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Zum Deuteronproblem. I
von M. Fierz und G. Wentzel.

(8. IV. 1944.)

Das Ziel dieser Arbeit ist die Untersuchung der Zwei-Nukleon-Probleme auf
Grund einer Theorie, die dem Nukleon eine Spinträgheit zuschreibt, so dass es

angeregte Zustände (Isobaren) besitzt. Das Modell des Nukleons (Isobaren-Energie
und Kräfte) wird im wesentlichen der symmetrischen Mesontheorie entnommen
(§ 2)1). Wenn die Isobaren-Anregungsenergie nicht sehr gross ist im Vergleich zur
mittleren Wechselwirkungsenergie, so ergeben sich beträchtliche Abweichungen von
den früheren Deuteron-Theorien. Zur Lösung des wellenmechanischen Problems
in diesem Falle werden zwei Näherungsverfahren vorgeschlagen: Adiabaten-
Methode und Variationsverfahren (§ 3). Die Anwendung beschränkt sich (in diesem
Teil I) auf Deuteronzustände mit verschwindendem Spin und mit verschwindendem

isotopen Spin (§4).

§ 1. Einleitung.

In der Feldtheorie der Kernkräfte (Mesontheorie) haben sich
zwei verschiedene Betrachtungsweisen herausgebildet. Für die
erste, dem Vorbild der elektromagnetischen Strahlungstheorie
folgende Betrachtungsweise ist charakteristisch die Entwicklung nach
steigenden Potenzen der Kopplungsparameter (Störungsmethode).
Wegen der durch die experimentellen Daten geforderten numerischen

Grösse dieser Parameter konvergieren diese Entwicklungen
sehr schlecht. Der Vorzug dieser Behandlungsweise besteht darin,
dass die in der Theorie auftretenden Divergenzen in lorentzinvarianter

Art subtrahiert werden können2). Allerdings kann man bei

b Nach Abschluss dieser Arbeit erhielten wir Kenntnis von einer Arbeit
von W. Pauli u. S. Kusaka (Phys. Rev. 63 (1943), S. 400), in der auf Grund
der gleichen Mesontheorie ebenfalls das Deuteronproblem behandelt wird, jedoch
unter Beschränkung auf den Deuteron-Grundzustand (3iS) und auf den Grenzfall

hoher Isobaren-Energie, wo die Abweichungen von der früheren Theorie geringfügig

sind. Da wir hier das Hauptgewicht auf den entgegengesetzten Grenzfall
legen und deswegen auch methodisch ganz anders vorgehen, dürfte die Veröffentlichung

dieser Arbeit nicht überflüssig sein.
2) G. Wentzel, ZS. f. Phys. 86 (1933), S. 479 u. 635. P. A. M. Dirac,

Annales de l'Institut H. Poincaré 9 (1939), S. 13; Proc. Roy. Soc. 180 (1942),
S. 1. E. Gòra, Acta Phys. Polon. 7 (1938), S. 159 u. 374; ZS. f. Phys. 120 (1943),
S. 121. W. Heitler, Proc. Cambr. Phil. Soc. 37 (1941), S. 291 und 38 (1942),
S. 296. A. H. Wilson, ebenda 37 (1941), S. 301. E. C. G. Stueckelberg, Nature
153 (1944), S. 143; Helv. Phys. Acta 17 (1944), S. 3. W. Pauli, Rev. of Mod.
Phys. 15 (1943), S. 175.
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jedem Schritt der Entwicklung endliche invariante Zusatzterme in
willkürlicher Weise addieren, und es lässt sich bis jetzt keine
physikalisch befriedigende Vorschrift über die Art der Subtraktion
aufstellen. Dies bedeutet, dass durch die Angabe einer Lagrange-
Funktion die höheren Näherungen einer solchen Theorie keineswegs

definiert sind.
Bei der zweiten Betrachtungsweise entwickelt man nach fallenden

Potenzen der Kopplungsparameter1), und diese Entwicklung
konvergiert, wegen der starken Kopplung des Feldes mit den
Nukleonen, bedeutend besser. Hier besteht jedoch vorerst keine
Möglichkeit, die Divergenzen in invarianter Weise zu eliminieren,
und man ist gezwungen, den Nukleonen einen endlichen Radius
zuzuschreiben. Wenn aber die Lagrange-Funktion (einschliesslich
der Formfunktion der Teilchen) gegeben ist, so ist das betrachtete
„Modell" vollständig definiert. Insbesondere sind die
Trägheitseigenschaften der Nukleonen, ähnlich wie die elektromagnetische
Masse des Lorentz'schen Elektrons, aus der Theorie berechenbar.
Da die Kernkräfte spin- und ladungsabhängig sind, treten hier
neben der trägen Masse noch Trägheitsmomente auf, die dem Spin
und dem „isotopie spin" (der Ladung) zugeordnet sind, und
entsprechende Rotationsenergien; dies hat zur Folge, dass die Nukleonen

angeregte Zustände (Isobaren) mit höheren Werten von Spin
und Ladung besitzen. Die Theorie liefert bestimmte Aussagen über
die Anregungsenergien der verschiedenen Spin- und Ladungszustände

der Teilchen, sowie über ihre Wechselwirkungen in diesen
Zuständen. Bei diesen Aussagen geht nun allerdings der Nukleonen-
radius wesentlich ein. Es zeigt sich aber, dass man auch hier, um
mit den Experimenten im Einklang zu bleiben, für den Radius
die Grössenordnung des klassischen Elektronenradius oder der
Comptonwellenlänge des Protons annehmen muss. Dies ist die
Grössenordnung der von Heisenberg2) postulierten „universellen
Länge", welche die Massen der „Elementarteilchen" bestimmen soll.

Es scheint uns daher gerechtfertigt, auch jene Folgerungen
der Feldtheorie, welche vom Radius der Nukleonen abhängen, in
einer unrelativistischen Näherung ernst zu nehmen, obwohl bis
jetzt unklar ist, welche Rolle dieser Radius in einer lorentzinvari-
anten Theorie spielen wird. Die ersterwähnten Theorien, bei welchen

b G. Wentzel, Helv. Phys. Acta 13 (1940), S. 269; 14 (1941), S. 633; 16

(1943), S. 222 u. 551. J. R. Oppenheimer und J. Schwinger, Phys. Rev. 60

(1941), S. 150. W. Pauli und S. M. Dancoff, Phys. Rev. 62 (1942), S. 85.
R. Seebee und S. M. Dancoff, Phys. Rev. 63 (1943), S. 143. W. Pauli und
S. Kusaka, Phys. Rev. 63 (1943), S. 400. •

2) W. Heisenbeeg, Ann. d. Phys. 32 (1938), S. 20.
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die Divergenzen in invarianter Weise subtrahiert werden können,
zeigen ja durch die Unbestimmtheit ihrer höheren Näherungen,
dass noch wesentliche Gesichtspunkte zur Einschränkung der
mannigfaltigen Möglichkeiten fehlen; solche Gesichtspunkte könnten
sich aber gerade durch das Studium der Theorie bei starker Kopplung

ergeben. Überdies verdienen die aus dieser Theorie folgenden
Kernkräfte, für deren Eigenschaften die Existenz der isobaren
Zustände bestimmend ist, auch unabhängig von ihrer speziellen
Ableitung ein gewisses Interesse, da hierdurch der Kreis der
Gesichtspunkte, nach denen die experimentellen Erscheinungen
diskutiert werden können, erweitert wird.

Für die Theorie der zusammengesetzten Kerne bedeutet die
Annahme von angeregten Nukleon-Zuständen eine erhebliche
Komplikation. Nur die einfachsten Probleme kommen daher zunächst
in Betracht. Es sind dies einerseits die Viel-Körper-Probleme, d. h.
die schweren Kerne; diese sind bereits von Coester1) mittels
statistischer Näherungsmethoden untersucht worden. Andererseits
bietet sich als nächstliegendes Problem das Zwei-Körper-Problem
des Deuterons und seiner Isobaren, das den Gegenstand der
vorliegenden Arbeit bilden soll.

§ 2. Das Nukleon-Modell.

Die verschiedenen Varianten der Mesontheorie liefern bekanntlich

verschiedene Modelle des Nukleons. Die Skalartheorie kann
ausgeschieden werden, da sie den Erfahrungstatsachen sicher nicht
gerecht wird. Von den anderen Varianten sind bisher nur die Pseu-
doskalar- und die Vektorthsorie, sowie die Theorie, die mit einer
Mischung dieser beiden Felder rechnet, unter der Annahme starker
Kopplung durchgeführt worden2); auf diese Theorien sind wir also
angewiesen. Weiter unterscheidet man „neutral", „charged" und
„symmetrical theories". Die symmetrische Theorie (im Sinne von

b F. Coestee, Helv. Phys. Acta 17 (1944), S. 35. Nach dieser Arbeit können
die schweren Kerne in Übereinstimmung mit der Erfahrung beschrieben werden.
Pauli und Kusaka äussern sich hierüber nur kurz (1. <?., S. 415). Während ihre
Angaben über die Stabilität der schweren Kerne in der symmetrischen Mischungstheorie

(s. u.) mit Coesters Ergebnissen übereinstimmen, befürchten sie, dass
die Berücksichtigung der Coulombenergie zu kleine Gleichgewichtsladungen
ergibt. Die ausführlichen Rechnungen von Coester (I.e., § 6) zeigen jedoch, dass
die Gleichgewichtsladung in ziemlich empfindlicher Weise von den Parametern
der Theorie abhängt und daher sehr wohl mit dem Erfahrungswert in Einklang
gebracht werden kann. — Auch in anderer Hinsicht (magnetische Momente von
Proton, Neutron und Deuteron) scheint uns Paulis und Kusakas Beurteilung
der Theorie zu pessimistisch; doch kann darauf hier nicht eingegangen werden.

2) Zitate in Fussnote 1, S. 216.
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Kemmer1)) empfiehlt sich dadurch, dass sie „ladungsunabhängige"
Kräfte liefert, ohne — wie die „neutral theory" — auf die Mesontheorie

des /5-Zerfalls verzichten zu müssen.

Während die Lagrangefunktion der Pseudoskalartheorie bei
unrelativistischer Näherung (ruhende Nukleonen) nur einen
einzigen Kopplungsparameter aufweist, treten in der Vektortheorie
bekanntlich deren zwei auf, die den Wechselwirkungen der
longitudinalen bzw. transversalen Mesonen mit den Proton-Neutronen
zugeordnet sind : glong und </transv Ist grlong 0, oder bleibt der
Quotient giong/fiftransv dem Betrage nach unter einer gewissen
Grenze2), so ergibt die Vektortheorie denselben Ausdruck für die
Isobaren-Energie wie die Pseudoskalartheorie. Man kann dann
auch beide Felder gemeinsam annehmen (Mischungstheorie), wobei
die Möglichkeit besteht, gewisse unerwünschte Terme im
Wechselwirkungspotential durch Wahl der Parameter zu eliminieren3).

Wenn man diese — freilich schon sehr ins Detail gehenden —
Konsequenzen der Mesontheorie wörtlich nehmen will, so wird man
der Pseudoskalar-, Vektor- oder Mischungstheorie, und zwar der
symmetrischen Variante, einstweilen eine Vorrangstellung einräumen

müssen. Zu ihren Gunsten spricht aber auch die hohe
Symmetrie, mit der das Modell des Nukleons in dieser Theorie
ausgestattet wird. Wir wollen daher dieses Modell unserer Betrachtung
der Zweikörperprobleme zugrundelegen.

Der Ansatz für die Isobaren-Energie laute demnach:

£F= —| P\2 7 const. (1)

Hier bedeutet P einen Kreiseldrehimpuls mit den Eigenwerten

P\*=j(j + 1), wo j — IIA2 ' 2 ' 2 '

Seine Projektionen auf eine raumfeste und eine „körperfeste"
Achse können diagonal gemacht werden; sie haben halbganze
Eigenwerte m, n, wobei \m\ ^ j ,\ n\s~ j ; j und m sind die
Spinquantenzahlen, n 7 | die Ladungszahl des Nukleonzustandes. Für
das Folgende ist es bequem, die Konstante in (1) so zu wählen,

b N. Kemmeb, Proc. Cambr. Phil. Soc. 34 (1938), S. 354.
2) Vgl. G. Wentzel, Helv. Phys. Acta 16 (1943) ,S. 551, insbesondere S. 579.

Andernfalls setzt sich die Isobaren-Energie aus zwei Rotator-Energien zusammen,
die dem Spin und dem isotopen Spin getrennt entsprechen.

3) C. Molleb und L. Rosenfeld, Kgl. Danske Vidensk. S. XVII, 8 (1940).
J. Schwingee, Phys. Rev. 61 (1942), S. 387.
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dass der tiefste Eigenwert von Hl null wird; dann haben wir die
Eigenwerte :

fîI=y[(/ + «2-l]- (2)

Zum Modell gehören ferner die Kernkräfte. Hier interessieren
nur die Zweikörperkräfte. Neben einer Zentralkraft liefern die
genannten Mesontheorien im allgemeinen noch eine „Tensorkraft"
(Spin-Bahn-Kopplung), die bekanntlich zur Erklärung des elektrischen

Quadrupolmoments des Deuterons herangezogen wird. Wir
wollen aber die mathematische Aufgabe vereinfachen, indem wir
die Tensorkraft zunächst fortlassen; man wird sie nachträglich
als Störung berücksichtigen können. Dann ist die statische
Wechselwirkungsenergie von der Form

V(r)-Ü, (3)

wo r den Abstand der beiden Nukleonen bedeutet und wo Q eine
bestimmte Funktion der Euler'schen Winkel der beiden Nukleon-
Kreisel ist1). In einer vorangegangenen Arbeit des einen von uns2)
wurde die zugehörige ß-Matrix berechnet, zunächst im Schema
der Spin- und Ladungsquantenzahlen der beiden einzelnen
Nukleonen (jtn1m1j2n2m2), dann durch eine unitäre Transformation

als Matrix bezüglich der Quantenzahlen

J,M,K,N,j,,j2,; (4)

hier bedeuten J und M m1 + m2 Betrag und Komponente des

Deuteron-Spins, und K und N nx + n2 sind die entsprechenden
Quantenzahlen des isotopen Spins, d.h. N+1 ist die Gesamtladung

des Zwei-Nukleon-Systems; J, M, K, N sind ganzzahlig,
und es gilt \M\ <L J ,\N \ ^ K. Die Matrix ü ist aus Symmetriegründen

diagonal bezüglich der Quantenzahlen J,M,K,N; sie

zerfällt demnach in Teilmatrizen bezüglich jx, j2, die noch von
J und K abhängen; dabei kommen in jeder Teilmatrix nur solche
h>?VWerte vor, für die gemäss dem „Vektormodell" die
Ungleichungen gelten:

\h-Jt-\ ^J^ ji + j2, | h ~j2\ ^K ^jt + J2 ¦ (5)

Was andererseits die Potentialfunktion V in (3) anbelangt, so ist —

Q 27SVf' /SrJ in der Bezeichnung der in Fussnote 2, S. 218 zitierten
Arbeit; vgl. GM15.8), S. 592.

2) M. Fieez, Helv. Phys. Acta 17 (1944), S. 27. In dieser Arbeit sind die
Grössen S$e (s. die vorangehende Fussnote) mit xik bezeichnet (bis auf gewisse
Vorzeichen).
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nach den genannten Mesontheorien — ihre r-Abhängigkeit in
grossen Abständen (r^> Radius des Nukleons) diejenige des
Yukawa-Potentials (const, e-v/r) oder zweier superponierter Yukawa -

Potentiale (mit uvYuPS: Mischungstheorie). Wir brauchen
indessen über die r-Abhängigkeit noch nicht zu verfügen. Dagegen
ist wichtig, dass — im Einklang mit den Mesontheorien —

V(r) > 0 (6)

angenommen wird; denn nach Coester (I.e.) ist es dieses
Vorzeichen, das die Stabilität der schweren Kerne garantiert.

Die Hamiltonfunktion H des Zweikörperproblems setzt sich
danach aus folgenden Bestandteilen zusammen : kinetische Energie
der Relativbewegung (Operator — A/Mv, wo MJ)= Protonmasse;
h 1), Isobaren-Energien (2) der beiden Nukleonen1), und Wechselwirkung

(3). Wir denken uns H, gesondert für jedes Wertesystem
der Quantenzahlen J, M, K, N, als Matrix bezüglich jx und j2
geschrieben :

(ixh \H\Jt'j,') j^- +Y [(?i+l)2+(?2+i)2-2]}- (jthlllh'h')
+ V(r)-(j1j2\Q\j1'j2'). (7)

Die Schrödingergleichung lautet dann

S (À h\H\ j' /,') FÖVj2', t) E-F(j, j2, x) (8)
i? h'

(x Vektor der Relativkoordinaten, | r | r).

Das PAULi'sche Ausschlussprinzip verlangt, dass die Schrö-
dingerfunktion, wenn sie als Funktion der ursprünglichen Variablen
j1m1n1j2m2n2 und r= tx — r2 dargestellt wird, bei Vertauschung
der Koordinaten beider Teilchen das Vorzeichen wechselt. Für die
reduzierte Schrödingerfunktion in (8) bedeutet dies:

F(ÌxÌ2, r) - F{j»h, - t), wenn J + K gerade; Ì

F (ilia) r) Y-F(j2jx> - r)> wenn J + K ungerade, j

Ein wesentlicher Parameter der Hamiltonfunktion (7) ist das

Verhältnis e/V [V Mittelwert von V; vgl. etwa (26)]. Ist £> 7,
so kann man näherungsweise e oo setzen, d.h. den Einfluss der
angeregten Nukleonzustände auf die energetisch tiefliegenden Deu-

7 Wir betrachten die Isobaren-Energien als additiv. Die nach der
Mesontheorie zu erwartenden Abweichungen von der Additivität sind in der Tat belanglos;

vgl. Pauli und Kusaka, 1. c, Fussnote 7 auf S. 404.
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er für jx j2 \.

1, (10)

In dieser Grenze besteht kein Unterschied zwischen
Mesontheorien mit starker oder schwacher Kopplung, und man kommt
zu einer wohlbekannten älteren Deuteron théorie zurück1). Es ist
nun die Frage, wie die Eigenwerte und Eigenfunktionen der
Hamiltonfunktion (7) sich ändern, wenn die Isobarenenergie e abnimmt
und schliesslich klein gegen V wird. Namentlich im letzteren Grenzfall

müssen sich ganz neue Verhältnisse ergeben, und es wird zu
zu untersuchen sein, für welche Parameterwerte die Übereinstimmung

mit der Erfahrung hergestellt werden kann. Wenn auch
vermutlich ein mittlerer Wert von s/V (> b/5) am ehesten das Richtige

treffen wird, legen wir doch besonderes Gewicht auf den Grenzfall

e <§; V, weil hier die Wirkungen der Spin-Trägheit am
ausgeprägtesten sind.

§ 3. Näherungsmethoden.

Wir haben zuerst versucht, für den Fall des Treppenpotentials
\V(r) V0 für r < r0, =0 für r > r0] exakte Lösungen
aufzustellen und auszuwerten; doch führen die Stetigkeitsbedingungen
für r r0 auf eine wenig übersichtliche Gleichung. Man wird daher
mit Näherungsmethoden eher zum Ziel kommen. Wir besprechen
hier zwei naheliegende Methoden. -

A. Adiabaten-Methode.

Wie in der Theorie zweiatomiger Moleküle2) betrachten wir
den Kernabstand r zunächst als einen Parameter. Bei festgehaltenem

r haben wir statt (7), (8) die Schrödingergleichung

\ [(h+l)2+Ö2+i)2-2] a(JA2) + V 2 Üxi.l ß Ih'/.') «(h'?V)
H'U'

=W-a(j1j2); (11)

7 (10) entspricht — abgesehen von einem Faktor 1/9 — dem bekannten
Austauschoperator ('o'1 .ff2)Ctj Yr2). Die betreffende Deuterontheorie ist die von
Rabita und Schwingee (Phys. Rev. 59 (1941), S. 436 u. 556) als „symmetrical"
bezeichnete Theorie; diese Autoren untersuchen aber speziell die Wirkung der
Tensorkraft. Von dieser Theorie ausgehend, kann man im Falle y <A s die
Ausserdiagonalelemente der Wechselwirku'ngsmatrix V û als kleine Störungen
berücksichtigen. So gehen Pauli und Kusaka in ihrer oben zitierten Arbeit vor, und
zwar rechnen sie in der Näherung, däss nur die ^-Komponenten mit jt, j2 :SL 3/2
als von null verschieden betrachtet werden.

2) Mi Böen und R. Oppenheimeb, Ann. d. Phys. 84 (1927), S. 457. R. de
L. Keonig, ZS. f. Phys. 50 (1928), S. 347.
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ihre Eigenwerte seien Wn, ihre Eigenvektoren an(j,j2). Wir können
die Eigenvektoren reell wählen, weil die ß-Matrix reell ist. Da V
von r abhängt — die Art der Abhängigkeit bleibe noch offen —,
sind Wn und an Funktionen des Parameters r. Für jeden Wert von
r seien die Eigenvektoren auf 1 normiert, so dass

2 an' (JX ii > A an (ix Ì2 > A ànn> ¦ (12)
hh

Die Lösungen der Schrödingergleichung (8) entwickeln wir
nach diesen Eigenvektoren:

F(ixh^) ^ian(ixH,r)U(t). (13)
n

Aus (7) und (8) folgt dann:

2J-E +^f +Wn(r)\an(Jxh,r)fr>(t)=0- (14)

Es sei

a _
^ x1 f • \ dan(jtj2,r)

A-n'n - rr- 2j a"' (h ?2 > r) T~ »

r _
1 v /" " \ d2an (JxJz>r)

t>n'n — ¦ 2j °«' (h ?2 rJ
M,jft U1"' ' dr2

(15)

Beachtet man, dass

„ n da /1 à \ d2a
A(af)= a-Af + 2—- _+/+•/,or \ r dr Ì dr2

so ergibt (14), mit (12) und (15):

E+Y + M/mW +2Jß"»+i-(7 +l)j/"(t)=0' (16)

Für die Diagonalelemente der Matrizen (15) gilt nach (12):

^..W-B, s.. + ^S(^|^)!. 0.7)

An Stelle von (16) kann man daher auch schreiben:

I" E+ TT + Wm{r) + B««wk-W

Y-^'ÌBmnY-Amn(^- + ^\fn(t)=0, (18)

wo der Strich am Summenzeichen die Auslassung des Terms n m
verlangt.
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Man wird nun etwa — nach dem Vorbild der Molekültheorie
— auf die Gleichung (18) das Störungsverfahren anwenden können.
Als nullte Näherung bietet sich das Eigenwertproblem:

{" Èm + TT + Wm {r) + Bmm (f)l f°m (c) °' (19)

dessen Eigenwerte Ema und dessen normierte Eigenfunktionen
fma(x) seien. Für jeden Wert der Quantenzahl m liefern die
Funktionen fma («= 1, 2,.. ein vollständiges Orthogonalsystem, nach
dem die betreffende Funktion fm in (18) entwickelt werden kann:

/m V-) 2^ P'nlulmr, Al •

a

(18) ist dann äquivalent dem Eigenwertproblem der Matrix <&ma nß:

y ma, m ß -^ma ' °a ß

0ma, nf >r-/ma(r) l5„(r)74„W(|7^)J^W (20)

(m oSt n).

Die Eigenwerte E dieser Matrix wären dann nach dem üblichen
Störungsverfahren zu bestimmen.

B. Variationsverfahren.

Zur Schrödingergleichung (8) gehört das folgende Variationsproblem:

Es soll

H= [d*v 2 F*ViÛ,*)(iii-\H\JiH')F(3ii*,*) (21)
J h h W it

durch Variation der Funktionen F und F* zum Extremum gemacht
werden, mit der Nebenbedingung

fdH-^iF*(j1j2,x)F(j1j2,x)=l. (22)

Die Extremalwerte von H sind die Eigenwerte E der Gleichung (8).
Wir gehen nun ähnlich vor wie Fock1) in seiner Begründung

der HARTREE-Näherung der Atomtheorie : Wir beschränken uns auf
Funktionen vom Typus

F(ixJ2, r) a(jxj2) ¦ f(x), F*(j,j2, x) a(jxj2) ¦ f*(x), (23)

b V. Fock, ZS. f. Phys. 61 (1930), S. 126.
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wo a a*) von r unabhängig und / von jx, j2 unabhängig ist ;

dabei sei

2a2(h?2)=l, />f/*(r)/(r)=l. (24)
Ii ii J

Mit dieser beschränkten Auswahl von Funktionen F, F* soll jetzt
H extremal gemacht werden. Wenn wir zunächst / und /*
festhalten, also nur die a(jxj2) variieren, so ergeben sich für diese die
Gleichungen

^[(Jx + i)2 + (h + i)2-2]a(jxj2)

V^(jth\ß\ith') a(jth') W ¦ a(jxj2), (25)
wo i, n

V= fdsx-f*(x)V(r)f(t). (26)

Von der Gleichung (11) unterscheidet sich (25) dadurch, dass V (r)
durch den Mittelwert V ersetzt ist, sodass der Eigenwert W von
r unabhängig wird. Setzt man (25) in (7), (8) ein, so wird

H= JdH-f*(x)-^-f(x)+W. (27)

Dieser Ausdruck ist jetzt noch durch Wahl von /, /* extremal zu
machen, wobei der Term W durch (25), (26) in seiner Abhängigkeit
von /, /* bestimmt zu denken ist. Die Euler'sehe Gleichung dieser
Variationsaufgabe ist einer Schrödingergleichung ähnlich (s. § 4).

§ 4. Deuteronzustände mit J 0, K 0

Die vorstehenden Überlegungen sollen jetzt für den einfachsten

Fall J K 0 ausgeführt werden. Es handelt sich also um
Deuteronzustände, die sowohl Spin-Singletts als Ladungs-Singletts
sind. (K= 0, N 0 heisst: Ladung 7 1). Nach dem „Vektormodell"

(vgl. (5)) gibt es dann nur .F-Komponenten mit jx= j2.
Das Ausschlussprinzip besagt nach (9) :

F(jj,x)= -F(jj,-x), (28)

d. h. es verbietet S-, D- -Terme.
Die ß-Matrix hat im Falle J K 0 folgende nicht-ver-

schwindenden Elemente1):

<ii\o\jj)-i ]•>,
(jj\Q\j+l,j+l) (j+l,j+l\Q\jj)=l\J ~2'

b M. Fiebz, 1. c, Gl. IV.
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Mit der Abkürzung a(jj) a,- lautet also die Gleichung (11):

{_ W 7 e [(j 7 \)2 - 1] 7 V] a, 7 V(aj_1 + aj+1) 0 (29)

Dieses Gleichungssystem ist aus der Theorie der Mathieu'sehen
Funktionen wohlbekannt. Wir definieren eine Funktion f(x) durch
die Fourierreihe

V>(sH2> ^ » (30)
i > i Vn:

sie ist periodisch mit der Periode 2 n und ungerade :

%p(x 7 k • 2n) ip(x), y> - x) — f (x). (31)

Beachtet man, dass

2 cos x • f(x) — y^ a,- — .--{sin (?7f x7sin (j --|) a;}

so folgt aus (29), dass y>(x) der Mathieu'sehen Differentialgleichung
genügt :

- ey>"+{-W - s+V(l + 2cosx)}y>= 0. (33)

Von den Eigenwerten W dieser Gleichung kommen hier nur
diejenigen in Betracht, deren zugehörige Eigenfunktionen die
Eigenschaften (31) besitzen1). Dass man auf diese Weise alle Eigenwerte
des Gleichungssystems (29) erhält, erkennt man am einfachsten
durch den Grenzübergang F->0. Die Mathieu-Funktionen fs(x)
mit den Eigenschaften (31) gehen nämlich in diesem Limes in const,
sin (s*) (s= 1,2,...) über; nach (33) wird also

lim Ws e (s2 - 1), wo s 1,2,...,
7=0

und dies sind offenbar auch die Eigenwerte des Systems (29) für
F=0.

b In der Bezeichnung von M. J. O. Strutt [Lamé'sche, Mathieu'sche und
verwandte Funktionen in Physik und Technik, Ergebnisse der Mathematik und
ihrer Grenzgebiete, Bd. I, Julius Springer, Berlin 1932] sind es die Mathieu'schen

(çt\
JT\ tAT JZ\

—s— > Si[ —s— > • • • Die Eigenwerte W als

Funktionen der Parameter e und V kann man durch die Reihenentwicklungen S. 31 bis
37 des Strutt'sehen Buches bestimmen, oder aus den Kurven kSi, XSi, der
Figur auf S. 24 [die gleiche Figur findet man auch in ZS. f. Phys. 69 (1931), S. 606] ;

y /W-Vdabei ist h2= 4 —-, X 4 '\^AA
15



226 M. Fierz und G. Wentzel.

Für den Fall V <^ e liefert die Störungsmethode in Anwendung
auf (29) eine Entwicklung nach Potenzen von V/e:

Ws=e(s2-1) + V+
2

- — +••• für s 71,
4 s2 - 1 e

Wx= V-i— +•••• (V<e).
e

(34)

Im anderen Grenzfall e <^ V hat die Mathieu-Gleichung (33)
den Charakter einer Schrödingergleichung, deren Potentialfunktion
2 V cos x ein tiefes Minimum bei x n hat [im Periodizitätsbereich
0^x<2tï;F>0 nach (6)]. Man kann daher in nullter Näherung
cos x durch — 1 7 (x — n) 2/2) ersetzen ; dadurch wird (33) zur
Schrödingergleichung eines linearen harmonischen Oszillators, mit
den Eigenwerten

W{n)= - V + s/AV(2 n + 1) + ¦ ¦ ¦ (nganz).

Die additive Konstante — e ist in dieser Näherung zu vernachlässigen.

Die weitere Entwicklung des cos x liefert Anharmonizitäten,

die in bekannter Weise störungsmässig zu behandeln sind.
Für die Eigenwerte erhält man so eine Entwicklung nach Potenzen
von Ve/U :

W{n)= -V+VeT(2n + l)-e^i^+^i + --- (35)

(e<F, n-VßV<V).
Nach (31) müssen aber die Eigenfunktionen die Symmetrie-Eigenschaft

ip(n — x) — ,p(n + x) besitzen; hierdurch wird die
Oszillationsquantenzahl auf ungerade Werte beschränkt:

n= 2s - 1, wo s= 1,2,---. (36)

Der tiefste Eigenwert ist also

Wm= -V + SVeA? -%e+--- (e < V). (37)

Die zu den tiefsten Eigenwerten gehörigen Eigenfunktionen y>(x)
sind nur in der Umgebung von x n merklich von null verschieden,

und zwar in einem Intervall der Grössenordnung (e/V)Vi. Ihre
Fourieranalyse gemäss (30) liefert daher als hauptsächliche Komponenten

a,- solche mit hohen j-Werten. Nach (30) ist
¦1:,

-JdxrpW"=^(j+i)2af^(j 1)22) :

ü 1
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in nullter Näherung findet man hierfür:

WJ+W-^(n+h) (e<V). (38)

Speziell für n 1 ist
e

ai=2n-A[±-Y\j+ì)e^(-v-r^^
\ / i ' \ i ^ o,18

e I \ j } 8

(n 1, e < F).

(39)

Im Übergangsbereich zwischen den beiden Grenzfällen (e ~ V)
können keine „Überschneidungen" der Eigenwerte eintreten;
dadurch sind die Eigenwerte mit gleichen s-Werten — (34) einerseits,
(35) mit (36) andererseits — eindeutig einander zugeordnet.

Diese Formeln für W sollen jetzt im Rahmen der beiden
Näherungsmethoden (§ 3) verwertet werden.

A. Adiabaten-Näherung.

Wenn e <^ V angenommen wird, kann man einen r-Wert r£
durch die Gleichung

V(re) s

definieren, und es wird dann gelten:

V (r) <^ e für r ^> re,
V(r)^> e für r <^ r£.

Man wird also im Aussenbereich (r ^> rE) die Formel (34), im
Innenbereich (r <^.rt) die Oszillatornäherung (35 ff.) verwenden können.
Speziell für den tiefsten Eigenwert s 1 gilt nach (34) und (37) ;

[7 V(r) — i\V(r)V/e 7 • • ¦ für r>r...
Wx(r)= W 3 L WJ ' ^ "' (40)

\-V(r) 7 3]/eF(r)-||e7--- für r<re '

In der Schrödingergleichung (19) ignorieren wir vorerst den
Term Bmm. Die Funktion Wm(r) bestimmt die „adiabatische
Potentialkurve" des betreffenden Deuteronzustandes, Wx(r) (40) speziell
die tiefstliegende Potentialkurve mit J K 0. Da die betreffenden

Schrödingerfunktionen fm(x) nach (13) und (28) ungerade sein

müssen, handelt es sich um P-, F- -Potentialkurven. Da aber
das Deuteron in Wirklichkeit keine stabilen P-, F- -Zustände
besitzt, müssen die Konstante e und die Funktion V (r) so gewählt
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werden, dass es keine diskreten negativen Energie-Eigenwerte mit
J K 0 gibt. (Im Teil II dieser Arbeit wird gezeigt werden,
dass dies mit der Existenz stabiler S-Zustände verträglich ist.)
Die P-Potentiale sind jedoch bekanntlich von Wichtigkeit für die
Theorie der Neutron-Proton-Streuung; namentlich bestimmen sie
die Anisotropie der Streuung im Schwerpunktssystem (bei nicht
zu kleinen Energien). Es ist daher von Interesse, die Funktion Wx(r)
mit der entsprechenden Potentialfunktion jener älteren Theorie
zu vergleichen, die die Mesontheorie nur in störungstheoretischer
Näherung verwendet (schwache Kopplung) und die demgemäss die
Existenz von Nukleon-Isobaren ausschliesst. Zu dieser Theorie
gelangen wir, wie früher (§ 2) bemerkt, durch den Grenzübergang
e-> oo. Dann wird aber nach (34) Wx(r) V(r). Dies entspricht
einer überall abstossenden Kraft. Nach (40) dagegen ist die Kraft
in kleinen Abständen anziehend : Wx (r) & - V (r)x). Auch wenn die
oben gemachte Voraussetzung £^ V fallen gelassen wird, ist nach
(34), (35) in jedem Falle Wx(r) < V'(f). Die Existenz der Isobaren
hat also zur Folge, dass die unterste P-Potentialkurve (J K 0)

herabgedrückt wird, was sich in der Anisotropie der Neutron-
Proton-Streuung bemerkbar machen muss. Dieser Effekt lässt sich
natürlich erst berechnen, wenn die anderen massgebenden S- und
P-Potentiale bekannt sind.

In den vorstehenden qualitativen Betrachtungen haben wir
uns nur der gröbsten adiabatischen Näherung bedient, indem wir
die Grössen Amn(r) und Bmn(r) in den Gleichungen (16) bis (20)
vernachlässigt haben. Ihre Berechnung tragen wir jetzt nach,
zunächst für den „Innenbereich" r <^ r£. Durch die normierten
Eigenfunktionen y>n(x) der Mathieu-Gleichung (33) drücken sie sich
folgendermassen aus:

r>2jI -> -i 2 n ¦ 0,-x2 r dwn -,.,
1 r d*wn ,._..Ann= --^j dxy>m—,Bmn - WjdxWm~; (41)

v ü " o

man verifiziert dies leicht durch Einsetzen der Fourierentwicklung
(30) und Vergleich mit den Definitionsformeln (15). Für r<^r£,
V(r) ^> e, sind fn, fm Oszillator-Eigenfunktionen; die Indices n,m
identifizieren wir mit den (ungeraden) Oszillator-Quantenzahlen
[vgl. (36) : n 2 s — 1]. Bei Vernachlässigung der Anharmonizitäten
sind die normierten Oszillator-Eigenfunktionen von der Form:

/ V(r) \% _, // V(r) AA „
y>n I —-^ mal h unktion von I I —-^- ¦ I

b W-L wird negativ für V/e > 6 (rund).
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wo | x — n. Infolgedessen wird

dtpn 1 d log V

229

dr 8 dr
d2y>n 1 d2\ogV
dr2 ~¥ dr2

1 fd log F\2

1+21— )y>„,

1721 dl j v«

64 V dr
Dabei gilt:

1 + 2« A)V.

1 + 2^7jy Wn ]/n(n- l)ip„-2- ]/(n+l)(n+2) ipn+2

Hiermit ergibt (41) (für r <^.re):

1 fd log VA
A

A.

0, B„
S2MP\ dr

-\ (n2 + n + l),

1 diogV
n~2, ri

B.

4M„ dr
1 d2lop-V

¦v/n(n - 1),

'û, n-2- - Bn-2, n~ ^ j-f- xjn (n - 1)

°», n—4 "ti-4, m 64M.
d log F\2

dr -i/n(n-l)(n-2) (ra-8);

(42)

alle übrigen Matrixelemente verschwinden. Wählt man etwa
V(r) V(0)e~l'r, so ergibt (42) die Grössenordnung

B. B
», M±4 M„

An^nT^ Mr.
(für r <^ r£ (43)

Im Aussenbereich r ^> re(V <A: e) sind die Matrixelemente, wie man
leicht abschätzt, mindestens um einen Faktor ~ V/e kleiner. Man
kann daher die Formeln (42) für kleine r-Werte bis zu rs hinaus
gelten lassen und Amn,Bmn weiter aussen verschwindend klein
annehmen.

Das Diagonalelement Bmm spielt in den Gleichungen (18), (19)
die Rolle eines Zusatzes zum adiabatischen Potential Wm ; so wird
z. B. die tiefste Potentialkurve um Bxx gehoben, was bei kleinen
Abständen nach (42)

3 fdlogVA
32 M. dr

einige MeV
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ausmacht. Die anderen A- und B-Terme in (18) (n 7 ni) beschreiben
Übergänge von einer Potentialkurve zur anderen. So ist z. B. ein
Übergang n= l->3 (s= 1-+- 2) möglich, was einem unelastischen Streu -

prozess entspricht, bei dem beide Nukleonen in den isobaren Zustand
j 3/2 befördert werden. Die Realisierung dieses Prozesses würde
natürlich die Energie 3 e, d. h. die doppelte Anregungsenergie eines
Nukleons erfordern (im Schwerpunktssystem). Aber auch bei
kleineren Energien können die angeregten Zustände als „virtuelle
Zwischenzustände" den Streuvorgang beeinflussen. Dieser Effekt lässt
sich am einfachsten abschätzen, wenn man die r-Funktionen in (18)
(W, A und B) durch geeignete Treppenfunktionen approximiert.
Er erweist sich als belanglos, wenn die Abstände der Potentialkurven

W^ im Innenbereich gross gegen u2/Mv sind (vgl. (43)),
und dies heisst nach (35) :

Y^Vm>-^- (44)

Identifiziert man ti mit der Masse der Höhenstrahlungsmesonen
so wird u2/Mv ~ 10 MeV. Aber selbst wenn man statt dessen den

grossen Wert von rund 50 MeV für u2/MP einsetzt, der aus den
Proton-Proton-Streuversuchen abgeleitet wurde1), und für F(0) den
entsprechenden Wert von etwa 100 MeV, erweist sich die adiabatische

Näherung noch bis zu e-Werten von etwa 20 MeV hinunter
als brauchbar2). Dieser e-Wert entspricht einer Nukleon-Anregungs-
energie von 3 e/2 30 MeV; es ist dies der Wert, auf den Coester
(1. c.) durch die Diskussion der schweren Kerne geführt wurde3).
Ein höherer e-Wert wäre für die Adiabaten-Näherung günstiger;
doch wäre dann die Annahme s <^ V nicht mehr zutreffend, so dass
der Verlauf der IF-Kurven für mittlere Werte von V(r)/e
massgebend würde. Jedenfalls wird man quantitative Auskünfte von der

b Vgl. L. E. Hoisington, S. S. Shabe und G. Bbeit, Phys. Rev. 56 (1939),
S. 884. Die im Text angegebenen Daten beziehen sich auf das Exponentialpoten-
tial (const. e~fr) dieser Autoren; nach der hier diskutierten Theorie wäre für das
^-Potential streng genommen anzusetzen (vgl. Teil II dieser Arbeit):

W(r)= -V(r)+\/eV(r)-Ae+... (r<r£).
2) Durch die Berücksichtigung der Zahlfaktoren in (42) und (35) wird nämlich

die Bedingung (44) beträchtlich abgeschwächt. Selbst für AeV(0) ?» /i2/Mp
werden die Eigenwerte E durch die Kopplung der W(Bi -Kurven sicher nicht stärker
gestört als durch eine Verschiebung dieser Kurven um einige MeV im Innenbereich.

3) Coester berücksichtigte dabei auch die Bedingungen, die der Mesontheorie

durch die Annahme starker Kopplung auferlegt sind. — Man beachte,
dass Coesteb's „e" gleich unserem e/2 ist.
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Adiabaten-Näherung nur bei nicht zu kleinen e-Werten verlangen
können. Trotzdem dürften die qualitativen Aussagen über den
Verlauf der Potentialkurven auch bei kleineren e-Werten wenigstens

einen heuristischen Wert haben.

B. Variationsmethode.

Da die Hartree-Näherung eher diskrete Energie-Eigenwerte
als Eigenfunktionen zu bestimmen gestattet, wird uns das
Variationsverfahren hinsichtlich der wirklichen Deuteronzustände mit
J K 0 wenig dienlich sein können. Um das Verfahren trotzdem
an diesem einfachsten Fall zu erproben, wollen wir für den Moment
— entgegen der Wirklichkeit — e und V (r) so gewählt denken, dass
stabile Zustände mit J K 0 Zustandekommen.

Wird der durch (26) definierte Mittelwert V als gross gegen e

vorausgesetzt, so sind die Eigenwerte W des Gleichungssystems
(25) aus (35) zu entnehmen :

_ ,_= fn(n + l) 17\ ,._,W{n)=-V + ieV(2n + l) -e( - '+—) + ••-. (45)

Setzt man dies in (27) ein, so führt das Extremalproblem für H
auf folgende Gleichung für die Funktion f(t):

Ën + ~- V(r) [1 - yjf?(n + « 7 •••])/= 0, (46)

und der zugehörige Extremalwert von H wird

E= Ën + iW(n+ï) - e (TC(W8+1) +ï|) + ' • '• <47>

(46) ist, streng genommen, keine lineare Gleichung für /, da V
gemäss (26) von / abhängt ; da aber der Term ~ i/e/T in (46) (für
n ~ 1) nur eine kleine Korrektur darstellt, kann man in ihm / durch
einen Näherungswert ersetzen; dann ist (46) eine Schrödingergleichung

mit der Potentialfunktion

_ V(r)[l-x/IJV(n + i) + ¦¦¦]. (48)

Dies entspricht wieder anziehenden Kräften. Um abzuschätzen, wie
die Energien E von den Oszillationsquantenzahlen n abhängen,
ersetzen wir das Potential (48) in noch etwas vergröberter Näherung
durch

-V(r) + yeV(n+\) + ---. (49)
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Dann wird nach (47)

E ùQC + ]/eV(2 n+1) + ¦¦¦, (50)

wo C ein dem Potential — V (r) entsprechender Energie-Eigenwert
ist:

^C + __FWj/.0. (M)

Dieses Ergebnis stimmt im wesentlichen überein mit demjenigen,
das man aus der adiabatischen Näherung durch Extrapolation auf
kleine e-Werte erhält1).

Die Gleichung (38), in der V jetzt die Bedeutung V hat, besagt :

j2 ~ yV/e ^> 1, d.h. die wesentlichen Komponenten as gehören
zu hohen /-Werten. Wenn überdies der Schwankungsbereich der
Variablen j relativ klein ist, wie es nach (39) für den tiefsten Term
n 1 der Fall ist, so ist anzunehmen, dass der dem Variationsverfahren

zugrundeliegende Ansatz (23) eine brauchbare Näherung
ergibt. Denkt man sich nämlich die exakte Lösung in der Form
F(j, t)= ttjf(j> *0 geschrieben, so wird man, falls a,- nur in einem
kleinen /-Intervall merklich von 0 verschieden ist, F (j, r) näherungsweise

durch aA(j,x) ersetzen können, was eben (23) entspricht.
Wenigstens für die Berechnung von Erwartungswerten wie H dürfte
dies keinen grossen Fehler mit sich bringen. Freilich tendiert das
relative Schwankungsquadrat von j nach (39) auch im Limes
V/e -> oo nicht gegen Null. Eine Verbesserung des Hartree-Fock-
Ansatzes (23) im Sinne einer Zuziehung allgemeinerer Funktionentypen

F (j, t) soll hier nicht versucht werden.

***
In der Fortsetzung dieser Arbeit sollen die Zustände mit

J 7 K 7 0 mit denselben beiden Näherungsmethoden diskutiert
werden. Es wird sich zeigen, dass die zu verschiedenen J- und
rT-Werten gehörigen tiefsten Eigenwerte bzw. Potentialkurven in
ihrer relativen Lage recht genau bestimmt werden können.

Basel, Physikal. Anstalt der Universität.
Zürich, Physikal. Institut der Universität.

b In der Gl. (19) (mit Bmm—>-0) kann dann nämlich im massgebenden
r-Bereich Wm gemäss (35) ausgedrückt werden; betrachtet man nun den Term
\/eV(r)(2 n+1) als eine kleine Störung — wie es dem Übergang von (48) zu (49)
entspricht —, so folgt für die Eigenwerte wieder die Formel (50), mit dem

einzigen Unterschied, dass VF durch y/V ersetzt ist.
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