für p R (unser Beispiel der Fig. 1) wird daraus

V 2,85 2L
T

Der Faktor 2,65 in Gleichung (9) weicht um weniger als 10% hiervon

ab. Der Einfluss der Brennweite ist hauptsächlich darauf
zurückzuführen, dass mehr oder weniger als die Halbkugel der
Dipolstrahlung gerichtet wird. Um mit der Spiegelfläche möglichst in
die Wellenzone des Dipols zu gelangen, wird man eine grössere
Brennweite wählen, jedoch mit Rücksicht auf die damit abnehmende

Verstärkung nicht zu gross, so dass die Bauart / E/2 nach
Fig. 1 für übersichtliche Verhältnisse ein annehmbarer Kompromiss

ist. Eine kritische Abhängigkeit von der Brennweite wegen
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Phasenauslöschung mit der ungerichteten Vorwärtsstrahlung wird
erst für sehr kleine Spiegelöffnungen im Verhältnis zur Wellenlänge
zu erwarten sein; denn der Winkel, unter dem ein Objekt vom
Dipol aus erscheint, ist für grosse Distanzen sehr klein im Vergleich
zum Gesamtwinkel der gerichteten Strahlung.

Zur Bestimmung der Winkelabhängigkeit berechnet Staal die
Feldverteilung in der Brennebene und damit nach dem Huyghens'
sehen Prinzip die Superposition in P für die Vertikal- und
Horizontalebene. Ollendorff hat schon früher4) bei der Berechnung der
Fernwirkungskennlinie einer Zylinderparabel aus Stäben diese
durch die Deckfläche konstanter Dipolstärke (ohne nähere
Begründung) ersetzt. Nach unserer Darlegung ist ersichtlich, dass die
Zylinderparabel viel ungünstiger als Paraboloid, Horn oder
Sägezahnantenne ist, weil die Phasengleichheit nur in der Äquatorebene
erfüllt ist.

Für das Horn wurde bereits von Barrow und Lewis1) die
Winkelabhängigkeit nach Gleichung (8) in analoger Weise
ausgerechnet und in guter Übereinstimmung mit den Messungen
befunden. Nach der vorliegenden Betrachtung liegt jedoch die
Ursache der kleineren Nebenmaxima gegenüber dem Spiegel nicht in
der focusfreien Führung des Wellenfeldes, sondern in der verschiedenen

Feldverteilung in der Zwischenebene. Eine solche ist ja beim
Spiegel auch in der Horizontalebene durch geeignete Mittel, wie
z. B. durch ein schwächeres Reflexionsvermögen nach dem Rand
eben^lls zu erreichen.

Für die Sägezahnantenne sind ebenfalls schon spezielle
Formeln aufgestellt worden6), welche für grosse Öffnungen die gleiche
Winkelabhängigkeit wie hier ergeben.

Die Fig. 4 ist im selben Masstab wie im Referat von Metschl
aufgetragen und die eingezeichneten Messpunkte zeigen, dass die
Winkelabhängigkeit in der Horizontalebene mit hinreichender
Genauigkeit wiedergegeben wird. Die Abweichung in der Vertikalebene

ist auf die starke Vereinfachung der cos-Abhängigkeit nach
§ 1 zurückzuführen ; sie gibt aber die im Referat Metschl betonte
Niedrigkeit der gemessenen Nebenmaxima gut wieder.

Wenn auch nicht die volle Exaktheit mit unserer vereinfachten
Theorie wiedergegeben wird (die durch bessere Berücksichtigung
der Feldverteilung in der Zwischenebene beliebig weit getrieben
werden könnte), so hat sie doch den Vorteil der Einheitlichkeit und
Übersichtlichkeit im Hinblick auf eine vergleichende Beurteilung
der verschiedenen Richtstrahler. Sie zeigt vor allem auch, dass für
nicht zu kleine Aperturen die Grösse des A/2-Dipols und dessen

Stromverteilung für das Richtdiagramm ganz zu vernachlässigen ist.
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Nachtrag.

Für konstante Feldverteilung in der Zwischenebene lässt sich
das Doppelintegral in Gleichung (5) auch für kreisrunde Spiegelöffnung

relativ einfach ausrechnen. Es wird statt (5) für die x-, z-
Ebene (cp 0), Fig. 3

+ R + V-R'-z2 .2ti „/f i —— z • sjn B

J -e
x -dydz (10)

z — R v =—Vr'—z'

Die Integration von — -\/R2 — z2 bis 7- \'R2—YÄ bedeutet
zuerst Summation über alle gleichphasig mitwirkenden Felder in
der ^/-Richtung und dann erst Phasenaddition in der ^-Richtung.
Für die Vertikalebene (xy) cp n/2 sieht das Doppelintegral gleich
aus bei Vertauschung der Integrationsvariablen und man muss also
dieselbe Richtungsabhängigkeit bekommen. Die Ausrechnung führt
auf Besselfunktionen erster Ordnung

Jx (2 —p- sin 0) o nuP^2B2n \~± L i. Nullstelle: ^f B sin 0= 3,83
^A- sin 0 X

welcher Ausdruck mit demjenigen für die Beugung an einem Loch
in der Optik identisch ist. Für das Beispiel der Fig. 4 ist das Minimum

nur 25' weiter aussen. Der Öffnungswinkel ist rund l,2mal
grösser als für einen Spalt gleicher Breite wie der Lochdurchmesser.
Für die Verstärkung bekommt man anstatt Gleichung (9)

t/ 4 B B
V — n — 4,2 —S X X

also eine viel grössere Abweichung gegenüber dem exakteren Wert
2,85 B/X als nach (9) unter Berücksichtigung der angenäherten
Feldverteilung in der Öffnung.

Wird die Feldverteilung nach § 1 berücksichtigt, so ist das
auszuwertende Integral für die kreisrunde Öffnung von der Form:

+ R +V~R--

J j cos (^-\-eAy+B* dydz (11)

2=— R y=-An-z-

Seine Ausrechnung ist bedeutend komplizierter als (10) und konnte
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nur mit Hilfe der Laplace-Transformation gefunden werden. Der
allgemeine Ausdruck für ein beliebiges Azimut cp wird

B n
Jt (B Va2- B2) Jt (B Vß2-B2

V«2-ß2 Vß2-B2
(12)

worm
na=iA + —— B=iA — ist.2R' F 2R

Für die Wurzeln gilt mit

A 2 sin cp • sin 0 B 2 cos cp • sin 0
X X

|/a2 — B2 —t-~ 1/1 sin c? sin0 — -r-p) + cos2 9 sin2 0

y/32_B2 _^Ly/sinç,.sin0+_L\2+COS2?) sin2(9

Die Verstärkung wird V 16/3 R/X Jx (n/2) 3,02 R/X, also etwas
grösser als nach Gleichung (9), während der ursprüngliche Wert
von Darbord n R/X ist.

Der Vergleich von (12) mit der entsprechenden Gleichung (6)
für quadratische Öffnung und also mit Horn und Sägezahnantenne
ist nicht so übersichtlich und bleibe dem Leser überlassen. Die
wenig grössere Genauigkeit wird nur mit unverhältnismässigem
Aufwand erzielt. Herrn A. Käch, der die Ausrechnung der beiden
Integrale durchgeführt hat, danke ich auch an dieser Stelle bestens
für seine Bereitwilligkeit und gehabte Mühe.
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