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über die Stabilität schwerer Kerne in der Mesontheorie

von Fritz Coester.

(25. XII. 43.)

Die Mesontheorie sagt bei Annahme starker Kopplung Protonisobaren höheren
Spins und höherer Ladung voraus, die nach R. Serber den Sättigungscharakter
der Kernkräfte gefährden können. Es wird mit Hilfe einer Thomas-Fermi-Näherung
gezeigt, dass für alle Kopplungsansätze, die ein positives Wechselwirkungspotential

liefern, der Sättigungscharakter der Kernkräfte erhalten bleibt. (§ 4) Eine
Diskussion der Stabilitätsverhältnisse liefert stark einschränkende Kriterien für die
Wahl des Kopplungsparameters und der Isobarenanregungsenergie. (§ 5) Bei
Berücksichtigung der Coulombenergie lässt sich die Kernladungszahl in
Übereinstimmung mit der Erfahrung berechnen. (§ 6)

§ 1. Einleitung.

Die bisher meist verwendeten Methoden zur Berechnung der
statischen Kernkräfte in der Mesontheorie enthalten Entwicklungen
nach steigenden Potenzen des Kopplungsparameters. Der
Vergleich mit der Erfahrung ergibt jedoch so grosse Werte für den
Kopplungsparameter, dass diese Entwicklungen nicht oder nur sehr
schlecht konvergieren. Deshalb wurde von Wentzel1), zunächst
am Beispiel des geladenen skalaren Feldes, eine Näherungsmethode
für starke Kopplung ausgearbeitet, die einer Entwicklung nach
fallenden Potenzen des Kopplungsparameters entspricht. Die
Methode wurde dann in etwas vereinfachter Form von Oppenheimer
und Schwinger2), Pauli, Serber und Dancoff3) und Wentzel4)
auf andere Feldtypen angewendet.

Die für das Verständnis des Folgenden wesentlichen
Grundgedanken und Ergebnisse dieser Methode seien hier am Beispiel des
neutralen Pseudoskalarfeldes kurz erläutert. Die Hamiltonfunktion

b G. Wentzel, Helv. Phys. Acta 13, S. 269 (1940) u. 14, S. 633 (1941).
2) Oppenheimer und Schwinger, Phys. Rev. 60, S. 150 (1941).
3) Dancoff und Pauli, Dancoff und Serber, Bull. Amer. Phys. Soc. 16,

Nr. 7, Noten 7 und 43. Dies sind nur kurze Mitteilungen. Amerikanische
Veröffentlichungen seit Mai 1942 sind gegenwärtig in der Schweiz nicht erhältlich.

b G. Wentzel, Helv. Phys. Acta 16, S. 222 (1943) und 16, S. 551 (1943).
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des mit N ruhenden Nucleonen gekoppelten neutralen Pseudoska-
larfeldes ist

H=H° + H'

H° | / dx (n2+\ grad y>\2 + ß2ip2)

" '" N~v a N~1 3 r dw
H' 2 H' « - A- 2 S <# / ^ d« (* - *W) 77^

Mit den Bezeichnungen : o7"' Paulische Spinmatrizen, g
dimensionsloser Kopplungsparameter5), u Mesonmasse, h 1, c 1,

c50(x — x^) zentralsymmetrische Formfunktion des rten Nucléons.

jdxôa(x) =-- 1. Der Protonradius a wird nach Oppenheimer und
Schwinger6) definiert durch die Beziehung

±= fdxfdx'0"^0"^ (2)
a J J j x — x I

Damit eine Feldtheorie der Kernkräfte überhaupt einen Sinn hat,
muss man fordern, dass der Protonradius klein gegen die Reichweite

der Kernkräfte ist, d.h. apt<A. 1
¦ Als Bedingung für die

Brauchbarkeit der Methode ergibt sich g ^> au.
Man führt als neue Feldvariablen die Entwicklungskoeffizien-

ten ps, qs der Felder n(x), y>(x) nach einem Orthogonalsystem Us(x)
ein, von dem nur die ersten 3 iV-Funktionen explizit angegeben
werden müssen.

tt _ JL àòJjx — xYA) (i i, 2> 3) ro-,Uiv+i~
ßy

"
dx(

'
(v 0,l...N-x) [°>

Diese Funktionen sind nur orthogonal, wenn | x^ — a;w | ^> a
ist. Das muss also immer vorausgesetzt werden, y bestimmt sich

aus der Normierungsbedingung der U3v+i. Es ist y «* — a-"*. Damit
wird

H ^p2s + ^ersqrqs-yN^^aAq3v+i (4)
s rs v 0 i=X

WO

c„.= f dxL\(x) (u2 — A) (7,(3) (5)

Bei starker Kopplung, wenn H' nicht als kleine Störung
betrachtet werden kann, transformiert man H' als Matrix bezüglich

b Gegenüber dem Zitat Fussnote 4 ist die Bezeichnungsänderung g^-g/ß
vorgenommen worden.

6) Oppenheimer und Schwinger, 1. c.
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der Spinvariablen auf Diagonalform. Das bedeutet eine Drehung
des Koordinatensystems im Spinraum jedes Nucléons, so dass die
Vektoren q{-v)—{q3v+1, q%v+%i 33^+3} m die 3-Achsen fallen. (a3
diagonal.) Die unitäre Matrix Sw, die H'w auf Diagonalform
transformiert, hängt dementsprechend von den Polarwinkeln 0W, <PW

des Vektors g M ab. H' wird durch S 17 $w auf Diagonalform
transformiert. Der tiefste Eigenwert von H' ist —y E I S'"' I. Die

v

Ausserdiagonalelemente von 8*H°S (in H° kommutieren p$ und
p$ nicht mit 8Y)) sind bei starker Kopplung vernachlässigbar
klein, so dass die zu tiefen Eigenwerten der transformierten
Hamiltonfunktion S*HS gehörigen Eigonfunktionen praktisch ein-
komponentig sind. Die ursprünglichen Freiheitsgrade der „nackten"
Nucleonen verschwinden also; dafür treten die 6>w, 0M als neue
Freiheitsgrade der Nucleonen auf. Denn ist F'(q) eine einkomponentige

Eigenfunktion von S*H S und sind %^ und y}Y die beiden
unabhängigen zweikomponentigen Spineigenfunktionen des Hen
nackten Nucléons, so ist die zugehörige Eigenfunktion von H

F=Ijhos — e 2 zW_sin__e 2 -ZWJF' (6)

Die stationären Zustände sind demnach von 0{-v\ 0^ abhängige
Superpositionen der Spineigenzustände der nackten Nucleonen.
Daraus ist ersichtlich, dass die 0Y\ <Z>M als Freiheitsgrade der
Nucleonen interpretiert werden müssen. Dass gewisse Variable des
Mesonfeldes als Freiheitsgrade der Nucleonen interpretiert werden
müssen, bedeutet offenbar, dass Mesonen an die Nucleonen gebunden

sind, pty erweist sich als der Beitrag dieser gebundenen Mesonen

zur 3-Komponente des Nucleonspins. Aus der Bedingung, dass F
eine stetige Funktion auf der Kugel j gw | const sein muss, folgt,
dass pW in Anwendung auf F ganzzahlig gequantelt ist, während es

in Anwendung auf F.', wegen dem Auftreten des Winkels 0/2 in 8,
halbzahlig gequantelt ist. Die Spinkomponento des rten Nucléons
in der 3-Richtung ist jetzt S* (a3/2 + p$) S p$.

Um die Energie des Nucleonensystems zu erhalten, hat man
K H° — y E I

q M I durch geeignete kanonische Transformationen
V

in einen nur von den p{$, p%\ 0<v\ 0{v) und einen von den
Feldvariablen der freien Mesonen abhängigen Anteil (Energie der freien
Mesonen 7 Streuterm) zu separieren. Danach muss mit 8
transformiert, und das für die Bestimmung von F' massgebende
Diagonalelement genommen werden. Die potentielle Energie der
Kernkräfte ist dann der abstandsabhängige Anteil der Selbstenergie des



38 Fritz Coester.

Nucleonensystems, d. h. des Minimalwertes von K, den man erhält,
wenn man q3v+i | gw | AA einsetzt und die AA konstant hält.
Unter der Voraussetzung I x^ — x(v) I A> a hat sie die Form \ E'V'^ fxV ^
WO

V =— —) (e(">• grad«) (e<">¦ grad«) ,-— — (7)"" \ßjy 8 iX e ; 4n\d"- — 3«|
v ;

Terme niederer Ordnung in g werden vernachlässigt. Diese Form
des Wechselwirkungspotentials ist aus Symmetrie- und Invarianzgründen

plausibel, wenn man beachtet, dass die zu cr, inverse
Matrix

r r e~ß \x~x'\
(c-1)« /dx dx' Ur(x) Us(x') j—, jj ist.

4n \x — x'\
Aus \ E p,2 erhält man einen von pw, p<$ abhängigen Beitrag

zur Nucleonenenergie. Sie setzt sich additiv aus den Beiträgen der
einzelnen Nucleonen zusammen7). Der Beitrag eines Nucléons ist
vor der S-Transformation von der Form der kinetischen Energie
eines sphärischen Pendels; nachher ist

ttW Jon au f 1
wMsm0M_i \ („W2+fins/aW M j^ iq\

1
g2 (sin0WPe sin2©«^* +C° P*+J)W

Die Terme
6naß2 j cos 6>w

g2 \sin20W P* + 4sin2©«

kommen durch die S-Transformation hinzu. Die Eigenwerte von
HW sind

E(i1i &-~fi ¦ ïv) Ö"w+1) O"« *• * > • • •) (9)

Die Eigenwerte m« von p« sind für festes jW auf den Bereich
| m^ | < j'W beschränkt, j und m sind Spinquantenzahlen (m
Spinkomponente, j Quantenzabl des Gesamtspins). Für ] \
kann m nur ± \ sein. Die Zustände des untersten Isobarenniveaus
entsprechen also genau den beiden Spinzuständen eines nackten
Nucléons.

Bei den anderen Feldtypen liegen die Verhältnisse ähnlich.
Man entwickelt nach einem Orthogonalsystem, so dass in H' nur
gewisse q auftreten. Diese q bestimmen gewisse Winkel, die die Rolle
von Drehwinkeln bei der Transformation von H' spielen und als

7) Abstandsabhängige Terme werden hier vernachlässigt: \x(ß)- x(")\ -> oo.
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Freiheitsgrade der Nucleonen zu interpretieren sind. In den
symmetrischen Theorien hat man entweder drei „Eulersche Winkel",
wobei den beiden zyklischen Winkeln Spin und Ladung zugeordnet
sind, oder zwei Paar Polarwinkel, deren eines zum Spin, das andere
zur Ladung gehört. Die Isobarenenergie hat entsprechend die Form
der mit 8 transformierten kinetischen Energie eines Kugelkreisels
oder zweier unabhängiger sphärischer Pendel. Die zu den zyklischen
Winkeln konjugierten Impulse sind halbzahlig gequantelt und
haben die Bedeutung einer Spinkomponente und der Ladung des
Nucléons. Die Zustände des tiefsten Isobarenniveaus entsprechen
genau den Spin- und Ladungszuständen eines nackten Nucléons.
Die in VßV auftretenden winkelabhängigen Funktionen verschwinden

im Integral über alle Winkel. Das muss so sein, da H'w etwa
von der Form V ffA Tw T{{> ist und TA im Mittel über alle mög-

ie
liehen Orientierungen der Koordinatensysteme im Spin- und
isotopen Spinraum verschwindet.

§ 2. Ansätze.

Die im folgenden als typische Beispiele zu betrachtenden
Kopplungstypen seien durch den Wechselwirkungsterm der
Hamiltonfunktion charakterisiert.

a) Neutrale Pseudoskalartheorie.

a if-i 3 r f)wy nt< "<n _m / a„ k r„ „m\ urH' - _ _ß >>=0 i=X
2 2<tf /" **«•(*-a^-äf (10a)
'=0 i=X J uXi

b) Symmetrische Pseudoskalartheorie.

2 2 2 ^ *? fdx ö" (*- x(v)i 4? (10bJ
>=o i=x e=i J lß »=o i=

M*> isotope Spinmatrizen)

c) Symmetrische Vektor théorie.

N-X 3 3

ff' -JU 2 2 2 <V ^ f àx Sa (x - 3«) rot, ye

2*2 ^ [dx ô" (x ~x(v))div ** (10c)
v=Q 0=1 " Jß

f ist ein zweiter dimensionsloser Kopplungsparameter
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d) Mischung der Feldtypen (b) und (c) mit / 0 8).

H'~-2 S 2^ fdxôa(x-x^)
v=Q i=X o l J

iîi^ + iLrotr^ (lOd)
ßPS "Xi ßy J

Für diese Kopplungstypen liefert die Methode für starke Kopplung
folgende Isobaren- und Wechselwirkungsenergien.

a) Neutrale Pseudoskalartheorie.

H^> Ì^0A^sm @(V)V® + ^©w (^)S+C0S @{V)P*+1)} (lla)

B« e • /M (,-W+l) e 6yr^2 (12a)

j'W durchläuft alle positiven halbzahligen Werte. Von der anderen
Spinquantenzahl mw (| mW | < j'W) hängen die Energieeigenwerte
nicht ab, so dass ein Isobarenniveau 2 j + 1-fach entartet ist.

b) Symmetrische Pseudoskalartheorie.
1 „,., 1

Ht») e
J WW sin (9« î)W

1 |sin@WPeSmU Pe sin20W

(pW 2 7 2 cos ©WpW pW + pW2) j (llb)

pW (Eigenwert mW) ist eine Spinkomponente, pW. 7 § (Eigenwert
n{v) 7 |) die Ladung des vten Nucléons.

41 « • ?'W G"w+1) £ ^T^- (12b)

j'W und mW haben die gleiche Bedeutung wie im Fall (a). Die
Ladungsquantenzahl «W igt ebenfalls halbzahlig. Es muss auch

| nW | <; j(") sein, so dass ein Isobarenniveau hier (2 j + l)2-fach
entartet ist.

T/^ (™)22 2^(0W'0W'Ï/W)
\ ß ij o

s. (0W, 0M, <p(M)
e A 13b)^ ' ' ; dxAdxA 4n\xM-xW\ '

8) Eine solche Mischung wurde zuerst von Moller und Rosenfeld (Kgl.
Danske Vidensk. S., Math.-fys. Medd. XVII, '8.) mit ptPS ßy und dann von
Schwinger (Bull. Amer. Phys. Soc. 16, Nr. 7, Note 8) mit ßpg< ßy vorgeschlagen,
um die wie l/r3 singulären Tensorkräfte zu eliminieren.
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Dabei sind die sie die 9 Koeffizienten einer orthogonalen
Transformation in Abhängigkeit von drei Eulerschen Winkeln9).

c) Symmetrische Vektor théorie.

I. I (fl9Y < 1

(Ilei) (IIb), (12cl) (12b)

/ o \2„ „ ,,,./. à2 \ e-AYA-xW\
y„. - i (f) S | »» 4? (*» **-^y^ I üpc^ <«• D

Die Bedeutung der Winkel und der sig ist gleich wie im Fall (b).

II. f(//?;)2>l

Hr-4-r^p^sin ©WpW-f^^ (pW2+cos0WpW+i;

i
' '

; (iidi)

pW (Eigenwert mW) ist eine Spinkomponente, pw + | (Eigenwert
nW + i) ist die Ladung des Hen Nucléons.

6 na ß2

BW £z-7cW(feW + 1)+e jW^W + i)
'

32 + 3/2
(12cII)

6 n a pi2
Es= if

j und m haben die gleiche Bedeutung wie oben ; | m | < j. k durchläuft

wie j alle positiven halbzahligen Werte und es ist \n\ < fc.

Der Entartungsgrad eines Isobarenniveaus ist demnach (2 fe 7 1)

(27 + 1).

*;,={* ij)\(e{sß) ¦ ^)A{V) ~ «M ¦ gradW) të" ¦ gradW)]7/2}

(ejrt.eW) «'J' ; ' }
(13c II)1 ' ' ;47t|3(")-3W

9) sn oos © cos 0 cos W + sin <P sin W, s33 cos ®.

10) Die Indizes l und s sollen auf Ladung und Spin hinweisen; sie bedeuten
hier natürlich keine Komponentenbildung. Z.. B. eW cos ©p.
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d) Mischung der Feldtypen (b) und (c) mit / 0.

(lld) (IIb), (12d) (12d), wobei a ig2ps + 2 gr2

ila \2 d2 e-fps\x{f,)-xiv)\
y =VV,HSW M"" t? e

i ' \\ ßps j d xi] à xf 4 n \x^ - 3<">j

nxr AI «2 \ p-vyA-p)-*(*>]
Çï-)ldifâV- - \ L (13d)
ßv \ dxAdxAj 4n\x^-x^\ '

Diese Formeln sind unter Voraussetzung ruhender Nucleonen
abgeleitet. Im folgenden sollen sie auch auf Kerne, in denen die
Nucleonen natürlich nicht ruhen, angewendet werden, in der
Meinung, dass die Geschwindigkeiten von unrelativistischer Grössenordnung

sind.

§ 3. Die statistische Näherung.

Wir diskutieren die Energie schwerer Kerne in der statistischen
Näherung. Steht q für sämtliche Koordinaten eines Nucléons, und
ist V(q', q") die Wechselwirkungsenergie zweier Nucleonen mit den
Koordinaten q' und q", so ist die potentielle Energie nach Har-
tree und Fock

#rot= ifdq'Jdq"[Q(q') e(q") -Q (q[, q") o(q", q')]V(q', q") (14)

WO jy_!
9(q',q") Sfa'HHî"). e(?) e(3,3) (is)

i>=0

und (q | v) die Eigenfunktion des Hen Nucléons ist. Aus § 2
entnehmen wir die Bedeutung von q:

q {q1 xu q2 x2, q3 x3, q* cos 0, q5 0} n) (16a)

q {g1 x,, q2 x2, q3 x3, g4 cos 0, q5 0, q6 ¥}
(16b) (16cl) (16d)

q {q1=x1, q2=x2, q3=x3, qi=cos 0, q5=0h q6 cos 0S, q!=0s)
n

dq=JJdql (16c II)
i X

n) In diesem Fall hängen die Dichten streng genommen noch von einer
zweiwertigen Ladungsvariablen ab, während fdq' f dq" die Summation über diese ein-
schliesst. Unter der Annahme, dass jeder Zustand durch ein Proton und ein Neutron

besetzt ist (Vernachlässigung der Coulombenergie), kann man diese Ladungsvariable

jedoch einfach weglassen.
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Aus (14) ist ersichtlich, dass nur das Richtungsmittel von V(q', q")
eine Rolle spielt, so dass in (13) überall folgende Vereinfachung
angebracht werden kann:

f)2 e-ii\x(f)-xM\ e-AYß>~xiv)\
' "ï Qa a ZA

àxW dxA 4n|3<"> — 3«|
ó 3

4n\3<"> — xW|

e-,|»-,W| 12)

-**'"* 4* |s<*-sM|
(17)

Damit wird V(q', q") von der Form

V(q', q") J (| x' - x" j) 2 h (co') sk (co") (18)
k

(co steht für die Gesamtheit der Winkelkoordinaten : co={cj<4, qn}),
wobei

_ ,/_//!
J{\x'-x"\)=-e~'"f~" (a), (b), (c) (19)

4n\x —x |

c/ y 4n \x' — x"\ \ g J 4 n \x' — x"
und

**(«»)=-7=-«*(») (20a)
V 3

s*H ^sie(<») (20b) (20cl) (20d)
Vo

Die Paare i g sind durch einen einfachen Index h durchnumeriert zu denken.

sk(co) -lrT<isAco)ele(co) fürfe l, 2. ..9 (20cII)
V»

sxo(oi) fen(co), s11(co)=fcl2(co), s12 fdl3(co)

Damit ist immer

und
1 y

fdœsk(cti) 0 (dco= JJdqA (21)

2*1
3 W

g2 (b), (cl)und (d) (22)

-Ç+f2 (dl)
12) Hier kommt streng genommen noch 1/s òi0- ò(x(m)- aW) hinzu. Solange

\x(ß)- x(v)\ ^> a ist, für welchen Fall Vpv nur abgeleitet ist, verschwindet dies. In
der statistischen Näherung wird jedoch über alle Abstände integriert. Man hat
daher Vßv für kleine Abstände zu extrapolieren, was in der Weise geschieht, dass man
diesen Nahewirkungsterm weglässt. Man kann ihn immer durch einen ad hoc
gemachten Zusatz in H' kompensiert denken.
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Die näherungsweise Berechnung der Dichte gelingt einfach in
zwei Grenzfällen :

1) Grenzfall grosser Kernradien:

lit der Kernradius so gross, dass die maximale kinetische
Energie eines Nucléons P2/2 M klein gegen die Isobarenanregungsenergie

(~ e) ist, so werden sich praktisch alle Nucleonen auf dem
untersten Isobarenniveau befinden. Man kann dann (q \ v)

(x | v) (co | v) setzen, wo (co J v) eine zum tiefsten Eigenwert
gehörige Eigenfunktion von ffW ist. Unter der Annahme, dass in
jedem Translationszustand alle vier Spin-Ladungszustände des
tiefsten Isobarenniveaus realisiert sind (Vernachlässigung der
Coulombenergie) wird dann die Dichte

Q(q',q") o(x',x")ifi fi(co'\Xx)(xX\a>"), o(q) o(q, q) (23)
x=lA=X

Wenn (co \ Xx) die vier unabhängigen Eigenfunktionen des untersten
Isobarenniveaus sind, x numeriert die Spinzustände, X die Ladungszustände.

Aus Symmetriegründen ist E (co ] Xx) (xX | co) von co

unabhängig, so dass wegen (18) und (21) der erste Term in (14)
verschwindet. Durch Einsetzen von (23) in (14) wird

Bpot — | dx' dx" q (x', x") J (\ x' — x" j)

tt2 2 2 (*'r 1s* Ir *") (*"A" Is* IAV) (24)
k x' X' x" k"

wenn (x' X' | sk | X" x") —dco (x'X' \ co) s7c(co) (co \ X" x") ist.
Diese Matrizen bestimmt man nach (20) aus den Matrizen

der e,- bzw. s,-„, für die man findet

(x'X'\e{\X"x") idx,x..(x'\ot\x")
(X'X' | Sie | X"x") =—\ (A | <7< | x") (X' | Te j X")

(x'X' | eS2 e6e | X"x") i («' | at \ x") (X' | xe \ X")

(x'X'\eee \X"x") ìòxrx„(X'\re\X")

(25)

Nach (20) und (25) ist somit
J-fl23« »

i
1 6 2 (*'X' j sk\ X"x") (x"X" | s/£j X' «') U2 g2 (b), (cl) und (d)

**A'*'*" lîii^+iV/2 (dl)13)
(26)

13) Hier ist die Bedingung für den Grenzfall grosser Kernradien
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2) Grenzfall kleiner Kernradien P2/2 M > e (bzw. P2/2 M > e,>e„).

Ist umgekehrt der Kernradius so klein, dass die maximale
kinetische Energie eines Nucléons gross gegen die Isobarenanregungsenergie

ist, so dass viele höhere Isobaren im Kern angeregt
sind, so kann man die Dichten, wie Wentzel14) gezeigt hat, in
einfacher Weise mit der Thomas-Fermi-Methode berechnen, wobei die
q aus (16) zusammen mit den zu ihnen konjugierten Impulsen den
Phasenraum bilden. Die Metrik des cpRaumes ist natürlich nicht
euklidisch; sie ist im wesentlichen dadurch bestimmt, dass die
Winkelvariable Koordinaten auf einer Kugelfläche (a), auf einer
dreidimensionalen Hypersphäre15) ((b), (cl) und (d)) oder auf zwei
Kugelflächen (eil) sind. Über den Radius dieser Kugeln kann man
noch willkürlich verfügen. Es ist bequem, den Radius der

zweidimensionalen Kugelflächen gleich —. und den der drei-& & V2 M e

dimensionalen Hvpersphären gleich zu setzen. Wir er-J * * & 2 yAAAe
halten dann folgende Metriken:

9m — f>ik wenn i oder fc < 3 ist.

Für i und fe > 3 wird
1

2Me(l-(g*)2)

0

2 M eil iT (94\2?•
2 Me

1

2Meil-(qi)2)
(9ik)

2Mb 2Mb

2Mb
(26b)

2Me(l (24)

2 M 2Meqi
(9ik)

2Meq
(«b

2M.S

1-5* (A)1\'Z

2Mb
9b4\2

(26a)

(26cl) (26d)

14) G. Wentzel, Helv. Phys. Acta 15, S. 685 (1942). Im folgenden als 1. c.
1942 zitiert.

16) Es ist eine in der Kreiseltheorie bekannte Tatsache, dass man die Euler-
schen Winkel als Koordinaten auf einer dreidimensionalen Hypersphäre auffassen
kann und dass ein Kugelkreisel einem sphärischen Pendel auf dieser Hypersphäre
äquivalent ist. (Vgl. z. B. Hund ZS. f. Phys. 51, S. 1, 1928.)
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/
(9i>

2Afe,(l-(?«)»)

V

o

0

0

0

l-(g4)2
2Mb,

0

0

0

1

\
2Me,(l-(9»)»)

0
2Mf.

(26c II)

/
Vernachlässigt man die Kommutatoren der p und g, was man

in der Thomas-Fermi-Näherung immer macht, so schreibt sich die
Isobarenenergie in allen Fällen in der Form

ff'») — V V flW ik M n(v)
1 ~ 2 M A-i Aj 9 Pi Pk -

i=i k=i 2M P
M 12 (27)

§ 4. Sättigungscharakter der Kräfte.

Es soll in diesem § gezeigt werden, dass der von Wentzel16)
in der Skalartheorie festgestellte Kernzusammenbruch in den hier
betrachteten Theorien nicht stattfindet. Für eine Erläuterung des
Problems beschränken wir uns vorläufig wieder auf das Beispiel
des neutralen Pseudoskalarfeldes (a), um dann den gewünschten
Beweis in einer für alle Fälle gültigen Form durchzuführen.

Greifen wir zunächst zwei „festgehaltene" Nucleonen aus
einem schweren Kern heraus. Ihre Energie ist nach (18) und (27)

H-
2M p

(1) 12
1

2M p
(2) 12 9*

J(r12)(e(coW)-e(co®)) (28)

12;Durch Einführen des Winkels zwischen e(1) und e(2) ((eW • e<2)) =cos »
wird H separiert. Für kleine Abstände (| J(r12) | ^> e, vgl. (26a),
(27)) sind die tiefsten stationären Zustände Nullpunktsschwingungen

in einer tiefen Potentialmulde und die entsprechenden
Energieeigenwerte sind angenähert gleich der Tiefe dieser
Potentialmulde, d. h. gleich — j J(r12) |. Die Potentialmulde liegt bei
&l2 0 für J(r12) < 0 und bei »12 n für J(r12) > 0. Letzteres ist
hier der Fall, während das Wechselwirkungspotential in der
Skalartheorie das andere Vorzeichen hat. Betrachtet man N Nucleonen
(N ^> 1), so unterscheiden sich die beiden Fälle wesentlich. Im Fall
J(r12) < 0 können alle Winkel bei Null „einfrieren" : Man bekommt
gewöhnliche Kräfte ohne Sättigungscharakter. In der Skalartheorie

hat Wentzel16) gezeigt, dass die kinetische Energie eine

10) 1. c. 1942.
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Schrumpfung des Kerns und damit das „Einfrieren" der Winkel
nicht zu verhindern vermag. Etwas ähnliches kann jedoch im Fall
J(rx2) A 0 nicht eintreten. »12 n bedeutet: Die beiden Nucleonen
befinden sich in zwei diametralen Punkten der Kugelfläche. Es ist
klar, dass bei Anwesenheit von N Nucleonen nicht jedes Paar den
Winkelabstand n haben kann. Dagegen werden die Nucleonen
möglichst grosse relative Winkelabstände haben: Die Nucleonen
„stössen sich ab". Das führt zu einer homogenen Verteilung der
Nucleonen über die ganze Kugelfläche. Wegen (18) und (21) folgt
daraus das Verschwinden des ersten Terms in (14). Ein Kernzusammenbruch

ist damit ausgeschlossen.
Bei den anderen Feldtypen lassen sich im Prinzip ähnliche

Überlegungen durchführen ; nur sind die geometrischen Verhältnisse
komplizierter und weniger anschaulich. Die Konstanz der Dichte
im Winkelbereich hat immer das Verschwinden des ersten Terms
in (14) zur Folge.

Es soll nun allgemein gezeigt werden, dass in allen Theorien
mit 3(f) > 0 die nach der Thomas-Fermi-Methode berechnete
Dichte von co unabhängig ist. Es ist

e(q) JdpQ(q,p) (dp= JJ dpt

wenn q(q, p) die Dichte im Phasenraum ist, die sich aus der
Bedingung bestimmt, dass innerhalb einer Fläche konstanter Energie
jede Phasenraumzelle vom Volumen hn (2n)n ß-iaclr besetzt ist,
und ausserhalb alle Zellen leer sind, (ß 1 in den symmetrischen
Theorien ; ß 2 in der neutralen Theorie entsprechend den beiden
Ladungszuständen des Nucléons.)

Q (q, P)
-r^r für H(q, P)=YW\P \2+U(q) <:. W

und x im Kerninnern (^")
0 sonst

wo das Thomas-Fermi-Potential

U(q)=fdq'e(q')V(q',q)
dx' dco'q(x', co') 3 (\ x' — x D^jSAco') sk(co) ist. (30)

Folglich

e (q)
const. (W - U(q))2 für W- U(q) > 0

und 3 im Kerninnern ("1)

0 sonst
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Bei Vernachlässigung von Oberflächeneffekten können wir
annehmen, dass

g (co) im Kerninnern
I 0 ausserhalb

(32)

jr. f TJ (co) im Kerninnern
j 0 ausserhalb

Dann wird aus (30)

U(co) A / dco' q(co') 2sk(<*>') sic(A) 2 ^ s* I60) (^^)

wo
.4 =Jd(x'-x)3(\ os' — sc |)

und

Cj. 4 /dco g(co) s7c(co)

Multipliziert man dies mit Ck und summiert über fe, so wird mit (33)

2C1=4 fdcoo(co) U((o) (34)

Wir behaupten, dass für A > 017) und q(co) 7 const die rechte
Seite von (34) immer negativ ist, so dass (34) nur durch q(co)

const, 77(co) 0 befriedigt wird.

Beweis :

Seien ü+ und Q~ diejenigen Teilbereiche des gesamten
Winkelbereiches Q, in denen ü(co) > 0 bzw. < 0 ist. Dann ist wegen
i dcosk(co) 0 und (33)

dco U(co) — dco ZI (co)

a+ a-

Mit dem Mittelwertsatz ist dann

f dco q(co) U(co) (Q(co+) — Q(co-))fdcoU(co) (co+ŒU+, co-ŒÛ-)
n ä-r

Der zweite Faktor ist nach Voraussetzung positiv, der erste ist
nach (31) immer negativ, wenn nicht g (co) s const ist. Damit ist
die Behauptung bewiesen. Die hier vernachlässigte Austauschenergie

ist für hinreichend kleine Kernradien sicher vernachlässigbar

klein, so dass jedenfalls kein Kernzusammenbruch eintritt.

17) Dies ist in allen hier betrachteten Theorien der Fall.
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§ 5. Diskussion der Stabilitätsverhältnisse unter Berücksichtigung der

Austauschenergie.

Im folgenden werden wir die Stabilitätsverhältnisse in den
beiden im § 3 behandelten Grenzfällen kleiner und grosser
Kernradien diskutieren. Es wird sich zeigen, dass eine Interpolation im
Zwischengebiet sinnvoll ist. Im Fall (eil) haben die Isobaren
höheren Spins und höherer Ladung verschiedene Anregungsenergien,

so dass die Diskussion in diesem Fall komplizierter wird. Der
Fall (eil) soll deshalb der Einfachheit halber nicht mehr berücksichtigt

werden, zumal dieser Kopplungsansatz wegen der schwachen
Spinabhängigkeit der Kernkräfte, die wahrscheinlich keine
befriedigende Beschreibung des Deuterons erlaubt, für die Beschreibung

der Wirklichkeit weniger in Frage kommt.
P2

A) Grenzfall kleiner Kernradien -~-rz— ^> 1 :

Nach § 4 ist die für die Bestimmung der Phasenraumdichte in
der Thomas-Fermi-Näherung massgebende Fläche H(q, p) const
bei Vernachlässigung der Austauschenergie eine Kugel im p-Raum.
Dies gilt zwar in Strenge nicht mehr, wenn man die Austauschenergie

berücksichtigt, da dann nach Dirac18) H(q, p) --jr \p\2
— UA(q, p) (Ï7 0) ist. Begnügt man sich aber mit einer groben
Abschätzung des Austauscheffektes, so kann man die Fläche
H(q, p) const wieder durch eine Kugel im p-Raum ersetzen,
indem man die p-Abhängigkeit von UA vernachlässigt : UA(q, p) ->
UA(q, 0). Dass nämlich UA(q, p) nicht stark von p abhängt, kann
man folgendermassen einsehen. Wenn man in (14) die Schwerpunkts-

und Relativkoordinaten q und q des Punktepaares q' und q"
einführt und die Dichtematrix q(q', q") darstellt durch das Fourier-
integral r

g (q', g") J dpQ(q, p) é<*¦ 8 Q(q, q) (35)

(p • q) 2 Pk qk \p\ \q\cos (p> q)
k

#rot -%fdqJdpQ(q,p) UA (q,p) (36)
so wird

mit ,-

UA (q,P) j dqe-*<** g (q,q) V(q) (37)

Die Dichtematrix hat ein ausgeprägtes Maximum für q 0 und
fällt bei g" i^l/P rasch ab. Im Integrationsbereich des Jdq ist dann
(pq) Ao 1. Damit ist die behauptete schwache p-Abhängigkeit von
UA evident. Was die g-Abhängigkeit anlangt, ist VA(q, 0) im co-

18) Dibac, Proc. Camr. Phil. Soc. 26, S. 376 (1930).
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Raum aus Symmetriegründen konstant, und die x-Abhängigkeit
ist konsequenterweise wie in U zu ignorieren, im Sinne der
Vernachlässigung von Oberflächeneffekten. Damit wird UA(q, p) «sj

const (sofern x im Kerninnern).
Für die Dichte erhalten wir dann

q (q> p)

(2n)

Q(q)

(2*)
l °

dp

— für | p | < P und x im Kerninnern

sonst
(38)

ß KnP« ß K.P»

\p\<p
(2*r)«Vdet0« (2n*) pMeY?

N
AaA im Kerninnern (39)

0 sonst (y Kernvolumen, ü dm)

wobei Kn das Volumen der n-dimensionalen Einheitskugel ist.
n

(2n)T

K.
n für gerade n2 -4 ¦ o--n

n-X

t.—s—J— - für ungerade
1 • d • &••• n

Damit ist P als Funktion von v/N gegeben.
Mit dieser Dichte berechnet sich die Kernenergie wie folgt :

n

E — Ei, Ev

Kkin

kin ~ J-'Pot
(-^kin ~ kinetische Energie 7 Isobarenenergie.)

ß f x
1 ,t n P2

(2^)M
dp 2M \P\ N-

n + 2 2M
(40)

\p\<p
Bei der Berechnung der potentiellen Energie nach (35), (36) und
(37) ersetzen wir wieder UA(q, p) durch UA(q, 0) und beachten, dass

wegen der Bedingung für unsere Thomas-Fermi-Näherung,
P2^o-2 M e, g(q, q) als Funktion von q ein so schmales Maximum
hat, dass in TJA V(x, w) f& V(x, 0) gesetzt werden kann :

E-Pot
N ß f 2

e-"\*\

N__ß_
Y (2n)

4n\x
\v\<P

I dp ë,i(p-q)

2« dx I dpx e i (Px ¦ x)
g-/i|I| 19)

4ti \x\
(41)

\Px\<P
19) Im Fall (d) (Mischung pseudoskalarer und vektorieller Mesonen) gilt dies

nur, wenn ßy [tPS ß ist. Andernfalls hat man </(|ä:|) aus (19d) einzusetzen.
Wir berücksichtigen den Fall ßy ^ ßpg der Einfachheit halber nicht mehr.
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Dabei wurde näherungsweise über px und pm unabhängig integriert.
Führt man hierin zuerst die Integration über x und dann über px
aus, so wird

EVn> ~N .-J^ V sîpll- 4- arcto —^Pot
2 (2ti)2^ \ P °

pt

20\

öfeiS^JP 1—5-aiclg^. ' (42)

(43)
F>/I- N ~ ~2\Jn)2AYSkF

P Au- -Efoì- -1_ I V s2
Pi

'^' AT- Q /Q _\ 2 Zj *N 2 (2n)2^ " dß2

P2
B) Grenzfall grosser Kernradien -j~n—<^L

Aus (24) berechnen wir die potentielle Energie mit

ÌA
j /yi' i rn''

Ott ,3 / dpxei(îVx'~x") für —s— im Kerninnern
]\pÌ\<p (44)

0 sonst
v ;

analog wie oben zu

ETat — ——4 -iyy y (rYX'\sk\X"x")(x"X"\sYX'x')Pot 2 (2ti)2 lÖVÄ'Ä
p{l—£- arctg —^ (45)

V p /*/
Q p2

E tf — -^— (46)

Die Beziehung zwischen P und v'/N ergibt sich durch

P3 im Kerninnern
q(x) { (2 7t)3 3 ~

v (47)

0 ausserhalb

Zusammenfassend ergibt sich in den symmetrischen Theorien (b),
(cl), (d) (ßPS ßv):

JV 4 2 M 2 (^(»-t-^t) (48A)

nach (38), (42) und (22)

20) Für diese P-Abhängigkeit der potentiellen Energie, insbesondere für den
linearen Anstieg bei grossen P, ist es wesentlich, dass bei uns J(|7|) das Yukawa-
Potential ist. Schneidet man das Yukawa-Potential bei kleinen Abständen ab, so
wird Epoi konstant für P-Werte, die gross gegen die reziproke Abschneidelange sind.
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B)

,¥= (48 n\s,N y M 2 Ms
nach (39)

2Mb

E^_ 3

N ~ "
<1

P2 1

Pfl-4-arctg —P ß5 2M 6 \2tt
nach (46), (45) und (26)

37t2U 1

P~
nach (47)

(49A)

(48B)

(49B)

N Mi

1 JL*,¦** P /v
Fig. 1

In der neutralen Pseudoskalartheorie hat man etwas andere
Zahlkoeffizienten. Die folgende Diskussion kann jedoch in der
gleichen Weise durchgeführt werden und liefert qualitativ die
gleichen Ergebnisse. E/N hat als Funktion von P in beiden Grenzfällen

den gleichen allgemeinen Verlauf, und die Zahlkoeffizienten
haben die gleiche Grössenordnung. Es erscheint daher vernünftig
für P2/2 Mssilzu interpolieren. Der qualitative Verlauf von E/N
ist in Fig. 1 dargestellt. Die punktierte Kurve gilt für kleine g,
die ausgezogene für grosse g. Stabile Kerne sind nur möglich, wenn
E/N ein Minimum hat. Das liefert eine einschränkende Bedingung
für die Wahl von g. Da nach (48A) und (43) das Minimum der
Energie nur bei P > u liegen kann, ist für P0 ^> \/ 2 M e

1

N <
ß

im Widerspruch zur Erfahrung. Werte von g und e, die P0 ^>\/2Me
liefern, sind daher auszuschliessen. Aus (48) ergibt sich

p(A)
0 ÏM i 9

2n
» tfy (50A)
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9PP» Ar M V(£)-(*<?£)"} «0 36 (\2 7t

Stabilität haben wir danach nur, wenn

JL)2>5al (si)

Damit die Näherungsformeln für starke Kopplung überhaupt
anwendbar sind, muss g^> apt, angenommen werden, d. h. nach (12b)

— /-<! (52)
pt 2n

Ferner sollte der Protonradius klein gegen die Reichweite der
Kernkräfte sein (aß <^ 1) d. h. nach (12b)

6 l g V* < 1 (53)
ß

Die Bedingung (52) ist immer erfüllt, wenn (51) und (53) erfüllt
sind, und braucht daher nicht weiter berücksichtigt zu werden.
Sei (g/2n)2 > 1. Dann folgt aus (53) e<^.ß.

P<f -. I2M I q \8
o coi/ / y ' ^l/2Me y 9e \2n

Erfahrungsgemäss ist ß fn-A^M. (-£—) > 1 ist also auszuschlies-

sen. Sei 1-4— f» 5 -£-. Dann folgt aus (53) e<^.ß.

p? ^ i -,/sr/ <? v a«

]/~2M^ 4 |/ g \2?t/ '~ /Ms ~

£% 64l/Z /.JL^-*- • -1 < -N/ Y M [2 n M ß
~

(i

*pB) c, i t/E/jlY>i
"V2 Ms _ 10 K s \2«y ~

tf / \27t/ M pt ß

Für IO"3 M < s < IO-2 M, d. h. 1 MeV < s < 10 MeV sind alle
Bedingungen erfüllt, und man erhält Kernradien der richtigen

P2
Grössenordnung. Es ist dann

2 M en 1, so dass einige höhere

Isobaren im Kern vorhanden sind. Die Bindungsenefgie pro Par-
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tikel ergibt sich < IO-2 M. Das ist befriedigend, da die statistische
Näherung immer zu kleine Werte für die Bindungsenergie gibt,
s > 10 MeV ist nach (52) und (53) nur möglich, wenn g entsprechend

kleiner ist, was durch (51) verboten wird. (51) ist jedoch nur
eine hinreichende, aber keine notwendige Bedingung für Stabilität,
da die statistische Näherung immer zu hohe Energiewerte liefert.
Man wird also s > 10 MeV, (-Y+-) < 5 -—¦ nicht ohne weiteres' \ 2 at / M
ausschliessen dürfen. Jedenfalls ist gezeigt, dass die Annahme
einer starken Kopplung in den betrachteten Mesontheorien mit
der Stabilität und den tröpfchenartigen Eigenschaften der Kerne
verträglich ist.

§ 6. Berücksichtigung der Coulombenergie.

P2
A) Grenzfall kleiner Kernradien

2
- ^> 1.

In den symmetrischen Theorien (b), (cl) und (d) ist die Kern-
P2

ladungszahl für -r-jj— ^> 1

z Jdqfdp g(q,p) (pw+i) (pw p6) (54)

da pw 7 \ die Ladung eines Nucléons ist. Setzt man hierin die unter
Vernachlässigung der Coulombenergie berechnete Dichte ein, so
liefert pm aus Symmetriegründen keinen Beitrag und es wird
Z N/2. Die Abweichung von N/2 erhält man durch Berücksichtigung

der Coulombenergie in (28)

7?—V* im Innern der Fläche H(q, p) const
9 (q, P) }

und | x j < R (B Kernradius) (55)
0 sonst

wobei in H(q, p) die Coulombenergie mitzuberücksichtigen ist. Wir
setzen das Coulombpotential ehi er homogen geladenen Kugel ein
und vernachlässigen die Coulombaustauschenergie.

« fe V) - Y^ WHV. 0)+i£i' - i(J0)<^+»-»njt
Hierin vernachlässigen wir noch den Term J (|.r|/E)2. Die Fläche
H(q, p) const ist demnach eine Kugel im p-Raum mit der
Gleichung

—— V cfk p,- pk-\ —— pR const (57)
2 M ii y F F 2 R F6 '
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Wir setzen p, p/ 7 dt und bestimmen die dt so, dass die
Gleichung der Kugelfläche (57) \p'\ const lautet.

1 3 Ze2 n

d«
1 J3_ Ze2

¥7~2~Tr~
Mit

—für Ip'l < P, |.x|< B

sonst
wird

I o

und daraus

N* (B =r0 JV*) (58)
2 r0 s

Bei passender Wahl von s gibt diese Formel Z als Funktion von N
in Übereinstimmung mit der Erfahrung21). Setzt man nach § 5

s «s; 10 MeV, so erhält man für N 200 (Hg) eine zu kleine
Kernladung Z äs 30. Der wirkliche Wert Z 80 würde s sa 100 MeV
erfordern. Werte von e und g, für die P02^>2 Ms wird, wurden
in § 5 bereits ausgeschlossen, da sie zu kleine Kernradien liefern.
Wie man sieht würden sie zudem eine viel zu kleine Kernladung
ergeben. Im Fall P02 & 2 M e, der nach § 5 der Wirklichkeit
ungefähr entsprechen sollte, wird man kaum erwarten dürfen, dass
die Formel (58) noch brauchbar ist, zumal die Betrachtung des
anderen Grenzfalles B eine Formel mit wesentlich anderen
Zahlkoeffizienten liefern wird, sodass eine Interpolation für das

Zwischengebiet nicht ohne weiteres möglich erscheint.
Für die Energie erhalten wir bei Vernachlässigung der Cou-

1 ombaustauschenergie

E E° 1 _ 3 Ze2 ¦ E° 1 3 Ze2 ,Bft,l-¥+2l|^^ÏT-A+^¥ +ïïT (59)

E° ist die früher mit E bezeichnete Energie. Der Zahlfaktor f statt

b Vgl. z. B. Bethe und Bacher, Rev. of mod. Phys. (1936), S. 97.
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òf rührt von der Vernachlässigung von -=-1 AA) her. Korrigiert man

dies, so wird mit (58)

E E° IN-2ZV 3 Z2e2 .„.
W W + îe{~~N—j+-J RN

(60)

P2
B) Grenzfall grosser Kernradien -„ „ <^ 1.

In diesem Fall erhält man in bekannter Weise22) :

EMn E°kin 1 |/2Z\I (2(N-Z)\Î
N N 2 \\ N \ N

3 P2 l1+5/_^Z\«|~ 5 2M \ 9 \ JV

wo P durch (49B) definiert ist. Die potentielle Energie als Funktion
von Z/N berechnen wir analog wie im § 3, wobei die Annahme, dass
in jedem Translationszustand beide Ladungszustände realisiert
sind, fallen zu lassen ist. Bezeichnet X 1 den Protonzustand und
X 2 den Neutronzustand, so wird nach § 3 in den symmetrischen
Theorien

EFot -i~fdx' fdx"\\eAx', z")!222(*'M'ai1 *") (*"il*«.!**')

7 |g„(3', z")|2 g 2 (*' 2 Kl2 "") (*" 2 Kl2 «') (62)

+ 2qv(x',x") Qn(x", 3') 2 2(*'1lS<el2*:")0*"2ls»el1 «')}j(|3'-3"|)

Die Indizes p und n unterscheiden die zu den Protonen und
Neutronen gehörigen Grössen. Nach (25) ist dann

EPot — sVg*fdx'fdx"{\QP(x', x")\2+ \q„(x', x")\2
+.4 0,(3', 3") g„(3", 3')} J(|3' — 3"|) (63)

Berechnet man dies analog wie in § 5, so ergibt sich

-Ì7jlYJ°*-zp./i-JL ¦ p-*-~M^ P^"p71-i;arc,ëT
+J^p"(1-t"otgt11 lli4'

22) Vgl. Bethe und Bacheb, 1. c, S. 155ff. Bei Bethe und Bacheb wird an
Stelle des Yukawa-Potentials die Potentialfunktion e~i''r' zugrunde gelegt; sonst
ist die Rechnung im Prinzip die gleiche.
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wobei P^P {l~-~Xfnnd Pn= P (l + ^ y2Z)*ist. Setzt man

darin (7^7^ — ein, und entwickelt nach Potenzen von —^—
so wird

Für die wirkliche Kernladungszahl muss dies ein Minimum werden.
Man erhält somit

N-2Z
N ~H-%r + ¦

1 3 e2
N¦¦:, (67)

Dies gibt Z als Funktion von N in Übereinstimmung mit der Er-
fahrimg, wenn

/ u
24 \ 2 tii ß ss 10 MeV ist.

Das ist für den in § 5 gefundenen Wert (-™ J fv 5 ß
M und für

kleinere g erfüllt. Dieses Ergebnis spricht dafür, dass in den
wirklichen Kernen nur sehr wenige höhere Isobaren vorhanden sein
können, sodass eher eine Approximation vom Fall B her tunlich
erscheint.

In der neutralen Theorie berechnet man die Kernladungszahl
in beiden Grenzfällen analog wie hier im Grenzfall grosser
Kernradien (B) ; nur treten infolge des fehlenden Ladungsaustausches
keine gemischten Produkte der Dichtematrizen in der potentiellen
Energie auf. Das hat zur Folge, dass die potentielle Energie mit
wachsendem Neutronenüberschuss abnimmt. Diese Abnahme ist
jedoch für die Grössenordnung von g, die man nach § 5 fordern
muss, klein gegen die entsprechende Zunahme der kinetischen
Energie.

§ 7. Zusammenfassung.

In der statistischen Näherung ist die potentielle Energie eines
schweren Kernes allgemein von der Form (14)

£rot i fdq'fdq" [g (q') g (q") - g (q', q") o (q", q')] V(q', q")

Die Dichten lassen sich einfach berechnen, wenn entweder sehr
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viele oder praktisch keine höheren Isobaren angeregt sind (kleine
oder grosse Kernradien), im ersten Fall mit der Thomas-Fermi -

Methode, im zweiten aus den „kraftfreien" Eigenfunktionen. Da
[dco' V(q', q") 0 ist, verschwindet der erste Term von -EPot, wenn
die Dichteverteilung im Winkelraum homogen ist. Dies ist immer
der Fall, wenn sich praktisch alle Nucleonen auf dem untersten
Isobarenniveau befinden, da die zu einem vollbesetzten Isobarenniveau

gehörige Dichteverteilung aus Symmetriegründen homogen
sein muss. Auch im anderen Grenzfall ist, wie wir im § 4 gezeigt
haben, die Dichteverteilung im Winkelraum homogen, wenn sich
die Nucleonen im Winkelraum abstossen (3(r) > 0). Die Berechnung

des verbleibenden Terms zeigt, dass es vernünftig ist, zwischen
beiden Grenzfällen zu interpolieren. Für hinreichend kleine
Kernradien ist die so berechnete potentielle Energie klein gegen die
kinetische Energie plus Isobarenenergie, so dass jedenfalls kein
Kernzusammenbruch eintritt. Existenz und Radius stabiler Kerne
hängen von den Werten des Kopplungsparameters und der
Isobarenanregungsenergie ab, die durch die Bedingungen (52) und (53)
eingeschränkt sind. Für grosse g und kleine s erhält man zu kleine
Kernradien und zu grosse Bindungsenergien. Für j«l und
e ü*s 10 MeV hat man Übereinstimmung mit der Erfahrung, soweit
sie in der statistischen Näherung erwartet werden kann. Die
stabilen Kerne fallen dann in das Gebiet zwischen den beiden Grenzfällen,

wo nur wenige höhere Isobaren angeregt sind. Auch die
Berechnung der Kernladung lässt darauf schliessen, dass in den
wirklichen Kernen nur wenige höhere Isobaren angeregt sein
dürften. Für wesentlich grössere s-Werte und entsprechend kleinere
(/-Werte liefert die statistische Näherung keine stabilen Kerne mehr.
Wenn überhaupt Stabilität besteht, sind Volumen und Energie des

Kerns proportional zu N.

Meinem verehrten Lehrer, Herrn Prof. Dr. Gregor Wentzel,
der diese Arbeit angeregt hat, möchte ich für das lebhafte Interesse
und die vielen freundlichen Ratschläge, mit denen er ihre
Ausführung gefördert hat, herzlichst danken.

Zürich, Physikalisches Institut der Universität.
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