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Über die Wechselwirkung- zweier Nukleonen in der Mesontheorie

von Markus Fierz.

(23. III. 1944.)

I. Einleitung und Problemstellung. Wie Wentzel gezeigt hat,
liefert die symmetrische Mesontheorie bei starker Koppelung als
Hamiltonfunktion zweier Nukleonen1) (Proton, Neutron)

e 3

%=YM (V*+V'2)+\^(d\+d'A) + V(r)Q({r,cp,w-,{}-',cp',w')(l.l)

Dabei sind p und p' die Bahnimpulse der Nukleonen, M ihre Masse,

d und d' sind ihre Spinmomente. Diese können alle halbganzen

Werte annehmen und geben zur Isobarenenergie -~r~ dk2 Anlass.

Die potentielle Energie ist durch den dritten Term in Jt gegeben
und hängt ausser vom Abstand r der Nukleonen noch von ihren
inneren Freiheitsgraden û, cp, y> ab.

In den Variablen û, cp, y> sind die dk folgende Operatoren:

% dcp

dx±id2= e±^ l ± —— 7 % cotg û -—+-—:—?r^— (1.2)1 2
V dû ë

dcp i sin* dv /

Die Hamiltonfunktion (I. 1) ist somit analog derjenigen zweier
gekoppelter Kugelkreisel.

Neben dem Vektor-Operator dk existiert noch der weitere
Operator hk, der die Rolle des „Isotopie Spin" spielt. Die Eigenwerte

b G. Wentzel, H. P. A. 16 (1943), 222, und 16 (1943), 551, § 15. Wir haben
in der vorhegenden Arbeit die „Tensorkraft" nicht berücksichtigt, d. h. wir
betrachten nur den Term, der bei Wentzel in der Form

y(t> ') _ JL Z S'-A S(y A
2 », e »e io 4nr

geschrieben ist. Die SiQ entsprechen unseren xlk [(I. 5) dieser Arbeit]. Ein solches
Potential entspricht der von Moller und Rosenfeld (Kgl. Danske Vidensk.
S. Math. fys. Medd. XVII. 8 (1940)) vorgeschlagenen Theorie.
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von h3 entsprechen den verschiedenen Ladungswerten der Nukleonen.

Die Operatoren hk sind gegeben durch

j, - 1 d

h1±ih2=e±i*(±--1r + i cotg * -— + — ^—- — (I. 3)
\ dû dip % sm * d cp j

Es gilt identisch

wie man leicht nachrechnet. Die Relation (I. 4), die zwischen Spin
und „Isotopie Spin" besteht, ist charakteristisch für die symmetrische

Mesontheorie. Fasst man den Vektor d als Impulsmoment
eines Kugelkreisels auf, so ist h dessen Impulsmoment im körperfesten

Koordinatensystem, weshalb die Gleichung (1.4)
selbstverständlich ist. Die Grösse Q (û, cp, tp; û', cp', tp') lässt sich wie
folgt schreiben

ü (û, cp, tp; Û', cp' tp') 2 Xik x'ìj. (I. 5)
i.k

Dabei ist xik durch folgende Matrix gegeben:

(sin
cp sin tp — cos & cos cp cos ip, — cos cp sin tp — cos & sin cp cos tp, sin & cos tp \

— cos tp sin cp— cos û cos cp sin tp, cos cp cos tp— cos # sin y sin tp, sin # sin tp 1(1.6)
sin ¦& cos cp sin # sin cp cos # /

Bis auf die Anordnung ist xik die orthogonale Transformation, die
vom raumfesten auf das körperfeste Koordinatensystem eines
Kreisels führt. Diese ist durch

u12 ^n

gegeben. Da in (I. 5) die xik nur in der Form S xik x'ilc vorkommen,
spielt dieser Unterschied keine Rolle. Die Definition (1.6) erweist
sich jedoch wegen ihrer Symmetrie in cp und tp als bequem.

Die Operatoren dk, hk und xik erfüllen die folgenden
Vertauschungsrelationen

[dx, d2] id3; [hv h2] ih3; [d{, hk] 0 (1.7)

[dt, xk J [xk v d2] ixk3 (1.8)

[ht, x2k] [xlk, h2] ix%k (1.9)
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sowie die durch zyklisches Vertauschen von 1, 2, 3 daraus
hervorgehenden Relationen. Die xik sind miteinander vertauschbar, ebenso

gestrichene mit ungestrichenen Grössen.
Weiter gilt die Orthogonalitätsrelation

/i xil xlcl ~ 2-i xn Xlk= Oik \
l l

In der vorliegenden Arbeit wird nun gezeigt, dass der durch
(1.1) gegebene Hamiltonoperator auf folgende Form gebracht
werden kann:

Ä= TM (p2 + P'2) + yO' {j + 1) + j'(?" +1}>

+ V(r)(J,K,j,j'\ü\J,K,],[') (1.11)
Dabei ist

24a=?(?'+i); S42=?'(?"+i); M' y2,8/a...

2(4 + 4')2= J(J + l)

2(^ + V)2=E(E+l)
fc

Um die Matrix ü zu bestimmen, berechnen wir zuerst die allgemeine
Form der Matrizen von xa (Abschnitt II). Hierauf werden wir die
Produktdarstellung ûjxûj' der Drehgruppe explizit ausreduzieren
(Abschnitt III). Diese Rechnung hat auch unabhängig von dem
hier behandelten Problem ein gewisses Interesse1). Mit Hilfe der
im dritten Abschnitt gewonnenen Formeln ist es dann möglich,
die Matrix û anzugeben (Abschnitt IV).

IL Wir bestimmen zuerst Matrizen xik, welche den Gleichungen
(I. 8), (I. 9) und (I. 10) genügen, und zwar in einer Darstellung, in
welcher 27 df, 27 Jif, d3und h3 diagonal sind.

k fc

Die Grössen dk, hk sind Drehimpulsoperatoren und es gilt
wegen (1.7)

2-idic=2jhî= 1 (1 + 1) AL1>
k fc

Wir setzen daher in bekannter Weise

(h m dt 7 id2 | h m — 1) -]/(J 7 m) (j — m¦ + 1)

(h m \df— id2 | h m 7 1) -va + m + l) (j -— m)

(b m I d3 [ j, m) -- m (IL 2)

b" Für die allgemeine Theorie dieser Reduktion siehe z. B. Van der Waebden.
Die Gruppentheoretische Methode (Berhn 1932), S. 68.
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(j, n | h-, 7 ih2 | j, n — 1) -\/(j + n) (j — n + 1)

(j, n | ht — ih2 | 7, n + 1) -j/(j +n + l)(|- n)

(j, n | fe31 j, n) n (IL 3)

«4 ist diagonal bezüglich n, hk bezüglich m. Nichtangeschriebene
Matrixelemente verschwinden und es ist stets

j > n, m > —

Die Relationen (I. 8) bedeuten, dass sich die Zeilen von xik bezüglich

der infinitesimalen Drehungen dk wie Vektoren verhalten. Das
entsprechende gilt gemäss (I. 9) für die Spalten von xik bezüglich
der infinitesimalen Drehungen hk.

Grössen xk (fc 1, 2, 3), welche sich bezüglich dk wie ein Vektor
verhalten, d. h. Gleichungen

[di, xk] [x{, dj i xt (i, fc, l zyklisch)

erfüllen, haben nur folgende, nicht verschwindende Matrixelemente1)

:

(j, m\xk\ j, to) =_ A,, (j, m\dk\ j, to)
(j, m | xk | j — 1, to) Aj_,._! (j, m\bk\j — l,m) (IL 4)
(j, m\xk\j + 1, m) Afti+1 (j, m\b*k\j 7 1, m)

A*i + 1 ist zu Ai + 1j konjugiert komplex; ebenso (j, m | b%\j+l, in)
zu (j 7 1, m | òj. j j, to). Es ist

(/, to I &! + i b2 | y — 1, to — 1) —-]/(/7 to) (j + m— 1)

(j, m | &-L — i ò2 | j — 1, to 7 1)

(j, m\b3\j
y(j—m)(j—to—-i) (ii.5)

1, to) -j/ (j — to) (j 7 m)

Zwischen dk, bk und bk bestehen die folgenden Relationen:

a) (j | dt bk— dkbi\j — l) i (j 7 1) (j \bz\j — l)
b) (j | 6* 4 - ô*«?, | j - 1)= - t (j - 1) (j\bt\j-l)
c) (?|M*-M?|?) * (2 7 — 1) (y I <*» I J)

d) (j | Ò* bk-btbt \j) =-i(2j + 3) (," | dr |

e) ^(j\bkb*k\j) j(2j-l)
f) Ç(j|&ÎM?)=(î + l)(2/ + 8)

g) Sö'I^M?-2) =^(j\btbt\j + 2)=0
k k

h) 2 (.1 \dkbk\j-l) Yi (j 4 bt | y 7 1) 0
fc fc

sowie die hierzu hermitesch konjugierten Relationen.

b Siehe z. B. W. Pauli, Handbuch der Ph. 24/1, 2. Aufl. (1933), S. 182.

(IL 6)
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Dies verifiziert man mittels der Darstellungen (II. 2) und (II. 5).
x3k verhält sich bezüglich dk wie ein Vektor. Da x3k vom Winkel tp

unabhängig ist, sind seine Matrixelemente bezüglich n diagonal.

Wir machen daher gemäss (IL 4) für x3k folgenden Ansatz1) :

xsk= A„ (j | 41 j) +A}, ,_x (j | bk | j — 1)7(j — 1 | b*k | j)Ao*_x!,- (II. 7)

Die Ajj und A}, }_x hängen von j und n ab. Aus der Bedingung

[x3k, x3l]= 0 (II.8)

folgen mit Hilfe der Relationen (II. 6) (a-d) die beiden Gleichungen

Aj, 3_1 [(j 7 1) A„ - (j - 1) A^x,,_J =0 1

| A„ \2+\ Au _t\2 (2j-1) - | Aj+1, ,r(2j7 3)=0j l - ì

Die 1. Gleichung bedeutet, dass in (II. 8) der Koeffizient der bk,

die 2. Gleichung, dass der Koeffizient von dk verschwinden muss.
Weiter liefert die Gleichung

2>3fc l (ILIO)
fc

auf Grund der Relationen (IL 6, e—h) die weitere Gleichung

j (j+l) A?,+j(2j-l) | AUj_1 \2+(j+l) (2/7-3) |4,+1,,1«=1 (11.11)

Aus (II. 9) und (II. 11) folgt

Ai,i=~ ; \Aj,jA2 ?2~a2
(11.12)

7 (j + l)
' 3'3 xl f (2j-l)(2j + l) l ;

Dabei ist a eine Konstante. Diese ist durch die Bedingung

j > n

bestimmt. Setzen wir in der ersten Gleichung von (II. 9) j n,
so muss, weil An-t, n-i= 0 das Produkt An, n_tAnn verschwinden.

Daher ist
a n

Wir erhalten somit

_ n _
V(j.Y-n) (j — n)

""7FW; ^•'-1~jY(2,-+i)(2,--i) (IL12)

Führt man neben den Operatoren bk, den hk entsprechende Ope-

x) Die in (II. 7) und im folgenden verwendete symbolische additive Schreibweise

ist stets im Sinne der allgemeinen Regel (II. 4) zu verstehen.
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ratoren ck ein, deren Matrixelemente aus (IL 5) durch Ersetzen
von m durch n entstehen, so gilt offenbar, da

(j, n\h3\j,n)= n; (j, n\c3\j — l,n)= ]/(j+n) (j — n)

(j, n\hi\ j, n) (j, m\dk\ j, to)
(j, n,m\ xik\ j, n, to)

î (j + 1)

(11.13)(j,n,m\xik\j-l,n,m)= fr"'*!*-1' n) {tÜy2JyM t±HÙ
j^(2j + l)(2j-l)

(j,n,m \xik\ j+l,n,m)= (Ì>n\cì\ JY-l,n) (j,m\b*k\j+l,m)
(j + 1)1/(2j + 3)(2j+1)

Denn der Index 3 darf wegen des Tensorcharakters der xik vor
keinem anderen Index ausgezeichnet sein1).

Die Darstellung (II. 13) ist unabhängig von einer speziellen
Darstellung der Operatoren dk, bk, ht, c{. dk und bk haben lediglich
die Relation (II. 6) ; hk, ck die diesen entsprechenden Relationen
zu erfüllen.

III. Wiegen des Auftretens des Operators û in (L 1) sind dk
und hk keine Integrale der Bewegungsgleichungen. Wohl aber sind
die Spinsumme

D=d + d' (ULI)
sowie die Summe der „isotopie spin"

H h + h' (III. 2)

mit K vertauschbar. Wir wollen daher an Stelle der Variablen

j, to, n; j', to', n'
die neuen Variablen

J, K, M, N, j, f (III. 3)
einführen. Dabei ist

2Df= J(J + 1); %Hl=K(K + l)
k fc

D3=M, H3=N
Aus der Darstellungstheorie der Drehgruppe folgt

\j-r\<j,K,<j + r (m. 4)

Da wir xik durch dk, hk, bk, ck und j darstellen können, so haben wir

b Im Spezialfall j J hat G. Wentzel (j, n, m | xik \ j, n, m) berechnet
(Formel (15.10) 1. c).
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nun die Aufgabe, die Matrizen dieser Grössen in den neuen
Variablen zu berechnen. Es genügt diese Aufgabe für dk und bk zu
lösen. Die Formeln für hk und ck erhält man durch Vertauschen
von J mit K und von M mit N.

lila. Berechnung von dk als Matrix in den Variablen J, M, j, j'.
Da d mit d' vertauschbar ist, so gilt

[dit Dk] [Di, dk] idi (b k, l zyklisch) (Illa. 1)

d. h. dk ist eine Vektormatrix bezüglich Dk. Wir führen nun
Operatoren Bk und B* ein, welche mit den Dk zusammen den
Relationen (II. 6) genügen (d. h. man hat in diesen Relationen dk, b,c

b\, j durch Dk, Bk, B% J zu ersetzen).

Nun machen wir im Sinne von (II. 4) für dk den folgenden
Ansatz

4= /(J) (J\Dk\ J)+g(J) (J\Bk\ J-l)7(J-l |B*\ J) g*(J) (IIa.2)

/ (J), g (J) und g* (J) sind noch Funktionen von j und j' was
wir gelegentlich auch explizit zum Ausdruck bringen werden.
g* (J) ist das Konjugiert-komplexe von g (J) ; denn 4 ist eine
hermitesche Matrix.

Setzt man den Ansatz (lila. 2) in die beiden Gleichungen

[4, 4] i df ; y,d2k j (j + 1)
k

ein und benützt die (II. 6) entsprechenden Relationen für Dk und
Bk, so folgen für / (J) und g (J) die folgenden Gleichungen :

g (J) [(J+i) / (J) - (J-i) / (J -1)] g (J) (nia. 3)

f2 (J) + (2 J -1) | g (J) \2 - (2 J73) | g (J+l) \2 / (J) (lila. 4)

J(J + l)f2(J) + J(2J-l)\g(J)\2
+ (J+ 1)(2 J 7 3) | g (J 7 1) |2 j (j 7 1) (lila. 5)

Aus (lila. 3) folgt sofort

'(•"^+T(7f7 • (IIIa'6)

a (j, j') ist noch zu bestimmen.

Aus (lila. 4) und (lila. 5) folgt durch Elimination von g (J + 1)

(J + l)2f2(J)-(J+l)f(J)
+ (2 J + 1) (2 J- 1) g* (J) j (j + 1) (lila. 7)
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Setzt man hier den Ausdruck (Illa. 6) für / (J) ein, so folgt

g(J)
(i + hY \J « (j, j')

(2 J + 1) (2 J - 1)
(lila. 8)

Bestimmung von a (j, j') : Da J > \ j — j' | ist, so muss g (\ j — j' |)

verschwinden; denn sonst würden Übergänge nach J=\j—j'\ — 1

auftreten. Desgleichen muss g (j + j' + 1) verschwinden. Diese
Bedingungen bestimmen a (j, j') :

«(M')=itfl7 + !)-?"(?" + 1)3 (Illa. 9)

Somit erhalten wir aus (lila. 6), (Illa. 8) und (Illa. 9) :

¦ i(i + i)-j'(j' + i)
J (J + l)

f.(J) (Illa. 10)

g (J) g* (4
i

2J]/(2 J+l) (2 J-l) V[J2-(Ì-ÌVÌ [0'+i' + l)2-J2] (Hla.H)

Durch (Illa. 10), (Illa. 11) und (Illa. 2) ist somit 4 als Matrix
mit den Variablen J, M dargestellt. Setzt man

dk'=f'(J\Dk\ J)+g'(J)(J\Bk\ J

so folgt wegen

1)7(J- l\Bl\J)g'(J)

dass
4 + 4 — Dk,

g'(J) -g(J)
und dass /' (J) aus / (J) durch Vertauschen von j mit j' hervorgeht.
hk, hk erhält man aus dk, dk durch Vertauschen von J mit K und
M und N.

II. b. Berechnung von bk, bk* als Matrizen in den Variablen
J, M, j, j'. Da bk mit 4' vertauschbar ist, so ist 4 eine Vektormatrix
bezüglich Dk. Daher machen wir den Ansatz

(j\bk\j-l) si,j_1(J){J\Dk\J)
7 W-i(J) (J \Bk\ J-l) + (J-l \B* J) rUi_x (J) (Illb. 1)

tjj-t (J) wird nicht gleich fj j-t (J) sein, da bk keine hermitesche
Matrix ist. Um s, t und r zu bestimmen, benützen wir die
Gleichungen (II. 6, c) bis (II. 6, f) für dk, bk und b%. Wir denken uns
den Ansatz (IILb. 1) in diese Gleichungen eingesetzt und benützen
die Relationen (II. 6) für Dk, Bk, B| sowie die Formeln für 4
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gemäss (lila. 2), (Illa. 10), (Illa. 11). Von den so entstehenden
Gleichungen verwenden wir nur die Terme diagonal in J. So
erhalten wir

\sjJ.1(J)\2 + (2J-l)\tu_1(J)\2
- (2 J73) | r, ,_x (J+l) 12 (2 j - 1) /, J) (Illb. 2)

\su^1(J)\2+(2J-l)\rl)._1(J)\2- (2 J73) | tft ,_x (J+l) |2 - (2 j+l) /,_! (J) (Illb. 3)

J(J + 1) | su_x (J) \2 + «7(2 J-l) | *,,,_! (J) |2

+ (J+l) (2 J+3) | r,, ,_x (J+l) \2=j(2j-l) (Illb. 4)

J (J + 1) I «U-! (J) |2 7 J (2 J- 1) | ru_, (J) \2

7 (J+l) (2 J+3) I *,.,._! (J+l) |2 j (2 j+l) (Illb. 5)

(N. B. in (Illb. 3) und (Illb. 5) haben wir noch j durch j — 1

ersetzt). Wir heissen nun

\tjJ_l(J)\2+\ru_1(J)\2 U,(J)
1 tu_, (J) |2 - i rhi_x (J)|2- T,(4 l •

Durch Subtraktion von (Illb. 2) von (Illb. 3) sowie von (Illb. 4)

von (Illb. 5) folgt je eine Rekursionsformel für T,- (J). Indem man
aus diesen beiden Formeln T,- (J + 1) eliminiert und (lila. 10)
beachtet, folgt

r'w- 7W4w{"'+>,"1"2,'s't111 (mb-7)

Wenn wir (Illb. 2) und (Illb. 3) sowie (Illb. 4) und (Illb. 5)
addieren und aus diesen Gleichungen sjt j_-, (J) eliminieren, erhalten
wir die folgende Rekursionsformel für U,- (J) :

J2 (2 J - 1) Vt (J) - (J 7 l)2 (2 J 7 3) Vi (J 7 1)
J (J+l) [(2 j-l) /,(J)-(2 j+l) /,_x (J)]-4 j2 (Illb.8)

Wir setzen

Vi (J) ^5 (Illb. 9)1 y ' J2 (2 J-l) (2 J + l)
K

und erhalten aus (Illb. 8)

u, (J) - Ui (J+l) (2 J+l) J (J+l) [(2 j - 1) fi (J)
-(2j7l)/3-_1(J)]-4?-2(2J7l)

Setzen wir rechts fs (J) gemäss (lila. 10) ein, so lässt sich diese
Gleichung leicht auflösen und man findet

Ui (J) a (j, j')+\ (Ji-J2) ~[j' (j'+l) -3 j2] J2 (Illb. 10)
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a (j, j') ist die „Integrationskonstante" und muss noch bestimmt
werden. Zunächst findet man, z. B. mit Hilfe von (Illb. 4), (Illb. 5)

!>«-'«i^77(WI''+''ö'+1,"^m)J-y4 (IIIb-n)

Bestimmung von a (j, j') aus einer „Randbedingung" :

Da J £S j+j' ist, so muss Sj;j_i (JY-j') verschwinden; denn es
dürfen keine Matrixelemente auftreten, bei denen J seinen Maximalwert

beibehält und zugleich j abnimmt. Somit folgt aus (Illb. 11)
mit J j + j'

« o'. ?') i a - r) a - r -1) a + ï) a + r +1) (nib. i2)
Damit ist a (j, j') bestimmt und (Illb. 11) liefert die Gleichung

K?--i(4l2
- 1 mTZTTi {[Jr(^+l)-(?'-?")(?-?'-l)][(?'+7") 0"+?"+l)

4J (J+1) -J(J+1)]} (Illb. 13)
Weiter ist

|<^-_1(J)|2=H21,(J) + u,(j))

4 J2 (2 J-l) (2 J+l)
<( J1+4 ' J3+^6 ?2 - 2 ?' Ö'+1) - *> J2

72 j (2 j2-2j' (j"+l)-l) J+2 a (j, j')} (lllb.14)
Wir bemerken nun, dass die Koeffizienten von Jn in (Illb.14) die
symmetrischen Funktionen der „Wurzeln"

(j + f),(3-f), (JY-j' + l), (j-j'-l)
sind. Infolgedessen kann (Illb. 14) in folgender Form geschrieben
werden :

| *,,,_,, (J) 12= rf2-u\2 ,A(J + i + j') (JY-j-f) (J + j + j' + l)4J (4J ^1) (J + J-j'-l)] (Illb. 14')

Entsprechend findet man für ?',-,,-_i (J) :

4J t4J lj (J —/ + j"+l)] (Illb. 15)

Diese Ausdrücke sind wegen j 7 j' > J > | j' — j' | nie negativ
und genügen den richtigen Randbedingungen. Es bleiben nun noch
die beim Ausziehen der Quadratwurzeln aus (Illb. 13), (Illb. 14)
und (Illb. 15) zu wählenden Vorzeichen zu bestimmen. Da die
Relationen (II. 6) beim Ersetzen von bk durch — bk bestehen



Über die Wechselwirkung zweier Nukleonen in der Mesontheorie. 191

bleiben, ist das Vorzeichen von s}-j_, (J) frei wählbar. Wir setzen

Ì «,,,_! (J) | *,,,_! (J) (Illb. 16)

Nun benützen wir die Relation (lila. 6). Diese ergibt für den
Koeffizienten von (J \ Bk\ J — 1) folgende Gleichung:

(J+l) /, (J) tu_, (J) -(J-l) gt (J) su_x (J-l) =(j+l) £,,,_!(J)

Damit diese Gleichung erfüllt wird, hat man
| «,,_, (J) f =-«,,,_! (J) (Illb. 18)

zu setzen. Entsprechend findet man, durch Betrachtung der
Koeffizienten von (J — 1 | B*k | J) :

'

| »>,,_! (J) | ?,,,_! (J) (Illb. 19)

Die Grössen s', £' und r' erhält man durch Vertauschen von j mit
;' und passende Wahl der Vorzeichen. Dag= \g\, g'=— \g'\= — gr so gilt

t' | t' | r' — | r' |

Wir fassen das Resultat des III. Abschnittes zusammen : In der
Darstellung, in welcher

2(4 + 4')2 2D2= J(J + i)
und * *

d3 7 d'3 D3 M
auf Diagonalform gebracht sind, gilt

tt I 4 | j) f (J, j, j') (J\Dk\ J)+g (J, j, j') (J\Bk\J-l)
+ (J-l\B%\J)g(J,j,j')

(Ì I bk| J-l) s (J, j, j') (J\Dk\ J)+t (J, j, j') (J\Bk\ J-l)
+ (J-l\B*k\J)r(J,j,j')

(j-1 | b* | j) s (J, j, ;') (J | Dk | J) 7r (J, j, f) (J |Bk \ J-l)
+ (J-l\B*k\J)t(J,j,j')

f(AjA')= 2J(j+1)-{J(J+i)+tt+f+i) ö'-j')}

g (J'"' ° 2 J vL*=l l/[J2-^-^)2J [0-+f+1)'-^ | (Hl)
*(4j',j")

l
2jJj^V(J-i+fY-l)(JY-j-j')(j + j'-J)(j + j'Y-l+J)

t(AjA')
-1

2JV4 j«-i^(J+J'+?") (J+?+^"+1) (J+:H") (J+j-j'-i)
»•(4bj")

l
2jr^==1/(7+7'-J) (j+j' + l-J) (J-J7J') (J-J7j'7l)
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Die Quadratwurzeln sind stets positiv. Die Grössen

/', - g', s', - r', - V

erhält man aus den Formeln (III) durch Vertauschen von j mit j'.
Durch diese Formeln ist die Produktdarstellung ûjXû/ explizit
ausreduziert.

IV. Berechnung der Matrix Q.. Die Matrix Ü xik x'ik kann
man auf Grund der Formeln des II. Abschnittes berechnen. Die
Matrixelemente von Û, welche nicht verschwinden, schreiben wir
zunächst mit Hilfe der Formeln (II. 13) für xik in folgender
Form an1) :

(IV. 1) (j,j'\Q\j,j')
.r_L1Al,r^1, k (k, j, f) h: (k, r, j) 4 (4 j, ?') d'k (j, r, j)

J (j+l) J (] +1)

(IV. 2) (j,j'\ü\j-l,j')
¦ /T,~ ,^T?T c< (K> h ?") Vi {K, f, j -1) bk (J, j, j') 4' J, j', j -1)
] V4f— 11 (l 71)

(IV. 3) (j,j'\Q\j,j'-l)
j (j+i) r vij^î}li {K'j'r) c'1 {K'r'j) 4 (J'j'r) w {J'r j)

(IV. 4) (j,j'|ß|j-l,j'+l)
• /-nr^v.-,! TfrfzATxWA c< ^KÀÂ') C*'(K' i'+h J-l) h (J,j, f)¦]V4f-lb +l)V4(j +1)2-1 b*> (Jjf+1) y_1}

(IV.5) (j,f|ßij-l,j'-l)
\ -==- d (K, j, f) c/ (K, j', j - 1) bk (J, j, f).V4f-U V4j2-1 bk'(J,j',j-l)

Weiter existieren noch die zu diesen Matrixelementen hermitesch
konjugierten Elemente.

Die Matrizen 4 (J, j, j'), bk (J, j, j') sind durch die Formeln
des IL Abschnittes gegeben ; ebenso die gestrichenen Grössen. hk
und ck entstehen aus ihnen durch Vertauschen von J mit K und
M mit N.

Man erkennt, dass jedes Matrixelement zwei analog gebaute
Faktoren enthält, die in symmetrischer Weise die Grössen 4 (J),

b Summationszeichen sind im folgenden weggelassen.
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bk (J) und die Grössen ht (K), ct (K) enthalten. Es genügt, jeweilen
den einen Faktor zu berechnen, der andere entsteht daraus durch
Vertauschen von J mit K.

Es sind somit die 5 Skalare

4 4 bk ak ak bk ok bk und bk ok

zu berechnen. Hiezu benützt man die im III. Abschnitt gegebenen
Formeln und beachtet wieder die Relationen (II. 6) für Dk, Bk, Bk*.
So findet man z. B.

4 (J, j, f) d'k (J, j', j) j (j + i) / (j, j, j') f (j, j', j)
-(2J-l)J.g(J.j,j')g(J,j',j)- (2 J + 3) (J + 1) g (J + 1, j, j') g (J + l, j', j)

Hierbei wurde die Vorzeichenregel des III. Abschnittes schon
benützt, so dass die Grössen / und g durch (III.) gegeben sind. Auf
diese Weise folgt

(hf
(b f

(b ï

a,r

tt, r

Q\ hl 4j(j+l)j'(j'+l)
Q\j-l,j')

1

A1(J,j,jl)A1(K,î,j')

4j^4j2-lf(j'+l)
Q\j,j'-1)

1

4j(j+l)j' V4j'2-1
ü\j-l,j'+l)

A2 (J, j, j') A2 (K, j, f)

A2(J,j',j)A2(K,j',j)

4jV4j2-ltt' + l)V4(j'+ir-l
^3 V, h f) A3 (K, j, f)

Al(J,j,j')At(K,j,j')
Q\j-l,j'-l)

1

(IV)

4j',j' V(4j'2-l)(4j"2-l)
Dabei ist

A (4 h j') J (J 7 1) - j (j 7 1) - j' (j' 7 1)

A (4 j, j') {[J (J 7 1) - (j - j') (j - j' - 1)] [(j 7 j')
(j+j'7l)-J(J7l)TP

A3(j,j,j') {[J2-(j-ï -mw Y-i)2-(j-ï -my>
a (4 j, r) {[J2 - (j + î')2] [{J +1)2 - o' + m}1/2
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wobei j 7 j' > J, K, > | j —j' | ; J, iT ganz; j, j' halbganz.
Besonders einfach ist der Fall J K o. In diesem Falle ist stets

j j' und es ist

(j\ü\j)=(j\ü\j-l)=l
Alle anderen Matrixelemente verschwinden.

Die weitere Diskussion des durch (I. 11) und (IV) gegebenen
Problems soll einer späteren Arbeit vorbehalten sein1).

Basel, Physikalische Anstalt und
Mathemat. physikal. Seminar.

M. Fierz und G. Wentzel, H. P. A. 17 (1944).
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