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Zur Theorie magnetisch geladener Teilehen
von M. Fierz.

(23. XII. 1943.)

Zusammenfassung. In dieser Arbeit wird ein neuer Beweis für das folgende,
von Dirac aufgestellte Theorem gegeben : Führt man in der Quantentheorie
magnetisch geladene Teilchen ein, so muss deren magnetische Ladung p ein ganzzahliges

Vielfaches einer Einheitsladung hcß e betragen, wo e das elektrische
Elementarquantum bedeutet. Weiter wird diese Aussage auch korrespondenzmässig
gedeutet.

Einleitung. Dirac1) hat im Jahre 1931 darauf hingewiesen,
dass es in der Quantentheorie möglich ist, auch magnetisch geladene

Teilchen („singulare Magnetpole") zu behandeln. Es schien
ihm merkwürdig, dass solche Teilchen, soweit wir wissen, in der
Natur nicht vorkommen.'

Auch in der klassischen Elektrodynamik ist es möglich,
magnetische Ströme und Ladungen einzuführen, indem man auf der
rechten Seite der homogenen Feldgleichungen

rot(£ + ~-§=0; div §=0
c

eine magnetische Strom- bzw. Ladungsdichte m und m einführt
gemäss

1 • 4 71

rot <&. -i § m : div § 4 n m
c c

Die Gesamtladung /Vit dv transformiert sich bei Lorentztransfor-
mationen wie ein Pseudoskalar. Während aber die die Stromdichte

m und die Ladungsdichte m erzeugenden Magnetpole
klassisch eine beliebige magnetische Ladung p besitzen können, ist in
der Quantentheorie, wie Dirac gezeigt hat, diese Ladung p mit
dem elektrischen Elementarquantum e der Grösse nach gekoppelt :

Die dimensionslose Zahl

ep
^ATc

kann hier nur die Werte 0, ± 1/2, ± 1, ± 3/a.. annehmen. Da nun
e2

die Feinstrukturkonstante -*— den Wert 1/137 hat, so müssen die
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magnetischen Ladungen ganzzahlige Vielfache einer Einheit sein,
die, in magnetostatischen cc/s-Einheiten gemessen 137/2mal grösser
ist als die Elektronenladung, gemessen in elektrostatischen cc/s-Einheiten.

Über die Masse dieser Teilchen lässt sich auf Grund unserer
heutigen Kenntnisse nichts Zwingendes aussagen. Nimmt man
jedoch an, sie hätten eine Ausdehnung von der Grössenordnung des
klassischen Elektronenradius, so würde ihre magnetostatische
Masse 4700mal grösser sein als die Elektronenmasse.

Wenn also die klassische Theorie formal durch Einführen
magnetischer Ströme und Ladungen bezüglich S und § völlig symmetrisiert

werden kann, so ist das in der Quantentheorie unmöglich,
e2

da j— nicht gleich 1 ist. Nur in diesem Fall könnte ja p e

gesetzt werden. Wir glauben daher, dass ein wirkliches Verständnis
für das Fehlen magnetischer Ladungen in der Natur erst durch
eine Theorie geliefert werden kann, die den zahlenmässigen Wert
der Feinstrukturkonstanten zu berechnen gestattet.

2 6 f)Die Bedeutung des DiRAc'schen Theorems, dass -*— eine

ganze Zahl sein müsse, liegt also darin, dass es die Frage nach der
Existenz magnetischer Teilchen mit dem Problem der Feinstrukturkonstanten

verknüpft.
Der Beweis, den Dirac für sein Theorem gegeben hat, ist nun

allerdings nicht sehr durchsichtig. Da es sich aber um einen
grundlegenden Sachverhalt handelt, so soll in der vorliegenden Arbeit ein
neuer Beweis gegeben werden, der auch eine korrespondenzmässige
Deutung der Zusammenhänge ermöglicht.

1. Wir diskutieren zuerst die klassischen Bewegungsgleichungen,
welche ein Teilchen der Masse ro und der elektrischen Ladung e

im Felde eines Magnetpols p beschreiben. Das magnetische Feld
hat im Abstand r vom Pol p den Betrag p/r2.

Die Gleichungen lauten, falls die magnetische Ladung im
Koordinatenursprung ruht

m\x —^-[î,ï] (1.1)
er3

Aus diesen Gleichungen folgt, dass die kinetische Energie konstant
bleibt. Drei weitere Integrale sind durch die Komponenten des

Vektors

d m[x,x] — -— const. (1.2)
c r

gegeben. Dies beweist man leicht, indem man (1.1) vektoriell mit x
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multipliziert. Der Vektor d spielt hier die Rolle des Impulsmomentes.
Der 1. Term in (1.2) stellt das Impulsmoment der

Teilchenbewegung dar. Der 2. Term, ein Vektor in der Verbindungsrichtung
der elektrischen mit der magnetischen Ladung, hat den konstanten

Betrag—-. Dieser Vektor ist gleich dem Impulsmoment J, das

durch die Überlagerung des elektrischen mit dem magnetischen
Feld zustande kommt. Die beiden Felder geben nämlich zu einem
Energiestrom (Poynting-Vektor) um die Verbindungslinie der beiden

Ladungen Anlass. Das dem Energiestrom entsprechende
Impulsfeld erzeugt das Impulsmoment J.

Das Impulsmoment eines elektromagnetischen Feldes ist
allgemein gegeben durch

J=-i-/"dt, ¦$,[«$]]=-!— [dv{<£(x$)-$(x(i£)} (1,3)

Denken wir uns die magnetische Ladung im Koordinatenursprung,
die elektrische Ladung im Abstände a auf der Z-Achse, dann wird

ep r r 1Q r ar sin3 » MJz= dcp d» dr — (1.4)4ncJ J J [r2sin2»+(rcos» — a)2]l>
y '

Aus Symmetriegründen sind Jx J „ 0.

Das Litegral (1.4) lässt sich elementar auswerten und man findet

in der Tat den von a unabhängigen Wert

J.=—^-. (1.5)
c

Der Massenpunkt ro bewegt sich, wie aus (1.1) leicht folgt, auf einem

Kreiskegel mit der Achsenrichtung d. Sein Öffnungswinkel 0 ist
durch die Gleichung

r. eP
COS & —"» —

c\d\
gegeben. Rollt man den Kegel auf eine Ebene ab, so sind die
Bahnkurven Geraden, die mit konstanter Geschwindigkeit durchlaufen
werden.

2. Wir haben im vorhergehenden Abschnitt gezeigt, dass durch
Überlagern der von den beiden Ladungen erzeugten Felder ein

Impulsmoment J entsteht, das zum Impulsmoment der
Bahnbewegung addiert werden muss. Man kann nun das DiRAc'sche
Theorem auch so aussprechen: Der Betrag des Iarpulsmomentes J,
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der klassisch den Wert — besitzt, muss in der Quantentheorie

gleich einem ganzen oder halbganzen Vielfachen von h sein.

Eine analoge Aussage gilt z. B. auch für das Impulsmoment
um die Figurachse eines symmetrischen Kreisels. Man beweist
solche Sätze am einfachsten, indem man von der Drehinvarianz der
betreffenden Schrödingergleichung Gebrauch macht.

Die im folgenden entwickelte Beweisführung beruht auf einem
Grundsatz, den zuerst Pauli2) in seiner Arbeit über die Frage der
Ein- oder Zweiwertigkeit der Eigenfunktionen in der
Wellenmechanik aufgestellt hat. Pauli fordert, dass in dieser Theorie für
die Drehimpulse ein eindeutiger Zusammenhang zwischen Operatoren-

und Matrizenkalkül bestehen soll. Da die Drehimpulse in der
Wellenmechanik zugleich die Operatoren der infinitesimalen
Drehungen eines rotationssymmetrischen Problems darstellen, so
bedeutet dies, dass die Eigenfunktionen des Problems eine Darstellung
der Drehgruppe bilden müssen.

Wenn wir das Magnetfeld —5- durch folgendes Vektorpotential
beschreiben

A-x - p y
r r+z

Ay p X

r r+z
Az 0, (2.1)

dann lautet die den Bewegungsgleichungen (1.1) entsprechende
Schrödingergleichung in Polarkoordinaten

AW + i 2^ -i JL^aLÎYZ^ÏÊ]\w=-2mEW. (2.2)
\r2 (^cosi?) i dcp r2 1 + cos » j

g Vf tDabei ist u =— eine dimensionslose Zahl.

Diese Gleichung ist von Tamm3) gelöst worden. Dabei hat er
jedoch nach Dirac vorausgesetzt, dass 2 /li ± n, wo n eine ganze
Zahl bedeutet. Da wir das aber gerade beweisen wollen, so werden
wir vorläufig über den Zahlenwert von u nichts voraussetzen.

Den Integralen d (1.2) entsprechen in der Wellenmechanik die
folgenden Operatoren

dz -r- -z u
1 dcp

x ¦ x _l • / à „ t) ß Sm » \ ,rx rx,dz±idy=oe±>*(± — + iGotg&- AL 2.3
\ d» dcp 1 +cos»/

Diese Operatoren können durch Ausführen einer infinitesimalen
Drehung aus der Hamiltonfunktion gewonnen werden. Da die Po-
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tentiale (2.1) nicht drehinvariant sind, so hat man nach der Drehung
durch eine Eichtransformation die Potentiale auf die ursprüngliche
Form (2.1) zu bringen. Dieser entsprechen die Zusätze proportional
u in (2.3).

Die Operatoren d erfüllen die Vertauschungsrelationen

[di, dk] id, (2.4)
Man findet, dass

d i „ d \ 1

V^~^hV»w{sm&-d») sin2i? dcp2

2." 1 d jAA-cos&lT _. Q t/l
(2.5)

l + cos# i dcp l+cos#
Daher kann man die Schrödingergleichung (2.2) in der Form

-2ro^ ^i2Ä_^(2d2-^^ (2.2')
dr2 -, {t.

schreiben. Hieraus ist ersichtlich, dass wegen (2.4) die dk mit der
Hamiltonfunktion vertauschbar sind.

Um die Gleichung (2.2') zu lösen, machen wir für fden Ansatz

W B(r) Ym(cos»)ei(m+")<p (2.6)

m ist der Eigenwert von dz und braucht keine ganze Zahl zu sein.

Aus ^dlW XW
k

folgt für die Funktion Ym(x), mit x cost^, die Gleichung

(l-x2) Y^-2xY'-/Â*+™2+^imxYm+XYm=0 (2.7)

Diese Gleichung ist identisch mit derjenigen eines symmetrischen
Kreisels (siehe z. B. A. Sommerfeld, Atombau und Spektral-
linien II (1939), S. 162, Gl. (11)).

Wegen der Vertauschbarkeit der Operatoren dk mit der
Hamiltonfunktion (d. h. wegen der Drehinvarianz des Problems)
erhält man durch Anwendung des Operators dx + i dy auf eine
Lösung Ym von (2.7) eine neue Lösung Ym+1, die zum selben Eigenwert

X gehört. Der Operator dx + idy hat in der Variablen x cos »
die Form

^(sr+T^)5"-7« (2-8)
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Nun gilt allgemein

v i sv -ffd* d /fdxY +fY e J —— {e -Ydx

Das gibt, auf (2.8) angewendet, mit /
m x + p

_1=o(l-X2) 2
±1/1— x\f'2 d

1 + x I dx I \1

i - x

1+x Y'2

¦X
(1- 2-Ym\ (2.9)

Entsprechend kann man die Operation dx — idv behandeln,
wodurch man eine Formel für Ym_1 gewinnt.

Hieraus folgen durch wiederholtes Anwenden die beiden
Formeln

Y =71-

n — m /1
¦*• m—n — \7 X

l—x\a dn
2

1+X

X

-X

dxn

LL dn
2

2 (1 — X2) 2 Y7
1-X

dxr
1-

1+x ^(l~x2)^Y„
(2.10)

Mit Hilfe dieser Gleichungen lassen sich aus Ym im allgemeinen
beliebig viele Lösungen Ym±n (x) gewinnen, die alle zum selben Eigenwert

X gehören. Nach dem zu Anfang dieses Abschnitts aufgestellten
Grundsatz müssen alle diese Lösungen zugelassen werden, da sonst
die Operatoren dk nicht als lineare Abbildungen im Räume der Ym(x),
d. h. als Matrizen geschrieben werden können. Dazu ist aber
notwendig, dass die Integrale

+i
J j Ym (x) |2 d x
-i

existieren. Wegen der in (2.10) in den zu differenzierenden
Ausdrücken vorkommenden Irrationalitäten wird dies aber im
allgemeinen für hinreichend grosse n nicht mehr der Fall sein.

Die Lösungen sind nur dann sämtlich regulär, wenn sowohl

als euch

7(1-

1 — x
1 + x

ll
7(1-

TY,

¦x2WYr.

(2.11)

(2.12)

beides Polynome sind. Dann ist die Anzahl der Funktionen Ym±n
für ein gegebenes X endlich.
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Sei nun der Ausdruck (2.11) ein Polynom ^, dann ist (2.12)
offenbar gleich

(1 7 x) m~ " • (1 — x) m+ ". SP

Das ist nur dann ein Polynom, wenn m und u beide gleichzeitig ganze
oder halbganze Zahlen sind.

Das Dirac'sehe Theorem ist dadurch bewiesen.

Weiter erhält man mittels der Gleichungen (2.10) eine einfache
Darstellung für die Lösungen von (2.7). Man suche nämlich eine

Lösung Ym, für die gemäss (2.9) Ym+1 verschwindet. In diesem
Falle ist der Ausdruck (2.11) eine Konstante und wir erhalten,
indem wir dieses maximale m wie üblich l heissen

yUM=(i+*)J^(i-*)J^L (2.13)

Das ist eine reguläre Lösung von (2.7) mit l ro, falls l >| u \.

Durch Einsetzen ergibt sich der zugehörige Eigenwert:
X 1(1 + 1)

l ist gleichzeitig mit u ganz oder halbganz.
Aus den Gleichungen (2.13) und (2.10) erhalten wir weiter mit

m l — n die Darstellung
m —li m + it Al—m

Ylim,ß=(l+x)-^(l-xr-2- A_[(1+3)'-* (l-a)«-"] (2.14)

für die Lösungen der Gleichung (2.7), die zum Eigenwert X 1(1 + 1)

gehört. Als Normierungsfaktor findet man

Da (2.7) bei gleichzeitigem Vertauschen von ro mit — ro und pt mit
— pt ungeändert bleibt, so erhalten wir für die gleichen Lösungen
eine zweite Darstellung, indem wir die genannte Substitution in
(2.14) und (2.15) vornehmen:

Y'i,m,,= (1+x)— (1-*)— |_[(1 +xy+" (1-3)'-"] (2.14')

Y?j TO> ß und Y'i m ß unterscheiden sich nur durch einen konstanten
Faktor.
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Diese Formeln sind im wesentlichen schon von Tamm3)
angegeben worden. Seine Darstellung ist jedoch etwas unübersichtlich,
da Fallunterscheidungen je nach dem Vorzeichen von ro und ro — u
gemacht werden, was aber überflüssig ist.

Für u 0 gehen sämtliche, in diesem Abschnitt angegebenen
Formeln in diejenigen für die Kugelfunktionen über. Für pt ± 1/2

erhält man Funktionen, welche bei der Behandlung des Dirac'schen

Wasserstoffatoms in Polarkoordinaten, wie das Schrödinger3)

gezeigt hat, auftreten. Man erkennt das am einfachsten, wenn
man in den von Pauli2) angegebenen Gleichungen (S. 159, G1.32a,b)

1 d ro
(Vsm » g) + -r-^. g-kf 0

Vsin » d » sin »

1 d
(Vsm&f, ^f + kg=Q

Vsin » d 9 sin i?

zu den Gleichungen zweiter Ordnung für / und g übergeht und
x cos » setzt. Man findet, mit k — x/2 l

I ~~ *i, m, —y, > 9 — *j, m, +7Ì

In unserer Diskussion der Gleichung (2.7) ist der von Pauli
gegebene Beweis enthalten, dass in diesem Falle ro und l halbganz
sein müssen.

Schliesslich sei darauf hingewiesen, dass die Gleichung (2.7)
mit halbzahligen ro und u auch in der von Wentzel5) entwickelten
Theorie der Kernkräfte auftritt.

Basel, Physikalische Anstalt der Universität.
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