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Zum Deuteronproblem. I
von M. Fierz und G. Wentzel.
(8. TV. 1944.)

Das Ziel dieser Arbeit ist die Untersuchung der Zwei-Nukleon-Probleme auf
Grund einer Theorie, die dem Nukleon eine Spintriagheit zuschreibt, so dass es
angeregte Zustinde (Isobaren) besitzt. Das Modell des Nukleons (Isobaren-Energie
und Krifte) wird im wesentlichen der symmetrischen Mesontheorie entnommen
(§ 2)'). Wenn die Isobaren-Anregungsenergie nicht sehr gross ist im Vergleich zur
mittleren Wechselwirkungsenergie, so ergeben sich betrachtliche Abweichungen von
den fritheren Deuteron-Theorien. Zur Losung des wellenmechanischen Problems
in diesem Falle werden zwei Naherungsverfahren vorgeschlagen: Adiabaten-
Methode und Variationsverfahren (§ 3). Die Anwendung beschrinkt sich (in diesem
Teil I) auf Deuteronzustinde mit verschwindendem Spin und mit verschwmden-
dem isotopen Spin (§ 4).

§ 1. Einleitung.

In der Feldtheorie der Kernkriifte (Mesontheorie) haben sich
zwel verschiedene Betrachtungsweisen herausgebildet. Fir die
erste, dem Vorbild der elektromagnetischen Strahlungstheorie fol-
gende Betrachtungsweise ist charakteristisch die Entwicklung nach
steigenden Potenzen der Kopplungsparameter (Storungsmethode).
Wegen der durch die experimentellen Daten geforderten numeri-
schen Grosse dieser Parameter konvergieren diese Entwicklungen
sehr schlecht. Der Vorzug dieser Behandlungsweise besteht darin,
dass die 1n der Theorie auftretenden Divergenzen in lorentzinva-
rianter Art subtrahiert werden kénnen?2). Allerdings kann man bei

1) Nach Abschluss dieser Arbeit erhielten wir Kenntnis von einer Arbeit
von W. PauLl u. S. Kusaga (Phys. Rev. 63 (1943), S. 400), in der auf Grund
der gleichen Mesontheorie ebenfalls das Deuteronproblem behandelt wird, jedoch
unter Beschriankung auf den Deuteron-Grundzustand (38) und auf den Grenz-
fall hoher Isobaren-Energie, wo die Abweichungen von der fritheren Theorie gering-
fiigig sind. Da wir hier das Hauptgewicht auf den entgegengesetzten Grenzfall
legen und deswegen auch methodisch ganz anders vorgehen, diirfte die Veroffent-
lichung dieser Arbeit nicht iiberfliissig sein.

?) G. WenNTzZEL, ZS. f. Phys. 86 (1933), S. 479 u. 635. P. A. M. DIrac,
Annales de I'Institut H. Poincarg 9 (1939), S. 13; Proc. Roy. Soc. 180 (1942),
S. 1. E. G6éra, Acta Phys. Polon. 7 (1938), S. 159 u. 374; ZS. f. Phys. 120 (1943),
S. 121. W. HEerrTLER, Proc. Cambr. Phil. Soc. 37 (1941), S. 291 und 38 (1942),
S. 296. A. H. WiLsoN, ebenda 37 (1941), S. 301. E. C. G. STUECKELBERG, Nature
153 (1944), S. 143; Helv. Phys. Acta 17 (1944), S. 3. W. Pavii, Rev. of Mod.
Phys. 15 (1943), S. 175.
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jedem Schritt der Entwicklung endliche invariante Zusatzterme in
willkiirlicher Weise addieren, und es lidsst sich bis jetzt keine physi-
kalisch befriedigende Vorschrift iber die Art der Subtraktion auf-
stellen. Dies bedeutet, dass durch die Angabe einer Lagrange-
Funktion die hheren- Naherungen emer solchen Theorie keines-
wegs definiert sind.. =~ - ‘

Bei der zweiten Betrachtungsweise entwickelt man nach fallen-
den Potenzen der Kopplungsparameter?!), und diese Entwicklung
konvergiert, wegen der starken Kopplung des Feldes. mit den
Nukleonen, bedeutend besser. Hier besteht jedoch vorerst keine
Mboglichkeit, die Divergenzen in invarianter Weise zu eliminieren,
und man ist gezwungen, den Nukleonen einen endlichen Radius
zuzuschreiben. Wenn aber die Lagrange-Funktion (einschliesslich
der Formfunktion der Teilchen) gegeben ist, so ist das betrachtete
»»Modell vollstandig definiert. Insbesondere sind die Tragheits-
eigenschaften der Nukleonen, dhnlich wie die elektromagnetische
Masse des Lorentz’schen Elektrons, aus der Theorie berechenbar.
Da die Kernkréfte spin- und ladungsabhéngig sind, treten hier
neben der tragen Masse noch Tragheitsmomente auf, die dem Spin
und dem ,,isotopic spin‘ (der Ladung) zugeordnet sind, und ent-
sprechende Rotationsenergien; dies hat zur Folge, dass die Nukle-
onen angeregte Zustéinde (Isobaren) mit héheren Werten von Spin
und Ladung besitzen. Die Theorie liefert bestimmte Aussagen iiber
die Anregungsenergien der verschiedenen Spin- und Ladungszu-
stinde der Teilchen, sowie tiber ihre Wechselwirkungen in diesen
Zustanden. Bel diesen Aussagen geht nun allerdings der Nukleonen-
radius wesentlich ein. Es zeigt sich aber, dass man auch hier, um
mit den Experimenten im Einklang zu bleiben, fiir den Radius
die Grossenordnung des klassischen Elektronenradius oder der
Comptonwellenlinge des Protons annehmen muss. Dies 1st die
Grossenordnung der von HeisenNBERG2) postulierten ,,universellen
Lénge®, welche die Massen der ,,Elementarteilchen’ bestimmen soll.

Es scheint uns daher gerechtfertigt, auch jene Folgerungeh
der Feldtheorie, welche vom Radius der Nukleonen abhéngen, in
einer unrelativistischen Niherung ernst zu nehmen, obwohl bis
jetzt unklar ist, welche Rolle dieser Radius in einer lorentzinvari-
anten Theorie Spielen wird. Die ersterwihnten Theorien, bei welchen

1) G. WeNTZEL, Helv. Phys. Acta 13 (1940), S. 269; 14 (1941), S. 633; 16
(1943), S. 222 u. 551. J. R. OppENHEIMER und J. ScHWINGER, Phys. Rev. 60
(1941), S. 1560. W. Pavrr und S. M. Dancorr, Phys. Rev. 62 (1942), S. 85.
R. SErRBER und S. M. Daxcorr, Phys. Rev. 63 (1943), S. 143. W. PavLI und
S. Kusaka, Phys. Rev. 63 (1943), S. 400.

*) W. HeisENBERG, Ann. d. Phys. 32 (1938), S. 20. -
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die Divergenzen in invarianter Weise subtrahiert werden kénnen,
zeigen ja durch die Unbestimmtheit ihrer hoheren Néherungen,
dass noch wesentliche Gesichtspunkte zur Einschrinkung der man-
nigfaltigen Moglichkeiten fehlen; solche Gesichtspunkte konnten
sich aber gerade durch das Studium der Theorie bei starker Kopp-
lung ergeben. Uberdies verdienen die aus dieser Theorie folgenden
Kernkrifte, fiir deren Eigenschaften die Existenz der isobaren Zu-
stande bestimmend ist, auch unabhéingig von ihrer speziellen Ab-
leitung ein gewisses Interesse, da hierdurch der Kreis der Ge-
sichtspunkte, nach denen die experimentellen Erscheinungen dis-
kutiert werden kénnen, erweitert wird. |

Fiir die Theorie der zusammengesetzten Kerne bedeutet die
Annahme von angeregten Nukleon-Zusténden eine erhebliche Kom-
plikation. Nur die einfachsten Probleme kommen daher zunichst
in Betracht. Es sind dies einerseits die Viel-Korper-Probleme, d. h.
die schweren Kerne; diese sind bereits von CorsTeR?!) mittels sta-
tistischer Ni#herungsmethoden untersucht worden. Andererseits
bietet sich als néchstliegendes Problem das Zwei-Korper-Problem
des Deuterons und seiner Isobaren, das den Gegenstand der vor-
liegenden Arbeit bilden soll.

§ 2. Das Nukleon-Modell.

Die verschiedenen Varianten der Mesontheorie liefern bekannt-
lich verschiedene Modelle des Nukleons.- Die Skalartheorie kann
ausgeschieden werden, da sie den Erfahrungstatsachen sicher nicht
gerecht wird. Von den anderen Varianten sind bisher nur die Pseu-
doskalar- und die Vektortheorie, sowie die Theorie. die mit einer
Mischung dieser beiden Felder rechnet, unter der Annahme starker
Kopplung durchgefiihrt worden?); auf diese Theorien sind wir also
angewiesen. Weiter unterscheidet man ,,neutral”, ,,charged* und
»,symmetrical theories”. Die symmetrische Theorie (im Sinne von

1) F. CoEsTER, Helv. Phys. Acta 17 (1944), S. 35. Nach dieser Arbeit konnen
die schweren Kerne in Ubereinstimmung mit der Erfahrung beschrieben werden.
Pavrr und Kusara dussern sich hieriiber nur kurz (1. ¢., S. 415). Wahrend ihre
Angaben iiber die Stabilitit der schweren Kerne in der symmetrischen Mischungs-
theorie (s.u.) mit CoEsTERs Ergebnissen iibereinstimmen, befiirchten sie, dass
die Beriicksichtigung der Coulombenergie zu kleine Gleichgewichtsladungen er-
gibt. Die ausfiihrlichen Rechnungen von CorsTEeRr (l.c., § 6) zeigen jedoch, dass
die Gleichgewichtsladung in ziemlich empfindlicher Weise von den Parametern
der Theorie abhdngt und daher sehr wohl mit dem Erfahrungswert in Einklang

gebracht werden kann. — Auch in anderer Hinsicht (magnetische Momente von
Proton, Neutron und Deuteron) scheint uns PavLis und Kusakas Beurteilung

der Theorie zu pessimistisch; doch kann darauf hier nicht eingegangen werden.
2) Zitate in Fussnote 1, S. 216. .
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KemmER?)) empfiehlt sich dadurch, dass sie ,,Jadungsunabhéngige*¢
Kriafte liefert, ohne — wie die ,,neutral theory'‘ — auf die Meson-
theorie des f-Zerfalls verzichten zu miissen. '

Wiahrend die Lagrangefunktion der Pseudoskalartheorie bei
unrelativistischer Naherung (ruhende Nukleonen) nur einen ein-
zigen Kopplungsparameter aufweist, treten in der Vektortheorie
bekanntlich deren zwei auf, die den Wechselwirkungen der longi-
tudinalen bzw. transversalen Mesonen mit den Proton-Neutronen
zugeordnet sind: ¢, Und Gianey - I3t Giong = 0, oder bleibt der
Quotient Gong/ Giransy dem Betrage nach unter einer gewissen
Grenze?), so ergibt die Vektortheorie denselben Ausdruck fiir die
Isobaren-Energie wie die Pseudoskalartheorie. Man kann dann
auch beide Felder gemeinsam annehmen (Mischungstheorie), wobei
die Moglichkeit besteht, gewisse unerwiinschte Terme im Wechsel-
wirkungspotential durch Wahl der Parameter zu eliminieren?).

Wenn man diese — freilich schon sehr ins Detail gehenden —
Konsequenzen der Mesontheorie wiortlich nehmen will, so wird man
der Pseudoskalar-, Vektor- oder Mischungstheorie, und zwar der
symmetrischen Variante, einstweilen eine Vorrangstellung einréu-
men miissen. Zu ihren Gunsten spricht aber auch die hohe Sym-
metrie, mit der das Modell des Nukleons in dieser Theorie ausge-
stattet wird. Wir wollen daher dieses Modell unserer Betrachtung
der Zweikorperprobleme zugrundelegen.

Der Ansatz fiir die Isobaren-Energie laute demnach:
H1'=%| P |2 + const. 1)

Hier bedeutet P einen Kreiseldrehimpuls mit den Eigenwerten

i P\?': j(G+1), woj= ‘;"%’%"
Seine Projektionen auf eine raumfeste und eine ,korperfeste’
Achse konnen diagonal gemacht werden; sie haben halbganze
Eigenwerte m, n, wobei |m | =4, |n|=j;j und m sind die Spin-
quantenzahlen, n + % die Ladungszahl des Nukleonzustandes. Fiir
das Folgende ist es bequem, die Konstante in (1) so zu wihlen,

1) N. KEMMER, Proc. Cambr. Phil. Soc. 34 (1938), S. 354.

%) Vgl. G. WENTZEL, Helv. Phys. Acta 16 (1943) ,S. 551, insbesondere S. 579.
Andernfalls setzt sich die Isobaren-Energie aus zwei Rotator-Energien zusammen,
die dem Spin und dem isotopen Spin getrennt entsprechen.

3) C. MeoLLER und L. ROSENFELD, Kgl Danske Vidensk. S. XVII, 8 (1940)
J. ScHWINGER, Phys. Rev. 61 (1942), S. 387.
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dass der tiefste Eigenwert von H! null erd dann haben wir die
Eigenwerte :

lei[m%)z—i}. | @

Zum Modell gehoren ferner dle Kernkrifte., Hier interessieren
nur die Zwelkorperkrafte Neben einer Zentralkratt liefern die ge-
nannten Mesontheorien im allgemeinen noch eine ,,Tensorkraft®
(Spin-Bahn-Kopplung), die bekanntlich zur Erklirung des elektri-
schen Quadrupolmoments des Deuterons herangezogen wird. Wir
wollen aber die mathematische Aufgabe vereinfachen, indem wir
die Tensorkraft zunéchst fortlassen; man wird sie nachtriglich
als Stérung berticksichtigen kénnen. Dann ist die statische Wechsel-
wirkungsenergie von der Form

V-0, B

wo r den Abstand der beiden Nukleonen bedeutet und wo £ eine
bestimmte Funktion der Euler’schen Winkel der beiden Nukleon-
Kreisel ist!). In einer vorangegangenen Arbeit des einen von uns?)
wurde die zugehorige 2-Matrix berechnet, zunichst im Schema
der Spin- und Ladungsquantenzahlen der beiden einzelnen
Nukleonen (j;n,m; jansm,), dann durch eine unitire Transforma-
tion als Matrix beziiglich der Quantenzahlen

J:MyKaNyjI’jZ:; (4)

hier bedeuten J und M = m, + m, Betrag und Komponente des
Deuteron-Spins, und K und N = n; + n, sind die entsprechenden
Quantenzahlen des isotopen Spins, d.h. N + 1 ist die Gesamt-
ladung des Zwei-Nukleon-Systems; J, M, K, N sind ganzzahlig,
undesgilt | M| =J,| N| < K. Die Matrix 2 ist aus Symmetrie-
grimden diagonal beziiglich der Quantenzahlen J, M, K, N ; sie
zerfallt demnach in Teilmatrizen beziiglich 4,, 75, die noch von
J und K abhéngen; dabei kommen in jeder Teilmatrix nur solche
91, Jo- Werte vor, fiir ‘die gemiss dem ,,Vektormodell* die Unglel-
chungen gelten:

‘71—"9‘2-i7§_J§j1‘|‘,7,'2, |?'1"‘*7-2‘§K§j1+?'2- (5)
Was andererseits die Potentialfunktion ¥ in (8) anbelangt, so ist —

& | Q = Z S(l m der Bezewhnung der in Fussnote 2, 8.218 z1t1erten Ar-

beit; vgl. Gl (15 8) S 592.

2) M. FiErz, Helv. Phys. Acta 17 (1944), 8. 27. In dieser Arbeit sind die
Grossen S;, (s. die vorangehende Fussnote) mit x;; bezeichnet (bis auf gewisse
Vorzeichen). : .
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nach den genannten Mesontheorien — ihre r-Abhéngigkeit in
grossen Abstdnden (r> Radius des Nukleons) diejenige des Yu-
kawa-Potentials (const. e=#7/r) oder zweler superponierter Yukawa-
Potentiale (mit wy + ppg: Mischungstheorie). Wir brauchen in-
dessen iiber die r-Abhéngigkeit noch nicht zu verfigen. Dagegen
1st wichtig, dass — im Einklang mit den Mesontheorien —

Vir) >0 (6)

angenommen wird; denn nach CorsTeR (l.c.) ist es dieses Vor-
zeichen, das die Stabilitdt der schweren Kerne garantiert.

Die Hamiltonfunktion H des Zweikorperproblems setzt sich
danach aus folgenden Bestandteilen zusammen : kinetische Energie
der Relativbewegung (Operator — A4/M,, wo M, = Protonmasse;
h = 1), Isobaren-Energien (2) der beiden Nukleonen?), und Wechsel-
wirkung (3). Wir denken uns H, gesondert fiir jedes Wertesystem
der Quantenzahlen J, M, K, N, als Matrix beziiglich 7, und 7,
geschrieben: '

(7172 [H’j1’j2’) = {Ef +é [(71+%) (72+l ]} (71?2|1l?1 72’)

+ V() - (da| 15172) - (7)
Die Schrodingergleichung lautet dann
2 Grdel HIjy' 32) F (x5 1) = B F(jpjz, ¥) (8)

e
(t = Vektor der Relativkoordinaten, |t |= 7).

Das Paurr’sche Ausschlussprinzip verlangt, dass die Schro-
dingerfunktion, wenn sie als Funktion der urspriinglichen Variablen
J1 MMy JaMan, und T = r; — t, dargestellt wird, bei Vertauschung
der Koordinaten beider Teilchen das Vorzeichen wechselt. Fiir die
reduzierte Schrodingerfunktion in (8) bedeutet dies:

F(jije, ¥) = — F(jajy, — 1), wenn J + K gerade; } )
F (11725 t) = + F(j37,, — 1), wenn J + K ungerade.

Ein wesentlicher Parameter der Hamiltonfunktion (7) 1st das
Verhéltnis ¢/V [V = Mittelwert von V; vgl. etwa (26)]. Ist ¢ >V,
so kann man n&herungsweise ¢ = o setzen d. h. den Einfluss der
angeregten Nukleonzustinde auf die energetlsch tlefhegenden Deu-

1) Wir betrachten die Isobaren- Energien als additiv. Die nach der Meson-
theorie zu erwartenden Abweichungen von der Additivitat sind in der Tat belang-
los; vgl. Paurt und Kusaxka, L. c., Fussnote 7 auf S. 404.
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teronzustinde vernachlasmgen K (yi Js, ) = 0 ausser fiir j; = j, =13
Es ist aber : . JERE |
1 fiir J= K= 0

(%%IQI%%)‘-: —~furJ 1, K=0 und J=0, K_ (10)
1 fiir J = K- 1. -

In dieser Grenze besteht kein Unterschied zwischen Meson-
theorien mit starker oder schwacher Kopplung, und man kommt
zu einer wohlbekannten &lteren Deuterontheorie zuriick!). Es 1st
nun die Frage, wie die Eigenwerte und Eigenfunktionen der Hamil-
tonfunktion (7) sich &ndern, wenn die Isobarenenergie & abnimmt
und schliesslich klein gegen ¥V wird. Namentlich-im letzteren Grenz-
fall miissen sich ganz neue Verhaltnisse ergeben, und es wird zu
zu untersuchen sein, fiir welche Parameterwerte die Ubereinstim-
mung mit der Erfahrung hergestellt werden kann. Wenn auch
vermutlich ein mittlerer Wert von /¥ (& 1/,) am ehesten das Rich-
tige treffen wird, legen wir doch besonderes Gewicht auf den Grenz-
fall e £V, weil hier die Wirkungen der Spm Traghelt am ausge-
pragtesten sind.
§ 3. Naherungsmethoden.

Wir haben zuerst versucht, fiir den Fall des Treppenpotentials
[V(r)=V, fir r<ry, =0 fiir »r >r,] exakte Losungen aufzu-
stellen und auszuwerten; doch fithren die Stetigkeitsbedingungen
fir r = 7y auf eine wenig ubersmhthche ‘Gleichung. Man wird daher
mit Naherungsmethoden eher zum Ziel kommen. Wir besprechen
hier zwel naheliegende Methoden. .

A. Adidbaten-—Methode:

Wie in der Theorie zweiatomiger Molekiile2) betrachten wir
den Kernabstand r zunichst als einen Parameter. Bei festgehal-
tenem 7 haben wir statt (7), (8) die Schrodingergleichung

’[ J11+3)2+( ?2‘|‘ 2] (7172)+V Z (11721 217192 @(1'72)
T ..
= W-a(jisy); (A1)

1 (1v) entspricht — ab‘gesehen von einem Faktor 1/9 — dem' bekannten
Austauschoperator (G, .0,)(7; .@,). Die betreffende Deuterontheorie ist die von
RarITA und ScEWINGER (Phys. Rev. 59 (1941), S. 436 u. 556) als ,,symmetrical*
bezeichnete Theorie; diese Autoren untersuchen aber speziell die Wirkung der
Tensorkraft. Von dieser Theorie ausgehend, kann man im Falle 7 < ¢ die Ausser-
diagonalelemente der Wechselw:rkungsm&trlx V . £2 als kleine Storungen beriick-
sichtigen. So gehen PAULI und KvusARA in ihrer oben zitierten Arbeit vor, und
zwar rechnen sie in der Naherung, dass nur die F-Komponenten mit 4, j, < 3/2
als von null verschieden betrachtet werden.

2) M! Borx und R. OPPENHEIMER, Ann. d. Phys. 84 (1927), S. 457. R. pE
L. Kronia, ZS. f. Phys. 50 (1928), S. 347. ' ;
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ihre Eigenwerte seien W, , ihre Eigenvektoren a,(j;7,). Wir konnen
die Eigenvektoren reell wihlen, weil die 2-Matrix reell ist. Da V
von 7 abhédngt — die Art der Abh#ngigkeit bleibe noch offen —,
sind W, und a, Funktionen des Parameters r. Fiir jeden Wert von
r seien die Eigenvektoren auf 1 normiert, so dass

Zan’ (7172, 1) (71925 7) = O (12)
1172

Die Losungen der Schrodingergleichung (8) entwickeln wir
nach diesen Eigenvektoren:

F (5192, 1) = Z (71 72, 1) n (1) (13)

n

Aus (7) und (8) folgt dann:

e A ..
2{—E+ 7 Walr) b (o, ) fa(6) = 0. (14)
" D
Es se1 ‘
2 s 06,7172,
An'n: - 2 ’n’(?ljZ’lr) al(?olfryz,r)’ ]
1"1‘17: (15)

02a, (71 7., 7
Bn’nz zan ]1?2’ ) (71]2 )J

2
P ji]s 07‘

I\J
Beachtet man, dass

da (1 0 0%a
- A Il T o-a
Alaf) = w f+20r (’r+0'r)f+ o re f

so ergibt (14), mit (12) und (15):

MA m(r}fm 2{ n+Amn(%+%)}fn(r)=o. (16)

Fir die Diagonalelemente der Matrizen (15) gilt nach (12):

1 0@y (1 Jo, T\ 2
A, =0, B,,=+ - Z( n (7179 'r). a7

D jids OT

An Stelle von (16) kann man daher auch schreiben:

4
31, W)+ Bunt)| a0
1

. ;{BM + Ao (4 ) jfm —0, (8

~E+

wo der Strich am Summenzeichen die Auslassung des Terms n = m
verlangt. :
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- Man wird nun etwa — nach dem Vorbild der Molekiiltheorie
— auf die Gleichung (18) das Stérungsverfahren anwenden kénnen.
Als nullte Niherung bietet sich das Eigenwertproblem:

Bt L W () + B () £ (t) = 0, (19)

by
dessen Eigenwerte meaL und dessen normierte Eigenfunktionen
fme () selen. Fir jeden Wert der Quantenzahl m liefern die Funk-

tionen f,, (w=1,2,...) ein vollstindiges Orthogonalsystem, nach
dem die betreffende Funktion f,, in (18) entwickelt werden kann:

Fu () =S Cogfn (1) .

(18) 1st dann dquivalent dem Eigenwertproblem der Matrix @,,, ,4:

qjma,mﬁ: E’ma : 601,6;

D= [ 85 Fual0) {Bn )+ )+ 5 ) @0

(m+mn).

Die Eigenwerte E dieser Matrix wiren dann nach dem iiblichen
Stérungsverfahren zu bestimmen. '

B. Variationsverfahren.

Zur Schrodingergleichung (8) gehort das folgende Variations-
problem: Es soll

H— [are: S F*Guio,t) Guial H |3 32)F G758 1)
f1fz i’ 7o
durch Variation der Funktionen I und /'* zum Extremum gemacht
werden, mit der Nebenbedingung

[dse S PGy, OF (yjav) = 1. (22)
712
Die Extremalwerte von H sind die Eigenwerte F der Gleichung (8).

Wir gehen nun #hnlich vor wie Fockl) in seiner Begriindung
der HarTrEE-Naherung der Atomtheorie: Wir beschranken uns auf
Funktionen vom Typus

F(jyje ©) = alafs)  F(), F*(afa,v) = alisfa) - f*(x),  (28)

1) V. Focx, ZS. f. Phys. 61 (1930), S. 126.
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wo a (= a*) von r unabhéngig und f von 7,, 7, unabhiingig ist;

dabei sei

Sat(ai) =1, [doe-fr()f() =1. (24)
jlfﬁ ¥

Mit dieser beschrinkten Auswahl von Funktionen F, F'* soll jetzt

H extremal gemacht werden. Wenn wir zunichst f und f* fest-

halten, also nur die a(j;9,) variieren, so ergeben sich fiir diese die

Gleichungen

[+ 92+ 6o+ D* - 2] aliuf)
+ V(e | Qi) aly'iy) = W - alidy),  (25)
WO i\ 12
V= [@e- Vo). (26)
Von der Gleichung (11) unterscheidet sich (25) dadurch, dass V (r)

durch den Mittelwert ¥V ersetzt ist, sodass der Eigenwert W von
r unabhéngig wird. Setzt man (25) in (7), (8) ein, so wird

ﬁ:fd%-f*(t)- m]_\/_llp

Dieser Ausdruck ist jetzt noch durch Wahl von f, f* extremal zu
machen, wobei der Term W durch (25), (26) in seiner Abhéngigkeit
von f, f* bestimmt zu denken ist. Die Euler’sche Gleichung dieser
Variationsaufgabe ist einer Schrodingergleichung @hnlich (s. § 4).

f(&) +W. (27)

§ 4. Deuteronzustinde mit J =0, K = 0.

Die vorstehenden Uberlegungen sollen jetzt fiir den einfach-
sten Fall J = K = 0 ausgefiihrt werden. Es handelt sich also um
Deuteronzusténde, die sowohl Spin-Singletts als Ladungs-Singletts
sind. (K= 0, N= 0 heisst: Ladung = + 1). Nach dem ,,Vektor-
modell* (vgl. (5)) gibt es dann nur F-Komponenten mit §; = 4,.
Das Ausschlussprinzip besagt nach (9):

F(jj, v)= - F(g, — 1), (28)

d. h. es verbietet S-, D-...-Terme.
Die £2-Matrix hat im Falle J= K = 0 folgende nicht-ver-
schwindenden Elementel):

G1] 2155) =1
(7] L17+1,j+1) = (j+1,7+1| ]j5) = 1
1) M. FiErz, l. c., Gl IV.

1=%.
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Mit der Abkiirzung a(77) = a; lautet also die Gleichung (11):
{— WH+el[(G+1)2-1]+ V} a; + Vigi_y +a,1) =0 (29
G=3%%0 5 a3=0).
Dieses Gleichungssystem ist aus der Theorie der Mathieu’schen

Funktionen wohlbekannt. Wir definieren eine Funktion ¢ (x) durch
die Fourierreihe

sin (J+%)x
xr) = g 30
y (%) TZ]% Ry~ (30)
sie 1st periodisch mit der Periode 2z und ungerade:
p(@ +h-272)=y(), p(-2)= - p(@). (31)

Beachtet man, dass

L fsin (j+2) atsin ( — 1) 2)

2cos x-p(x) = __}:a,-\u/
iz} &
— 5, o+ ) SLERE, (32)

I
)

so folgt aus (29), dass y () der Mathieu’schen Differentialgleichung
gentgt: _ .
—ep" +{-W —s4+ V({1 +2cosa)}p=0. (33)

Von den Eigenwerten W dieser Gleichung kommen hier nur die-
jenigen in Betracht, deren zugehorige Eigenfunktionen die Eigen-
schaften (81) besitzen!). Dass man auf diese Weise alle Eigenwerte
des Gleichungssystems (29) erhilt, erkennt man am einfachsten
durch den Grenziibergang ¥V - 0. Die Mathieu-Funktionen ()
mit den Eigenschaften (31) gehen ndamlich in diesem Limes in const.
sin(sz) (s=1,2,...) iber; nach (88) wird also

Ihm W= ¢(s? — 1), wo s=1,2,...,

V=0
und dies sind offenbar auch die Eigenwerte des Systems (29) fiir
V=20.

1) In der Bezeichnung von M. J. O. Strurr [ Lamé’sche, Mathieu’sche und
verwandte Funktionen in Physik und Technik, Ergebnisse der Mathematik und
ihrer Grenzgebiete, Bd. I, Julius Springer, Berlin 1932] sind es die Mathieu’schen

Funktionen erster Art S, (m) s Sy (x%z , ... Die Eigenwerte W als Funk-

2
tionen der Parameter ¢ und V kann man durch die Reihenentwicklungen S. 31 bis

37 des Strutt’schen Buches bestimmen, oder aus den Kurven Agqs Agys - -+ der
Figur auf 8. 24 [die gleiche Figur findet man auch in ZS. f. Phys. 69 (1931) S. 606},

dabei ist h2=4 —GI:, Z=4(W8V +1).

15
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Fiir den Fall V' << ¢ liefert die Stérungsmethode in Anwendung
auf (29) eine Entwicklung nach Potenzen von V/e:

2 Ve

W, = e(s? —1)—!—V+482_1 ; + -+ fiirs+1,

- (34)
W, = V-1 4.. (V<Le).

£

Im anderen Grenzfall ¢ €V hat die Mathieu-Gleichung (33)
den Charakter einer Schriodingergleichung, deren Potentialfunktion
2 V cos « ein tiefes Minimum bei & = & hat [im Periodizitdatsbereich
0 =2<2x;V > 0nach (6)]. Man kann daher in nullter Ndherung
cos & durch (— 1+ (z — 7)?2) ersetzen; dadurch wird (38) zur
Schrodingergleichung eines linearen harmonischen Oszillators, mit
den Eigenwerten

W(n): —V—I—\/?V(Qn—f—l)—i—"' ('n ganZ).

Die additive Konstante — ¢ ist in dieser Naherung zu vernach-
lassigen. Die weitere Entwicklung des cos x liefert Anharmonizi-
téten, die in bekannter Weise stérungsmissig zu behandeln sind.
Fir die Eigenwerte erhilt man so eine Entwicklung nach Potenzen
von 4/¢/V :

W(n)=—V—f—\/ﬁ@?’l-}—])w—a(ﬂz@;—_l)_}_%)_{_... (35)

€<V, n-eV<LV).

Nach (81) miissen aber die Eigenfunktionen die Symmetrie-Eigen-

schaft (7w — z) = — p (% + x) besitzen; hierdurch wird die Oszilla-
tionsquantenzahl auf ungerade Werte beschrénkt:
n=28—-1, woe=1,2;-», (36)

Der tiefste Eigenwert ist also

Way= — V4846V —2e+- (< T). (87)

Die zu den tiefsten Eigenwerten gehorigen Eigenfunktionen o (x)
sind nur in der Umgebung von z = @ merklich von null verschie-
den, und zwar in einem Intervall der Gréssenordnung (e/V)"%. Thre
Fourieranalyse geméss (30) liefert daher als hauptséchliche Kompo-
nenten a; solche mit hohen j-Werten. Nach (80) 1st

—fdww— G+ af = G+ 17

i
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in nullter Niherung findet man hierfiir:

G+hi= Y+ <V 69)
Speziell fir n =1 ist

3 L (E Y 1y
af=2n~%(;j/ﬂ¢+%p“ﬁhﬂ i+ b

izzn—%(P)%,(iil)iriﬁn-1g0J8 %)
£ ] 8
m=1, e¢LV).

Im Ubergangsbereich zwischen den beiden Grenzfillen (e ~ V)
konnen keine ,,Uberschneidungen“ der Figenwerte eintreten; da-
durch sind die Eigenwerte mit gleichen s-Werten — (84) einerseits,
(85) mit (36) andererseits — eindeutig einander zugeordnet.

Diese Formeln fiir W sollen jetzt im Rahmen der beiden Néhe-
rungsmethoden (§ 3) verwertet werden.

A. Adiabaten-Ndiherung.

Wenn ¢ <V angenommen wird, kann man einen r-Wert r,
durch die Gleichung

Vir,)=c¢e
definieren, und es wird dann gelten:

Vi <Le fir r>r,
Vir)>e fir r<Lr,.

Man wird also im Aussenbereich (» > r,) die Formel (34), im Innen-
bereich (r < r,) die Oszillatorndherung (35ff.) verwenden kénnen.
Speziell fiir den tiefsten Eigenwert s = 1 gilt nach (34) und (37):

VO3 [VOP et e,

W,(r R
1) — V) +8yeVi)—&e+ - fir rLr,.

(40)

In der Schrodingergleichung (19) ignorieren wir vorerst den
Term B,,,,. Die Funktion W, (r) bestimmt die ,,adiabatische Poten-
tialkurve des betreffenden Deuteronzustandes, Wy (r) (40) speziell
die tiefstliegende Potentialkurve mit J = K = 0. Da die betreffen-
den Schridingerfunktionen f,, (r) nach (18) und (28) ungerade sein
miissen, handelt es sich um P-, F- ... -Potentialkurven. Da aber
das Deuteron in Wirklichkeit keine stabilen P-, F-...-Zustéinde
besitzt, miissen die Konstante & und die Funktion V (r) so gewéahlt
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werden, dass es keine diskreten negativen Energie-Eigenwerte mit
J = K =0 gibt. (Im Teil IT dieser Arbeit wird gezeigt werden,
dass dies mit der Existenz stabiler S-Zustdnde vertradglich ist.)
Die P-Potentiale sind jedoch bekanntlich von Wichtigkeit fiir die
Theorie der Neutron-Proton-Streuung; namentlich bestimmen sie
die Anisotropie der Streuung im Schwerpunktssystem (bei nicht
zu kleinen Energien). Es ist daher von Interesse, die Funktion W, (7)
mit der entsprechenden Potentialfunktion jener alteren Theorie
zu vergleichen, die die Mesontheorie nur in stérungstheoretischer
Naherung verwendet (schwache Kopplung) und die demgeméss die
Existenz von Nukleon-Isobaren ausschliesst. Zu dieser Theorie ge-
langen wir, wie frither (§ 2) bemerkt, durch den Grenziibergang
¢—> oo. Dann wird aber nach (34) W (r) = V (r). Dies entspricht
einer tiberall abstossenden Kraft. Nach (40) dagegen ist die Kraft
in kleinen Abstédnden anziehend: W, (r) & — V (r)!). Auch wenn die
oben gemachte Voraussetzung e V fallen gelassen wird, ist nach
(34), (35) in jedem Falle W, (r) <V (r). Die Existenz der Isobaren
hat also zur Folge, dass die unterste P-Potentialkurve (J = K = 0)
herabgedriickt wird, was sich in der Anisotropie der Neutron-
Proton-Streuung bemerkbar machen muss. Dieser Effekt lasst sich
natiirlich erst berechnen, wenn die anderen massgebenden S- und
P-Potentiale bekannt sind. ‘

In den vorstehenden qualitativen Betrachtungen haben wir
uns nur der grobsten adiabatischen Ndherung bedient, indem wir
die Grossen A,,,(r) und B, (r) in den Gleichungen (16) bis (20)
vernachlédssigt haben. Thre Berechnung tragen wir jetzt nach, zu-
néchst fir den ,,Innenbereich*‘ r << r,. Durch die normierten Eigen-
funktionen v, (x) der Mathieu-Gleichung (33) driicken sie sich fol-
gendermassen aus:

2 F 0y 17 0y
—_ 2 [dzp, ¥ B,,— — fd Wl . 41
Amn M, Uf m oy M, J PR B (41)

man verifiziert dies leicht durch Einsetzen der Fourierentwicklung
(80) und Vergleich mit den Definitionsformeln (15). Fir » << r,,
V(r) > e, sind y,, ¢, Oszillator-Eigenfunktionen; die Indices n,m
identifizieren wir mit den (ungeraden) Oszillator-Quantenzahlen
[vgl. (36): n = 2 s — 1]. Bei Vernachléssigung der Anharmonizitidten
sind die normierten Oszillator-Eigenfunktionen von der Form:

Yo = ( ) )%mal Funktion von (( Vir) )%' f),

€ &

1) W, wird negativ fir V/e > 6 (rund).
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wo & = x — w. Infolgedessen wird

oy, 1 dlogV 0
SEALL. LRV T
ar B dr (+ 505)”’
0%y, 1 d?logV 0
_ -G8V (1108 0y,
0r2 8 dr2 (jL 505)1/)
1 /dlog V2 0 \2
1 1428 —\u,.
+64( & )( T 505)”’

Dabe1i gilt:

0 -
(1426 =2) yu=ynln D pace — YD (172) Yrse.

Hiermit ergibt (41) (fir r < r,):

1 /dlog V\2 | ‘
- = 1
Avn=0, B,, 32Mp( * ) (n2+n+1),
1 dlogV
An, n—2" T An-2, n AM d% ]/n(n = 1,
p
(42)
1 d2loeV —
Bn, n—2 _Bn—-2,n: 8 M d(’:“% 1/” (n - 1);
?
1 /dlog V\2
B Fiom :B - = ot sy e —_— .
n,n—4 n—4,n 64:M1,( d'r ) ]/n(n 1)(n 2) (n 3)51

alle iibrigen Matrixelemente verschwinden. W&hlt man etwa
V(r)= V(0)e*r, so ergibt (42) die Grossenordnung

2

Ay yeo~ o (fir r<r,).  (43)

B, ~B ~
nn n, n+4 M s M
» D

Im Aussenbereich r > r.(V <€ ¢) sind die Matrixelemente, wie man
leicht abschétzt, mindestens um einen Faktor ~ V/e kleiner. Man
kann daher die Formeln (42) fiir kleine »-Werte bis zu 7, hinaus
gelten lassen und 4,,,, B,,, weiter aussen verschwindend klein an-
nehmen.

Das Diagonalelement B,,,, spielt in den Gleichungen (18), (19)
die Rolle eines Zusatzes zum adiabatischen Potential W,, ; so wird

z. B. die tiefste Potentialkurve um B;; gehoben, was bei kleinen
Absténden nach (42)

3 dlog V
32 M, ( dr

2
) ~ einige MeV
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ausmacht. Die anderen 4- und B-Terme in (18) (n + m) beschreiben
Ubergiinge von einer Potentialkurve zur anderen. So ist z. B. ein
Ubergang n=1-3 (s=1-2) moglich, was einem unelastischen Streu-
prozess entspricht, bel dem beide Nukleonen in den isobaren Zustand
9 = 3/2 befordert werden. Die Realisierung dieses Prozesses wiirde
natiirlich die Energie 3 ¢, d. h. die doppelte Anregungsenergie eines
Nukleons erfordern (im Schwerpunktssystem). Aber auch beil klei-
neren Energien kénnen die angeregten Zusténde als ,,virtuelle Zwi-
schenzustinde'* den Streuvorgang beeinflussen. Dieser Effekt lasst
sich am einfachsten abschéitzen, wenn man die r-Funktionen in (18)
(W, 4 und B) durch geeignete Treppenfunktionen approximiert.
Er erweist sich als belanglos, wenn die Abstinde der Potential-
kurven W, im Innenbereich gross gegen u?M, sind (vgl. (43)),
und dies heisst nach (35):

MZ
VeV (0) > M (44)

Identifiziert man x mit der Masse der Hohenstrahlungsmesonen
so wird u?/M, ~ 10 MeV. Aber selbst wenn man statt dessen den
grossen Wert von rund 50 MeV fiir u?/M, einsetzt, der aus den
Proton-Proton-Streuversuchen abgeleitet wurde?), und fiir ¥ (0) den
entsprechenden Wert von etwa 100 MeV, erweist sich die adiaba-
tische Naherung noch bis zu e-Werten von etwa 20 MeV hinunter
als brauchbar?). Dieser e-Wert entspricht einer Nukleon-Anregungs-
energie von 3 ¢/2 = 80 MeV; es ist dies der Wert, auf den CorsTER
(1. ¢.) durch die Diskussion der schweren Kerne gefithrt wurde?®).
Ein hoherer e-Wert wiire fiir die Adiabaten-Niaherung giinstiger;
doch ware dann die Annahme ¢ <€ V7 nicht mehr zutreffend, so dass
der Verlauf der W-Kurven fiir mittlere Werte von V (r)/e mass-
gebend wiirde. Jedenfalls wird man quantitative Auskiinfte von der

1) Vgl. L. E. HoistnaToxN, S. S. SHARE und G. BrREIT, Phys. Rev. 56 (1939),
S. 884. Die im Text angegebenen Daten beziehen sich auf das Exponentialpoten-
tial (const. e~#r) dieser Autoren; nach der hier diskutierten Theorie ware fiir das
1S-Potential streng genommen anzusetzen (vgl. Teil 11 dieser Arbeit):

W) = —V(+A/eV () ~pet... (r<Lrp).

%) Durch die Beriicksichtigung der Zahlfaktoren in (42) und (35) wird ndm-
lich die Bedingung (44) betriichtlich abgeschwiicht. Selbst fiir VeV (0) ~ u?/ M,
werden die Eigenwerte E durch die Kopplung der W ,-Kurven sicher nicht stirker
gestort als durch eine Verschiebung dieser Kurven um einige MeV im Innenbereich.

3) CoesTER beriicksichtigte dabei auch die Bedingungen, die der Meson-
theorie durch die Annahme starker Kopplung auferlegt sind. — Man beachte,
dass COESTER’s ,,&** gleich unserem &/2 ist.
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Adiabaten-Néherung nur bei nicht zu kleinen e-Werten verlangen
konnen. Trotzdem diirften die qualitativen Aussagen tiber den
Verlauf der Potentialkurven auch bei kleineren e-Werten wenig-
stens einen heuristischen Wert haben.

B. Variationsmethode.

Da die HarTrREE-Naherung eher diskrete Energie-Eigenwerte
als Eigenfunktionen zu bestimmen gestattet, wird uns das Varia-
tionsverfahren hinsichtlich der wirklichen Deuteronzustinde mit
J = K = 0 wenig dienlich sein kénnen. Um das Verfahren trotzdem
an diesem einfachsten Fall zu erproben, wollen wir fiir den Moment
— entgegen der Wirklichkeit — & und V (r) so gew#hlt denken, dass
stabile Zustdnde mit J = K = 0 zustandekommen.

Wird der durch (26) definierte Mittelwert 7 als gross gegen ¢
vorausgesetzt, so sind die Eigenwerte W des Gleichungssystems
(25) aus (35) zu entnehmen: :
n(n+1) 17
— )+ 45

5 1) 49)
Setzt man dies in (27) ein, so fiihrt das Extremalproblem fiir H
auf folgende Gleichung fiir die Funktion f(r):

W(n):mv'{‘]/ﬁ(2’n+1)w6(

{—E’n+—;4—jl~_V(7’) [1-]/W("’H‘%)+'“]}fz0’ (46)

und der zugehérige Extremalwert von H wird

n(n+1) 17)+ (47

— 1 -
E—En+]/8V(n+2)~s( 3 +16
(46) ist, streng genommen, keine lineare Gleichung fiir f, da V
geméss (26) von f abhéngt; da aber der Term ~ 1/¢/V in (46) (fiir
n ~ 1) nur eine kleine Korrektur darstellt, kann man in thm f durch
einen Naherungswert ersetzen; dann ist (46) eine Schrodingerglei-
chung mit der Potentialfunktion

— V@[ —YeTn+3) +---]. (48)

Dies entspricht wieder anziehenden Kréften. Um abzuschétzen, wie
die Energien E von den Oszillationsquantenzahlen n abhédngen, er-
setzen wir das Potential (48) in noch etwas vergroberter Ndherung

durch .
— V) + YT B+ (49)
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Dann wird nach (47)
EQC+yeV@n+1) 4, (50)

wo C ein dem Potential — V (r) entsprechender Energie-Eigenwert
15t
— A

|~ M'

vinli=o. (51)

Dieses Ergebnis stimmt im wesentlichen tiberein mit demjenigen,
das man aus der adiabatischen Néherung durch Extrapolation auf
kleine e-Werte erhélt?). - | |

Die Gleichung (88), in der V" jetzt die Bedeutung 7" hat, besagt:
j2~7V/e ¢ > 1, d.h. die wesentlichen Komponenten a; gehoren
zu hohen y -Werten. Wenn tberdies der Schwankungsberemh der
Variablen § relativ. Klein 1st, wie es nach (39) fiir den tiefsten Term
n= 1 der Fall ist, so ist anzunehmen, dass der dem Variations-
verfahren zugrundeliegende Ansatz (23) eine brauchbare Néherung
ergibt. Denkt man sich nédmlich die exakte Losung in der Form
Iy, )= a;f(y, ) geschrieben, so wird man, falls @; nur in einem
kleinen j-Intervall merklich von 0 verschieden ist, I7 (7, r) ndherungs-
weise durch a,;f(7, t) ersetzen konnen, was eben (28) entsprlcht
Wenigstens fiir die Berechnung von Erwartungswerten wie H diirfte
dies keinen grossen Fehler mit sich bringen. Freilich tendiert das
relative Schwankungsquadrat von § nach (39) auch im Limes
V' /e > oo nicht gegen Null. Eine Verbesserung des HarRTREE-FoCK-
Ansatzes (23) im Sinne einer Zuziehung allgemeinerer Funktionen-
typen F (4, t) soll hier nicht versucht werden.

kokok

"In der Fortsetzung dieser Arbeit sollen die Zustéinde mit
J + K + 0 mit denselben beiden N&herungsmethoden diskutiert
werden. Es wird sich zeigen, dass die zu verschiedenen J- und
K-Werten gehorigen tiefsten Eigenwerte bzw. Potentialkurven in
ithrer relativen Lage recht genau bestimmt werden koénnen.

Basel, Physikal. Anstalt der Universitét.
Ziirich, Physikal. Institut der Universitit.

1) In der GL (19) (mit B,,,, — 0) kann dann namlich im massgebenden
r-Bereich W, gemiss (35) ausgedriickt werden; betrachtet man nun den Term
'\/ eV(r)(2 n+1) als eine kleine Storung — wie es dem Ubergang von (48) zu (49)
entspricht —, so folgt fiir die Eigenwerte wieder die Formel (50), mit dem ein-

zigen Unterschied, dass \/ F durch ,\/ V ersetzt ist.
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