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Zur Theorie magnetisech geladener Teilchen

von M. Fierz.
(23. XTII. 1943.)

Zusammenfassung. In dieser Arbeit wird ein neuer Beweis fiir das folgende,
von Dirac aufgestellte Theorem gegeben: Fithrt man in der Quantentheorie ma-
gnetisch geladene Teilchen ein, so muss deren magnetische Ladung p ein ganzzah-
liges Vielfaches einer Einheitsladung 7 c/2 e betragen; wo ¢ das elektrische Elemen-
tarquantum bedeutet. Weiter wird diese Aussage auch korrespondenzmassig ge-
deutet. ;

Ewleitung. Dirac?) hat im Jahre 1931 darauf hingewiesen,
dass es in der Quantentheorie moglich ist, auch magnetisch gela-
dene Teilchen (,,singulire Magnetpole*) zu behandeln. Es schien
thm merkwiirdig, dass solche Teilchen, soweit wir wissen, In der
Natur nicht vorkommen.’

Auch in der klassischen Elektrodynamik ist es moglich, ma-
gnetische Strome und Ladungen einzufiihren, indem man auf der
rechten Seite der homogenen Feldgleichungen

1 . :
rot(§+7$j=0; div$H =0

eine magnetische Strom- bzw. Ladungsdichte m und m emfuhrt
gemass

. 4
rot@+—$)—-—_jf-m div H=4am

Die Gesamtladung f m dv transformiert sich bei Lorentztransfor-

mationen wie ein Pseudoskalar. Waihrend aber die die Strom-
dichte m und die Ladungsdichte m erzeugenden Magnetpole klas-
sisch eine beliebige magnetische Ladung p besitzen konnen, ist in
der Quantentheorie, wie DirAac gezeigt hat, diese Ladung p mit
dem elektrischen Elementarquantum e der Grosse nach gekoppelt
Die dlmensmnslose Zahl

ep
hc

kann hier nur die Werte 0, + 1/,, + 1, + 3/,... annehmen. Da nun

o 2 ‘ .
die Femnstrukturkonstante {—E den Wert /,,, hat, so miissen die
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magnetischen Ladungen ganzzahlige Vielfache einer Einheit sein,
die, in magnetostatischen cgs-Einheiten gemessen 137/,mal grosser
1st als die Elektronenladung, gemessen in elektrostatischen cgs-Ein-
heiten.

Uber die Masse dieser Teilchen liasst sich auf Grund unserer
heutigen Kenntnisse nichts Zwingendes aussagen. Nimmt man je-
doch an, sie hitten eine Ausdehnung von der Grossenordnung des
klassischen Elektronenradius, so wirde ihre magnetostatische
Masse 4700mal grosser sein als die Elektronenmasse.

Wenn also die klassische Theorie formal durch Einfithren ma-
gnetischer Strome und Ladungen beziiglich € und 9 vollig symme-
trisiert werden kann, so ist das in der Quantentheorie unméglich,

2
da - nicht gleich 1ist. Nur in diesem Fall konnte ja p = e ge-

setzt werden. Wir glauben daher, dass ein wirkliches Verstandnis
fir das Fehlen magnetischer Ladungen in der Natur erst durch
eine Theorie geliefert werden kann, die den zahlenmaéssigen Wert
der Femstrukturkonstanten zu berechnen gestattet.

. , 2 )
Die Bedeutung des Dirac’schen Theorems, dass #;Tp eine

ganze Zahl sein miisse, liegt also darin, dass es die Frage nach der
Existenz magnetischer Teilchen mit dem Problem der Feinstruktur-
konstanten verkniipft.

Der Beweis, den Dirac fiir sein Theorem gegeben hat, ist nun
allerdings nicht sehr durchsichtig. Da es sich aber um einen grund-
legenden Sachverhalt handelt, so soll in der vorliegenden Arbeit ein
neuer Beweis gegeben werden, der auch eine korrespondenzmaéssige
Deutung der Zusammenhinge ermoglicht.

1. Wir diskutieren zuerst die klassischen Bewegungsgleichun-
gen, welche ein Teilchen der Masse m und der elektrischen Ladung e
im Felde eines Magnetpols p beschreiben. Das magnetische Feld
hat im Abstand r vom Pol p den Betrag p/r2.

Die Gleichungen lauten, falls die magnetische Ladung im
Koordinatenursprung ruht |

= ep + -
mir = , & 1.1
&= L [5,3] | (1)
Aus diesen Gleichungen folgt, dass die kinetische Energie konstant
bleibt. Drei weitere Integrale sind durch die Komponenten des
Vektors

d=miz,z]— P
¢

= const. (1.2)

-21&%1'

gegeben. Dies beweist man leicht, indem man (1.1) vektoriell mit z
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multipliziert. Der Vektor d spielt hier die Rolle des Impulsmomen-
tes. Der 1. Term in (1.2) stellt das Impulsmoment der Teilchen-
bewegung dar. Der 2. Term, ein Vektor in der Verbindungsrichtung
der elektrischen mit der magnetischen Ladung, hat den konstanten
Betrag‘%’i. Dieser Vektor ist gleich dem Impulsmoment J, das

durch die Uberlagerung des elektrischen mit dem magnetischen
Feld zustande kommt. Die beiden Felder geben némlich zu einem
Energiestrom (Poynting-Vektor) um die Verbindungslinie der bei-
den Ladungen Anlass. Das dem Energiestrom entsprechende Im-

pulsfeld erzeugt das Impulsmoment /.

Das Impulsmoment eines elektromagnetischen Feldes ist all-
gemein gegeben durch

J =ﬁ?fd@ 7, [€9]] :Z%fdv{@(&@>u5(i@)} (1-$>

Denken wir uns die magnetische Ladung im Koordinatenursprung,
die elektrische Ladung im Abstande a auf der Z-Achse, dann wird

___ep arsin® & 14'
Jer= 4ncfd¢./‘dﬁde [72 sin2& + (r cos & —a)?]": (14)

Aus Symmetriegriinden sind J, = J, = 0.

Das Iategral (1.4) lisst sich elementar auswerten und man fin-
det in der Tat den von a unabhéngigen Wert

L o (1.5)
C

Der Massenpunkt m bewegt sich, wie aus (1.1) leicht folgt, auf einem

Kreiskegel mit der Achsenrichtung d. Sein Offnungswinkel @ ist
durch die Gleichung |

ep
cos O = . l?l |
gegeben. Rollt man den Kegel auf eine Ebene ab, so sind die Bahn-
kurven Geraden, die mit konstanter Geschwindigkeit durchlaufen
werden.
2. Wir haben im vorhergehenden Abschnitt gezeigt, dass durch
Uberlagern der von den beiden Ladungen erzeugten Felder ein

Impulsmoment J entsteht, das zum Impulsmoment der Bahn-
bewegung addiert werden muss. Man kann nun das Dirac’sche

Theorem auch so aussprechen: Der Betrag des Impulsmomentes J,
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der klassisch den Wert ec—p besitzt, muss in der Quantentheorie
gleich einem ganzen oder halbganzen Vielfachen von & sein.

Eine analoge Aussage gilt z. B. auch fir das Impulsmoment
um die Figurachse eines symmetrischen Kreisels. Man beweist
solche Satze am einfachsten, indem man von der Drehinvarianz der
betretfenden Schrodingergleichung Gebrauch macht.

Die 1m folgenden entwickelte Beweisfithrung beruht auf einem
Grundsatz, den zuerst PAuri?) in seiner Arbeit iiber die Frage der
Ein- oder Zweiwertigkeit der Eigenfunktionen in der Wellen-
mechanik aufgestellt hat. Pavry fordert, dass in dieser Theorie fiir
die Drehimpulse ein eindeutiger Zusammenhang zwischen Opera-
toren- und Matrizenkalkiil bestehen soll. Da die Drehimpulse in der
Wellenmechanik zugleich die Operatoren der infinitesimalen Dre-
hungen eines rotationssymmetrischen Problems darstellen, so be-
deutet dies, dass die Eigenfunktionen des Problems eine Darstellung
der Drehgruppe bilden miissen.

Wenn wir das Magnetfeld %? durch folgendes Vektorpotential
beschreiben

dy——L Y . 4 P T . 40, @1
r r+z ror+z

dann lautet die den Bewegungsgleichungen (1.1) entsprechende
Schrodingergleichung in Polarkoordinaten

AY’J—J 2 u 1 0o p° 1—00819‘].‘:[1_
| 2 14cosd [

ks _OmEY. (22
|72 1+ cos &) & Og " 2.2)

Dabei 1st u = -%?;— eine dimensionslose Zahl.

Diese Gleichung ist von T'amm?) gelost worden. Dabel hat er
jedoch nach Dirac vorausgesetzt, dass 2 u = 4+ %, wo n elne ganze
Zahl bedeutet. Da wir das aber gerade beweisen wollen, so werden
wir vorldufig tiber den Zahlenwert von g nichts voraussetzen.

Den Integralen d (1.2) entsprechen in der Wellenmechanik die
folgenden Operatoren

1 0
dz:‘fi_
1 0@ #

W sin &

dlj:@ldy:eiii¢(:(:—()?3—~+icotgﬁ 0

_ ) (2.3)
Op 14 cos?

Diese Operatoren konnen durch Ausfithren einer infinitesimalen
Drehung aus der Hamiltonfunktion gewonnen werden. Da die Po-
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tentiale (2.1) nicht drehinvariant sind, so hat man nach der Drehung
durch eine Eichtransformation die Potentiale auf die urspriingliche
Form (2.1) zu bringen. Dieser entsprechen die Zusitze proportional
u 1n (2.3).

Die Operatoren d ertiillen die Vertauschungsrelationen

[d,, di] = 14, , (2.4)
Man findet, dass _
1 0 . 0 1 02
2 B 9 L
2% == 5 55 (Sm o&) sin? 9 02

(2.5)
2p 1 0 p2(l—cosd)

"~ 14-cos® i Og 1+cos &

2

Daher kann man die Schrédingergleichung (2.2) in der Form

—ompEw— L MFJ—{Z@%—,}}? 2.2

r  0r? re
schreiben. Hieraus ist ersichtlich, dass wegen (2.4) die d; mit der
Hamiltonfunktion vertauschbar sind.
Um die Gleichung (2.2") zu lésen, machen wir fiir ¥ den Ansatz

¥Y=R(r)Y,,(cos ) etmtue (2.6)
m 1st der Eigenwert von d, und braucht keine ganze Zahl zu sein.

Aus S @Y =¥
k

folgt fiir die Funktion Y, (z), mit # = cos &, die Gleichung

+m24+2uma

1—23 Y’ —-24Y, 2
( ) 2 L 1— g2

Y, +AY,=0 (2.7

Diese Gleichung ist identisch mit derjenigen eines symmetrischen
Kreisels (siehe z. B. A. SommerreELD, Atombau und Spektral-
linien IT (19389), S. 162, Gl. (11)).

Wegen der Vertauschbarkeit der Operatoren d; mit der Ha-
miltonfunktion (d. h. wegen der Drehinvarianz des Problems) er-
hélt man durch Anwendung des Operators d, + 1 d, auf eine Lo-
sung Y,, von (2.7) eine neue Losung Y, ., die zum selben Eigen-
wert A gehort. Der Operator d,, + ¢ d, hat in der Variablen 2 =cos 9 .
die Form '

oo ' 1
1/1m$2( ' ‘{‘mm"th)Ym:Ym%rl. (2=8\

dx 1—x2
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Nun gilt allgemein

, fjdx ffdx
Y+fY =e T ( )

Das gibt, auf (2.8) angewendet, mit f = 7
m+l (] —p\#2 d ([1+ 2 \#2 —
— (1—z? 1—a2) "z 2.9
mpr= (1=2%) 2 (1+:n) dm{(l—x) d=af Y""}( )

Entsprechend kann man die Operation d, —td, behandeln,
wodurch man eine Formel fir Y, _; gewinnt.

Hieraus folgen durch wiederholtes Anwenden die beiden For-
meln

min [1—g\£ d* [(1+2z » 1
Y =(1—x2 1—z%)~ Y
mn =127 2 (1+:z;)2dw“ {(1%) == l
jJ (2.10)

n—m 14z \E d» [[1—z\ £ m;
Y —(1—72) 2 2 s (1—x2Y 2 Y
mn=(1=2%) (1—:13) dz? KlJra:) 1=z
Mit Hilfe dieser Gleichungen lassen sich aus Y,, im allgemeinen be-
liebig viele Losungen Y, ., (x) gewinnen, die alle zum selben Eigen-
wert A gehoren. Nach dem zu Anfang dieses Abschnitts aufgestellten
Grundsatz missen alle diese Losungen zugelassen werden, da sonst
die Operatoren d; nicht als lineare Abbildungen im Raume der Y, (),
d. h. als Matrizen geschrieben werden konnen. Dazu ist aber not-
wendig, dass die Integrale
f 'Y 12dzx

existieren. Wegen der in (2.10) in den zu differenzierenden Aus-
driicken vorkommenden Irrationalititen wird dies aber im allge-
meinen fir hinreichend grosse n nicht mehr der Fall sein.

Die Losungen sind nur dann sdmtlich reguldr, wenn sowohl

(Eﬂi) (1—2%"% Y, (2.11)
1—=z
als cuch
I n—ayr Y (2.12)
1+ " '

beides Polynome sind. Dann ist die Anzahl der Funktionen Y, ,,
fir cin gegebenes 4 endlich.
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- Sei nun der Ausdruck (2.11) ein Polynom 9P, dann ist (2.12)
offenbar gleich

(L4 2) mone (L —a) mhe. .

Das 1st nur dann ein Polynom, wenn m und p beide gleichzeitig ganze
oder halbganze Zahlen sind.

Das Dirac’sche Theorem ist dadurch bewiesen.

Weiter erhilt man mittels der Gleichungen (2.10) eine einfache
Darstellung fiir die Losungen von (2.7). Man suche némlich eine
Losung Y, fir die gemiss (2.9) Y,,,, verschwindet. In diesem
Falle 1st der Ausdruck (2.11) eine Konstante und wir erhalten,
indem wir dieses maximale m wie iiblich [ heissen

l—pu I+p
2

Y, u=(0142) 2 (1—x) 2 (2.13)

Das ist eine regulire Losung von (2.7) mit [ =m, falls I >| u |.
Durch Einsetzen ergibt sich der zugehorige Eigenwert:

A=1(+1)

[ 15t gleichzeitig mit x4 ganz oder halbganz.

Aus den Gleichungen (2.18) und (2.10) erhalten wir weiter mit
m = [ —mn die Darstellung
o AT gl

Yym o= (14a)" 2 (1—a)" 2 o (L) (1) ] (214)

tiir die Losungen der Gleichung (2.7), die zum Eigenwert 4 = I(l + 1)
gehort. Als Normierungsfaktor findet man

921+1 (1—m)!

o Gt =t gy @19

+1
fin!m,mdm:Nz:
—1

Da (2.7) bei gleichzeitigem Vertauschen von m mit — m und u mit
— p ungedndert bleibt, so erhalten wir fiir die gleichen Lésungen
cine zweite Darstellung, indem wir die genannte Substitution in
(2.14) und (2.15) vornehmen:

m— p m+ pu dl—[—m

Yimu= 142y 2 (1—a2)2 —r '[(1 +ate(1—g)-r] (214
. 22H—1 B (l+m)1 ’
=911 (I4p) ! (I— ) TomT (2.15")

Y, m nund Y’ . unterscheiden sich nur durch einen konstanten

- Faktor.
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Diese Formeln sind im wesentlichen schon von Tamm?) ange-
geben worden. Seine Darstellung ist jedoch etwas uniibersichtlich,
da Fallunterscheidungen je nach dem Vorzeichen von m und m — u
gemacht werden, was aber tberflissig ist.

Fiir 4 = 0 gehen samtliche, in diesem Abschnitt angegebenen
Formeln in diejenigen fiir die Kugelfunktionen tiber. Fiir g = + 1/,
erhdlt man Funktionen, welche bei der Behandlung des Dirac’-
schen Wasserstoffatoms in Polarkoordinaten, wie das ScHRODIN-
GER®) gezeigt hat, auftreten. Man erkennt das am einfachsten, wenn
man in den von PAuLi2) angegebenen Gleichungen (8. 159, Gl.32a,b)

1 d gy m

Veng as Vemd o+ g k=0
1

/sin & dﬁ (Vsind f)_MHkg 0

zu den Gleichungen zweiter Ordnung fiir f und ¢ tbergeht und
x = cos & setzt. Man findet, mit k — 1/, = [

f= Yz,m,—i/._, s 9= Yz,m,+1/2

In unserer Diskussion der Gleichung (2.7) ist der von PAULI
gegebene Bewels enthalten, dass in diesem Falle m und [ halbganz
seln miissen.

Schliesslich sei darauf hingewiesen, dass die Gleichung (2.7)
mit halbzahligen m und # auch in der von WENTzZEL?) entwickelten
Theorie der Kernkrifte auftritt.

Basel, Physikalische Anstalt der Universitit.
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