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Zum Deuteronproblem. II1)

von G. Wentzel.
(22. IV. 1944)

Es werden diejenigen Deuteron-Zustände untersucht, bei denen entweder
der Spin J oder der isotope Spin K null ist. Unter ihnen erweisen sich ein S-Zu-
stand mit K 0, J 1 und ein solcher mit J 0, K 1 als die energetisch
tiefsten Zustände (die beiden Terme sind gleich bei Vernachlässigung der Tensorkraft),

und zwar gilt dies nicht nur für grosse sondern auch für kleine Werte
der Isobaren-Energie. Da die zwei tiefsten Zustände mit den bekannten Deuteron-
Zuständen 3S und 1S identifiziert werden können, entspricht die Theorie in dieser
Hinsicht der Erfahrung. Neu gegenüber den früheren Theorien ist die Voraussage
isobarer Deuteron-Zustände; der Spin-Ladungs-Charakter und die Anregungsenergien

der tiefsten dieser Zustände werden diskutiert.

§ 1. Verallgemeinerung der Gleichungen (I, 29 und 33).

Im I.Teil dieser Arbeit, § 4, wurden die Deuteron-Zustände mit
J= K=0 untersucht. Hier kommen wir zum nächst verwickeiteren
Fall: Eine der beiden Quantenzahlen J, K sei null, die andere
beliebig. Es handelt sich also um Zustände, die entweder Spin-
Singletts oder Ladungssingletts sind. Da die Tensorkraft — wie
in I — ignoriert werden soll, ist die Theorie bezüglich J und K
symmetrisch; es genügt daher, den einen Fall (J= 0, K beliebig)
zu betrachten ; der andere Fall (K= 0, J beliebig) ergibt sich dann
durch Vertauschung von J und K. Nach dem ,,Vektormodell"
(vgl. (1,5)) gibt es auch hier nur F-Komponenten mit jx=J2=j',
ferner ist die ungerade Zahl jx 7 j2 2 j auf die Werte ^ J und
A K beschränkt, d. h. j durchläuft nur die Werte j0, j0 7 1,
jr, 7 2, wo j0 die kleinste halbganze Zahl bedeutet, die sowohl

^ Jß als AK/2 ist;
T K/2, wenn K ungerade,fur J 0: ]0 { (1)

(K+l)/2, wenn K gerade.

Das Pauliprinzip besagt nach (I, 9) :

F(jJA)=TF(jj,—t), jenachdem J+K g6ra e
(2)

[ungerade.

b Teil I: M. Fiebz und G. Wentzel, Helv. Phys. Acta 17 (1944), S. 215.
Die dortigen Bezeichnungen werden hier übernommen; Gleichungsnummern mit
vorgesetzter I beziehen sich auf Teil I.
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Wie im Falle J=K=0 untersuchen wir zunächst die Gleichung
(I, 11) bzw. (I, 25), d. h. das Problem zweier ruhender Nukleonen
(festgehaltene Ortskoordinaten). Mit den Bezeichnungen

a (??') ai, (Ü I Q\iA')= Q»'

haben wir das Gleichungssystem:

{- W+e{(j+\)2 - 1]} a,7F2 Qtr *,
l'è/«

(j= io,Jo + !> - "O-

Indem wir uns für den Fall

J 0, K beliebig

entscheiden, können wir nach Fierz1) ansetzen:

(3)

Q» 1

Q1,1—X ' a

K(K + 1)

2j(j + l) '

1—1, i

K+1XZ

j'YP-1/4
alle anderen Matrixelemente 0.

(4)

Für die folgenden Rechnungen empfiehlt es sich, die Quadratwurzeln

zu beseitigen; dies kann z. B. durch die folgende Substitution
geschehen, wobei wir gleichzeitig statt j den ganzzahligen Index
s= j einführen :

*»-% bs Vys > wo

rs=[s2-(i)2][s
Beachtet man, dass

ys-t _
(i

(f)2] L> m 2']

(5)

[--£)']. (6)

ylir
K + l

(i +m-m i+i (r -I),

so erhält man anstelle von (3), (4):

{- W+e[s2 - 1]} ÒS7F 2 Össr b, 0
'

(* ^ «o Jo + 1) ;

(7)

b M. Fierz, Helv. Phys. Acta 17 (1944), S. 181, Gl. IV. Berichtigung zu I:
Diese Arbeit von Fierz ist auch in Fussnote 2 S. 219 gemeint.
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K(K+1)
««ss "&4Ì A

(izM
2 (s2-h)

K+l
Q - v ±1YY z / 1 K(K-1) K(K+1)

j(j-i) 2(s-l) 2s-l
K\l. K+V

_x1+Yr)[1+—) _, K(K-1) K(K+1)
ids_x_s — T-ro : TO ±

(8)

j(j + \) 2 s 2s-l
alle andern Matrixelemente 0.

Die neue Matrix Q ist natürlich nicht-hermi tisch, da die Substitution

(5) nicht-unitär ist1).
Im Gleichungssystem (3) durchlaufen die Indices j, j' nur die

Werte ^ j0 (vgl. (1)). Seine Eigenwerte IF sind aber gleichzeitig
auch Eigenwerte des erweiterten Gleichungssystems, das man
erhält, wenn man j, j' alle halbganzen Werte A \ durchlaufen lässt2).
Dies beruht darauf, dass nach (4)

^h, n-x ^i.-i, n
®

ist; infolgedessen zerfällt das erweiterte System in ein System von
Gleichungen für die Komponenten aja, a,-0+i, • ¦ • allein, das mit (3)
übereinstimmt und die Eigenwerte W besitzt, und in ein (endliches)
System von Gleichungen für die Grössen Oy a3/a, • • -, fly _i, dessen

Eigenwerte im allgemeinen nicht Eigenwerte von (3) sind; die
letzteren Eigenwerte sind leicht zu berechnen und können daher mit
den gesuchten Eigenwerten W nicht verwechselt werden; wir
nennen sie „falsche Eigenwerte". Analog erweitern wir jetzt auch
das Gleichungssystem (7), indem wir die Indices s, s' über alle
ganzzahligen Werte A 1 laufen lassen. Allerdings zerfällt dieses

System nicht, da nach (8)

zwar ßSoi So_1 0, aber Qs,-x, g„ 7 0

ist (für K 2; 2) (die Matrix Q ist nur „halb reduziert"). Trotzdem
stimmen sowohl seine „richtigen" wie seine „falschen" Eigenwerte
mit denen von (3) überein, wie leicht zu sehen ist. Die zu den
richtigen Eigenwerten TF gehörigen Eigenvektoren des erweiterten
Systems besitzen „falsche" Komponenten bx, b2, • • • ¦, 6a#_1; doch
braucht man diese nur nullzusetzen, um die Eigenvektoren des

engeren Gleichungssystem (7) zu erhalten (bezüglich der Normie-

b Durch die Substitution as—y2 ijy/yl wäre man zur transponierten
Matrix gelangt.

2) Eine Erweiterung tritt natürlich nur ein für j0 J> 3j.,, d. h. K > 2.
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rung vgl. § 2). Bei der Erweiterung können übrigens die
Matrixkomponenten

Qjf mit j < j0, bzw. Qss- mit s < s0 (9)

nach Belieben gewählt werden; die richtigen Eigenwerte W sind
von dieser Wahl unabhängig, und dies kann geradezu als ein
Kriterium für einen richtigen Eigenwert benutzt werden.

Wenn wir nun vom erweiterten System (7) ausgehen, wo also
s und s' von 1 an laufen, so können wir bei den weiteren
Rechnungen ähnlich vorgehen wie in I, § 4. Durch die Fourierreihe

Hv) ±bs^pi(-iy (io)
s=i Vn

definieren wir eine Funktion der Variablen n mit den
Eigenschaften :

cp(rj + k-2n)= cp(r>), cp(— rf) — cp (rj). (11)
Ferner sei

1 OO OD

D(rjÇ) — 2 2 Ü^ ' sin sri ' sin s'f ' (- i)84"*'- (12)
n =1 s'=X

Aus den Gleichungen (7) folgt dann, dass die Funktion cp der
Integro-Differential-Gleichung

<p"(n) + (—¦ + l)<P(A)-y /D(»?£)ç>(!)df=0 (13)
— TT

genügt. Dies ist die Verallgemeinerung der Mathieu-Gleichung
(L 33)1).

Zur Berechnung des Kerns D setzen wir die Ausdrücke (8)
in (12) ein (und zwar vorläufig auch für s < s0) und trennen die
Terme mit verschiedener K-Abhängigkeit :

D=D0 + K{K-1)D1+K(^Vd2. (14)

Zunächst :

1 œ

A)(*?£)= —2 sm s*?{sm s£ —sm (s+i)£ ~sm (s ~ i)£}
TT s l

1 °°
(1 — 2 cos |) • 2 {cos s (£ ~ *?) ~~ cos s (f + *?)} •

2 TT „=i

7 Hätten wir, gemäss der Bemerkung in Fussnote 1, S. 254, mit der

transponierten ß-Matrix gerechnet, so stände in (13) der Kern D(Çrj) statt D(rjÇ).
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Definieren wir eine periodische ó-Funktion durch

*W-inr2 ¦1 U + 2 cos m) (15)

so wird
D0(^|) (1 - 2 cos |) • i{<5(! - rf) - Ô(Ç 7 77)}

jD0(Vi)tp(Ç)dï (1 - 2 cos |) i{ç,fa) - y(- 7?)}

(1-2.C0SI) -cp(rj). (16)

Für K 0 wird D D0, und (13) geht in die Mathieu-Gleichung
(I, 33) über (a; n + rj). Weiter ist:

1 °° 1
DArji) — V — sin s| (sin (s — l)n — sin (s7l) rj)

njAx s
1 00 1

—sin ri• — V —(sin s(Ç — rf) 7sin s(|7 77)}.
» *=i s

Aus (15) folgt aber durch Integration von — z bis 7 z, wo | z | < 2 n :

/7 2 1 / " sins2
/ dz ò (z) -—— — iz+2yJ \z\ n\ tA, s

2-
»=i

sm sz n z

2 \z\
(für \z\ <2n).

Hiermit wird, falls f und n auf das Intervall —n bis +n beschränkt
werden :

1
Dx (77 f) — sin r\

Nun ist

ë — r; | + rj
\S — rj\ \£ + y

-An
è — rj | 7 rj

1, wenn I > 177 [,
1, wennf<— \n\, (17)

0 sonst.
2 [|f — n\ I 17-771

Beachtet man noch, dass cp ungerade ist, so folgt:
71 71 -i 71

jDx(rji)cp(i)dë =-2 sin rj- Jcp(Ç)di - -f Sep (f)d|
—jt t ^ 0

Hierfür schreiben wir:

J Dx(rj i) cp(i) de =2 sin ri- Jcp(i)dÇ + r (18)
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r=-f(l-±-^cp(i)di. (19)

Schliesslich [vgl. (8), (12), 14)]:

Davi£) —y, sm sri\ An s| •

7

1 1
• + ¦

-i/2 s + y2

sin (s — 1)| sin (s + 1)|
Ä — i/. s+ bi

Ersetzt man in den Termen mit den Nennern s+\ die Zahl s durch
— s, so erhält man folgende, von —oo bis 7co laufende Summe:

1 °° 1
F>2(V^)=: y, — sin st?-{sin s£ — sin (s — 1)1}

| 1 °° 1
— 2 sin — •— V, — sinS77 • cos (s—f) f.

2 TT.ir1«, S— %
Schreiben wir hier

sin S77 sin (s — J) 77 • cos y 7 cos (s — |) 77
• sin y

so liefert der zweite Term aus Symmetriegründen keinen Beitrag
zur Summe, und es kommt:

V IAs(*?£) — cos-^--sin

1

2 -^I7{sm(s-l)(77-l)+sin(S-|)(77+|)}.
=-00 s ~~ /2TT

Nun folgt aber aus (15) für | z | < 2 7T1):

fdzò(.z) e
1

,i (s—%) z _

2?ri.±fœs —V?
- e~* (s_y2)z)

J^ » sin (s — j)z

Folglich

D2(V%)= — cos-|--sin — rj — S V 7 I

1i Für behebige a gilt:
+z _ iz

j dz 0(2) e 2 sin «/2 _
1 ®

77 — i\ I 777-!

sin (s- J)z
I sin s/2 I ji

17
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Mit Hilfe von (17) (wo f und?? zu vertauschen sind) findet man:

JD2(rjÇ)cp(i)dÇ - 4 cos JL Jsin ^ ¦ cp(i)dÇ. (20)
—n 0

Wir setzen nun den Kern (14), unter Benutzung von (16),
(18) und (20), in die Integro-Differential-Gleichung (13) ein. Mit
den Abkürzungen

e re
lautet das Ergebnis:

<p" (v) + [cc — 2 ß2 (1 — cos 77)] cp (rj)

+ ß2K(K+l) -2 cos-J [sm-j-cp(Ç)dÇ

ß2K(K-l) -sin 77

0

n

h
Lo

(i)di + r (22)

Wir wollen noch untersuchen, wie der Kern D sich ändert, wenn
wir von der oben erwähnten Freiheit Gebrauch machen, die ß-Kom-
ponenten (9) abzuändern. Ändern wir z. B. in (12) die Komponenten

Qlsr ab, was für K S: 2 (s0 A 2) erlaubt ist, so ändert sich

IY) (rj f) um sin 77 2 CV sm s' £,

D(r)Ç)cp(Ç)dÇ um sin 77 f($)tp(Ç)dÇ,

wo /(£) eine beliebige Funktion ist. Fügt man den betreffenden
Zusatzterm in (13) bzw. (22) hinzu, so bedeutet dies nichts anderes
als eine Änderung des Wertes der Konstanten F in (22) ; während
diese bisher durch (19) definiert war, tritt nun an die Stelle des

Faktors (1—£/n) im Integranden eine beliebige Funktion von £.
Wir können daher F als eine beliebig wählbare Konstante
auffassen; die „richtigen" Eigenwerte TF müssen von dieser Wahl
unabhängig sein, was wir im Folgenden verifizieren werden. Die
zugehörigen Eigenfunktionen cp sind natürlich von F abhängig; eine
Änderung von F bewirkt in der Fourierreihe (10) eine Änderung
der „falschen Komponenten" s < s0 (und umgekehrt). Das Gesagte
gilt, wie bemerkt, nur für K A 2; doch braucht diese Einschrän-

b V ist gemäss (I, 6) positiv angenommen.
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kung nicht besonders vermerkt zu werden, da Fin (22) mit K (K—1)
multipliziert ist und daher für K 0 oder 1 garnicht auftritt.
Entsprechend kann man für K 3: 4 (s0 ^ 3) einen weiteren Term
const • sin 2 77 in (22) hinzufügen, und so fort; wir wollen aber
einfachheitshalber davon absehen und nur den einen F-Term in (22)
stehen lassen.

Wir kommen nun zur Bestimmung der Eigenwerte der
Gleichungen (3) bzw. (22). Da es sich schon im einfachsten Fall K 0

um das Eigenwertproblem einer Mathieu-Gleichung handelt, sind
wir für K > 0 erst recht gezwungen, uns auf die Untersuchung
der beiden Grenzfälle F <^ e und V ^> e zu beschränken und eventuell

für V ~ e eine Interpolation zu versuchen. Der erstgenannte
Grenzfall ist natürlich durch eine Störungsrechnung leicht zu
erledigen: betrachtet man in der Matrix des Gleichungssystems (3)
die Matrix V ¦ Q als eine kleine Störung, so findet man für die
Eigenwerte TF folgende Entwicklung nach Potenzen von F/e:

w=e{(j+W-n+vüjj + ^(R^-A^) +
(23)

(j^jo, d.h. j-AK/2; F< e

Führen wir statt j wieder die ganze Zahl s= j + \ ein, so können
wir, unter Benutzung von (8), anstelle von (23) auch schreiben:

Ws e[s2- ll.i T/n i

V l&s,s-X ß»-l, s »¦=*, S+X "S+l,i]+icW„i
e y 2s_1 2s7 1

I -^ AI. --> K+1
(s ^s0, d.h. s ^ —— ; V<e).

(24)

Den anderen Grenzfall dagegen werden wir auf Grund der
Gleichung (22) behandeln. In dieser nehmen wir also jetzt ß^>l an,
was nach (21) V ^> e bedeutet.

§ 2. Grenzfall /3 > 1.

Für K= 0 lösten wir in I, § 4 die Schrödingergleichung (22),
indem wir deren „Potentialfunktion" in der Umgebung ihres
Minimums (x tt, d. h. hier 77 0) entwickelten ; wurden vom Cosinus

nur die quadratischen Terme beibehalten, so ergaben sich die Eigenwerte

eines harmonischen Oszillators; die höheren Entwicklungs-
terme entsprachen anharmonischen Störungen.

Für K 7 0 liegt es nahe, eine analoge Entwicklung zu
versuchen. Wir ersetzen daher in (22) (1 — cos 77) durch t72/2 und in
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den iT-abhängigen Termen cos 77/2 durch 1, sin f/2 durch |/2 und
sin 77 durch 77. Es wird sich zeigen, dass die dabei vernachlässigten
Terme wirklich nur anharmonische Störungen ergeben. Für die
„nullte Näherung" setzen wir also folgende Gleichung an:

cp"(rj) + (a-ß2rj2)cp(rj)+ß2K(K+l)fitp(C)di

ß2K(K-l)rj fcp(Ç)dÇ+r 0. (25)

Differenziert man diese Gleichung .K-mal nach 77, so folgt [93®

bedeutet die Z-te Ableitung von cp]:

yiK+2) + (« - ß2v2) <p<x> (77) 0; (26)

d.h. die Funktion
cpW w (27)

genügt der Oszillatorgleichung:

ip" 7 (oc — ß2r]2)rp= 0. (28)

Von den Lösungen dieser Gleichung kommen nur die — für grosse
| 77 | exponentiell abklingenden — Oszillator-Eigenfunktionen in
Betracht, da nur sie den (später zu besprechenden) Normierungsbedingungen

unterworfen werden können. Folglich sind die Eigenwerte

des Parameters a:
an ß (2 n 7 1). (29)

Da aber cp nach Definition eine ungerade Funktion ist, gilt für ihre
K-te Abteilung yn:

Vn(-V)=(-1)K+1-V>r.(ri)- (30)

Für die durch (29) definierte Oszillationsquantenzahl n bedeutet
dies:

n7K ungerade Zahl; (31)

n= 1, 3, 5, • • •, wenn K gerade, 1

.„_.
n= 0,2,4, •••, wenn K ungerade. |

Die entsprechenden Eigenwerte W sind nach (21) und (29) :

W{n) -V + ^7V(2n + l) + ¦•-. (33)

In dieser „harmonischen Näherung" sind also die Eigenwerte mit
K 2,4, • • ¦ die gleichen wie die früher (I, § 4) für K 0 gefun-



Zum Deuteronproblem. II. 261

denen ; für K 1, 3, 5, • • • dagegen liegen alle Eigenwerte nach
(32) um 2 \/eV tiefer. Die K-Entartung, d. h. das Zusammenfallen
der zu geraden bzw. ungeraden K-Werten gehörigen Eigenwerte,
besteht, wie sich zeigen wird, nur solange die Anharmonizitäten
vernachlässigt werden. Alle gefundenen Eigenwerte sind „richtige"
Eigenwerte im Sinne des § 1, d.h. Eigenwerte des ursprünglichen
(nicht erweiterten) Gleichungssystems (3), wie schon aus ihrer
Unabhängigkeit von F folgt.

Nach (27) sind die Eigenfunktionen cp der Gleichung (25) durch
-rT-malige Integration der Oszillator-Eigenfunktionen ip zu erhalten.
Durch wiederholte Integration zwischen 0 und 77 bilden wir
zunächst die Funktionen:

(34)

(35)

wo PK-x ein ungerades Polynom höchstens (K — l)-ten Grades ist.
Geht man mit (35) in die Gleichung (25) ein, und benutzt man
die Gleichung, die aus der Oszillatorgleichung (28) durch K-malige
Integration zwischen 0 und 77 folgt, so erhält man lineare
Gleichungen für die Koeffizienten des Polynoms, die dieses eindeutig
zu bestimmen gestatten. Seine Kenntnis ist aber für das Folgende
nicht nötig. Zu beachten ist, dass die Koeffizienten des Polynoms
vom Parameter F abhängen; dies entspricht dem in § 1

hervorgehobenen Umstand, dass in der Fourierreihe (10) die „falschen
Komponenten" bs(s < s0) von F abhängig sind. Natürlich ist die
Formel (35) für die Eigenfunktionen cp, wegen der in der
harmonischen Näherung gemachten Vernachlässigungen, nur für | 77 | <^ 1

gültig ; auf die Aussenbereiche (77 -+ A n) kommen wir später
zurück.

Als nächstes berechnen wir die durch die „Anharmonizitäten"
hervorgerufenen Eigenwertstörungen. Indem wir in der Entwicklung

der trigonometrischen Funktionen in (22) jeweils einen Schritt
weiter gehen [also z. B.

2 cos A- sin — durch f — I772 —- — f3
A li o 2o+.

ip -«(,)
0

v'-2' (A) ~~

0

ß)äi
1

-- f y> (£)(¦>!-
ò

-Ì)di,

¦¦ -, ip(-

n

-j-i) (^ yv(
0

-lA£)di-¦¦ki
0

if(i)(rj -i)ld£..

Dann ist offenbar

cp (77) ipY-JO (rj) 7 Pk-x AÙ,
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ersetzen], kommt anstelle von (25) :

i
cp" (rj) + (a - ß2rj2)cp(rj) + ß2K (K+l) fiep (£)d£

o

-ß2K(K-l)rj fcp(i)dÇ + r
-o

i r 1 n

ß^-^vW+K(K+l) ±rj2fi93(1) di+^ f fV (I)di

-K(K-1)7t7e /ç»(f)df- F U(t7)

(36)

Die kleinen Korrekturterme haben wir rechterhand in der Stö-
rungsfunktion TJ zusammengefasst ; in ihr kann in erster Näherung
cp durch seinen Wert nullter Näherung (35) ausgedrückt werden.
Mit den Definitionen (34) (bezüglich cp statt ip) wird

1

I ijcpdt; rjcpt--1' — ct>(~2>,

o

v

/ i3cpdi rjzcp(—!' — 3 rj2cpY~2) + 6 rjcp(-i> — 6 ç?'-4';
o

folglich
7J= ß2{--L-riicp-K(K-l)~\ 773[c)(-1) 7 F]

+ K(K+1) [Xr/3ç,(-l)_ 1^2^-2) +l)?ç,(-8)_lç)(-*)]J (37)

Durch E7malige Differentiation der Gleichung (36) folgt unter
Benutzung von Früherem:

<p(K+2) + (K _ £2^2) ym 7JW (38)

und für die K-te Ableitung der Störungsfunktion erhält man aus
(37) durch eine längere Rechnung:

TJ(K) ß2 L JL rji cpW + K(K+1)
v [n v(K-2) _ yUC-IO]

+ g(g'~1) [2 77 cp&s) - 3 cpW-*)] -K(K-1) r77^-2)]. (39)
12 J

Der Term ~F kommt nur für K 2ï 2 vor; j^-2) bedeutet die
(K — 2)-te Ableitung von 77, d.h.:

7») 77, 77
(D rç(2) ^(8) 0.

Der Ausdruck (39) lässt sich vereinfachen durch Berücksichtigung
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der Gleichung (25), die cp in nullter Näherung bestimmt. Differenziert

man nämlich diese Gleichung (K — 2)-mal (unter der Voraussetzung

Z^2), bzw. (K — l)-mal (unter der Voraussetzung
K 2ï 1), so kommt:

cpW 7 (a-/3V)<7^-2> 7 2 ß2[2 rjpC-» - 3 ç>(*-4>]

-ß2K(K-l)rrj<E-2)= 0 (K^2),
cp(K+x) + (a _ £2^2) yoc-i) + 2 ß^rjtp^-2' — cpW-®]

-ß2K(K-l)rrli-K-1'>=0 (KAI).
Die hier durch eckige Klammern hervorgehobenen Ausdrücke sind
dieselben wie in (39) ; diese Ausdrücke (die nur für K 2g 2 bzw.
K Ï5 1 in (39) auftreten) können daher aus (39) eliminiert werden.
Das Ergebnis lautet:

7JW= — JL ßZfjicpm — KaK+1)_
rx[<p(K+i) + (0L — ß2ri*)cp(K-1']

8

_K(K2-1) ry*) + (a _ ß*^) ^x-2)] (40)

Die Terme ~F haben sich gerade fortgehoben (nur für K 2 und
K 3 ist dies nicht-trivial). Zu beachten ist aber, dass das in cp

enthaltene Polynom noch von F abhängt, a bedeutet in (40) den

zur Oszillator-Eigenfunktion ç?(x) ip gehörigen Eigenwert (29).
Kehren wir nun zur Gleichung (38) zurück und denken wir

uns dort linkerhand die (gestörte) Funktion cp^ nach den
Oszillator-Eigenfunktionen ipn entwickelt, so werden wir auf das
Eigenwertproblem der Matrix

a -s +TJ{K) (41)

geführt, wo

_g (g^~ 1)
[yg) + K _^ yy_g]| _ (42)

99„ bedeutet hier die ungestörte Eigenfunktion (35) ; epW y>n f

jdrjip2= 1. [Die Integration nach 77 braucht nur über den Bereich
erstreckt zu werden, in welchem die Oszillatorfunktion ipm merklich
von null verschieden ist : | 77 | < ß~1A <^ 1 ; die Kenntnis der Funktion

cpn für grössere | 77 [-Werte ist also hier nicht erforderlich.] Im
Integranden in (42) kann man zufolge der Oszillatorgleichung
setzen :

fm(«-n — P-f) Wm(«-n ~ O — Vm"•
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Im Diagonalelement TAK\ das hier allein interessiert, verschwindet
daher der mit dem Faktor K(K2 — 1) versehene Term, wie man
durch partielle Integration unmittelbar sieht. Für den anderen
K-abhängigen Term findet man:

jdrj • rj[ipn cpf+D - v;><f"1)]= fdrj[2 Tjipnipn' + y^f"1']
d

¦fd. Òr]
(wl) - wl — 2.

Bei den partiellen Integrationen sind die F-abhängigen Polynome
herausgefallen. Der von K unabhängige Term in (42) (für m rt)
entspricht der uns schon bekannten Anharmonizität für K 0

(Mathieu-Gleichung). Somit wird

77« g(g + 1)
_ "(tt+1) _ 1_ (43)

4 8 16
' y '

Nach (29) und (41) ist der korrigierte Eigenwert a in erster Nähe-

rUng: a=/3(2n+l) + UW;

führen wir ihn in (21) ein, so erhalten wir folgende — für ß ^> 1

oder F ^> e gültige — Eigenwertformel :

W,n)=-V+^eV(2n+l)+e K(K+1) »(n+1) 17

4 8 16

n 0,2, 4, ¦ ¦ ¦, wenn K ungerade,
n=l,3,5,---, wenn K gerade.

+ •

(44)

Es sei hier daran erinnert, dass die ganzen vorstehenden
Rechnungen sich auf Deuteronzustände mit dem Spin J 0 beziehen.
Wie eingangs bemerkt, können aber die Quantenzahlen J und K
jederzeit vertauscht werden; die Formel (44) gilt also, wenn wir
in ihr J anstelle von K schreiben, auch für Zustände beliebigen
Spins, sofern deren „isotoper Spin" K 0 ist (Ladungssingletts).

Unter den betrachteten Eigenwerten — mit J 0 oder K 0

— sind die tiefsten diejenigen mit den Quantenzahlen

n=0,J=0, K=l und n= 0, J 1, K 0:

W(0)=-V+VeAY-Y^e + ---. ] l

Wir werden sie (vgl. § 3) den untersten Deuteronzuständen 1S und
3S zuzuordnen haben, was mit dem Pauliprinzip verträglich ist.
Von den Eigenwerten J K 0, die wir schon in I, § 4 betrachteten

und die zu P- ,F-.. .-Termen gehören, liegt der tiefste (n 1)
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um etwa 2 \/e V höher. Bei festgehaltener Oszillationsquantenzahl
n ist die K- bzw. J-Abhängigkeit der Eigenwerte W durch die
Terme

~K(K + 1) bzw. |J(J + 1)

gegeben; die quadratische Abhängigkeit ist eine ganz ähnliche wie

in der „Isobaren-Energie" des einzelnen Nukleons: -=- j(j+l).
Die Zuordnung der Eigenwerte (44) zu den für den anderen

Grenzfall (ß <^ 1) berechneten Eigenwerten Ws (24) wird durch
folgende Verknüpfung der Quantenzahlen n in (44) und s in (24)
hergestellt :

2s= n + J + K + 1. (46)

Dadurch sind nämlich, bei festen Werten von J und K, die tiefsten
Eigenwerte (24) und (44) einander zugeordnet, ebenso die
zweittiefsten Eigenwerte (24) und (44), desgleichen die nächst höheren
usw. Eine andere Zuordnung ist nicht möglich, da sich sonst bei
Variation des Parameters ß verschiedene Eigenwerte mit gleichem
J und K überschneiden müssten, was ausgeschlossen ist. —

Zwei Bemerkungen zum Grenzfall ß^> 1 sind noch nachzutragen.

Wie schon hervorgehoben wurde, bestimmt die Oszillatornäherung

den Verlauf der Eigenfunktionen cp nur in der Nähe des
Punktes 77 0 (| 771 <^ 1), und ihr Verlauf weiter aussen bleibt
noch zu untersuchen. Wegen des ungeraden Charakters von cp

genügt es, die eine Hälfte des Periodizitätsintervalls zu betrachten :

0 < 77 < tt. Die Oszillator-Eigenfunktionen ipn sind (sofern n ~ 1)

nur für 77 < ß~1/2 merklich von null verschieden; gehen wir nun
in das Gebiet ß~1/z <^ 77 <^ 1, wo zwar die Näherungsformel (35)
noch brauchbar, ip aber schon fast auf null abgeklungen ist, so

wird ip(~K\ und damit nach (35) auch cp, asymptotisch gleich
einem Polynom (Fl —1)-ten Grades:

cp cxrjK-1 7 c2rjE-2 + ¦ ¦ ¦ für ß~k < 77 < 1.

Von diesen Termen ist der erste — oder wenn cx= 0 ist1), der
zweite — gross gegen die weiteren Terme, wie man leicht abschätzt.
Wir behaupten nun, dass der weitere Verlauf der Eigenfunktion cp,

b Da das in (35) eingehende ungerade Polynom PK_X von dem frei
wählbaren Parameter r abhängt, kann man durch Wahl von J" erreichen, dass
entweder c1= 0 (wenn K gerade) oder c2 0 (wenn K ungerade). Diese Wahl von
r vereinfacht die für das Folgende erforderlichen Abschätzungen. — Für K=l

.0.
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wenn man 77 gegen n anwachsen lässt, durch folgende Formel
dargestellt wird:

cp iQ cos • cx 2 sin Cr, j 2 sin
K-2

(47)

für ß-'7'2 <^ 77 ^ tt

Geht man nämlich mit diesem Ansatz in die (exakte) Bestimmungsgleichung

(22) ein, so heben sich dort die mit dem Faktor ß2
versehenen Terme — ohne den F-Term — gerade fort, und die
übrigbleibenden Terme1) sind klein gegen die einzelnen /32-Terme (für
rj ^> ß~1/2). Man wird daher cp als eine Entwicklung (nach ß-1)
ansetzen können, deren höchste Terme durch (47) gegeben sind. Diese
gehen aber auch für 77 <^ 1 in cx rjK~^ + c2 r]K~2 über, womit der
Anschluss an die Oszillatornäherung hergestellt ist. Für 77 tt
verschwindet cp (linear), und für 77 > n gilt — wegen der Symmetrie-
Eigenschaften (11) — wieder die gleiche Formel (47) ; der Übergang
in den benachbarten Periodizitätsbereich vollzieht sich also in völlig
regulärer Weise.

Die zweite Bemerkung betrifft die Normierung der Eigenvektoren

des Gleichungssystems (3). Bei den Anwendungen in I, § 3

[vgl. (I, 12 und 24)] wurde üaf= 1 verlangt; nach (5) bedeutet

dies:
2r.«-i- (48)

s

Da ys nach (6) für 5 < s0 verschwindet, kann die Summe in (48)
über alle s-Werte (von 1 an) erstreckt werden. Wir setzen gemäss (10)

r sm s n
(— iy J drj-——A- cp(rj) (49)

und bilden ysbs, wobei wir in ys (6) s2 sin s 77 durch — d2 sin srj/drj2
ersetzen und die Differentialoperatoren vermöge partieller Integration

an cp angreifen lassen:

ysos 1)K,

d2 /b3
drj2+\2

• rm sm
dr] -=- AKcp(rj)

¦yn

Jrj2 + \2) \\0ij

WO

/3\2 d2

Ùrj 2+\ 2

K\2
(50)

b D.h. cp" + a.cp und der i^-Term; ferner gehören hierher die Beiträge der
kleinen f-Werte zu den Integralen von 0 bis r\ in (22) [für | < ß-ii ist (47) durch
(35) zu ersetzen!].
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Aus (49) und (50) folgt, bei Berücksichtigung von (11):

n

yvA2=(-l)Z [drjcp-AKcp. (51)

Nehmen wir nun wieder ßY^l an, so liefert der Bereich /F^2 <^t? 5S tt
keinen Beitrag zum Normierungsintegral; denn dort kann cp nach
(47) in der Form geschrieben werden:

{in iKr]
Xxe2 7 X2eir> 7 • • • + XKe 2

und infolgedessen ist

AKcp=0 für fi-* < | 77
| ^ tt (52)

Anderseits ist im Oszillationsbereich (| »? | < ß~Vl) AK durch
d2K/dn2K ersetzbar; damit vernachlässigt man nur Terme der
relativen Ordnung /3_1. Daher wird nach (51) und (27) :

2 yAI (- 1)E fdrjcpcpW Jdr][cpW]2 fd rj 1p2

Die Normierungsbedingung (48) bedeutet daher, wenn Fehler der
Ordnung /3_1 in Kauf genommen werden, nichts anderes als

/ drj 1p2 1 (53)

In der gleichen Weise kann man auch den Erwartungswert von
s2 (j 7 |)2 berechnen; man findet dafür wieder die Formel (I, 38) :

72=^s2ysbl=- ldrjipip"= ß(n + l). (54)
s J

§ 3. Diskussion der Ergebnisse.

Das Problem (3), das wir bis jetzt behandelt haben, entspricht
dem Deuteron mit festgehaltenen Ortskoordinaten. Wir gehen nun
zum eigentlichen Deuteronproblem über, indem wir — gemäss den
Ausführungen in I, §§ 2 und 3 — die Energie der Relativbewegung

berücksichtigen; und zwar stützen wir uns dabei wieder auf
die beiden in I, § 3 entwickelten Näherungsmethoden.

A. Adiabaten-Verfahren.

Bei dieser Methode ist in (3) bzw. (I, 11) F als Funktion des
Nukleonenabstandes r zu betrachten; dadurch werden die Eigenwerte

TF Funktionen von r, und diese Funktionen sind die Poten-
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tialfunktionen der „adiabatischen" Näherung. Die tiefstliegende
Potentialkurve gehört nach Obigem zu den Quantenzahlen

J=0,K=1 oder J 1, K 0; n 0, s 1:

Wt0)(r)-
-4-Fw -^^1+ ¦ • ¦ für fw <£'3 ^__ £

o (55)

-F(r)7/sF(r)--«7 ••¦ für 7(f) > e

[vgl. (24) mit (8), bzw. (45)]. Nach dem Pauliprinzip (2) [vgl. auch
(I, 13)] sind die betreffenden Schrödingerfunktionen gerade [/(—t)

/(t)]. Als tiefste Deuteronzustände haben wir daher zwei <S-Zu-

stände zu erwarten; dass beide Zustände hier dieselbe Energie
erhalten, liegt natürlich an der Vernachlässigung der „Tensorkraft".
Der eine Zustand J 0) ist ein ^-Zustand, und zwar ein Ladungs-
triplett: zu K 1 gehören (vgl. I, § 2) die isotopen Spinkomponenten

N — 1, 0, + 1, d. h. die Ladungen N + 1 0, 1, 2; wir
haben diesen Zustand mit dem (wahrscheinlich instabilen) ^-Zustand

zu identifizieren, der aus der wellenmechanischen Theorie der
Neutron-Proton-Streuung und der Proton-Proton-Streuung bekannt
ist. Der andere tiefe Zustand (J 1), der mit dem Deuteron-Grundzustand

zu identifizieren ist, ist ein 3*S-Zustand und ein Ladungs-
singlett (K 0, N 0, Ladung N + 1 1).

Es ist klar, dass man bei einem beliebig vorgegebenen Wert
der Isobaren-Konstanten e die Wechselwirkungsfunktion7 (r) so
einrichten kann, dass die adiabatische Potentialfunktion (55) für den
3S-Zustand als tiefsten Zustand die richtige Bindungsenergie
(tv 2 MeV) liefert. Man kann daher aus der Erfahrungstatsache
allein, dass die untersten Deuteronzustände die oben charakterisierten

3S- und xS-Zustände sind, noch nicht auf den Wert der
Isobaren-Energie schliessen ; insbesondere können kleine Werte von
e nicht ausgeschlossen werden. Dagegen hängt die Reihenfolge der
nächst höheren Zustände bzw. Potentialkurven sehr wesentlich von
e ab, genauer gesagt vom Verhältnis s/V (vgl. I). Da die Annahme
s^> V auf die bekannte ältere Theorie zurückführt, beschränken
wir uns hier auf die Diskussion des Falles e <^ F.

Wie in I, § 4 definieren wir einen kritischen Abstand r£ durch
V(re) e; im Bereich r<^re, wo V(r)^>e ist, kann die Formel
(44) angewendet werden. Im betrachteten Falle e <^ V ist re so

gross, dass man bei der Berechnung diskreter Energie-Eigenwerte
(mit exponentiell abklingenden Schrödingerfunktionen) die
Potentialkurven (44) auch für r A, r£ gelten lassen kann ; der dabei
begangene Fehler kann durch eine Störungsrechnung korrigiert wer-
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den. Jedenfalls wird die adiabatische Wechselwirkung im „wesentlichen"

r-Bereich durch (44) beschrieben. In diesem Bereich
ist die Reihenfolge der Potentialkurven (44) in erster Linie durch
den Term y'e F (2 n + 1) und erst in zweiter Linie durch den
if-abhängigen Term ~ e bestimmt. Der tiefsten Kurve n 0, K 1

folgt daher als nächst höhere die Kurve n 0, K 3; der Abstand
der beiden Kurven ist |-e, also von r unabhängig [für r <Atre; bei
zunehmendem r steigt der Abstand nach (24) und (46) auf 3 e].
Weiter folgen, ebenfalls in (fast) konstantem Abstand, die Kurven
n 0, K 5,7, ¦ ¦ ¦. Wegen der Vertauschbarkeit von J und K
gehören zu den gleichen Kurven auch Zustände mit K 0, J 1,
3, 5, • • •. Da J 7 K in allen diesen Fällen ungerade ist, sind die
betreffenden Schrödingerfunktionen gerade (S-, D- ••• -Terme).
Daher muss sich z. B. der stabile jS-Zustand auf allen jenen
Potentialkurven wiederholen. Diese S-Zustände sind „isobare Zustände"
des Deuterons, die mit dem Grundzustand eine „homologe Reihe"
bilden. Betrachten wir nur die untersten1) dieser Deuteron-Isobaren

:

J= 0,K= 3(bS) .und J= S,K= 0(bS). (56)

Der zum Spin J 3 gehörige Septett-jS-Zustand ist ein Ladungs-
singlett und kommt nur mit der Ladung N + 1 1 vor (Wasserstoff);

der 1/S-Term dagegen ist ein Ladungsseptett, d.h. er kann
Ladungszahlen zwischen — 2 und 7 4 besitzen. Die Anregungsenergie

dieser isobaren Zustände ist durch den Abstand der
Potentialkurven K 3 und K 1 gegeben, beträgt also | e [bzw. ein
wenig mehr, da der Kurven-Abstand, wie bemerkt, für r-> co

etwas zunimmt] ; -| e ist gleich 5/3 der Anregungsenergie der untersten

Proton-Isobaren (fe). Da der Deuteron-Grund zustand in
Wirklichkeit nur eine recht kleine Bindungsenergie besitzt und
seine Stabilität möglicherweise nur der Tensorkraft verdankt, die
hier ignoriert wird, können wir allerdings nicht sicher entscheiden,
ob die betrachteten Deuteron-Isobaren wirklich als stabil anzusehen

sind; ihre Stabilität wird aber sehr begünstigt durch den
erwähnten stärkeren Anstieg ihrer Potentialkurven im Aussenbereich

(f^> re). — Auf die Zustände mit n AI brauchen wir hier
nicht einzugehen ; die unterste dieser Potentialkurven (n 1,
J K 0) wurde nämlich schon in I, § 4 besprochen, und die
höheren Terme dürften vorerst wenig Interesse haben.

b Gemeint sind natürlich nur die tiefsten Zustände unter den hier betrachteten

mit J 0 oder K 0; über die anderen Zustände kann erst in einem
späteren Teil III berichtet werden.
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In I, § 3 wurde gezeigt, dass man die adiabatische Näherung
wie in der Molekültheorie als „nullte Näherung" einer Störungsrechnung

verwenden kann. Die Störungsmatrix bestimmt sich
durch die in (I, 15) definierten Funktionen Amn(r) und Bmn(r).
Wir schreiben diese, in Anpassung an die hier verwendete
Bezeichnungsweise :

a 2_Vn daAA R Lv« d2Q,» ,-m
M,f '« dr ' mn M„YHm) dr2 ' l '

dabei bedeutet a;-(m) den zum Eigenwert TF(n) gehörigen
Eigenvektor des Gleichungssystems (3), der jetzt natürlich r-abhängig
ist (V F(»•)). Zur Ausrechnung für r <^ rg schreiben wir gemäss (5)

dv_Am _ v v b **±
dr -2iV'°'M dr2jai(m) A.Tv

— 2-1 7s

wo die s-Summe — wie in (48)—über alle positiven s-Werte
erstreckt werden kann. Benutzt man die Formeln (49), (50) und (52),
so erhält man — durch die gleichen Überlegungen, die zur
Normierungsbedingung (53) führten, und mit der gleichen Genauigkeit

— :

Z^^-j^wJ-^. (58)

Setzt man dies in (57) ein, so kommt man [vgl. auch (53)] genau
zu den Formeln (I, 41 und 42) zurück. Die Quantenzahl K bzw. J
ist also aus dem Ergebnis herausgefallen. Allerdings bestimmt sie

gemäss (32) die Parität der Oszillationsquantenzahlen m,n.
Da hinsichtlich der Grössenordnung der Matrixelemente Amn,

Bmn und der Abstände der adiabatischen Potentialkurven (für feste
Werte von J, K) kein Unterschied gegenüber dem früher behandelten

Fall J K 0 besteht, können die dortigen Folgerungen
betreffend den Gültigkeitsbereich der adiabatischen Näherung und
die Konvergenz der Störungsrechnung unverändert übernommen
werden1). Wir dürfen also auch hier die Isobaren-Konstante £ nicht
allzu klein annehmen (nicht unter etwa 20 MeV).

Solange aber die Terme Amn, Bmn überhaupt als „kleine
Störungen" gelten können, wird man sie — immer unter der Voraussetzung

e <^ F — im Bereich r <^ re durch die Näherungsformeln
(I, 42) darstellen können. Vergleichen wir nun Zustände der gleichen

b Vgl. (I, 44) und die anschliessende Diskussion. Dort handelte es sich um
Zustände des kontinuierlichen Energiespektrums (Streuvorgänge); doch macht
dies für die Abschätzung der Störungen keinen Unterschied.
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Parität von J + K (m, n gerade bzw. ungerade), so sind die
Funktionen Amn(r), Bmn(r) in dem für die Energieberechnung
massgebenden r-Bereich von K bzw. J unabhängig, während die
adiabatischen Potentialfunktionen Wm(r) dort nur durch die additiven
Konstanten eK(K + l)/4 bzw. eJ(J + l)/4 von K,J abhängen.
Die Gleichungen (I, 18) oder (I, 19 und 20) ergeben daher unmittelbar

folgendes Näherungsgesetz für die Energie-Eigenwerte:

E= -^K(K + 1) + Ea' für J 0,

E=-^J(J+1) +Ea' für K= 0

(59)

(Ea' von K bzw. J unabhängig). Was wir oben auf Grund der
gröbsten adiabatischen Näherung schon feststellten, gilt also auch
bei störungsmässiger Berücksichtigung der ^4-, B-Terme: dass es

nämlich „homologe Reihen" von isobaren Zuständen gibt, die sich
in ihren Energien nur durch die Terme e K (K + l)/4 bzw. e J J +1)/4
unterscheiden [gleiche Quantenzahl a, d. h. fast gleiche Schrö-
dingerfunktion /reœ(t), und gleiche Parität von J +K.~] Die
Energiedifferenzen solcher homologer Zustände sind also durch (59)
unmittelbar bestimmt, ohne dass die Störungsrechnung ausgeführt
werden muss. Insbesondere ergibt sich so für die Anregungsenergie
der Isobaren (56) wieder der Wert ^e.

B. Variationsverfahren.

Nach I, § 3 haben wir jetzt im Gleichungssystem (3) F durch
den Mittelwert V (I, 26) zu ersetzen. Ist dieser gross gegen e, so
werden die betreffenden Eigenwerte W (J 0) nach (44) :

W(n)=-V+^eV(2n+l) + e
K(K+1) n(n+l) 17'

4 8 16

(n + K ungerade).

(60)

Da dieser Ausdruck sich von (1,45) wieder lediglich durch die additive

Konstante eK(K + l)/4 unterscheidet, können die Formeln
(I, 46ff.) ohne weiteres übernommen werden, wenn nur die Energien

E (I, 47) um eK(K + l)/4 vergrössert werden. Damit kommen
wir abermals zur Aussage (59) zurück. Jetzt ist allerdings der
Energieterm E' in (59) durch andere Bestimmungsgleichungen
definiert [F/ hat die Bedeutung von „E" in (I, 47)]; doch lehrt die
in I durchgeführte Abschätzung, die mutatis mutandis auch hier
gilt [vgl. (I, 48 bis 51) und die anschliessende Fussnote], dass die
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Aussagen der beiden Näherungen über die Eigenwerte E" wenigstens

qualitativ übereinstimmen.
Nach (54) ist wiederum j2 ~]/7/e^> 1. Dagegen ist das relative

Schwankungsquadrat von j gerade für den Grundzustand und
die tiefliegenden isobaren Zustände (n 0) nicht sehr klein, da die
betreffenden Eigenvektoren a,- im wesentlichen einer Gauss-Ver-
teilung entsprechen:

(j _)_ J 2

at U2 const -e 2ß (für n 0)

Trotzdem besteht auch in diesem Falle kein Grund, die Ergebnisse
der Variationsmethode („Hartree-Näherung") anzuzweifeln;
insbesondere ist nicht einzusehen, warum diese Methode bei kleinen
e-Werten weniger zuverlässig sein sollte als bei grösseren, wo sie
durch die Adiabaten-Näherung bestätigt wird. Daher sollte gerade
bei kleinen e-Werten, wo die Adiabaten-Methode versagt, die
Variationsmethode sehr wohl zur Ergänzung dienen können. So ist z. B.
anzunehmen, dass die Energiedifferenzen homologer Zustände für
£ <^ V allgemein der Näherungsformel (59) entsprechen.

Zürich, Physikal. Institut der Universität.


	Zum Deuteronproblem. II

