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‘Un modéle de I'électron ponetuel II *) 2)
par E. C. G. Stueekélberg. '
(29. X. 1943.)

Bésumé: Un modele de 'électron ponctuel, plus général que celui proposé
en I2), est discuté. L’électron n’interagit qu’avec le champ de Maxwell. En théorie
classique, son mouvement ressemble beaucoup & celui de.l’électron étendu de
Lorentz. Par un principe de correspondance, le modéle peut é&tre transcrit en
théorie quantique, sans que des divergences apparaissent. Les formules ainsi obte-
nues montrent une trés grande analogie avec celles obtenues par HEISENBERG?)
dans sa récente théorie.

§ 1. Le modéle elassique de 1’éleetron.

Il est possible de donner une theorie classique de I’électron
ponctuelt)?) sans se servir d'une électrodynamique non linéaire. Le
procédé essentiel pour éviter les infinités doit étre considéré en
détail ; aussi allons-nous rapidement le décrire pour insister sur cer-
tames de ses caractéristiques. Sur une particule (flectron) placée
a l'endroit § au temps ¢, 'expérience montre que d’autres parti-
cules peuvent agir. C’est 'arrangement dans le cone du passé de
q=(q,t=¢%, qui détermine cette action. On la décrit par un
champ ¢ (z)=¢(Z, ) qui contiendra les particules comme des sin-
gularités. La théorie du champ qu’on désire établir doit fournir
les équations permettant de calculer le champ ¢ (x) et le mouve-
ment de la particule (ou sa ligne d’univers ¢ = ¢(4)). On part alors
des principes de conservation détaillée de 1’énergie-impulsion. On
suppose qu 1l existe une densité d’énergie-impulsion 7% (x) qu’on
exprlme sous forme de T*"(¢(x)) en fonction de @(z) et de ses
premitres dérivées de la fagon la plus simple. Les principes de
conservation sont alors la loi de continuité et les relations de

symétrie 0, Tw —Q; Twr— Tou ‘ (1,1)

Il est utile de defmlr la densité de force I# (x) et le quadrivecteur
d’énergie-impulsion pH

Pr(, ) =0, T (&, 0; p+() = [@aP T &0 (19

z

*) Dédié a M. le prof. A. SOMMERFELD & 1’occasion de son 75%me anniversaire,



4 | E. C. G. Stueckelberg.

La force sur la particule est alors

fe(t) = [ (dz)® Fr(z, 1) (1,3)%)
v @
v(q) étant alors un volume arbitrairement petit mais contenant la
singularité Z =g (). Pour que (1,2) et (1,3) alent un sens, on voit
qu’il faut que les singularités contenues en T»* et F'* solent inté-
grables.

Voyons maintenant comment ces singularités peuvent s’ex-
primer. Dans une théorie linéaire, il y a superposition et, par consé-
quent, le champ agissant sur une particule est dit aux actions indi-
viduelles de chaque particule et I'on peut donec décomposer ¢ en

g = gt + g9 (1,4)

ot ¢ est le champ retardé agissant sur la particule considérée
di au passé de cette particule et ¢ le champ incident sous
forme d’onde d& aux autres particules. On peut toujours écrire

gp(ret) s (p(sym) + (p(rad) qg(sym) s _;h ((p(ret) + q,(av));
(p(ra,d) s l (gv(ret) . q:,(av) (1,5)

¥ étant le champ avancé de la particule considérée. On voit
facilement que les singularités de ¢t sont toutes contenues en
@™ parce que ¢¥® est une solution de I’équation d’ onde homo-
géne. Quand on construit T»* & partir de ¢ de la facon la plus
simple, les singularités de T»* et de F'* ne sont pas intégrables.
On arrive, avec ces suppositions simples, & la théorie classique
munie de toutes ses difficultés. Pour éviter cela, on complique la
dépendance de T** de ¢. Voicl comment on proceéde: :
On peut toujours décomposer T et F'* en deux parties:

Twer — fl"f,uv(...) =3 T uy (sym)
Fro _ Frt.) 4 Faem (1,6)

ou la deuxiéme partie ne dépend plus de ¢® + @D, On peut
alors montrer que les singularités non intégrables sont contenues
dans TwrGym et FrEym)  (Ces termes du reste, ne contenant plus
@) ne peuvent étre que des fonctionnelles de la fonction g=gq(4).
Alors on ajoutera, au T» de la théorie simple, un T#*©(z) (don-
nant par (1,2) un F*©®) tel qu’il fasse disparaitre les singularités
non intégrables. Il est possible de montrer qu'une infinité de fonc-
tionnelles peuvent étre choisies pour avoir cet effet. Nous discu-
terons ci-dessous en détail le procédé que nous avons employé dans

. *) fun’est done pas un quadrivecteur, mais seulement frd { = fadgt = d'pf‘v),
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I pour faire ressortir son arbitraire. Nous avons en effet ajouté au
T# du champ Maxwellien, le T#”©@ d’un champ scalaire (au lieu
d’une simple fonctionnelle) de facon & ce que les parties singuliéres
des termes T#*®™ dues & ces deux champs se compensent. La
partie T#*(--) du tenseur du champ scalaire produisait des effets
qui ne sont donc nullement nécessaires pour que la théorie con-
verge, pas plus qu’il n’est nécessaire de se restreindre & des T»*©@
dont I'énergie est positive. Ces considérations empruntées a I nous
donnent un moyen d’arriver simplement & des fonctionnelles T»*(©
nécessaires. Il suffira, comme on le voit, de prendre la partie
TwrGym) d>un T fonction d’'un champ @ choisi de fagon & avoir
les mémes singularités (mais en signe opposé) que le ‘T#* simple
dont on était parti. Le champ @ différera ainsi du champ ¢ par la
fréquence minimale » de son rayonnement (= masse de repos de
ses quanta). Nous appellerons dorénavant @ le champ fonctionnel
@6y et seul ce champ doit intervenir en T# (@ pour quil ait
conservation d’énergie pour particule et champ ¢*).

Pour établir les équations de mouvement, on procéde en prin-
cipe comme suit pour un champ ¢ scalaire (électrodynamique longi-
tudinale si » = 0): on définit le tenseur le plus simple

Te (@) = 04 07 — } g (0, ¢ 0% + #x292) (1,7)

(avec %2=0) et le tenseur T** @ avec la méme forme (au signe prés)
en fonction de @, mais avec un %; + » non nul. De la, on tire

Fr—Fu(g) + F#(@) =0k - (0 — #%) g — 04 & (0 — x2) 6=0 (18)

S’1l n’y a pas de singularité, cette équation est satisfaite, si ¢ et
@ satisfont chacune séparément & une équation d’onde homo-
géne. S'1l y a une singularité (O — »2) ¢ doit étre intégrable. Nous
exprimons cecl en posant '

+@ '
(O —#%)g = (0 —#2) & =— o(a) =—fdzea(m—q(z)) (1,9)

ou 0 (z) est la fonction 6 quadridimensionnelle d’espace-temps
([0] = cm~%). L’équation de mouvement de la singularité suit alors de

k() = [ (dx)3 (Fr(g) + Fe(P)) =
. — (@9 (e 0% (3, 1) —£0# @ (7, 1)) = 0 (1,10)

*) Le choix d’une autre fonctionnelle @ + @(sym) mais ayant les mémes sin-
gularités (par ex. @ = @(ret)) a pour conséquence qu’une partie de I’énergie totale
sera diffusée sous forme d’ondes @(ret) loin de la particule. Dans la fonctionnelle
@(sym), la contribution de ces ondes @ se réduit & une constante ajoutée a 1’énergie-
impulsion totale.
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ou 0#¢ (g, t) est la valeur limite de la dérivée & l’endroit z =g
Moyennant les développements exposés en I (éq. (3,12), (3,15) et
(3,22) de I), on tire de (1,10) dans le systéme de repos q = 0, si

les amplitudes sont petites par rapport & la longueur d’onde de

) et pour » = 0:
2

m A T4 ) oG = egrndg @) (LI

ou
52
mh%EZaix,, ZOCZ:*-l .
82 ' g2
ma? = 14 Loty Ly veee s MAER = (- ) Zoc x1-2 (1,14)*%)

car en effet il n’est pas nécessaire de se restreindre & un T#©
formé d’un seul @, mais on peut prendre une série quelconque

Twr ) = Yo, G (QW)) avec 2a;=—1 (1,15)

Cette généralisation correspond & prendre la fonctionnelle symé-
trique T*© la plus générale, compensant les singularités du
Tw ().

On a ainsi trouvé 1'équation covariante la plus générale du
mouvement d'une particule sous I'influence d’un champ ¢4, satis-
faisant aux principes de conservation. (1,11) est sa forme limite

pour ¢ = 0 et pour des petites amplitudes. Elle contient, comme
'on le voit, une série de constantes arbitraires et indépendantes les
unes des autres, dont la premiére est ce qu'on a convenu a appeler

*) L’équation de mouvement qui suit de (1.10) n’admet pas la condition
quq* < 0 qu’on doit imposer & ¢= q(A) pour que les développements faits en I
soient valables. Un terme
+

—p(a) [ dhequgr 5 (a-q(h) (1,12)

qu’on ajoute aux expressions (1.7) pour @ et pour @ changera F#(p) dune telle
maniére que (1.10) devient

~n gt = gou @+equ g an9+(e'q'ﬂ+éqlc)¢—termes en =0 (1,13)

(1,13) admet alors la solution g« gy = — 1 pour autant que &= 0. & doit donc étre
une constante. Les solutions ol ¢ dépend de A sont discutées au § 3.

**) Des équations (7,1) et (7,5) de I (corrigées en omettant le terme — (1/3)
(w%—3,2)": en (7,6) dit au rayonnement @), il résulte que les séries en »,, »,7%,
%;7% ... provenant de chaque @() en (1,14) divergent & certains endroits. Il est
alors plus exact de parler des fonctions n de — (d/d¢)? au lieu des séries en — (d/dt)?
en (1,11) et (1,17). Une discussion plus approfondi de T'»v(0) paraitra dans les C.
R. Soc. Phys. Genéve.
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la masse de repos m et les autres définissent le « modele» de I'élec-
tron. Le terme o2 . , ,
, . s 1
. s 4%3_, Zq , L (16)
est. en général cons1dere comme une force & Iaquelle on -donne- le
nom:de force de freinage*). En termes de m, elle introduit une cons-
tante 4, ([4] = cm) ndépendante du modele ;
- ‘Voyons maintenant quelles relations il y a entre cette equa-
tion de mouvement (1,11) et les lois qui découlent de 1’équation
élémentaire de Newton. Pour cela, nous écrirons (1, 11) dans la
forme:

dz\ ;. T
m (— c_lﬁ) qg—miyq = fune) () (1,17)

On voit que la fonction 7(®?) est une fonction paire de o qu’gon'
peut exprimer sous forme de série (cf. Note **), page ) en w2

dont le premier terme est une constante-égale & I’ umte fino peut
etre analyse par l'intégrale de Fourier

fine) () = O ¢ (1) = f(o)rfdwe—“”’ h(w) . (1,18)
En falsant la. méme analyse pour q, on trouve

h (w)
7 (w?) + 14pw

mq(t) =1 = fdw gi ot =/ 7g() (1,19)

comme solution particuliére de I’équation de mouvement. En plus,
en Intégrant entre t = — T et t = + T (lim 7 > oo) I'augmenta-
tion de la quantité de mouvement vaut o

m(+ D —m (1) = [ di7e (1,20)
car les intégrales (1,18) et (1, 19) ont, dans cette hmlte toutes les

deux la valeur
sin w T' h (w) |

Ilm 2 [dw !
Tew w 7(e?) + 1w ‘
- h () o
: andw 0 (w) (cu2)—|—'tlﬁw =27 h(0) (1 21)
S1 'on normalise la fonction h (1 f dth =1, la fonctlon g()

la méme propriété. f((,’) 7 g (1) _est en somme une force fictive qu’il
faudrait appliquer & la particule pour qu’avec la loi élémentaire

*) Dans la théorie de Maxwell, le facteur 1/3 est & remplacer par 2/3. -
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de Newton « force = masse fois accélération », on trouve le mouve-
ment défini par (1,11). On voit alors que notre particule a une pré-
mondtion de ce qui va lui arriver & la suite de h(f) et nous appelle-
rons g(t) la fonction de prémonition de 1’électron. En effet, alors
méme que la vraie force h(t) est encore nulle, la force fictive g()
ne l'est plus et l'accélération ﬁ(t) est par conséquent différente
de zéro.
Comme nous venons de le voir, I’'augmentation de la quantité
de mouvement estindépendante de cette prémonition; elle est égale

& celle qu'on. calculerait si I’équation mg = f@O ¢tait juste. Par

contre, le travail 4 = f dt (Fmo, g) fourni par la force incidente

est toujours plus grand que lenergle cinétique

A€ —3m (|g(+T)|2—|q(—T) |2 acquise par 1’électron.
Ce qui est évident parce qu’'une partie AT = 4 — () de I’éner-
gie A est diffusée. Tandis que A®™ est, 4 cause de (1,20), indé-
pendant de #(— d?/dt?), ce n’est pas le cas pour 4@, qui dépend
par conséquent du modeéle.

Voyons encore comment la fonction de prémonition varie
avec le modele de 1’électron dans le cas d’un choc h(t) = d(3).

a) Le modéle de Dirac'): = 1. On a alors
£ <0 go(t) = Ag~2 etldo; £ 0: go(t) =0 (1,22)

b) Le modéle n =1 4+ A} w?: si A2 > — 1 A2, go(t) est une ex-
ponentielle el*t pour ¢ < 0 et e lAlt pour ¢ > 0. Dans la limite
A} > 22 la fonction est symétrique, sinon la contribution majeure
se fait pour des ¢ négatives. Pour < —12 le gy(t) de (1,22)
montre des oscillations.

¢) Le modéle quantique: Si I'on prend

n(w? = % (A o sin 2 ;o) (sin A5 w)—?2
avec donc
e 282, 0 ___

2 1
27 go(0) = (n(w?) + 1dgw) 1 = Bk (1,23)
on a

— QA <t<0: go=(240)1; t<—24y et t>0:g,(t) =0 (1,24)

L’importance de ce dernier modele (& fonction de prémoni-
tion différente de zéro et constante dans un intervalle fini 2 A;)
se montrera surtout en théorie quantique. C’est pourquoi nous lui
donpons le nom de modéle quantique.
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§ 2. La diffusion du rayonnement.

Pour calculer 4@ diffusé par un électron sur lequel tombe
une onde plane périodique @@, on procéde normalement par la
méthode suivante: 1¢ détermination du mouvement q (t) et 20 dé-
termination du champ émis @@ (z, f). Nous exécuterons ces cal-
culs dans l'espace de FouRIER, ce qui facilitera la comparaison des
résultats avec ceux de la théorie des quanta. Soit ¥V un volume
de perlodlclte spatiale. Alors, toute fonctlon ¢ (Z,1) peut &tre de-
composee en
@, =gx) = 2(2 V ut)=% (o5 (1) e + ox (t) et ) (2,1)
avec -
(4, @) = oy @ = (i, &) — it pé =+ 2+ [R[* (22)%)
Le champ incident ¢, étant une solution de I'équation homo-
géne, détermine cunc) = const. (une deuxiéme solution c(’;c) =
const e2i#t ne fait qu’intervertir ¢ et ¢*). Le mouvement de
I'électron est alors représenté par la somme de FOURIER (0= p9:

: 5 ’LST,L 1 _
maq(l) = el (inc) g—t ot |
200 Z(\/ZVLU n(w?) +1hyw C.u ¢ con]) (2"3)

Le deuxitme pas se fait en écrivant pour (1,16) la série
o @, ) =ed(F—qt)=e0@)—e(q, grad 6(T)) + ... (2,4)
S gan ik 1) g&n 4
4 TV

que I’on peut substituer en (1,9) pour calculer @@, L’équation
pour les coefficients ¢, (f) est alors dans I’approximation linéaire

... (ret) ) . (ret) ' £2 G:L’, IL) o’ ' e‘i(a)’mm)t _
¢z —2iw ¢xr=—2—2 |/ , ¢ (2.5
pr T 2VO On %maﬂV w 7 (w?)+1io & (25)

Nous intégrons (2,5) avec la limite c(mt) (—T) =0, et substituons
pour 7 (w? la fonction de pressentlment go (). Le résultat est

(ret) (+ T)

. ) y @ =T g -
B Hzmwz(co+w 7 S Y (26

*) Nous ne discuterons que le cas x = 0, mals il sera avantageux de garder
un x # 0 dans les formules générales.
**) (2,6) ne contient pas le champ statique di au ler terme de (2,4). Ce
champ statique est done 3 ajouter partout.
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Sil’onde incidente ne contenait qu'une seule fréquence w, on s’aper-
¢oit qu’ll en est de méme pour l'onde diffusée et pour T = oo.
En particulier, si I'onde incidente est une onde plane ne contenant
qu’une seule fréquence, son courant d’énergie est représenté par Tt

C:— (inc) C"“ (ine) . NT:, (_ T)
VW =u —V—— ;

L’énergie rayonnée dans une direction %’ contenue dans un élément
d’angle spatial d 2" =d ¢" d (cos &) est

T4*/1,

(2,7)

QAED (4 1) = 3 @'t o o

u

BE)
V

= 5= fdw w3 Ny (+T) (2,8
avec N»= c§ ¢; . La section d’ efﬁcamte est définie par le rapport
entre dA(fad) et | T-¢{ divisé par la duree 2 T entre t=—1T et

t=+ T, solt _
ag = Ao @y ) @9
QMZT|T4|: (3 Z0) n(wz)z—l-lg_wz ()

Elle vaut donc dQ’ (3 ,)* (0093’)2 pour des fréquences o <<A4;t.
Pour des fréquences comparables aux 4; son comportement dépend
du modele 7 (w?).

Nous écrirons le résultat pour les deux modeles suivants:
a) Modéle de Dirac: |

dQ' = d2' 9(cos 9)2 w2 (o o/ /1 +Ae' 0B (2,10)
b) Modéle quantique:
dQ' = A" 9 (cos &) w2 (sin 2y »)? (2,11)

Dans les deux cas, la section disparait pour des hautes fré-
quences proportionnellement & w—2. Mais, alors qu’avec le modéle
de Dirac le décroissement est monotone, avec le « modéle quan-
tique », cette diminution est multiplée par un facteur périodique.
Cependant, la théorie des quanta nous montre qu’avant d’atteindre
les fréquences ot ces formules deviennent trés différentes (Agw ~ 1),
il devrait se produire des gerbes, ce qui change évidemment totale-
ment les sections d’efficacité. En effet, cette théorie pour des fré-
quences suffisamment hautes ne permet plus des amplitudes suffi-
samment petltes pour réaliser la condition

wglPe|glPeletg Pl (2,12)
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dont nous nous sommes servis pour rendre linéaires les équations
du mouvement. Dans ce cas, en essayant de résoudre rigoureuse-
ment le probléme sans la restriction (2,12) des petites amplitudes,
on voit apparaitre dans le rayonnement diffusé des fréquences
o',0”, ... sous multiples de w. Du point de vue des quanta, ces
frequences corre@pondent ala décomposition du quantum incident
h en une série de quanta hw’ + hw' + ... = h. Calculons pour
quelles fréquences ces effets commencent & ne plus étre neghgeables
Substltuons dans (2,12) T'équation (2,3); on trouve

|o1q |22 6niy 0t mt (Ns/V) ©(2,18)

Cherchons alors. pour quelles valeurs de o cette expression est de
Pordre de I'unité. L’équation (2,7) montre que, pour les quanta,
N=/V est le nombre de quanta incidents par unité de volume*).
Le quantum hw, au moment ou il réagit avec 1'électron ponctuel;
est localisé par conséquent avec le maximum de précision et par
conséquent son Aq est de l'ordre de grandeur de w-! et donc
N+ [V ~ w=3. Introduisant la longueur d’onde de Compron de 1’élec-
tron A,=h/mc=m-1 (avec nos unités) (2,12) devient 67 4y 4, w2 <1,
Si nous avons pour 4, une valeur 8x 187 fois plus grande que
4y, on voit qu’il faudra tenir compte des équations quadratiques
pour 4qw ~1/100, alors que les deux formules (2,10) (2,11) ne com-
mencent & différer (effet du modéle et du freinage) que lorsque
Ao L 1. Remarquons enfin, que la fonction #(w?) détermine d’une
maniére invariante les termes non linéaires omis en (1,11).

§ 3. Dispersion et largeur de raie.

“Pour étudier la diffusion d’une .onde par un électron lié, par
exemple, & un noyau, on ne peut pas employer le procédé des para-
graphes précédents, car, comme on le sait, la théorie classique ne
donne pas de solution stablé pour ce probléme. Il nous faut ‘donc
construire un modele d’atome correspondant au modeéle des oscilla-
teurs en théorie classique de la dispersion. I.’atome sera une singu-
larité- du champ « = q(A) qui aura un degré de liberté de plus que
L'électron. En électrodynamique, ce degré de liberté supplémentaire
est le moment électrique & = & (t) resp. dans une théorie covariante,
les six composantes d'un tenseur o#*(1) = — ¢*#(1) associé & cette
singularité. En électrodynamique longitudinale, il nous est possible

- *) Il convient alors de choisir les unités de telle maniére que la constante
de Planck soit 'unité de 'action (A = hplanck/2 n = 1; [¢] = [m] = [w] =
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d’mtroduire un degré de liberté scalaire ¢ = o(4) dans (1,9) et de
I’écrire '

0 (%) :fd;tea(z) 5(z — q(A) (3,1)

Un raisonnement semblable & celui du paragraphe 1 nous donnera
les équations de mouvement pour g = q (t) et pour la variable inté-

rieure. Dans le cas ot I'atome est trés lourd (g 27 ... 20) et
dans son systéme de repos (g = 0), cette équation s’écrit pour des

petites amplitudes
d2
n (—— Et—z) 0+ 0l o+ i oo = fin (3,2)%)
Les constantes A; qui interviennent sont encore une fois arbitraires

et déterminent le modele de l'atome. (3,2) est I’équation linéaire
la plus générale qui satisfait au conditions de covariance et de

*) L’équation (1,13) (de la note *) p. 6) montre que la condition ¢, g» = —1
admet en plus de la solution &= 0 une solution

> e

E(@(g.f) + X ;@) (g,1)) = 0 (3,3)
si (A1) = eo(4) est une variable intérieure. Développant encore une fois le champ

gu(fcb ,1) et les fonctionnelles (D(i)(g ,t) suivant le procédé indiqué en I pour z= E,
(3,3) prend la forme

HoO+p (6 + 420 +...)+

2
47

¢ = ggline) (g, 1) (3:4)
avec
W oMy My l= oy x = .25 5
° 47 L o 4 e I

n .

dans le systéme *Q = 0. Pour imposer cette derniére condition, il faut définir le

terme de masse (m ¢) dans Péquation de mouvement pour E(t) en introduisant une
autre série de champs fonctionnels W(k)(x) satisfaisant a (1,9) avec £ = const = ¢,
dont les coefficients sont soumis & X' g, = 0. m, m 4,2, ... sont alors définis par

m= 3% Zfu eto. (3,6)

pour autant que ¢ () ~0. L’étude de px = [ (dx)3 T4 (g, P(k), ®()) montre alors
que le facteur m’(0,6,...) en pa = m’ gz différe du m’(0,0,...) = m en (3,6) par
I'adjonction de termes proportionnels & ¢% et ¢2 (pour autant que n ~1). Pour
qu’a une excitation du degré de liberté intérieure corresponde une augmentation
de I’énergie portée par la particule, il faut que y, ety, soient des constantes posi-
tives. (3,2) dérive alors de (3,4) si 'on pose
2
W = oy hy= 1—%; 5 fne) () = & py plino) (0, 1) (3.7)

0
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conservation*). Comme précédemment, la fonction #(w?) permet
de calculer comment 'atome est excité sous 'influence de la force
f@n9 (#). Au lieu d’une prémonition, on trouve ici, & cause du terme
w? o, une fonction de mémoire: 'atome continue & vibrer alors
que la force a cessé d’agir. Calculons ce qui arrive dans quelques
cas simples: Une force f@ (t) = f© ¢ h (t) produira un mouvement

o(t) = f© g (t) dont la transformée de Fourier est
h (o)

0?2 —o’n(w)—i0? ol

Considérons la fonction de mémoire g, (?) ldrsque la force est un choc.
a) Le modéle simple: n = 1. |
t<0: golt) =03 t>0: go(t) = 0y~ et/24 sin wy't (3,13)

e = wfhy; o) = 0y Y1 —1(lowe)® ~wy  (3,14)

et avec une transformée _
— : 5
27gy(w) = (w2 — 0 — 102w i) —>
. — 0

(2 @)~ (o — @ — (2 )71 - (8.15)

Le choc a ainsi produit un rayonnement monochromatique (v &2
= wy), qui s’amortit exponentiellement avec une vie moyenne de
A1, L’analyse spectrale montre une largeur de raie spectrale
(Dampfungsbreite) de 4w = (2 A1)~ et une énergie totale propor-
tionnelle a

27 [do|g(0) [P 2 4nw )t [deE@+ @)1 =42 0F (316

Mais il est évident qu’en plus de ce modeéle simple, d’autres mo-
deles peuvent &tre congus, qui seront caractérisés par d’autres lois
d’amortissement et d’autres formes de raies spectrales.

*) Dans la théorie Maxwellienne ga §* = — 1 est satisfait automatiquement.

Les équations (1,10) pour f# ont la forme ‘
~ 1 (g2f) = [ (dz)*prvg, - (38)

ot puv = — @v# est le tenseur antisymétrique du champ et ou
o (z) = [dAey i §(z—q(A)+ [ dAeoxB(2)0p 6(z—q(4)) ~(39)

est le courant. Pour un atome & charge nulle (¢, = 0) et une masse grande, (1,10)
peut étre satisfait en posant

W @eB(q )+ X a;, DD B, t) =0 (3,10)
(@@ B sont des fonctionnelles d’un champ de Yukawa tensoriel). Le développe-

ment suivant I fournit six équations du type (3,2), une pour chaque composante
de o%8, mais ou le dernier terme est & remplacer par -

Aowo? T2B—> — 1, GoB | (3,11)
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- Nous définissons en particulier:

b) Le modéle quantique, par la forme analogue a (1,28):

ﬁ-(w2) _ (0)0)2_' Wy woﬂ-o sin (2 U)g wl{)/wg _ wz)

o, » Z(Sin (w2 q)l()/wg — w?))?

(3,17)
donnant lieu & un 7 .

27 gy(w) = (21 w2wi) ™t (e2it0fokwi-0) ' —1) (3,18)
Loin du centre de la raie, les deux premiers termes de la trans-
formée (3,18)

27gy(0) = (0} — 0?1 +iwA! (02 —0?)2+... (8,19)
sont identiques & ceux du développement de (8,15). De méme, l'in-
tensité totale 2 n f do |g(w) |22 12 a-1o;? f dz (sin (1/212))% =
A2 @, est égale & celle du modele simple (8,16). Mais la fonction
go(t) elle-méme montre maintenant un amortissement BESSELIEN

t<0:g,(t) =0; .
t>0:gy() 2 (2w, YAt Jy (2 /A 1)sin wpt  (3,20)
Que le modéle général, en particulier le modéle considéré, ait
des battements superposés & son amortissement et différe ainsi forte-
ment de 'amortissement exponentiel, ne doit guére nous étonner:
En regardant de prés notre 1 (w?2), on s’apercoit que, pour ® ~ wy,
7 différe fortement de 'unité. Ceci équivaut au modéle non rela-

tiviste d’un atome, qui s’étend sur une région trés grande. Ainsi
il peut réabsorber méme des ondes émises dans un passé lointin.

§ 4. Propriétés générales du modéle.

Nous voulons démontrer que nos modeéles peuvent étre carac-
térisés par une relation

Y1) =S(M¥Y—1T) (4.1)
ot ¥(¢) est un vecteur hermitien dont les composantes sont définies par
P t) = o (); P, ) — PG, —T) = ¢80 - (42)

et ol S(t) est un opérateur défini par une matrlce S(t) (' [ 1 ,u) ope-
rant sur ¥ (— T). La comparaison entre (4,1), (4,2), et (2,6) montre
que les éléments de S(T) —1 sont, dans la limite T'-> o0

(S(T)=1) (W[3) = — 1 12 Ag -1 27 gy () cos &7 V=16 (o — ) (4,8)
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Nous voulons démontrer que S(7T) est un operateur unitaire. Cette
eondltmn s’exprime par :

S*S = (S*m D(S—1) + (S*—1)+ (S—1) +1= 1 (4.4)
Or, pour ’deux matrices de la forme (4,3)
| a(ﬁ’/?c) = a(w) cos ¥ - aV -1 (0" — o)
et B(' /i) = b(w) cos & ... la relation opératorielle est valable
| wp=a' B=p a avee « =Lla(w)w@n)t . (45)

ol o et 8 sont des nombres. En vertu de (4,5), la relation (4,4) ™
devient une condition & imposer & la fonction de prémonition

23,0 27g,(0) | 2= i27ge(0) —27ge(0)%) =0 (46)

Or la premiére équation (1,28) qui définit 2 mg,(m) en termes de
la fonction du modéle général 5 (w?* montre que (4,6). est toujours
satisfaite.

La forme exphclte de T'opérateur S peut étre donnee sous la
forme S§= S(oc(T)) en termes d’un opérateur

)( /,u):——e cos &' (mw)1x - V- Lo{w — w); ' -
: cx—‘sw(2nm)1=2l(,w (47).

S (a ) est une serle*) qul a les formes suivantes: 1° modele de DIRAC ._
CSe(D) =1 —3ia(T) 1+ 4a(T)t =1 —sa(T)+... (4,8)
2°.Iﬁodéle quantique: ‘ _
 S(D) = et ® = 1—ia(T)+ @)

Le méme procédé peut étre appliqué a Ja theorle de latome
L’opérateur « est alors donné par*) - _—

a(T) (W[5) = — &2 (wg* — oY) oyt 7 V-18(0 — o)
o =—e20 wy(2 7 (02— w?))"! =—2 ww0220(d)02—~w2)‘1 '(4,1(!)
La relation ‘unitaire entre ¥(T) et ¥(— T) permet déja & ce

point d’ envisager 11nterpretat10n quantique ‘de la theorle ‘Par-la
normahsatmn : _ . .

(P T), ¥(— T>_> - S ¥ G — YW (i, — T) = 1 @1

#) Pour calculer les séries S—1 on utilise la relation on — oc’” 1 g, Pour
calculer o’ dans le cas (4,10), équation (4,5) doit étre apphquee s&ns le facteur 1/3
(4,10) n’est valable que si on choisit p, = u, en (3,7). ' i
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nous interprétons ¥ (u, -+ T') comme ’'amplitude de probabilité que
le quantum incident soit & I'instant 4T dans un état caractérisé
par l'onde plane . Ceci nous permet de préciser la notion de cor-
respondance. Nous appellerons une théorie quantifiée de 1’électron
une théorie correspondant & une théorie classique si, dans la limite
ou I'impulsion hw = w peut &tre négligée par rapport & m, les for-
mules (4,8) resp. (4,9) et (4,7) sont valables.

De méme, une théorie de I'atome quantifié correspond & une
théorie classique si, sans le changement de fréquence da & 'effet
Raman, les formules classiques (4,10) et (4,8) resp. (4,9) sont
vérifiées. |

§ 5. La notion de causalité dans le « modéle quantique ».

Du fait que notre « modele quantique » de 1’électron éprouve
une prémonition de ce qui va lui arriver, une certaine révision
de notre conception de causalité s’impose. Prenons un exemple:
Dans la théorie ordinaire, ’état du champ et de I’électron, & un
instant t =—T (caractérisé par @, 0,9, q et q) détermine I’état du
systeme « champ plus particule » pour toute autre époque ¢ anté-
rieure ou postérieure & — T'. Si nous considérons symboliquement
cet ensemble de nos connaissances par ¥'(t) (ot ¥ (f) est une gran-
deur ayant en plus des 2 x c0® composantes du vecteur hermitien

¥ (u, t), six composantes indiquant les valeurs de q (t) et de q(t),
ce déterminisme s’écrit sous la forme

P(t) = 8@ P(—T); S T)=1 (5,1)

SH)¥(—T) est une fonctionnelle de ¥ (@,— T'), dont la variable @
représente les 2 x 003 4+ 6 points.

Dans n’importe quelle théorie évitant les divergences, le pro-
bléme est beaucoup plus complexe: Il faut décomposer ¢ (— T') en
o) (— T) 4 et (— T, ce qui n’est possible que si le mouve-
ment § = q () pour toute époque antérieure & — T' est connu. Si
par exemple § =g = 0 pour t = 0, et qu’on suppose que cela est
vral pour t < — T, @@ est alors le potentiel statique. Une ana-
lyse de ¢ et de 0,¢ pour t = — T permet de calculer ¢@®. Une
fois @Uo)(— T et 0, (— T) connu, les équations de § 1 dé-
terminent ¢ (Z, t) et g (f) pour n’importe quelle époque postérieure.,
Mais elles permettent aussi de calculer le mouvement g (t) pour la
période antérieure & — T. Or on s’apercevra que, en général, cette

trajectoire calculée différera de 1’orbite § = 0 supposée connue. Il
faudra donc employer une méthode « self consistante » pour trouver
la solution du probléme.
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Un exemple particulitrement simple de ce procédé est celui
dans lequel ¢ (— T) se décompose en une partie statique et un
paquet d’onde ¢ tel que pour tout ¢ antérieur & — T, il a tou-
jours une amplitude nulle dans le volume d’une sphére de rayon
2 2y autour du point Z = g = 0. La solution est alors « self consis-
tante » pour le modéle quantique. Il est bien évident que, si les
conditions étaient données pour — T' = — o0, le probléme ne se
poserait pas.

§ 6. La quantification.

En théorie des quanta, ’ensemble de nos connaissances ¥ (t)

n’est plus représenté par les 2x co® + 6 nombres ¢ (f), g (t) et 7 (),
mais par une amplitude de probabilité, fonction de % (2 x c0® + 6)
variables, par exemple des nombres des quanta N = ¢z *c5 et des

composantes de I'impulsion m g = k. La quantification relativiste
montre en outre qu’il n’est pas possible de n’avoir qu'une seule
particule. Il convient donc d’introduire comme variables les Nx
indiquant le nombre de particules & impulsion k. ¥(f) est mainte-
nant un vecteur dont les composantes ¥ (..., Nz ,...;..., N3, ...; 1)
sont les amplitudes de probabilité qu’a I’époque ¢, Ny quanta
du champ ¢ (z) soient présents dans I'onde plane u (ayant chacun
une impulsion %) et N% particules soient présentes ayant une
impulsion k. Les considérations du §5 nous montrent en outre
que les conditions initiales ne peuvent étre posées que pour t =
— I'=— 0. La covariance de la théorie par rapport & toute trans-
formation unitaire dans I’espace de HirnBerT demande que S(t) en
(5,1) soit un opérateur linéaire et unitaire. Alors (5,1) devient

Yt)=SO¥P(—T)=e*OP(—-T); a(—T)=0; a=o* (6,1)
qul est la généralisation de (4,1) pour des époques ¢ finies.

Pour établir une théorie quantifiée, on se sert du principe de
correspondance. Rappelons ce principe pour le cas de la théorie

ordinaire: La théorie classique relie des quantités a,b,..., H, ...
de fagon & ce que des relations du type

a(l) = f(a(), b(t), ...) (6,2)
ex1stent A tout a(f) la théorie des quanta fait correspondre un
opérateur a(t) (par exemple ¢ (%, t)=... ¢z exp(i((, ) — pt)) ...)
dépendant explicitement du temps. Soit Ota(t) (par exemple 0,¢ =
...... —auter exp(i(...) ...) la dérwée explicite de cet opérateur.
Alors, pour son espérance mathématique, définie par a(t) = (¥ (1),
a(t)¥(t)), on a la relation

a(t) = 0,a() + i [H(), a0] = /@, b(®, .0  (63)

2
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a cause de (5,1) ou (6,1), si 1’0pérateur H est défini par

H({t) =10,8(1) - S(t)~1 = % 0,0 (t) ———i[x(t), 0 (f)]
b ogr i, i), 0]~ (64)

Pour qu’il y ait correspondance, 'opérateur H doit étre tel que
f(a, b, ...) soit 'espérance mathématique de la fonction f(a, b, ...)
de la théorie classique. Or I'indépendance de f de — T' a pour con-
séquence 'indépendance de H (t) du temps initial — 7. Ainsi (5,1)
et (6,1) dégéneérent en une équation de SCHRODINGER

0, ¥(t) = —H(t) P(i) (6,5)

ce qui n’est vral que pour la théorie ordinaire.

Pour aller plus loin, nous décrirons le champ de matiére par
u(x,t),, opérateurs dont la dépendance temporelle explicite est

réglée par
ey (O—mFuy =0 (6,6)
On le décompose de facon analogue & ¢(x) en
w(x) , = Z (2 VEY) % (a5 62 + g e 16:2) (6,7)

avec kt = + ym} + —!— | % |2. Puis, on vérifie alors que les paquets
d’ondes d’un champ classique u, satisfaisant &

Au, —miu, — i, = —% (2e@(mo) p
— 82?’2(‘7)243) Up = — 04 (6,8)

suivent les lignes d'univers des particules de masse m, et de charge
¢ o, dans un champ ¢, s1 0,5 = 040,45 est une matrice diagonale.
Dans le cas ol o, est une matrice symétrique quelconque, on
étudie la variation de d’espérance mathématique» o () =Z2'u% o, pup
s1le paquet d’onde complexe u, = a) (t) exp (— tm 1) représente la
particule au repos. De '« équation de SCHRODINGER »

0.0’ (t) 4 = teq(l) Z 046 "AB'a’ (t)p (6,9)
B &

valable dans la limite w, z=m, —mp << m,, la relation

02 .
02 Z Z ('”'A O4p Up) — Z 2 W4 p)° ““J O4pUp)

=t &) Z 2 (w)y(wgy + ©¢p)O400cpUp) P (6,10)
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résulte. Dans le cas particulier, ou les fréquences wyy = wy = Wy,
=+ = w, sont toutes égales et ol seulement les oy, 014, Opg, ..
ete. difféerent de zéro, la relation (6,10) correspond aux équations
classiques pour o(t) ((8,2) et (3,4) avec py= py = w, et sans le
terme de freinage) parce que l'identité >\ (wgs + ®ep) C4¢ Top =
wy 04 Tésulte.

(6,8) repésente ainsi la premiére étape de la quantification
de la théorie ordinaire. Il faut, en plus, la compléter par une équa-
tion d’onde pour ¢. Celle-ci doit &tre telle que les lois de conser-
vation solent satisfaites. On vérifie que c’est 1’équation

Ap—n2p— =
— 21 D) (euy(mo) ypup — e g uy (0)’pup) =—o (6,11)
qui a pour effet que le tenseur
Tw = Te3(9) + X Thay (wa) + 9% L (6,12)

L(Z, t)=e LMW +¢? L(z)ZB‘PEZ. Uy (Mo) ygthg—e % ‘PZZEuA (0)ipUs
satisfasse & (1,1). Les inhomogénéités de (6,10) et de (6,12) sont
— 0L[0u, resp. — 0 L/0 ¢.

La deuxiéme étape introduit les ay,, ai ™, ¢ et ci* dans
(2,1) et (6,7) comme des opérateurs qui commutent tous entre eux

sauf "
[(1,]‘; A0 a?A] == [CZ*> C;] =—1 (6’18)
Opérant sur une fonctionnelle v (t), ils ont les effets suivants
aaw(. . N Ny sd) :]/N;;:LTT(...N; vy N1 1)
(L Nue s Ny s t) = YN P (LN —1...; ... Niyeo51) (6,14)
Opérant en particulier sur ¥(... N3 ...) = ... dzn5% ..., on voit

que ¢ correspond & Pannihilation d’un quantum dans ’état u et
7 * &4 sa création. Les relations (6,18) ont pour conséquence:

fug (2), ug (2)] = 044 Dy (2, 2); lo(2), ()] =D(z, 2') (6,15)
les fonctions D, (x, ') ont les propriétés suivantes: Elles dis-
paraissent pour t=1t" et satisfont a
lim 0, D(z, ') =lim0,D, (x, ') = 6(x —Zz"). (6,16)
t=t’ - Pt
Ainsi elles servent & définir les potentiels retardés ret, o, resp.
ret ¢ des inhomogénéités de (6,8) et (6,11) dans la limite — T' = — oo

t
ret, o4 (%, 1) =fdt’f(d;c’)3 D, (&, t;%, t)o, &, t) (6,17)
-
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On vérifie alors que 'opérateur
H(t) = —f (d2)*L(F, 1) = eHO{) +e2HO®t)  (6,18)

et les opérateurs « (%, ) et 0,u(Z,t) (6,7) (resp. ¢(z,1) et 0,9 (T, 1)
de (2,1)) substitués en (6,3) définissent des espérances mathéma-
tiques u et @ qui satisfont & (6,8) et (6,11). Soit alors ¥ (— T) un
état initial quelconque. L’équation de SCHROEDINGER peut étre ré-
solue de la maniére suivante. On développe 'opérateur « suivant

a(t) = ea®(t) + e2a@ (1) + 2a® (1) + ... (6,19)
et on compare (6,4) a (6,18). Le résultat est

eald ( ~—gfdt HO (1)

i :
620 (f) S far [dv i | HO@), HO ') | + &2 [ dt H® (1)
3, fae fari] ] +ef
2a®(f) = ... (6,20)

On s’apercoit alors que l'opérateur &"a™(f) est une fonction du
(n +2)*me ordre des opérateurs a, a*, ¢, ¢* et correspond ainsi a
une réaction (dans le sens chimique) entre » + 2 particules ou
quanta. En particulier, le terme &2a® contient une expression
tétralinéaire en a, a*. Dans la limite — 1" = — o0, le commutateur
1 [, ¢'] s’exprime par (6,15) et (6,17) et cette partie de I'opérateur
a® devient (dans le cas d’un seul u et avec o =1)

t
2o (1) :_%fdt’ f (dx)® emu?(Z,t) ret (emu?(z,t))

& a(2)(T 82 1mzz 2 Z Z* (*) (*) (*) (*) (k4 kf4 kn4 ]‘6”’4) =7

k‘” k”,
3 F.’ k”'
. rrr rrr 9 1
((\i) (_ k 5 (+) Iu + 7“/ ‘+‘ /) (5_ ( )-1];(4_) -;c-ﬂ(i) -z,”n ]7
5 (kA KA 8 1) (6,21)%)

Aprés une longue période (t — (— T) = 2 T), cet opérateur et tout
autre opérateur "« n’admet ainsi que des transitions compa-
tibles avec les lois de conservation &k & K 5 k"5 k" =0. Ainsi
que le montre la premiére équation (6,21) e2a® contient I'influence
du champ retardé dune densité de charge emu? sur elle-méme.

*) La relation ret e (¢, 2) = ((I, ) + »%)~Lei (I, 2) a été utilisée. 2* exprime que
la somme est & effectuer sur a et a* avee +k ef —Fk.
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(6,21) contient ainsi des transitions ol deux particules ayant des
impulsions k' et k""" disparaissent et deux autres sont créées dans
les états k et k’. Un telle transition est la diffusion de RUTHERFORD

d’une particule chargée k'’ par une autre k"’ (tenant compte des
effets d’échange et de 1’annihilation mutuelle*). Mais des termes
du type D\ (k) a3* ap az¥ ax (...) = N3 (%) (...) contribuent &
une somme sur les &' qui diverge (prop. & r—1 - co si 'annihila-
tion mutuelle est exclue et prop. & — m log mr > m log co si I'anni-
hilation mutuelle est admise). Des divergences semblables appa-
raissent dans les termes supérieurs a™. Ces divergences sont I’ana-
logue quantique des divergences en théorie classique.

Pour remédier & ce défaut, on peut, en principe, procéder:
comme en théorie classique. Introduisons des champs @@, com-
mutant entre eux et avec g, et soumis & 1 [PD, PO =o; D, (z,2")
avec 2o, =— 1. Alors le terme divergent prend la forme
20 (T)~2 T2,! ou 4; est une constante. Ce procédé a le grand
défaut qu’il n’introduit pas seulement des quanta nouveaux, mais
qu’une partie d’entre eux possédent des énergies négatives**).

Mais une autre méthode, beaucoup plus simple, se présente.
Il suffit de redéfinir « par la série (6,19), mais ou, dans chaque
terme &" o™ (1) (ealcule d’aprés (6,20)) tous les opérateurs ag,™ et
c7.* sont placés & gauche de tous les ag, et ¢5. A ceci correspond
une soustraction covariante de la forme X (corrtg) = % (habitue) — O
ou les termes co ont la méme covariance que le oy de la
théorie habituelle. Les intégrales en &* a(® (t) dépendent maintenant
explicitement de — 1" et, pour avoir une théorie définie, nous devons
fixer une fois pour toutes — T' = — co. Dans cette théorie corrigée,
il n’existe plus d’opérateur H(t) indépendant de — T'. Elle est en-
tierement définie par son «(t), soit par la série corrigée (6,20).
Chaque terme &" ™ ne fait alors intervenir que des réactions entre
n + 2 particules (tandis que, dans la théorie habituelle, un tel
terme contenait toujours encore des réactions d’'un ordre inférieur,
par ex. le terme divergent de «® avec une seule particule initiale
et une seule particule finale).

Nous allons démontrer que cette théorie corrigée correspond

*) of. & ce sujet la thése de J. PIRENNE, Université de Lyon, 19437).

**) Cette critique s’applique en particulier & la théorie de Bopp®). Mais on
peut se demander, si, dans ’électrodynamique quantique de 1’électron de Dirac,
le preeédé étudié en I (la compensation des divergences du champ électromagné-
tique et d’'un champ scalaire & énergie positive) n’a pas son analogue quantique.
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4 nos modeéles quantiques introduits en théorie classique. Nous dé-
veloppons d’abord
p(—T) = ZZ p(p,4; —1T) Qo+ Orvy oo  Orye . o
w 4 . k(u)A
avec k (u) =p —u (6,22

pour le cas ol un seul quantum et un seul atome ou électron est
présent. Le seul ¥ (— T') qui représente un état physiquement pos-

sible pour — T' = — o0 est celul ot I’'atome est dans son état fon-
damental (m, = m,). Dans tout autre état, il existe une histoire
antérieure & — 1T' = — oo qui décrit comment cet atome a été excité.

Calculons ¥ (4 T). Les lois de conservation nous montrent que,
pour tout paquet d’onde ¥(z, 0, — T) (= ¢ du § 2), la contri-
bution de ea® (T') est négligeable. En effet, notre atome ne peut se
trouver dans un état excité m, = my + w,, que si la fréquence du
quantum incident w = u* est exactement égale & w,,. Cette pro-
babilité est proportionnelle & V-1 et peut étre négligée. Ces mémes
lois nous montrent que, pour t = + T, (... N ..; ) ne peut avoir
des amplitudes de probabilité non nulles que pour des états ou
un seul atome ou électron est présent, pour autant que ut = w
< 2my=2m. Les éléments de matrice de & «!® peuvent alors
s’exprimer dans un espace hermitien ¥ (u, 4). Dans le cas de 1’élec-
tron, un calcul analogue & celui qui aboutissait & (6,21) (mais ol

le terme H® contribue) donne pour k=0,kt=met (u, p)=—x=0
le résultat -
e ol (1) (W'[u) =
g2 cos ¢ (mk'tww' )% aV-1é(w +k't— 0 —m) (6,23)
et, pour 'atome, si k = 0 et MyS> My —Mp = Wyp

& oa®(T) (W', A'fu, A) = — & (0"t S\ (0g 4+ 0¢4) Oar¢ o4
C

H(@oa— o) (@ou+ @) + (0o — o) (wout o)1}

caV-1o(o — (0 —wy y)) (6,24)

Dans le cas de 1’électron et pour des fréquences ou les gerbes
peuvent étre négligées (cf. § 2), on peut donc poser o(T) = &% a®
parce que les a™>2 ne contiennent que de ces effets d’ordre supé-
rieur. Alors le calcul de ¥ (+T) se réduit a (4,1) et (4,9) ot « est
la matrice (6,23). Elle n’est autre chose que la matrice de la théorie
classique (4,7) corrigée pour I'impulsion du photon (effet CompTON).

Pour I’atome, cette approximation n’est justifiée que si @ < @, .
On vérifie qu’alors seul «® contient un facteur de résonance. En
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particulier, si la correspondance classique exprimée en (6,10) est
valable et rend D) (w¢ 4+ ®g4) Carg T40 = ©g 0474, 'élément (6,24)
est égal & 1’élément classique (4,10): La dispersion d’une onde in-
cidente monochromatique (y(x,0; — 1) =1 pour un seul u) est
égale a celle produite par le modele quantique en théorie classique.
L’excitation de ’atome par un choc (¥ (u, 0; — T') = const pour
tout u// g et wy <y et P=0 pour tout autre u), donne une
probabilité prop. & | 27mg,(w’) | 2 qu'on trouve un quantum de
fréquence o’ (~ w,,) émis.

St le choc est trés exactement défini, (@, > ®g,) un quan-
tum avec tout o ~ w4, peut &tre présent en y(+ 7). Mais les
termes &8 «® (7') contiennent maintenant des facteurs de résonnance.
Ceci signifie que, dans le cas de l'irradiation monochromatique,
une probabilité finie existe, que l'atome émette deux quanta
o Lw— wy, (quantum de Raman) et o L wy., (émission de
énergie absorbée dans leffet de Raman). Les termes &* o® o ?)
provenant du développement de e-¢* donnent lieu au méme
effet. En plus un tel choc aura pour conséquence que & a® pro-
duira deux quanta o' L w,, et o = wy, correspondant a
I’émission successive de deux quanta par 'atome exité dans un
état mg~m;. On observera ainsi un spectre de ligne. :

§ 7. La .généralisation du modéle en théorie quantifiée.

Au premier abord, il semble que notre maniére de soustraire les
infinités en théorie quantifiée né nous améne qu’aux modéles quan-
tiques introduits en § 1 et § 3. Mais on peut démontrer (analogie
parfaite avec la théorie classique) que la soustraction des singula-
rités peut &tre faite de plusieurs maniéres, dont chacune définit
un modéle caractérisée par une fonction «(f). Nous exprimons
Popérateur unitaire S en (6,1) en termes d'un opérateur hermitien A

S(t S(ﬁ t)) = e~ ta(BE) | | (7,1) |

ou « est une série définie par des constantes réelles «,

a(f) =B+ a2+ oagf+ ... (19
Pour £, nous écrivons son développement en termes de & (6,19)
ﬁ n, 85(1) + &2 ﬁ(z) -+ &3 ﬁ(s " ;

B2= 22024 & (ﬁ“’ B + B B0) 4 .. | (7,3)
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et égalisons les coefficients de &” en (6,4). On trouve ainsi la série

e B (1) = ¢ f dt HO ()

&2 BO (1) = fdt fd "4 [HO (t'), HO (t'")]

12 [ dt HO (t') — 2 ay B0 ()2 (7,4)
& B (1) = ... -

qui se distingue de (6.20) par les termes contenant les coefficients
oy, %y, ... Une substitution ultérieure de (7,4) en (7,8) et (7,2) donne
naturellement la méme série pour « en termes de H®, que celle
obtenue par le procédé simple du § 6. Mais nous sommes libres en
(7,4) deredéfinir 'opérateur — e2a? V) 2 et les autres opérateurs (par
ex. —etay, fB2 en & f¥) de la série, sans porter atteinte ni & la
covariance ni al’unitarité de S, en transposant dans ces termes aussi
tous les a{ -, et c & gauche des ay, et ¢» (sans changer rien aux
intégrales spatiotemporelles‘) De cette maniere, 2 f02 . en
(7,4) est une matrice correspondant & une réaction entre 6 particules
et quanta et le terme (&t f®2) .4, & ajouter & &t f® représente
une réaction entre 8 quanta, etc. Opérant sur les fonctions ¥(— T')
considérées au § 6, ou le nombre de particules est limité & deux
particules initiales et deux particules finales, ces termes supplé-
mentaires ne contribuent en rien & l'approximation qui né-
glige les gerbes. Par contre, dans la série (7,2), ou les puissances
de l'opérateur g apparaissent explicitement, la série S(f) chan-
gera. On trouvera ainsi, pour S(f), une série unitaire plus géné-
rale S(8) =1+ 8S; 8+ S, p2%+.... 51 seuls les processus de 2éme
ordre interviennent, on a évidemment & f® = &2 a@ et S () =
S (€2 o« (T))) sera la fonction unitaire la plus générale dont les deux
premiers termes sont 1 — 1 &2 «® (7). La relation entre la fonction
7 (w?) caractérisant un modeéle classique et la série S () caractéri-
sant le modele correspondant, est

= (1 (22%)72 8% — 11 6) (1 (24)* ) + 1 15)7 (7,5)

On I'établit en comparant (4,3) avec (1,23) (lére équation). Cette
relation avec # = 1 (modeéle de Dirac) correspond aux formules.
trouvées par Gora®) et Herrner®) (cf. (4.8)).
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§ 8. Coneclusions.

Nous avons démontré que la théorie classique de 1'électron
ponctuel proposée en I peut étre modifiée d’une telle maniére
que seul le champ Maxwellien interagit avec la particule. Un
nombre infini de modeles possibles existent, qui se distinguent
physiquement entre eux par 'effet du champ propre. Ceci a pour
conséquence que tout résultat qui, en théorie de 1’électron étendu
(LorENTzY)), dépend de la structure de la particule, ne peut étre
calculé dans notre théorie que si une certaine fonction invariante
(fonction du modéle 5 = 5 (®w?)) est donnée.

La théorie peut étre quantifiée sans que des divergences ap-
paraissent. Une équation de ScHRODINGER n’existe plus. Par
contre, une matrice unitaire S envisagée par HEISENBERG®) carac-
térise chaque modele quantifié. Une relation est établie (7,5) entre
cette matrice de HersexBERrG S (o) exprimée comme fonction d’un
mvariant « et de la fonction de modéle #7(w?).

Les effets suivants sont indépendants du modéle (pour autant
que l'action de freinage de l'effet considéré n’intervient pas):

1° Termes en ¢%: La diffusion de RurHERFORD*), I'effet Come-
TON et la production de paires;

29 Termes en £%: Le rayonnement de freinage et la production
d’une gerbe simple constituée de deux quanta (hw + mc® =
ho' +ho +Ymt 5 TR]S).

Un modéle de 'atome est discuté, ot celui-ci est considéré
comme une particule élémentaire possédant un degré de liberte
intérieure. Mais cette théorie est insuffisante en ce qu’elle ne permet
pas encore de comprendre comment un proton et un électron
peuvent se combiner pour former un atome d’hydrogéne et un
photon. Dans I’état actuel, il faut introduire chaque atome comme
un nouvel étre élémentaire, caractérisé par ses niveaux d’énergie
my—mp = w, p €t par ses matrices de transitions (645, T4p5...=
moments dipole, quadrupole, etc.).

Cette difficulté nous semble étre due & 'impossibilité de distin-
guer entre «quantum lié» et « quantum libre », qui a été intro-
duite par Paurt et Firrz®). En théorie classique, c’est la décompo-
sition du champ ¢ en ¢ 4 @9 qui correspond & cette distinction.

Pour des raisons de simplicité, nous avons exposé la théorie
d’un électron sans spin dans une électrodynamique longitudinale.

*) Dans le cas ou x est rigoureusement nul des difficultés se manifestent
par le fait que ’opérateur (oc](f))z formé de (6,21) diverge.
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L’étude d'un électron & spin 1/2 dans ’électrodynamique de Max-
weLL est 'objet d'une thése en préparation.

Ce travail est dfi en grande partie & des discussions avec
MM. G. WenNTzEL et M. Frerz, au Séminaire de physique théorique
de Zurich. Je remercie tout particuliérement le président du conseil
de 'E. P. F., M. le Professeur Roun, et le directeur de 'Institut
de Physique de 'E.P.F., Monsieur le Professeur P. ScHERRER, de
I'aide qu’ils m’ont accordée en me permettant d’assister réguliere-
ment & ce séminaire.

La mise au point de la théorie classique, ainsi que la rédaction
de cette publication ont été faites en collaboration avec mon ami
et collegue, Monsieur J. WEIcLE, auquel je tiens & exprimer ma
sincére gratitude.

Genéve, Institut de Physique de 1’Université.
Lausanne, Laboratoire de Physique de 1'Université.
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