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Zum Deuteronproblem. IIY)
von G. Wentzel.-
(22. IV. 1944)

Es werden diejenigen Deuteron-Zustande untersucht, bei denen entweder
der Spin J oder der isotope Spin K null ist. Unter ihnen erweisen sich ein S-Zu-
stand mit K = 0,J = 1 und ein solcher mit J = 0, K = 1 als die energetisch
tiefsten Zustinde (die beiden Terme sind gleich bei Vernachlissigung der Tensor-
kraft), und zwar gilt dies nicht nur fiir grosse sondern auch fiir kleine Werte
der Isobaren-Energie. Da die zwei tiefsten Zustinde mit den bekannten Deuteron-
Zustinden 38 und 18 identifiziert werden kénnen, entspricht die Theorie in dieser
Hinsicht der Erfahrung. Neu gegeniiber den fritheren Theorien ist die Voraussage
isobarer Deuteron-Zustinde; der Spin-Ladungs-Charakter und die Anregungs-
energien der tiefsten dieser Zustinde werden diskutiert.

§ 1. Verallgemeinerung der Gleichungen (I, 29 und 33).

Im I.Teil dieser Arbeit, § 4, wurden die Deuteron-Zustande mit
J=K = 0 untersucht. Hier kommen wir zum néchst verwickelteren
Fall: Eine der beiden Quantenzahlen J, K sei null, die andere
beliebig. Es handelt sich also um Zustdnde, die entweder Spin-
Singletts oder Ladungssingletts sind. Da die Tensorkraft — wie
in I — ignoriert werden soll, ist die Theorie beziiglich J und K
symmetrisch; es gentigt daher, den einen Fall (J= 0, K beliebig)
zu betrachten; der andere Fall (K=0, J beliebig) ergibt sich dann
durch Vertauschung von J und K. Nach dem ,,Vektormodell*
(vgl. (I, 5)) gibt es auch hier nur F-Komponenten mit §;= j,=7;
ferner 1st die ungerade Zahl j; + 7, = 29 auf die Werte = J und
= K beschrinkt, d. h. § durchliuft nur die Werte 44,9 + 1,
jo+2,..., wo j, die kleinste halbganze Zahl bedeutet, die sowohl
= J/2 als = K/2 1st;

tir J— 0 ifo={ K/2, wenn K ungerade,

1
(K+1)/2, wenn K gerade. @
Das Pauliprinzip besagt nach (I, 9):

. .3 ' erade
F(jj,v) == F(jj, —t), jenachdem J+K |® )

ungerade.

1) Teil I: M. Firrz und G. WenTZEL, Helv. Phys. Acta 17 (1944), S. 215.
Die dortigen Bezeichnungen werden hier iibernommen; Gleichungsnummern mit
vorgesetzter I beziehen sich auf Teil I.
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Wie im Falle J= K=0 untersuchen wir zunéchst die Gleichung
(I, 11) bzw. (I, 25), d. h. das Problem zweier ruhender Nukleonen
(festgehaltene Ortskoordinaten). Mit den Bezeichnungen

a(jj) = a;, (7| L[77) = L
haben wir das Gleichungssystem: |

{—W+el(j+3) —1]}a,+VZQ,,a 0}

i =7

(1="Josfo+ 1 ")
Indem wir uns fiir den Fall |
J =0, K beliebig
entscheiden, kénnen wir nach Frerz!) ansetzen:
K(K+1)
27 +1)

. K\2 . K+ 1\2
VBT | e
Qi ia=8 ;= T ; ‘

iy 92—1/4
alle anderen Matrixelemente = 0. J

3

.ij:].‘“—

Fir die folgenden Rechnungen empfiehlt es sich, die Quadratwur-
zeln zu beseitigen; dies kann z. B. durch die folgende Substitution
geschehen, wobei wir gleichzeitig statt j den ganzzahligen Index
s = 7 + % einfithren:

gy, = = b, \/73’ Wo : (5)
= [ @I @ - @7 [ ()] ©

Beachtet man, dass

. EK\[/. EK+1
m:(Y_?)(7_T)_1+% ot
Vs (j+_2fg)(7+gf_ﬂ) - G=s—1%),

so erhiilt man anstelle von (8), (4):

{— W+e[s2———1]}b+V Q, ,bsfz()}

8= 8
(s =sp=190+ 3%);

1) M. Fierz, Helv. Phys. Acta 17 (1944), S.181, G1. IV. Berichtigung zu I:
Diese Arbeit von FrErz ist auch in Fussnote 2 S. 219 gemeint.

(7)
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O K(K+1) 1

R = =] — v T

$s ii 2(82——%—) s
. K\{. K+1

Q =(7__2‘)(7'“ 2 ):]_+K(K_1)_K(K+1)

5, 8—1 ?(? - %) 2(8 Pt 1) 2¢—1 (8)
. K\/[. K+1

Q :(7+2)(7+ 2 ):1~K(K—1), K (K+1)

e 70 + %) 2s | 929s—1

alle andern Matrixelemente = 0.

Die neue Matrix  ist natiirlich nicht-hermitisch, da die Substi-
tution (5) nicht-unitir ist?).

Im Gleichungssystem (3) durchlaufen die Indices 7, " nur die
Werte = 4, (vgl. (1)). Seine Eigenwerte W sind aber gleichzeitig
auch Eigenwerte des erweiterten Gleichungssystems, das man er-

halt, wenn man 7, 7" alle halbganzen Werte = & durchlaufen lasst?).
Dies beruht darauf, dass nach (4)

0 Qi 15,=0

fo, fo—1

1st; infolgedessen zerfdllt das erweiterte System in ein System von
Gleichungen fiir die Komponenten a;, a; .4, - - * allein, das mit (3)
ibereinstimmt und die Eigenwerte W besitzt, und in ein (endliches)
System von Gleichungen fiir die Grossen ay;,, @, * * *, @; _;, dessen
Eigenwerte 1im allgemeinen nicht Eigenwerte von (3) sind; die letz-
teren Eigenwerte sind leicht zu berechnen und kénnen daher mit
den gesuchten Eigenwerten W nicht verwechselt werden; wir
nennen sie ,falsche Eigenwerte. Analog erweitern wir jetzt auch
das Gleichungssystem (7), indem wir die Indices s,s" iiber alle
ganzzahligen Werte =1 laufen lassen. Allerdings zerfillt dieses
System nicht, da nach (8)

zwar £, . =0, aber Q,_, , +0

st (fir K = 2) (die Matrix Q ist nur ,,halb reduziert”). Trotzdem
stimmen sowohl seine ,,richtigen‘’ wie seine ,,falschen‘ Eigenwerte
mit denen von (3) iiberein, wie leicht zu sehen ist. Die zu den rich-
tigen Eigenwerten W gehorigen Eigenvektoren des erweiterten
Systems besitzen ,,falsche” Komponenten by, by, - - -+, b, _;; doch
braucht man diese nur nullzusetzen, um die Eigenvektoren des
engeren Gleichungssystem (7) zu erhalten (beziiglich der Normie-

1) Durch die Substitution as—1y = b/4/y, Wire man zur transponierten
Matrix gelangt.
) Eine Erweiterung tritt natiirlich nur ein fiir j, > 3/,, d. h. K > 2.
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rung vgl. § 2). Bei der Erweiterung kénnen iibrigens die Matrix-
komponenten :

Qi mit 7 <7y, baw. Q;, mit s < s, (9)
nach Belieben gewihlt werden; die richtigen Eigenwerte W sind
von dieser Wahl unabhéingig, und dies kann geradezu als ein Kri-
terium fiir einen richtigen Eigenwert benutzt werden.

Wenn wir nun vom erweiterten System (7) ausgehen, wo also

s und s" von 1 an laufen, so konnen wir bei den weiteren Rech-
nungen dhnlich vorgehen wie in I, § 4. Durch die Fourierreihe
® sin § X

)= Db ——

§=1 7T

—1r Qo)

definieren wir eine Funktion der Variablen % mit den Eigen-

. schaften:
gtk 2a) = o(n), @l—n)——g ). (1)
Ferner sei
. 1 * L — . . ’ . ’
D(n‘f:}—; Z.Q sosIn 87 - 8in §'& - (— 1)8F¢, (12)

- Aus den Gleichungen (7) folgt dann, dass die Funktion ¢ der Inte-
gro-Differential-Gleichung |

7o)+ (1) ol - ijswaM )

gentigt. Dies 1st die Verallgemeinerung der Mathieu-Gleichung
(I, 33)1). |

Zur Berechnung des Kerns D setzen wir die Ausdriicke (8)
in (12) ein (und zwar vorldufig auch fir s < s;) und trennen die
Terme mit verschiedener K-Abhingigkeit:

K(K—1) K(K + 1)

B D 4
ot 9 9

D, + D,. (14)

Zunachst:

Dy(né) = %i sin sn{sm sf—sm (s4+1)& —sin (s — 1) &}

= (1 —2cos &) - _2_1__2:0' fcos s (& —n) —cos s(& + n)}.

1) Hatten wir, gemiss der Bemerkung in Fussnote 1, S. 254, mit der trans-
ponierten 2-Matrix gerechnet, so sténde in (13) der Kern D(&n) statt D(n§).
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Definieren wir eine periodische é-Funktion durch

5(2):_L - e,;sz:l(?lz—l— Zcossz), (15)
7T s=1

) 27 s=—w
so wird

Dy(n€) = (1 —2cos &) - 1{8( —u) — (¢ + n)}
fDmm¢@%—a—amw Ho() —e(—n)
= (1—2cos &) g(n). (16)

Fir K = 0 wird D= D,, und (18) geht in die Mathieu-Gleichung
(I, 38) tber (x =z + 7). Weiter ist:

121

D, (n&) = - ?sin s& {sin (s —1)n —sin (s+1) 7}
s=1
) 12 1 :
= —sin n-;szl : {sin s(§ —#) +sins(é+7)}.

Aus (15) folgt aber durch Integration von — zbis + 2, wo | 2| < 2a:

"> 1 ©  gin 82
dz o —
[0 = -t (esag )
®  SIn 2 T2z Z :
- f" <2 .
82’1 s 2 |z| 2 (fur | 2| )

Hiermit wird, falls & und % auf das Intervall —z bis +x beschréankt
werden :

— &+ 1 )
Dint) = —sinn- | [é_$+|ﬂjd—;f}
Nun 1st

B ‘ 1, wenn &> |7],
—;—[ S + e+ :|={—1, wenn & <— ||, (17)

|§"—7” [ &+l 0 sonst.

Beachtet man noch, dass ¢ ungerade ist, so folgt:

fDl(nE)qv(é‘)dE= —Qsing- [fnqa(s)ds_ —i—ffcp(é)d&] :

Hierfiir schreiben wir:

(18)

anl(n§)¢(E)d§= 2sin 7 - [f(p(f)dé%-]’ ,
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0

rz—f(rmiﬂwgma (19)
Schliesslich [vgl. (8), (12), 14)]:

1 = . _ / 1 1
Dz(ﬁf)ﬂ—;z‘smsn{smsé-(_ + )
=1

s—1Y s+ 1
" sin (s —1)&  sin (s—}—l)f}

s — 1, s+

Ersetzt man in den Termen mit den Nennern s+1 die Zahl s durch
— 8, so erhilt man folgende, von —oo bis +o0o laufende Summe:

Dy ——L S !

sin s77 - {sin s& —sin (s — 1) &}
¢ 102 1

sin sz - cos (s—%) &.

Schreiben wir hier
sin sy =#sin (S — ) 7 -cos%+ cos (s—3)n- sin% ;

so liefert der zweite Term aus Symmetriegriinden keinen Beitrag
zur Summe, und es kommt:

Dy(né) = — eosg -sin%
1 = 1
RN

7 {sin (s =) (n — sin (s —H(n+H}.

Nun folgt aber aus (15) fir |z | < 2=l):
1

z| 27m'=2__ 1/2
>

(ei (s—%)z___ e—i (s—1%) z)

Folglich
Dy(n§) = — cos% -8in — -

L1 Fiir beliebige z gllt

17
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Mit Hilfe von (17) (wo & undn zu vertauschen sind) findet man:
4 n
sz(n5)¢(5)d§= — 4 cos g.[sin% cp&)dE.  (20)
LA 0

Wir setzen nun den Kern (14), unter Benutzung von (16),
(18) und (20), in die Integro-Differential-Gleichung (18) ein. Mit
den Abkiirzungen

7 1
oc=W+V+1, 13:]/—Ti ) (21)
e e
lautet das Ergebnis:
¢ () +[e—2 2 (1 —cos n)]e(n)

7
+ 2K (K+1) - 2 cos ﬁf‘sin % @ () dé&

2
—_ﬁgK(K1)'Sinﬁ{f¢(5)d5+]“}0. (22)

Wir wollen noch untersuchen, wie der Kern D sich dndert, wenn
wir von der oben erwidhnten Freiheit Gebrauch machen, die Q-Kom-
ponenten (9) abzuindern. Andern wir z. B. in (12) die Kompo-
nenten Q,, ab, was fir K = 2 (s, = 2) erlaubt ist, so #indert sich

D(né) um sin 9 > ¢y sin §'E,
[Prge@as wm sing [[EeEdé,
i 0

wo f(&) eine beliebige Funktion ist. Fiigt man den betreffenden
Zusatzterm in (13) bzw. (22) hinzu, so bedeutet dies nichts anderes
als eine Anderung des Wertes der Konstanten I"in (22); wahrend
diese bisher durch (19) definiert war, tritt nun an die Stelle des
Faktors (1 —&/mn) im Integranden eine beliebige Funktion von &.
Wir konnen daher I" als eine beliebig wihlbare Konstante auf-
fassen; die ,,richtigen* Eigenwerte W miissen von dieser Wahl un-
abhéngig sein, was wir im Folgenden verifizieren werden. Die zu-
gehorigen Eigenfunktionen ¢ sind natiirlich von I' abhéingig; eine
Anderung von I' bewirkt in der Fourierreihe (10) eine Anderung
der ,,falschen Komponenten* s < s, (und umgekehrt). Das Gesagte
oilt, wie bemerkt, nur fiir K = 2; doch braucht diese Einschran-

1) V ist gemaiss (I, 6) positiv angenommen.
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kung nicht besonders vermerkt zu werden, da I'in (22) mit K (K—1)
multipliziert ist und daher fiir K = 0 oder 1 garnicht auftritt.
Entsprechend kann man fiir K = 4 (s, = 3) einen weiteren Term
const - sin 2 7 in (22) hinzufiigen, und so fort; wir wollen aber ein-
tachheitshalber davon absehen und nur den einen I'-Term in (22)
stehen lassen.

Wir kommen nun zur Bestimmung der Eigenwerte der Glei-
chungen (3) bzw. (22). Da es sich schon im einfachsten Fall K = 0
um das Eigenwertproblem einer Mathieu-Gleichung handelt, sind
wir fiir K > 0 erst recht gezwungen, uns auf die Untersuchung
der beiden Grenzfille V' <€ & und V > ¢ zu beschréinken und even-
tuell fiir V' ~ ¢ eine Interpolation zu versuchen. Der erstgenannte
Grenzfall ist natiirlich durch eine Storungsrechnung leicht zu er-
ledigen: betrachtet man in der Matrix des Gleichungssystems (3)
die Matrix 7 - 2 als eine kleine Storung, so findet man fiir die
Eigenwerte W folgende Entwicklung nach Potenzen von V/e:

2 2. 2.
WZS[(?+%‘)2—1]+V.Q:,]+ V ( Q?,.’—l - 97,7‘}‘1 ) +
2¢ 9 74-1
(=, dh. j Z K[2; V<L),
Fihren wir statt 9§ wieder die ganze Zahl s = 7 + £ ein, so kénnen
wir, unter Benutzung von (8), anstelle von (23) auch schreiben:

(23)

— V2 /1Q, .1 82, (9] [9)
WS: 2W1 V » 8,8—1 s 1,.5'___ 8, 8+1 s+1,<§)+,_
el V@t - ( 951 25+ 1

(8 == 8y d. hs sg%; VLe).

(24)

Den anderen Grenzfall dagegen werden wir auf Grund der Glei-
chung (22) behandeln. In dieser nehmen wir also jetzt §> 1 an,
was nach (21) V > & bedeutet.

§ 2. Grenziall > 1.

Fir K = 0 losten wir in I, § 4 die Schrodingergleichung (22),
indem wir deren ,,Potentialfunktion® in der Umgebung ihres Mini-
mums (£ = 7, d. h. hier n = 0) entwickelten; wurden vom Cosinus
nur die quadratischen Terme beibehalten, so ergaben sich die Eigen-
werte eines harmonischen Oszillators; die hoheren Entwicklungs-
terme entsprachen anharmonischen Stoérungen.

Fir K +0 liegt es nahe, eine analoge Entwicklung zu ver-
suchen. Wir ersetzen daher in (22) (1 — cos ) durch %%2, und in
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den K-abhingigen Termen cos #/2 durch 1, sin &/2 durch &/2 und
sin 77 durch . Es wird sich zeigen, dass die dabei vernachlédssigten
Terme wirklich nur anharmonische Storungen ergeben. Fiir die
,,nullte Naherung*® setzen wir also folgende Gleichung an:

@ (1) + (e — B2 o (n) - B2 K (E+1) f Ep(8) a8
—BEE=1|[o@asir| -0 @

Differenziert man diese Gleichung K-mal nach 7, so folgt [¢®
bedeutet die I-te Ableitung von ¢J:

PEFD () + (o — B2n2) 9B () = 0; (26)
d. h. die Funktion

) =y (27)

gentigt der Oszillatorgleichung:
¥+ (e — 2%y = 0. (28)
Von den Losungen dieser Gleichung kommen nur die — fiir grosse
| 7| exponentiell abklingenden — Oszillator-Eigenfunktionen in

Betracht, da nur sie den (spater zu besprechenden) Normierungs-
bedingungen unterworfen werden kénnen. Folglich sind die Eigen-
werte des Parameters o:

v, =B (2n+1). (29)

Da aber ¢ nach Definition eine ungerade Funktion ist, gilt fiir ihre
K-te Abteilung ,:

Yo(—n) = (—1E -y, (o). (30)

Fir die durch (29) definierte Oszillationsquantenzahl n bedeutet
dies:

n+ K =ungerade Zahl; (31)
n=1,8,5,--+, wenn K gerade, } (32)
n=0,2,4,--+, wenn K ungerade.
Die entsprechenden Eigenwerte W sind nach (21) und (29):
Won=—V+4/eV2n+1)+---. (33)

In dieser ,,harmonischen Néherung® sind also die Eigenwerte mit
K=2,4,--- die gleichen wie die frither (I, § 4) fiir K = 0 gefun-
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denen; fir K=1,38,5, -+ dagegen liegen alle Eigenwerte nach
(32) um 2 4/¢V tiefer. Die K-Entartung, d. h. das Zusammenfallen
der zu geraden bzw. ungeraden K-Werten gehorigen Eigenwerte,
besteht, wie sich zeigen wird, nur solange die Anharmonizitaten
vernachléissigt werden. Alle gefundenen Eigenwerte sind ,,richtige*
Eigenwerte im Sinne des § 1, d. h. Eigenwerte des urspriinglichen
(nicht erweiterten) Gleichungssystems (8), wie schon aus ihrer Un-
abhéngigkeit von I folgt. '

Nach (27) sind die Eigenfunktionen ¢ der Gleichung (25) durch
K-malige Integration der Oszillator-Eigenfunktionen ¢ zu erhalten.
Durch wiederholte Integration zwischen 0 und % bilden wir zu-
néchst die Funktionen:

()= f v dE, y2(n)= f Yoo () dE = [ p () (1—8)dé -

- W(—l“”(ﬁ)=f¢("”(5 dé— _fw(g (n — &)dE .

Dann ist offenbar
@(n) = =8 (n) + Pg_y (n), (35)

wo Pg_; ein ungerades Polynom hichstens (K — 1)-ten Grades ist.
Geht man mit (35) in die. Gleichung (25) ein, und benutzt man
die Gleichung, die aus der Oszillatorgleichung (28) durch K-malige
Integration zwischen 0 und % folgt, so erhdlt man lineare Glei-
chungen fiir die Koeffizienten des Polynoms, die dieses eindeutig
zu bestimmen gestatten. Seine Kenntnis ist aber fiir das Folgende
nicht notig. Zu beachten ist, dass die Koeffizienten des Polynoms
vom Parameter I'" abhiingen; dies entspricht dem in § 1 hervor-
gehobenen Umstand, dass in der Fourierreihe (10) die ,,falschen
Komponenten b,(s < s,) von I" abhiingig sind. Natiirlich ist die
Formel (35) fiir die Eigenfunktionen ¢, wegen der in der harmo-
nischen Niaherung gemachten Vernachlassigungen, nur fir | 9 | <1
giiltig; auf die Aussenbereiche (> 4+ 7) kommen wir spater zu-
riick.

Als nichstes berechnen wir die durch die ,,Anharmonizititen’
hervorgerufenen Eigenwertstorungen. Indem wir in der Entwick-
lung der trigonometrischen Funktionen in (22) jeweils einen Schritt
welter gehen [also z. B.

9 cOS g—siné durch E——;—Eng——if?’
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ersetzen], kommt anstelle von (25):

n

o) + o — B )+ UK (K1) | £ (9)a8
— PR = | [p©de+T
° T Le6)

i i i
=B~ (n)+ K (K+1) [inszq”(g)dﬁﬁff%(g)df
0 0 -

—K(K—l)%n3[j¢(5)d§+F]]z U(n) .

Die kleinen Korrekturterme haben wir rechterhand in der Sto-
rungsfunktion U zusammengefasst; in ihr kann in erster Naherung
@ durch seinen Wert nullter Naherung (35) ausgedriickt werden.
Mit den Definitionen (34) (beziiglich ¢ statt y) wird

n
| Epdé = net=h — g2,
0

7
/’g’%ﬂdf _ ,7399(—1) —8 7]299(—2) + 6 77¢(—3) —6 (p(—4);
0
folglich
0= P —3p p—E K —1}4 o [p7 4+ 1]
+ K (E+1) [1 2t — 1 2gt8 + 1 ngt=d —Lo-971 (87)

Durch K-malige Differentiation der Gleichung (36) folgt unter Be-
nutzung von Fritherem:

B+ + (x — B24%) o) = U®, (38)

und fir die K-te Ableitung der Stérungsfunktion erhélt man aus
(87) durch eine lingere Rechnung:

K(K+1

U(K) = Bz {— .il‘z. 774 QQ(K) —|- 4 ) y] [77 (p(K—z) a— qg{K"‘g)]

K(K?—1)

S gm0 — 8 gw9] — K (K —1) rn(ﬂ—m} . (39)

Der Term ~ I' kommt nur fir K = 2 vor; &2 bedeutet die
(K — 2)-te Ableitung von %, d. h.:

B =5, =1, 7@ =@ =...=0.
Der Ausdruck (39) lasst sich vereinfachen durch Berticksichtigung
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der Gleichung (25), die ¢ in nullter Naherung bestimmt. Differen-
ziert man néamlich diese Gleichung (K — 2)-mal (unter der Voraus-

setzung K = 2), bzw. (K —1)-mal (unter der Voraussetzung
K =1), so kommt:

) + (o — B2n?) gED 4 2 B2[2 5 oK) — 3 gK—9]
—pPEE-)I'E2=0 (K =2),

PEFD 4 (a0 — B29?) @1 + 2 f2 [y =) — lE=3]
— KK —1)I'y&D=0 (K =1).

Die hier durch eckige Klammern hervorgehobenen Ausdriicke sind
dieselben wie in (39); diese Ausdriicke (die nur fir K = 2 bzw.
K =1 in (39) auftreten) konnen daher aus (39) eliminiert werden.
Das Ergebnis lautet: '

UE) — — L 27,]499(K)__K(I§+1) n[w(K+1)+(m_ﬁzn2) (p(x—n]
K(K2—1 '
—‘—(—2{“—) [¢B+(a — B25®) gE—2] . (40)

Die Terme ~I" haben sich gerade fortgehoben (nur fir K = 2 und
K = 3 1st dies nicht-trivial). Zu beachten ist aber, dass das in ¢
enthaltene Polynom noch von " abhéngt. « bedeutet in (40) den
zur Oszillator-Eigenfunktion ¢® = y gehorigen Eigenwert (29).

Kehren wir nun zur Gleichung (38) zurtick und denken wir
uns dort linkerhand die (gestorte) Funktion ¢® nach den Oszilla-
tor-Eigenfunktionen v, entwickelt, so werden wir auf das Eigen-
wertproblem der Matrix

x,* 8, ,+ UK : (41)
gefiithrt, wo
e = f an pn {—ﬁ 2774<P§F)—K_(I§+1) n[@E+D+ (o0, ~ 2 92) ¢EN]
K (K2—1
— “L*Qr—) [ + (o — B27%) @E2]1.  (42)

@, bedeutet hier die ungestorte Eigenfunktion (35); ¢& = y,,

f dn w2 = 1. [Die Integration nach » braucht nur iiber den Bereich
erstreckt zu werden, in welchem die Oszillatorfunktion v,, merklich
von null verschieden ist: | 7 | £ =% <€ 1; die Kenntnis der Funk-
tion @, fir grossere | n |-Werte ist also hier nicht erforderlich.] Im

Integranden in (42) kann man zufolge der Oszillatorgleichung
setzen:

Vm (“n — ﬂ2772) = ¥m (‘xn - am) - "i’m”-
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Im Diagonalelement U, das hier allein interessiert, verschwindet
daher der mit dem Faktor K (K2 —1) versehene Term, wie man
durch partielle Integration unmittelbar sieht. Fir den anderen
K-abhéngigen Term findet man:

Jan - nlp, o —y &= [dnl2 ny,p. + ., ¢E 7]
0 .
— —— () —y2|= —2.
fdn[?? e () wn]

Bei den partiellen Integrationen sind die [-abhéngigen Polynome
herausgefallen. Der von K unabhiingige Term in (42) (fir m = n)
entspricht der uns schon bekannten Anharmonizitit fir K= 0
(Mathieu-Gleichung). Somit wird

KEK+1) nnt+l) 1

(K) — — .
Unn 4 8 16

(43)

Nach (29) und (41) ist der korrigierte Eigenwert « in erster Nihe-
rung: a=f2n+1)+ UK,

fiihren wir ihn in (21) ein, so erhalten wir folgende — fir 8> 1
oder V> ¢ giiltige — Eigenwertformel:

mﬂ K(K+1 1) 17
W= —V4v/eV @ns1)te | BT _not])

4 8 16 (44)
n=10,2,4,---, wenn K ungerade,
n=1,3,5,---, wenn K gerade.

Es sei1 hier daran erinnert, dass die ganzen vorstehenden Rech-
nungen sich auf Deuteronzustinde mit dem Spin J = 0 beziehen.
Wie eingangs bemerkt, kénnen aber die Quantenzahlen J und K
jederzeit vertauscht werden; die Formel (44) gilt also, wenn wir
in ihr J anstelle von K schreiben, auch fir Zustdnde beliebigen
Spins, sofern deren ,,sotoper Spin‘ K = 0 i1st (Ladungssingletts).

Unter den betrachteten Eigenwerten — mit J = 0 oder K = 0
— sind die tiefsten diejenigen mit den Quantenzahlen

n=0,J=0K=1 und n=0J=1K=0:

- 45
Wo=—V+4/eV—Let - (45)

Wir werden sie (vgl. § 8) den untersten Deuteronzustdanden 1S und
38 zuzuordnen haben, was mit dem Pauliprinzip vertriglich ist.
Von den Eigenwerten J = K = 0, die wir schon in I, § 4 betrach-
teten und die zu P-, F- . . .-Termen gehoren, liegt der tiefste (n = 1)
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um etwa 2 /¢ V hoher. Bei festgehaltener Oszillationsquantenzahl
n ist die K- bzw. J-Abhingigkeit der Eigenwerte W durch die
Terme

% K(K +1) bzw. % J(J +1)

gegeben ; die quadratische Abhingigkeit ist eine ganz dhnliche wie
in der ,,Isobaren-Energie’ des einzelnen Nukleons: % 7(7+1).

Die Zuordnung der Eigenwerte (44) zu den fiir den anderen
Grenzfall (8 <€ 1) berechneten Eigenwerten W, (24) wird durch
folgende Verkniipfung der Quantenzahlen n in (44) und s in (24)

hergestellt:
2s=n+J+ K+ 1. (46)

Dadurch sind ndmlich, bei festen Werten von J und K, die tiefsten
Eigenwerte (24) und (44) einander zugeordnet, ebenso die zweit-
tiefsten Eigenwerte (24) und (44), desgleichen die néchst hoheren
usw. Eine andere Zuordnung ist nicht méglich, da sich sonst bei
Variation des Parameters g verschiedene Eigenwerte mit gleichem
J und K iiberschneiden miissten, was ausgeschlossen ist. —

Zwel Bemerkungen zum Grenzfall > 1 sind noch nachzu-
tragen. Wie schon hervorgehoben wurde, bestimmt die Oszillator-
naherung den Verlauf der Eigenfunktionen ¢ nur in der Nihe des
Punktes =0 (| | <€1), und ihr Verlauf weiter aussen bleibt
noch zu untersuchen. Wegen des ungeraden Charakters von ¢
gentigt es, die eine Hélfte des Periodizitatsintervalls zu betrachten :
0 < 5 < z. Die Oszillator-Eigenfunktionen v, sind (sofern n ~ 1)
nur fiir # £ % merklich von null verschieden; gehen wir nun
in das Gebiet =% < n<1, wo zwar die Naherungsformel (35)
noch brauchbar, y aber schon fast auf null abgeklungen ist, so
wird (%, und damit nach (85) auch ¢, asymptotisch gleich
einem Polynom (K — 1)-ten Grades:

99=0an—1+02,,71{—2+... fiir ‘3-1/2<77<1.

Von diesen Termen ist der erste — oder wenn ¢; = 0 1st1), der
zwelte — gross gegen die weiteren Terme, wie man leicht abschétzt.
Wir behaupten nun, dass der weitere Verlauf der Eigenfunktion ¢,

1) Da das in (35) eingehende ungerade Polynom Pg_; von dem frei wahl-
baren Parameter I” abhingt, kann man durch Wahl von I erreichen, dass ent-
weder ¢; = 0 (wenn K gerade) oder ¢, = 0 (wenn K ungerade). Diese Wahl von
I vereinfacht die fiir das Folgende erforderlichen Abschitzungen. — Fiir A=1
ist natiirlich ¢, = 0.

*
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wenn man 7 gegen & anwachsen lasst durch folgende Formel dar-
gestellt wird :

K1 K—2
fpgcos-g—- [cl (2 sin%) + ¢y (2 sing) ” (47)
| fir g2 <Ly =m.

Geht man ndmlich mit diesem Ansatz in die (exakte) Bestimmungs-
gleichung (22) ein, so heben sich dort die mit dem Faktor B2 ver-
sehenen Terme — ohne den [-Term — gerade fort, und die tibrig-
bleibenden Terme?) sind klein gegen die einzelnen A2-Terme (fir
7> f~%). Man wird daher ¢ als eine Entwicklung (nach g-1) an-
setzen konnen, deren hiochste Terme durch (47) gegeben sind. Diese
gehen aber auch fir # €1 in ¢; 7% + ¢ynE—2 iber, womit der
Anschluss an die Oszillatorndherung hergestellt ist. Fir n = & ver-
schwindet ¢ (linear), und fiir > 7 gilt — wegen der Symmetrie-
Eigenschaften (11) — wieder die gleiche Formel (47); der Ubergang
in den benachbarten Periodizitétsbereich vollzieht sich also in véllig
reguldrer Weise.

Die zweite Bemerkung betrifft die Normierung der Eigenvek-

toren des Gleichungssystems (3). Bei den Anwendungen in I, § 3
[vgl. (I, 12 und 24)] wurde 2'a? = 1 verlangt; nach (5) bedeutet
7

dies:
”S SybE=1. (48)

Da y; nach (6) fir s < s, verschwindet, kann die Summe in (48)
tiberalle s-Werte (von 1 an) erstreckt werden. Wir setzen geméss (10)

by = (—1)° /ﬂn““” (1) (49)

und bilden y,b,, wobei wir in v, (6) s2 sin s durch — 02 sin s7/0 7>
ersetzen und die Differentialoperatoren vermoge partieller Integra-
tion an ¢ angreifen lassen:

F1n 87

Psbe= (—1)K+3fd97 v Age(n) , wo

el G T ]3]

1) D.h. ¢ +og@ und der I-Term; ferner gehéren hierher die Beitrige der
kleinen &-Werte zu den Integralen von 0 bis % in (22) [fir & = B~ ist (47) durch
(35) zu ersetzen!].

(50)
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Aus (49) und (50) folgt, bei Beriicksichtigung von (11):
Sysbi= (1% [ane- dxe. (51)

Nehmen wir nun wieder 8> 1 an, so liefert der Bereich % <<n =n
keinen Beitrag zum Normierungsintegral; denn dort kann ¢ nach
(47) in der Form geschrieben werden:

in iKn
¢ = Realteil Von{lle-z + Ao €M+ o+ Age ® },

und infolgedessen ist
Agp=0 fir p7~2<L|y| ==n. (562)

Anderseits 1ist im Oszillationsbereich (| 7|~ %) Axz durch
02%/0 n2K ersetzbar; damit vernachlissigt man nur Terme der rela-
tiven Ordnung f-!. Daher wird nach (51) und (27):

Syl = (DX [angge® = [an(g® = [dnv2.

Die Normierungsbedingung (48) bedeutet daher, wenn Fehler der
Ordnung fA-! in Kauf genommen werden, nichts anderes als

fdn'l;)2:1. (53)

In der gleichen Weise kann man auch den Erwartungswert von
§? = (j + )2 berechnen ; man findet dafiir wieder die Formel (I, 88):

P stybi=— [dnyy' = fin+3). (54)

§ 3. Diskussion der Ergebnisse.

Das Problem (3), das wir bis jetzt behandelt haben, entspricht
dem Deuteron mit festgehaltenen Ortskoordinaten. Wir gehen nun
zum eigentlichen Deuteronproblem iiber, indem wir — gemaéss den
Ausfithrungen in I, §§ 2 und 3 — die Energie der Relativbewe-
gung berticksichtigen; und zwar stiitzen wir uns dabeil wieder auf
die beiden in I, § 3 entwickelten Niherungsmethoden.

A. Advabaten-Verfahren.

Bei dieser Methode ist in (8) bzw. (I, 11) V' als Funktion des
Nukleonenabstandes r zu betrachten; dadurch werden die Eigen-
werte W Funktionen von 7, und diese Funktionen sind die Poten-
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tialfunktionen der ,,adiabatischen‘‘ Naherung. Die tiefstliegende
Potentialkurve gehort nach Obigem zu den Quantenzahlen

J=0,K=1 oder J=1,K=0; n=0,s=1:

m% V(T)—%M-}‘"' tir V(r) Le,
W (1) = 9 , (55)
l—V(?‘)—I— YeV(r)—gge+ - fir Vir)>e

[vgl. (24) mit (8), bzw. (45)]. Nach dem Pauliprinzip (2) [vgl. auch
(I, 13)] sind die betreffenden Schrodingerfunktionen gerade [f(— )
= f(r)]. Als tiefste Deuteronzustdnde haben wir daher zwei S-Zu-
stinde zu erwarten; dass beide Zustdnde hier dieselbe Energie er-
halten, liegt natiirlich an der Vernachléssigung der ,, Tensorkraft®.
Der eine Zustand (J = 0) ist ein 1S-Zustand, und zwar ein Ladungs-
triplett: zu K = 1 gehoren (vgl. I, § 2) die isotopen Spinkompo-
nenten N = —1,0, + 1, d. h. die Ladungen N +1=0,1,2; wir
haben diesen Zustand mit dem (wahrscheinlich instabilen) 'S-Zu-
stand zu 1dentifizieren, der aus der wellenmechanischen Theorie der
Neutron-Proton-Streuung und der Proton-Proton-Streuung bekannt
ist. Der andere tiefe Zustand (J = 1), der mit dem Deuteron-Grund-
zustand zu 1dentifizieren ist, ist ein 3S-Zustand und ein Ladungs-
singlett (K= 0, N= 0, Ladung N + 1= 1).

Es 1st klar, dass man bei einem beliebig vorgegebenen Wert
der Isobaren-Konstanten e die WechselwirkungsfunktionV (r) so ein-
richten kann, dass die adiabatische Potentialfunktion (55) fiir den
8S-Zustand als tiefsten Zustand die richtige Bindungsenergie
(~ 2 MeV) liefert. Man kann daher aus der Erfahrungstatsache
allein, dass die untersten Deuteronzustinde die oben charakteri-
sierten 3S- und 1S-Zusténde sind, noch nicht auf den Wert der
Isobaren-Energie schliessen ; insbesondere kénnen kleine Werte von
¢ nicht ausgeschlossen werden. Dagegen hingt die Reihenfolge der
néchst héheren Zustdnde bzw. Potentialkurven sehr wesentlich von
¢ ab, genauer gesagt vom Verhiltnis ¢V (vgl. I). Da die Annahme
¢> T auf die bekannte #ltere Theorie zuriickfiihrt, beschranken
wir uns hier auf die Diskussion des Falles ¢ < V.

Wie in I, § 4 definieren wir einen kritischen Abstand 7, durch
V(ry) = &; im Bereich r < 7., wo V(r) > ¢ ist, kann die Formel
(44) angewendet werden. Im betrachteten Falle ¢ <V ist 7, so
gross, dass man bei der Berechnung diskreter Energie-Eigenwerte
(mit exponentiell abklingenden Schrédingerfunktionen) die Poten-
tialkurven (44) auch fur r 2 r, gelten lassen kann; der dabei be-
gangene Fehler kann durch eine Stérungsrechnung korrigiert wer-
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den. Jedenfalls wird die adiabatische Wechselwirkung im ,,wesent-
lichen r-Bereich durch (44) beschrieben. In diesem Bereich
1st die Rethenfolge der Potentialkurven (44) in erster Linie durch
den Term 4/ V (2 n + 1) und erst in zweiter Linie durch den K-ab-
héngigen Term ~ e bestimmt. Der tiefsten Kurve n= 0, K=1
folgt daher als nidchst hohere die Kurve n = 0, K = 3; der Abstand
der beiden Kurven 1st 3, also von r unabhéngig [fur r <& ry; bel
zunehmendem 7 steigt der Abstand nach (24) und (46) auf 3 £].
Weiter folgen, ebenfalls in (fast) konstantem Abstand, die Kurven
n=0,K=5,7,---. Wegen der Vertauschbarkeit von J und K
gehoren zu den gleichen Kurven auch Zustinde mit K= 0,J =1,
3,5,:--. Da J + K in allen diesen Fillen ungerade ist, sind die
betreffenden Schriodingerfunktionen gerade (S-, D-,- - -Terme).
Daher muss sich z. B. der stabile S-Zustand auf allen jenen Poten-
tialkurven wiederholen. Diese S-Zustidnde sind ,,isobare Zustdnde‘
des Deuterons, die mit dem Grundzustand eine ,,homologe Reihe
bilden. Betrachten wir nur die untersten!) dieser Deuteron-Iso-
baren:

J=0,K=8(S) und J=38,K=0(8). (56)

Der zum Spin J = 8 gehorige Septett-S-Zustand ist ein Ladungs-
singlett und kommt nur mit der Ladung N + 1 =1 vor (Wasser-
stoff) ; der 1S-Term dagegen ist ein Ladungsseptett, d.h. er kann
Ladungszahlen zwischen — 2 und + 4 besitzen. Die Anregungs-
energie dieser isobaren Zustidnde ist durch den Abstand der Poten-
tialkurven K = 3 und K = 1 gegeben, betréigt also 2 & [bzw. ein
wenlg mehr, da der Kurven-Abstand, wie bemerkt, fir r- oo
etwas zunimmt]; £ ¢ ist gleich 5/3 der Anregungsenergie der unter-
sten Proton-Isobaren (£¢). Da der Deuteron-Grundzustand in
Wirklichkeit nur eine recht kleine Bindungsenergie besitzt und
seine Stabilitdt moglicherweise nur der Tensorkraft verdankt, die
hier ignoriert wird, kénnen wir allerdings nicht sicher entscheiden,
ob die betrachteten Deuteron-Isobaren wirklich als stabil anzu-
sehen sind; ihre Stabilitit wird aber sehr begiinstigt durch den
erwdhnten stdrkeren Anstieg ihrer Potentialkurven im Aussen-
bereich (r > r,). — Auf die Zustdnde mit n = 1 brauchen wir hier
nicht einzugehen; die unterste dieser Potentialkurven (n=1,
J = K = 0) wurde namlich schon in I, § 4 besprochen, und die
hoéheren Terme diirften vorerst wenig Interesse haben.

1) Gemeint sind natiirlich nur die tiefsten Zustinde unter den hier betrach-
teten mit J = 0 oder K = 0; iiber die anderen Zustinde kann erst in einem
spiateren Teil IH berichtet werden.
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In I, § 8 wurde gezeigt, dass man die adiabatische Naherung
wie in der Molekiiltheorie als ,nullte Niherung® einer Stérungs-
rechnung verwenden kann. Die Stérungsmatrix bestimmt sich
durch die in (I, 15) definierten Funktionen A4, ,(r) und B,,,(r).
Wir schreiben diese, in Anpassung an die hier verwendete Bezeich-
nungswelise :

2 do; 1 0%a
A'mn:—*" M a, 1 (n) an— s % B 118 :
Mpzjiaf(ﬂ@) or lwm‘;"a’() or2

(57)

dabei bedeutet a;, den zum Eigenwert W, gehorigen Kigen-
vektor.des Gleichungssystems (8), der jetzt natirlich r-abhéngig
1st (V' = V(r)). Zur Ausrechnung fir r << r, schreiben wir gemdss (5)

S O”bs )

Z“i(m) Z L S

7

wo die s-Summe — wie in (48) — tiber alle positiven s-Werte er-
streckt werden kann. Benutzt man die Formeln (49), (50) und (52),
so erhiilt man — durch die gleichen Uberlegungen, die zur Nor-
mierungsbedingung (53) fithrten, und mit der gleichen Genauig-
keit —:

Ov

R (n) Pn :
‘>f 7 _fdn Y —— er (58)
Setzt man dies in (57) ein, so kommt man [vgl. auch (53)] genau
zu den Formeln (I, 41 und 42) zuriick. Die Quantenzahl K bzw. J
15t also aus dem Ergebnis herausgefallen. Allerdings bestimmt sie
gemiss (32) die Paritat der Oszillationsquantenzahlen m, n.

Da hinsichtlich der Grissenordnung der Matrixelemente A, ,,
B,,, und der Abstinde der adiabatischen Potentialkurven (fiir feste
Werte von oJ, K) kein Unterschied gegentiber dem frither behan-
delten Fall J = K = 0 besteht, konnen die dortigen Folgerungen
betreffend den Giiltigkeitsbereich der adiabatischen N&herung und
die Konvergenz der Stérungsrechnung unverdndert tibernommen
werden?). Wir diirfen also auch hier die Isobaren-Konstante € nicht
allzu klein annehmen (nicht unter etwa 20 MeV).

Solange aber die Terme A4,,,, B, tiberhaupt als ,kleine Sto-
rungen‘’ gelten kénnen, wird man sie — immer unter der Voraus-
setzung ¢ €V — im Bereich r <€ r, durch die Naherungsformeln
(I, 42) darstellen konnen. Vergleichen wir nun Zustéande der gleichen

1) Vgl. (I, 44) und die anschliessende Diskussion. Dort handelte es sich um
Zustinde des kontinuierlichen Energiespektrums (Streuvorginge); doch macht
dies fiir die Abschétzung der Stoérungen keinen Unterschied.
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Paritdt von J + K (m, n gerade bzw. ungerade), so sind die Funk-
tionen A,,, ("), Bp,(r) in dem fiir die Energieberechnuny mass-
gebenden r-Bereich von K bzw. J unabhiinglg, wihrend die adia-
batischen Potentialfunktionen W,,(r) dort nur durch die additiven
Konstanten ¢K (K + 1)/4 bzw. eJ(J + 1)/4 von K, J abhéngen.
Die Gleichungen (I, 18) oder (I, 19 und 20) ergeben daher unmittel-
bar folgendes Naherungsgesetz fiir die Energie-Eigenwerte:

E= S KE+1) +E,/ fiir J =0, |
) (59)
E= < JJ+1)+E, fiir K = 0

(B, von K bzw. J unabhingig). Was wir oben auf Grund der
grobsten adiabatischen Néherung schon feststellten, gilt also auch
bel stérungsméssiger Beriicksichtigung der A4-, B-Terme: dass es
ndmlich ,,homologe Reihen‘ von isobaren Zustinden gibt, die sich
in 1hren Energien nur durch die Terme e K (K + 1)/4bzw.ed (J +1)/4
unterscheiden [gleiche Quantenzahl «, d.h. fast gleiche Schro-
dingerfunktion f,, (t), und gleiche Paritit von J + K.] Die Energie-
differenzen solcher homologer Zustéinde sind also durch (59) un-
mittelbar bestimmt, ohne dass die Storungsrechnung ausgefithrt
werden muss. In%besondele ergibt sich so fiir die Anregungsenergie
der Isobaren (56) wieder der Wert Se.

B. Variationsverfahren.

Nach I, § 3 haben wir jetzt im Gleichungésystem (3) V durch
den Mittelwert ¥ (I, 26) zu ersetzen. Ist dieser gross gegen ¢, so
werden die betreffenden Eigenwerte W (J = 0) nach (44):

O N K(K+1) =n(n+1) 17|
Ww=—V+yeV (2n+1)+e¢ 1 s 16 + l

(n + K ungerade). J

(60)

Da dieser Ausdruck sich von (I, 45) wieder lediglich durch die addi-
tive Konstante e K (K + 1)/4 unterscheidet, kénnen die Formeln
(I, 46ff.) ohne weiteres iibernommen werden, wenn nur die Ener-
gien K (I, 47) um e K (K + 1)/4 vergrossert werden. Damit kommen
wir abermals zur Aussage (59) zuriick. Jetzt ist allerdings der
Energieterm E’ in (59) durch andere Bestimmungsgleichungen
definiert [E’ hat die Bedeutung von ,,E*‘ in (I, 47)]; doch lehrt die
in I durchgefiihrte Abschiitzung, die mutatis mutandis auch hier
gilt [vgl. (I, 48 bis 51) und die anschliessende Fussnote], dass die
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Aussagen der beiden Niherungen iiber die Eigenwerte E’ wenig-
stens qualitativ tbereinstimmen.

Nach (54) ist wiederum j2 ~ }/V/e > 1. Dagegen ist das rela-
tive Schwankungsquadrat von j gerade fiir den Grundzustand und
die tiefliegenden isobaren Zustéinde (n = 0) nicht sehr klein, da die
betreffenden Eigenvektoren @; im wesentlichen einer Gauss-Ver-
teilung entsprechen:

1

25 Y (fir 7= 0) .
Trotzdem besteht auch in diesem Falle kein Grund, die Ergebnisse
der Variationsmethode (,,Hartree-Néherung*‘) anzuzweifeln ; insbe-
sondere ist nicht einzusehen, warum diese Methode bei kleinen
e-Werten weniger zuverldssig sein sollte als bel grésseren, wo sie
durch die Adiabaten-Naherung bestéitigt wird. Daher sollte gerade
bei kleinen e-Werten, wo die Adiabaten-Methode versagt, die Varia-
tionsmethode sehr wohl zur Ergiinzung dienen kinnen. So ist z. B.
anzunehmen, dass die Energiedifferenzen homologer Zusténde fiir
¢ €V allgemein der Niherungsformel (59) entsprechen.

a; L const - e
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