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Un modèle de l'électron ponctuel II *)2)

par E. C. G. Stueckelberg.

(29. X. 1943.)

Résumé: Un modèle de l'électron ponctuel, plus généial que celui proposé
en I2), est discuté. L'électron n'interagit qu'avec le champ de Maxwell. En théorie
classique, son mouvement ressemble beaucoup à celui de l'électron étendu de
Lorentz. Par un principe de correspondance, le modèle peut être transcrit en
théorie quantique, sans que des divergences apparaissent. Les formules ainsi obtenues

montrent une très grande analogie avec celles obtenues par Heisenberg3)
dans sa récente théorie.

§ 1. Le modèle classique de l'électron.

Il est possible de donner une théorie classique de l'électron
ponctuel1)2) sans se servir d'une électrodynamique non linéaire. Le
procédé essentiel pour éviter les infinités doit être considéré en
détail ; aussi allons-nous rapidement le décrire pour insister sur cer^
taines de ses caractéristiques. Sur une particule (électron) placée
à l'endroit q au temps t, l'expérience montre que d'autres particules

peuvent agir. C'est l'arrangement dans le cone du passé de

q (q., t q*), qui détermine cette action. On la décrit par un
champ cp(x) cp(x, t) qui contiendra les particules comme des
singularités. La théorie du champ qu'on désire établir doit fournir
les équations permettant de calculer le champ cp (x) et le mouvement

de la particule (ou sa ligne d'univers q q(X)). On part alors
des principes de conservation détaillée de l'énergie-impulsion. On

suppose qu'il existe une densité d'énergie-impulsion Tl"(x) qu'on
exprime sous forme de Tlxv(cp(x)) en fonction de cp(x) et de ses

premières dérivées de la façon la plus simple. Les principes de
conservation sont alors la loi de continuité et les relations de

symétrie ^ T"* 0 ; T"' T.'" (1,1)

Il est utile de définir la densité de force F>* (x) et le quadrivecteur
d'énergie-impulsion p^

F" (x,t) dv T"» (x,t); p" (t) f(dx)3 T"4 (x, t) (1)2)

*) Dédié à M. le prof. A. Sommerfeld à l'occasion de son 75èP>e anniversaire.
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4 E. C. G. Stueckelberg.

La force sur la particule est alors

/"(*)= J (dx)* F"'(x,t) (1,8)*)
t>(S

v(q) étant alors un volume arbitrairement petit mais contenant la
singularité x =q (t). Pour que (1,2) et (1,8) aient un sens, on voit
qu'il faut que les singularités contenues en T1" et F*1 soient inté-
grables.

Voyons maintenant comment ces singularités peuvent
s'exprimer. Dans une théorie linéaire, il y a superposition et, par
conséquent, le champ agissant sur une particule est dû aux actions
individuelles de chaque particule et l'on peut donc décomposer cp en

cp ç><ret> 7 ?>(înc) (1,4)

où ç?(ret) est le champ retardé agissant sur la particule considérée
dû au passé de cette particule et 93<inc) le champ incident sous
forme d'onde dû aux autres particules. On peut toujours écrire

œ(ret) _ ç,(sym) _u ç,(rad) „,(sym) _ 1 (™(ret) _|_ ç,(av)\.

^(rad) 1 ^(ret) _ ^(av) (^5)

ç?(av) étant le champ avancé de la particule considérée. On voit
facilement que les singularités de q?(ret) sont toutes contenues en
<p(sym) parce que 93(rad) est une solution de l'équation d'onde homogène.

Quand on construit T1" à partir de cp de la façon la plus
simple, les singularités de T1" et de F? ne sont pas intégrables.
On arrive, avec ces suppositions simples, à la théorie classique
munie de toutes ses difficultés. Pour éviter cela, on complique la
dépendance de T1"1 de cp. Voici comment on procède:

On peut toujours décomposer T1" et F1" en deux parties:

rpttv _ J>>>(...) 1 rj^fiv (sym)

Pß J>(...) + Fßlsym) (1}6)

où la deuxième partie ne dépend plus de 9?(inc) 7 ç7rad). On peut
alors montrer que les singularités non intégrables sont contenues
dans T""«8'™) et F"*-***». Ces termes du reste, ne contenant plus
ç>(inc), ne peuvent être que des fonctionnelles de la fonction q q(X).
Alors on ajoutera, au Tf" de la théorie simple, un T'"'(0)(a;) (donnant

par (1,2) un i?"<°)) tel qu'il fasse disparaître les singularités
non intégrables. Il est possible de montrer qu'une infinité de
fonctionnelles peuvent être choisies pour avoir cet effet. Nous
discuterons ci-dessous en détail le procédé que nous avons employé dans

*) jf n'est donc pas un quadrivecteur, mais seulement ffd t= fpdq* >JbY
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I pour faire ressortir son arbitraire. Nous avons en effet ajouté au
Ti" du champ Maxwellien, le T'"'*0) d'un champ scalaire (au lieu
d'une simple fonctionnelle) de façon à ce que les parties singulières
des termes TW"™) dues à ces deux champs se compensent. La
partie TliV<---) du tenseur du champ scalaire produisait des effets
qui ne sont donc nullement nécessaires pour que la théorie
converge, pas plus qu'il n'est nécessaire de se restreindre à des T1"®*
dont l'énergie est positive. Ces considérations empruntées à I nous
donnent un moyen d'arriver simplement à des fonctionnelles T'"'<0)

nécessaires. Il suffira, comme on le voit, de prendre la partie
rp^ (sym) q\'utì j1!" fonction d'un champ 0 choisi de façon à avoir
les mêmes singularités (mais en signe opposé) que le T1" simple
dont on était parti. Le champ 0 différera ainsi du champ cp par la
fréquence minimale x de son rayonnement masse de repos de

ses quanta). Nous appellerons dorénavant 0 le champ fonctionnel
0(sym) et seui ce champ doit intervenir en T'"'^ pour qu'il ait
conservation d'énergie pour particule et champ 95*).

Pour établir les équations de mouvement, on procède en principe

comme suit pour un champ cp scalaire (électrodynamique
longitudinale si x 0) : on définit le tenseur le plus simple

Tfö(<p) d"cp d*cp - \ g»* (dacp à«cp 7 x2cp2) (1,7)

(avec x=0) et le tenseur T'"'«» avec la même forme (au signe près)
en fonction de 0, mais avec un x± 4= x non nul. De là, on tire

F»=F"(cp)+F'>(0)=d''cp- (n — xi)cp-d"0-(D -xl)0=O (1,8)

S'il n'y a pas de singularité, cette équation est satisfaite, si cp et
0 satisfont chacune séparément à une équation d'onde homogène.

S'il y a une singularité (D — x2)cp doit être intégrable. Nous
exprimons ceci en posant

+ 00

(D - x2)cp (D ~x\)0 - q(x) - j' dXe ô (x- q(X)) (1,9)
— oo

où ô (x) est la fonction ô quadridimensionnelle d'espace-temps
([ô] cm-4). L'équation de mouvement de la singularité suit alors de

/"(*) / (ax)' (F"(cp) 7 F" (0))
-(qi)-1(edfcp(q,t)-ed>'0(q,t)) O (1,10)

*) Le choix d'une autre fonctionnelle &$ <Z>(sym) mais ayant les mêmes
singularités (par ex. cp <p(ret)) a pour conséquence qu'une partie de l'énergie totale
sera diffusée sous forme d'ondes <p(ret) loin de la particule. Dans la fonctionnelle
0(sym); la contribution de ces ondes cp se réduit à une constante ajoutée à l'énergie-
impulsion totale.
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où d^cp Çq, t) est la valeur limite de la dérivée à l'endroit x q.
Moyennant les développements exposés en I (éq. (3,12), (3,15) et
(3,22) de I), on tire de (1,10) dans le système de repos q 0, si
les amplitudes sont petites par rapport à la longueur d'onde de
Ç,(inc) et p0ur K — 0;

e2 -.
m (9 + h l 9 Y-¦•••) — | 4^2 £§rad <P (§> 0 (Ml)*

ou

e 2

m \ -— E a j xt ; I «,• - 1
4 n

«2»=-^^^; ••••; mA*»=(•••)|^2?a, x,*-* (1,14)**)

car en effet il n'est pas nécessaire de se restreindre à un T'"'0'
formé d'un seul 0, mais on peut prendre une série quelconque

T""<°> l'a, Tfa (<P<«) avec 27a4 — 1 (1,15)

Cette généralisation correspond à prendre la fonctionnelle
symétrique T'"'(0) la plus générale, compensant les singularités du
T"'(<p).

On a ainsi trouvé l'équation covariante la plus générale du
mouvement d'une particule sous l'influence d'un champ ç><inc>,

satisfaisant aux principes de conservation. (1,11) est sa forme limite

pour q 0 et pour des petites amplitudes. Elle contient, comme
on le voit, une série de constantes arbitraires et indépendantes les

unes des autres, dont la première est ce qu'on a convenu à appeler

*) L'équation de mouvement qui suit de (1.10) n'admet pas la condition
qoicp- < 0 qu'on doit imposer à q q(X) pour que les développements faits en /
soient valables. Un terme

+ 00

-q>(x) f dAequqv o(x-qß)) (1,12)
—00

qu'on ajoute aux expressions (1.7) pour cp et pour Çp changera Fli(q>) d'une telle
manière que (1.10) devient

— fit qi edß cp + sqß qo. ôa tp + (s qi> + eqp) cp - termes en 0 0 (1,13)

(1,13) admet alors la solution q«- q« - 1 pour autant que è 0. e doit dono être
une constante. Les solutions où £ dépend de A sont discutées au § 3.

**) Des équations (7,1) et (7,5) de I (corrigées en omettant le terme - (1/3)
(eu2— x^yU en (7,5) dû au rayonnement 0), il résulte que les séries en xt, Kf1,
xf3 provenant de chaque 0(i) en (1,14) divergent à certains endroits. Il est
alors plus exact de parler des fonctions rj de - (d/dt)2 au lieu des séries en - (d/dt)2
en (1,11) et (1,17). Une discussion plus approfondi de îT/",((j) paraîtra dans les C.

R. Soc. Phys. Genève.
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la masse ,de repos m et les autres définissent le « modèle » de l'électron.

Le terme „

,est en général considéré comme une force à laquelle on donne le

nom de force de freinage*). En termes de m, elle introduit une
constante A0([l] cm) indépendante du modèle.

Voyons maintenant quelles relations il y a entre cette équation

de mouvement (1,11) et les lois qui découlent de l'équation
élémentaire de Newton. Pour cela, nous écrirons (1,11) dans la
forme: ^m M - dû* « - mA° 5 ^(inc) (*) vl'17)

On voit que la fonction rj(co2) est une fonction paire de cd qu'on
peut exprimer sous forme de série (cf. Note **), page 6) en œ2,

dont le premier terme est une constante égale à l'unité. /(lnc) peut
être analysé par l'intégrale de Fourier

pio^ J(o) Th(t)=f^xfdcoe-i">th(œ) (1,18)

En faisant la même analyse pour q, on trouve

m \ (t) /<°> r [dco e-i^ 1{W\. f0) xg(t) (1,19)
¦> rj(co2) + ia0oj

comme solution particulière de l'équation de mouvement. En plus,
en intégrant entre t — — T et t + T (lim TA- oo).', l'augmentation

de la quantité de mouvement vaut
+ 00

mq (7 T) - m| (-' T) f df/<inc> (t) (1,20)
— 00

car les intégrales (1,18) et (1,19) ont, dans cette limite, toutes les
deux la valeur

rx r -, sin coT h (m)
bm 2 / dco i-7
T=ao J œ rj(co2) 7 Ìj10cd

Si l'on normalise la fonction hiß) à /dth 1, la fonction g(t) a

la même propriété. /(0) x g(t) est en somme une force fictive qu'il
faudrait appliquer à la particule pour qu'avec la loi élémentaire

*) Dans la théorie de Maxwell, le facteur 1/3 est à remplacer par 2/3.
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de Newton « force masse fois accélération », on trouve le mouvement

défini par (1,11). On voit alors que notre particule a une
prémonition de ce qui va lui arriver à la suite de h(t) et nous appellerons

g(t) la fonction de prémonition de l'électron. En effet, alors
même que la vraie force h(t) est encore nulle, la force fictive g(t)
ne l'est plus et l'accélération g (t) est par conséquent différente
de zéro.

Comme nous venons de le voir, l'augmentation de la quantité
de mouvement est indépendante de cette prémonition ; elle est égale
à celle qu'on calculerait si l'équation mq /(inc) était juste. Par

+ T

contre, le travail A dt (/(inc), q) fourni par la force incidente

est toujours plus grand que l'énergie cinétique
^(cto) | m (j g (+ 5T) |2 — | g (— T") |2) acquise par l'électron.

Ce qui est évident parce qu'une partie A(TaA) A — ^4(cin> de l'énergie

A est diffusée. Tandis que ^4<cin> est, à cause de (1,20),
indépendant de rj(—d2/dt2), ce n'est pas le cas pour ^4<iad>, qui dépend
par conséquent du modèle.

Voyons encore comment la fonction de prémonition varie
avec le modèle de l'électron dans le cas d'un choc h(t) ô(t).

a) Le modèle de Dirac1) : rj 1. On a alors

t < 0 : g0(t) V1 «"* ; t > 0 : g0(t) 0 (1,22)

b) Le modèle rj 1 + A2 co2: si Ä* > — J A2, g0(t) est une
exponentielle e l"l( pour K O et r W <¦

pour t > 0. Dans la limite
K ^ K *a fonction est symétrique, sinon la contribution majeure
se fait pour des t négatives. Pour A2 < — \ 120 le g0(t) de (1,22)
montre des oscillations.

c) Le modèle quantique: Si l'on prend

rj(co2) \ (i\0co sin 2 X0co) (sin A0co)~2

avec donc
g— 2i A„ a) J

2ng0(co) (rj(a>2) + i,i0co)-i= __2iÀœ (1>23)

on a °

~2i\0<t<0: g0 (2X0)~1; t<-2 À0 et t>0 : g0(t) 0 (1,24)

L'importance de ce dernier modèle (à fonction de prémonition

différente de zéro et constante dans un intervalle fini 2 A0)

se montrera surtout en théorie quantique. C'est pourquoi nous lui
donpons le nom de modèle quantique.
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§ 2. La diffusion du rayonnement.

Pour calculer ^4<rad> diffusé par un électron sur lequel tombe
une onde plane périodique ç>(inc), on procède normalement par la
méthode suivante: 1° détermination du mouvement q(t) et 2°
détermination du champ émis ç>(ret)(a;, t). Nous exécuterons ces
calculs dans l'espace de Fourier, ce qui facilitera la comparaison des

résultats avec ceux de la théorie des quanta. Soit V un volume
de périodicité spatiale. Alors, toute fonction cp(x,t) peut être
décomposée en

cf(x t) cp(x) 2(2 Vu*)~v* (c~(t) e*<">*> 7 c| (t) e-^»- *>) (2,1)

avec

(p, x) ua x- Çu,x)~ nH; n* 7 ]/*27|£F (2,2)*)

Le champ incident ç?<lnc>, étant une solution de l'équation homogène,

détermine c(ïc) const, (une deuxième solution c'"c° fri V f1

const e2*''*' ne fait qu'intervertir c et c*). Le mouvement de
l'électron est alors représenté par la somme de Fourier (co /t4) :

« tH) 2 (4= *
-, ec) e-4 roe + conj.) (2,3)

7, \V2Fco ??(cu2) + a0w *« /
Le deuxième pas se fait en écrivant pour (1,16) la série

q (x, t) =eô(x — q(t)) e ô(x)—e(q, grad <5(î)) 7 (2,4)

e y\ JL é$A) - e V i(k,q(t)) é(kA, +fv f y
que l'on peut substituer en (1,9) pour calculer ç>(ret). L'équation
pour les coefficients c£et),(t) est alors dans l'approximation linéaire

7"-'»- 2 i «/ if». - S *£$ i/? -t^"^t-** (2.5)^ ** ; m w2 F F co (w2) +i ,l0œ f '

Nous intégrons (2,5) avec la limite c£et) (— T) 0, et substituons

pour rj (œ2) la fonction de pressentiment g0 (co). Le résultat est

C<f(+D=
_

• y 2 £2 G«'. £) t /^7 „ >
«ip K - w) t (inc) .„.~ t -^J ï7 ; ^?7 / — 2 7î fln (ft>) ; c\ (2,b)**)j mft)2(co7ß)')F F w Ml ' w — co " v y ;

*) Nous ne discuterons que le cas x O, mais il sera avantageux de garder
un x £ 0 dans les formules générales.

**) (2,6) ne contient pas le champ statique dû au 1er terme de (2,4). Ce

champ statique est donc à ajouter partout.
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Si l'onde incidente ne contenait qu'une seule fréquence co, on s'aperçoit

qu'il en est de même pour l'onde diffusée et pour T co.
En particulier, si l'onde incidente est une onde plane ne contenant
qu'une seule fréquence, son courant d'énergie est représenté par Tli

r* (ine) -^dnc) 7U^ / T)r-««frCS VC" =-/-^rJ: (2,7)

L'énergie rayonnée dans une direction //' contenue dans un élément
d'angle spatial d Q' d cp' d (cos &') est

cL4<™» (7 rj'- 2 /*'* cr}* 4re,t)
*- ri*Ï ' (d fl')

-T-dQ' J d co' co'3 N-, (7 T) (2,8)
o

avec N* c~ cj La section d'efficacité est définie par le rapport
entre cL4<rad> et ] T-4 | divisé par la durée 2 T entre t =.— T et
t 7 T, soit

dA<-™v (cos »')2
dQ' —— dQ' (3 A0)2 ,\t,it 2 (2.9)

2 T T-4 rj(co2)2 + À2 coà v '

Elle vaut donc dû' (3 A0)2 (cos &')2 pour des fréquences co<^A7/.
Pour des fréquences comparables aux i\t son comportement dépend
du modèle n (co2).

Nous écrirons le résultat pour les deux modèles suivants :

a) Modèle de Dirac:

dQ' dQ' 9(cos &)2 co~2 (20co/1/l7A2 co2)2 (2,10)

b) Modèle quantique:

dQ' dû' 9 (cos »')2 «-«(sin Â0 co)2 (2,11)

Dans les deux cas, la Section disparaît pour des hautes
fréquences proportionnellement à co-2. Mais, alors qu'avec le modèle
de Dirac le décroissement est monotone, avec le « modèle quantique

», cette diminution est multiplée par un facteur périodique.
Cependant, la théorie des quanta nous montre qu'avant d'atteindre
les fréquences où ces formules deviennent très différentes (H0co ~ 1),
il devrait se produire des gerbes, ce qui change évidemment totalement

les sections d'efficacité. En effet, cette théorie pour des

fréquences suffisamment hautes ne permet plus des amplitudes
suffisamment petites pour réaliser la condition

\coq |2 m | q \2m | w-1! |2<1 (2,12)
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dont nous nous sommes servis pour rendre linéaires les équations
du mouvement. Dans ce cas, en essayant de résoudre rigoureusement

le problème sans la restriction (2,12) des petites amplitudes,
on voit apparaître dans le rayonnement diffusé des fréquences
co', ca", sous multiples de m. Du point de vue des quanta, ces

fréquences correspondent à la décomposition du quantum incident
hto en une série de quanta h m' + h co" + ha>. Calculons pour
quelles fréquences ces effets commencent à ne plus être négligeables.
Substituons dans (2,12) l'équation (2,3); on trouve

| co-1 q |2 oq 6 n 2.0 co-1 m-1 (N-J-V) (2,13)

Cherchons alors pour quelles valeurs de eu cette expression est de
l'ordre de l'unité. L'équation (2,7) montre que, pour les quanta,
N~/V est le nombre de quanta incidents par unité de volume*).
Le quantum h co, au moment où il réagit avec l'électron ponctuel,
est localisé par conséquent avec le maximum de précision et par
conséquent son Aq est de l'ordre de grandeur de co-1 et donc
AS%/V ~ co-3. Introduisant la longueur d'onde de Compton de l'électron

lc=h/mc~m-1 (avec nos unités) (2,12) devient 6n X0i\eoj2<^.l.
Si nous avons pour X0 une valeur 3 x 137 fois plus grande que

A0, on voit qu'il faudra tenir compte des équations quadratiques
pour A0 co ~ 1/100, alors que les deux formules (2,10) (2,11) ne
commencent à différer (effet du modèle et du freinage) que lorsque
A0co ££ 1. Remarquons enfin, que la fonction rj(co2) détermine d'une
manière invariante les termes non linéaires omis en (1,11).

§ 3. Dispersion et largeur de raie.

Pour étudier la diffusion d'une onde par un électron lié, par
exemple, à un noyau, on ne peut pas employer le procédé des
paragraphes précédents, car, comme on le sait, la théorie classique ne
donne pas dé solution stable pour ce problème. Il nous faut donc
construire un modèle d'atome correspondant au modèle des oscillateurs

en théorie classique de la dispersion. L'atome sera une singularité

du champ x q(X) qui aura un degré de liberté de plus que
l'électron. En électrodynamique, ce degré de liberté supplémentaire
est le moment électrique à a (t) resp. dans une théorie covariante,
les six composantes d'un tenseur ßßV(X) — avli(X) associé à cette
singularité. En électrodynamique longitudinale, il nous est possible

*) Il convient alors de choisir les unités de telle manière que la constante
de Planck soit l'unité de l'action (h ftpianck/2 n 1 ; [<p] [m] [co] cm-1).
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d'introduire un degré de liberté scalaire a a(X) dans (1,9) et de
l'écrire

+ CO

q(x) fdXea(X)ô(x-q (X)) (3,1)
— 00

Un raisonnement semblable à celui du paragraphe 1 nous donnera
les équations de mouvement pour q q (t) et pour la variable
intérieure. Dans le cas où l'atome est très lourd (q ^q °S... °2 0) et
dans son système de repos (q 0), cette équation s'écrit pour des

petites amplitudes

l)(~|)J + ,"»('U(a»i /(inC) ® (3'2i*)

Les constantes X( qui interviennent sont encore une fois arbitraires
et déterminent le modèle de l'atome. (3,2) est l'équation linéaire
la plus générale qui satisfait au conditions de covariance et de

*) L'équation (1,13) (de la note *) p. 6) montre que la condition qa q«- — 1

admet en plus de la solution k 0 une solution

è(<p(q,t) + EoLi0(i)(q,t)) O (3,3)

si e(X) eo(X) est une variable intérieure. Développant encore une fois le champ
cp x, t) et les fonctionnelles 0 (») x, t) suivant le procédé indiqué en I pour x q,
(3,3) prend la forme

E2
fx.0<T + ti{~1Cò + ÌA a + .)+-.— à £ç)(inc)(«,«) (3,4)

4 71

avec
£2 £2 -1 2„

i"o -r- Eh Xi ; fi!-1 i -r— Eo-i^i S t1 - ¦*— • • • (3>5)t 71 t 71- n

dans le système *§ 0. Pour imposer cette dernière condition, il faut définir le

terme de masse (mq) dans l'équation de mouvement pour q(t) en introduisant une
autre série de champs fonctionnels W(k)(x) satisfaisant à (1,9) avec e const e0

dont les coefficients sont soumis à Eßk 0. m, mX^-,... sont alors définis par

m=i-^Eßk*k etc. (3,6)

pour autant que a(t)—0. L'étude de p« j (dx)3 T*l,(cp,W(k),0(i)) montre alors

que le facteur m'(a,à,...) en px= m'q& diffère du m'(0, 0,...) w en (3,6) par
l'adjonction de termes proportionnels à a2 et à2 (pour autant que rj ~1). Pour
qu'à une excitation du degré de liberté intérieure corresponde une augmentation
de l'énergie portée par la particule, il faut que fi0 etpt, soient des constantes
positives. (3,2) dérive alors de (3,4) si l'on pose

«o2 ft><"i K t^ ' /(inc)W epx<p(mc)(0,t) (3,7)
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conservation*). Comme précédemment, la fonction î?(co2) permet
de calculer comment l'atome est excité sous l'influence de la force
finc'(t). Au lieu d'une prémonition, on trouve ici, à cause du terme
co2 a, une fonction de mémoire: l'atome continue à vibrer alors

que la force a cessé d'agir. Calculons ce qui arrive dans quelques
cas simples : Une force /(inc) (t) /(0) x h (t) produira un mouvement
a (t) /(0) g (t) dont la transformée de Fourier est

h (co)
9 H — î i V • i—r 3>ia

co 2 — co2rj(co2)—^co2ß)yl0

Considérons la fonction de mémoire g0(t) lorsque la force est un choc.

a) Le modèle simple: rj — 1.

t<0: gr0(i) 0 ; t > 0 : g0(t) eoo'"1 cr"2* sin co0't (3,13)

avec
X-1 co2X0; co0' co0 yl — | (X0 co0)2 ~ co0 (3,14)

et avec une transformée

2ng0(co) (co02 — co2 — Ìco^wXq)-1 >

(2 coo)-1^ -co-i(2 X)-1)-1 (3,15)

Le choc a ainsi produit un rayonnement monochromatique (co <£>

co0), qui s'amortit exponentiellement avec une vie moyenne de
X"1. L'analyse spectrale montre une largeur de raie spectrale
(Dämpfungsbreite) de A m (2 A)-1 et une énergie totale
proportionnelle à

2n fdco\ g(co) |2 &g (4nco 2)-* jdz(z2+ (2 X)-2)-1 X/2 co2 (3.16)

Mais il est évident qu'en plus de ce modèle simple, d'autres
modèles peuvent être conçus, qui seront caractérisés par d'autres lois
d'amortissement et d'autres formes de raies spectrales.

*) Dans la théorie Maxwellienne qa g« -1 est satisfait automatiquement.
Les équations (1,10) pour /^ ont la forme

-fv(<p«ß)=f(dx)scpßvev (3,8)

oh cpixv — —cpvix est le tenseur antisymétrique du champ et où

e« (x) JdXe0 j« ô(x- q{X)) + jdX eo*ß{,\)dßo(x- q(X)) (3,9)

est le courant. Pour un atome à charge nulle (e0 0) et une masse grande, (1,10)
peut être satisfait en posant

<p«/3( 2, t) + E Xi 00) «/>(*§,<)=() (3,10)

(0(i)a.ß sont des fonctionnelles d'un champ de Yukawa tensoriel). Le développement

suivant I fournit six équations du type (3,2), une pour chaque composante
de a«-ß, mais où le dernier terme est à remplacer par •

A0o)02 ó«/3-> -A0 o«ß (3,11)
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Nous définissons en particulier:
b) Le modèle quantique, par la forme analogue à (1,23) :

mo\2 ^o ^o^o sm (2 wo oXq/co2 — ft)2)
r/ (ft,2) [co co 2 (sin (col wi / °>l ~ ^)Y ^'^

donnant lieu à un

2ng(j(co) (2icolcoX0)-1 (e 2 i col » ^A^l-cn2) -1 - 1) (3,18)

Loin du centre de la raie, les deux premiers termes de la
transformée (3,18)

2ng0(co) (co2 - m2)-1 + i m A"1 (co2 - co2)-2 7 (3,19)

sont identiques à ceux du développement de (3,15). De même,
l'intensité totale 2 n j dco \ g (co) \2 m X2 n-1 coa2 J' dz (sin (1/2 Xz))2
X\2 co0 est égale à celle du modèle simple (3,16). Mais la fonction
g0(t) elle-même montre maintenant un amortissement Besselien

t<0:g0(t) 0; _t> 0 : g0(t) m (2 co0 ^X^t)-1 J, (2 fX^t) sin co0t (3,20)

Que le modèle général, en particulier le modèle considéré, ait
des battements superposés à son amortissement et diffère ainsi fortement

de l'amortissement exponentiel, ne doit guère nous étonner:
En regardant de près notre ij(co2), ou s'aperçoit que, pour co ~ co0,

v diffère fortement de l'unité. Ceci équivaut au modèle non
relativiste d'un atome, qui s'étend sur une région très grande. Ainsi
il peut réabsorber même des ondes émises dans un passé lointin.

§ 4. Propriétés générales du modèle.

Nous voulons démontrer que nos modèles peuvent être
caractérisés par une relation

W(T) S(T)XF(-T) (4.1)

où W(t) est un vecteur hermitien dont les composantes sont définies par

VÇH, t) c%(t); VÇU,t)-W(^,-T) AYet)(t) (4.2)

et où S(t) est un opérateur défini par une matrice S(t)(ji'IJi)
opérant sur W(— T). La comparaison entre (4,1), (4,2), et (2,6) montre
que les éléments de S(T) — 1 sont, dans la limite T-> oo

(S(T)-l) (Ji'fr) -H2nX0u-12ng0{(o) cosV-nV^ôtco'-co) (4,3)
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Nous voulons démontrer que S(T) est un opérateur unitaire. Cette
condition s'exprime par

S* S (S* - 1) (S - 1) 7 {S* - 1) Y- (S - 1) A 1 =' i (4.4)

Or, pour deux matrices de la forme (4,3)

oi(ji'lpì) cu (co) cos &' ¦ TT F-1 (5 (co' — co)

et ßQi'/pY) ò(co) cos »' la relation opératorielle est valable

aß a' • ß ß< - a avec a' i a (co) co2(2 n)"1 (4,5)

où a' et ß' sont des nombres. En vertu de (4,5), la relation (4,4) '

devient une condition à imposer à la fonction de prémonition

2 X0co | 2 ng0(co) \2~i(2 ng0(co) - 2 ng0(co)*) 0 (4,6)

Or la première équation (1,23) qui définit 2 ng0 (co) en termes de
la fonction du modèle général v (co2) montre que (4,6) est toujours
satisfaite.

La forme explicite de l'opérateur S peut être donnée sous la
forme S S(a.(T)) en termes d'un opérateur

<x(T) (jû'l/u) e2 cos »' (mco)-1n • F-1ó(co' — co) ;

A ±e2co(2nm)-1 2X0co (4,7)

S (oc) est une série*) qui a les formes suivantes: 1° modèle de Dirac:

8(a(T)) (l~|ia(T))(l7|-ioc(T)-1 l-i*(T)+ (4,8)

2° modèle quantique:

S(a(T)) e-i«W l-~i*(T) 7 (4,9)

Le même procédé peut être appliqué à la théorie de l'atome.
L'opérateur a est alors donné par*)

a(T)Qi%) =-e2(co02-co2)-1co0co-1- nV^Ô^' - co)

A =~e2coco0(2n(co02—co2))-1 =—2 wco^XA^ — co2)-1 (4,10)

La relation unitaire entre W(T) et W(— T) permet déjà à ce

point d'envisager l'interprétation quantique de la théorie: Par la
normalisation

(W(- T), W(~ T)) - 2 WÇfi, - T)*WÇu, ~T) 1 (4,11)

*) Pour calculer les séries S-l on utilise la relation a» a"1-1 .a. Pour
calculer a' dans le cas (4,10), équation (4,5) doit être appliquée sans le facteur 1/3.
(4,10) n'est valable que si on choisit (it /i0 en (3,7).
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nous interprétons WQi, -\- T) comme l'amplitude de probabilité que
le quantum incident soit à l'instant Yz T dans un état caractérisé

par l'onde plane Ji. Ceci nous permet de préciser la notion de
correspondance. Nous appellerons une théorie quantifiée de l'électron
une théorie correspondant à une théorie classique si, dans la limite
où l'impulsion h co co peut être négligée par rapport à m, les
formules (4,8) resp. (4,9) et (4,7) sont valables.

De même, une théorie de l'atome quantifié correspond à une
théorie classique si, sans le changement de fréquence dû à l'effet
Raman, les formules classiques (4,10) et (4,8) resp. (4,9) sont
vérifiées.

§ 5. La notion de causalité dans le « modèle quantique ».
Du fait que notre « modèle quantique » de l'électron éprouve

une prémonition de ce qui va lui arriver, une certaine révision
de notre conception de causalité s'impose. Prenons un exemple:
Dans la théorie ordinaire, l'état du champ et de l'électron, à un
instant t — T (caractérisé par cp, dtcp,q etq) détermine l'état du
système « champ plus particule » pour toute autre époque t
antérieure ou postérieure à — T. Si nous considérons symboliquement
cet ensemble de nos connaissances par \F(t) (où W(t) est une grandeur

ayant en plus des 2 x oo3 composantes du vecteur hermitien
WÇfi, t), six composantes indiquant les valeurs de q (t) et de q(t)),
ce déterminisme s'écrit sous la forme

W(t) S(t)W(-T); S(~T) 1 (5,1)

S(t)W(- T) est une fonctionnelle deW(Q,-T), dont la variable Q

représente les 2 x go3 7 6 points.
Dans n'importe quelle théorie évitant les divergences, le

problème est beaucoup plus complexe : Il faut décomposer cp (— T) en
ç,(inc) (__ y) _|_ ç,(ret)(_ j^ ce qU[ n'est possible que si le mouvement

q =q(t) pour toute époque antérieure à — T est connu. Si

par exemple q q 0 pour t 0, et qu'on suppose que cela est
vrai pour t < — T, Ç9(ret) est alors le potentiel statique. Une analyse

de cp et de dtcp pour t — T permet de calculer ç>(inc). Une
fois ç?<to«)(— T) et d6ç5<inc>(— T) connu, les équations de § 1

déterminent cp(x, t) et q (t) pour n'importe quelle époque postérieure.,
Mais elles permettent aussi de calculer le mouvement q (t) pour la
période antérieure à — T. Or on s'apercevra que, en général, cette

trajectoire calculée différera de l'orbite q 0 supposée connue. Il
faudra donc employer une méthode « self consistante » pour trouver
la solution du problème.
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Un exemple particulièrement simple de ce procédé est celui
dans lequel <p(— T) se décompose en une partie statique et un
paquet d'onde 9?<inc> tel que pour tout t antérieur à — T, il a
toujours une amplitude nulle dans le volume d'une sphère de rayon
2 X0 autour du point x q 0. La solution est alors « self consistante

» pour le modèle quantique. Il est bien évident que, si les
conditions étaient données pour — T — oo, le problème ne se

poserait pas.
§ 6. La quantification.

En théorie des quanta, l'ensemble de nos connaissances W(f)
n'est plus représenté par les 2x oo3 7 6 nombres c* (t), q (t) et q (t),
mais par une amplitude de probabilité, fonction de \ (2 x co3 7- 6)
variables, par exemple des nombres des quanta N~= Cj-*c^- et des

composantes de l'impulsion mq fc. La quantification relativiste
montre en outre qu'il n'est pas possible de n'avoir qu'une seule
particule. Il convient donc d'introduire comme variables les N-%

indiquant le nombre de particules à impulsion fe. -F(î) est maintenant

un vecteur dont les composantes W(..., N*-,...; N^ ; t)
sont les amplitudes de probabilité qu'à l'époque t, N~ quanta
du champ cp (x) soient présents dans l'onde plane ]u (ayant chacun
une impulsion Ji) et N^. particules soient présentes ayant une
impulsion fc. Les considérations du § 5 nous montrent en outre
que les conditions initiales ne peuvent être posées que pour t —

— T — oo. La covariance de la théorie par rapport à toute
transformation unitaire dans l'espace de Hilbert demande que S(t) en
(5,1) soit un opérateur linéaire et unitaire. Alors (5,1) devient

W(t) S(t) W(- T) e-«WÎF(- T); oc(- T) 0 ; oc <x* (6,1)

qui est la généralisation de (4,1) pour des époques t finies.
Pour établir une théorie quantifiée, on se sert du principe de

correspondance. Rappelons ce principe pour le cas de la théorie
ordinaire: La théorie classique relie des quantités a,b, H,
de façon à ce que des relations du type

a(t)=f(a(t),b(t),...) (6,2)

existent. A tout a(t) la théorie des quanta fait correspondre un
opérateur a (t) (par exemple cp(x ,t) c» exp (i ((Ji,x) — ^t))
dépendant explicitement du temps. Soit dta(t) (par exemple dtcp

— iuic-p: exp (i la dérivée explicite de cet opérateur.
Alors, pour son espérance mathématique, définie par ait) (-F(t),
a(t)W(t)), on a la relation

a(t) dta(t) + i[H(t),a(t)] =f(a(t), b(t), (6,3)
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à cause de (5,1) ou (6,1), si l'opérateur H est défini par

H(t) idtS(t) ¦ S(t)-1 Yj-dta(t) -~i[v.(t), dt*(t)]

+ — i [a (t), t [oc (t), d,a (i)]] - (6,4)

Pour qu'il y ait correspondance, l'opérateur H doit être tel que
f (a, b, soit l'espérance mathématique de la fonction f(a, b,
de la théorie classique. Or l'indépendance de / de — Ta pour
conséquence l'indépendance de H(t) du temps initial — T. Ainsi (5,1)
et (6,1) dégénèrent en une équation de Schrödinger

ötV(f) -iH(t)W(t) (6,5)

ce qui n'est vrai que pour la théorie ordinaire.
Pour aller plus loin, nous décrirons le champ de matière par

u (x, t)A, opérateurs dont la dépendance temporelle explicite est
réglée par' - (D-mlK-0 (6,6)

On le décompose de façon analogue à cp.(x) en

«(x)a 2 (2 Ffc4)-I/2 (oì^*** + a~A «-*<*¦*>) (6,7)

avec fc4 7 ]/m| 7 | *k |2. Puis, on vérifie alors que les paquets
d'ondes d'un champ classique uA satisfaisant à

AuA — m\uA — üA=—^(2 ecp(ma)AB

-s2<P2(o)2ab)ub^~qa (6,8)

suivent les lignes d'univers des particules de masse mA et de charge
e aA dans un champ cp, si aAB oAòAB est une matrice diagonale.
Dans le cas où cr^ est une matrice symétrique quelconque, on
étudie la variation de «l'espérance mathématique» a(t)=EEuA oABuB
si le paquet d'onde complexe uA a'A(t) exp (— imAt) représente la
particule au repos. De 1'« équation de Schrödinger »

àta'(t)A iecp(t) ^o^e^ABta'Aij, (6,9)
B

valable dans la limite coAB mA — mB <^ mA la relation

à2

JJi 2 2 (u*a °ab ub) — 2 2 (wabA(ua gabub)

+ e 2 2 2 (ul(mCA Y- coCB)aACaCBuB)cp (6,10)
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résulte. Dans le cas particulier, où les fréquences cu10 co21 co32

••¦ co0 sont toutes égales et où seulement les cr01, o*12, cr23,

etc. diffèrent de zéro, la relation (6,10) correspond aux équations
classiques pour a(t) ((3,2) et (3,4) avec u0 fi1 co0 et sans le

terme de freinage) parce que l'identité 2 {^ca + mCB) aAC °cb —

wo^ab résulte.

(6,8) repésente ainsi la première étape de la quantification
de la théorie ordinaire. Il faut, en plus, la compléter par une équation

d'onde pour cp. Celle-ci doit être telle que les lois de conservation

soient satisfaites. On vérifie que c'est l'équation

A <p — x2cp — lp

- 2 2 (SUAÌma)ABUB ~ A <P UA (ff) Vß Ub) ~ Q (6>H)

qui a pour effet que le tenseur

T»" T?;, (cp) 7 2 T&A) K) + 9"" L (6,12)

L(x,t)=8L^+e2L^=ecp^2iUA(ma)ABuB-e2olcp2^^uA(a)2ABuB
satisfasse à (1,1). Les inhomogénéités de (6,10) et de (6,12) sont
— dL/duA resp. — dL/àcp.

La deuxième étape introduit les a%A, a^A*, c* et i^* dans
(2,1) et (6,7) comme des opérateurs qui commutent tous entre eux

[a%*A,a^A] [c**, c~] —1 (6,13)

Opérant sur une fonctionnelle y>(t), ils ont les effets suivants

^Af(...N-...-,...NÎA...;t)=y^kA+AW(...N7t...;...NtA+l...A)
cì*y(...N1,...;...N%A...-A) ]/Nliy(...N~-l...;...NÌA...A) (6,14)

Opérant en particulier sur \¥(... AT~ ô 2*^ on voit
que c* correspond à l'annihilation d'un quantum dans l'état ]u et
e~* à sa création. Les relations (6,13) ont pour conséquence:

%\uA (x), uA, (x')] ÔAA, DA (x, x'); i[cp(x), cp(x')] D(x, x') (6,15)

les fonctions DA (x, x') ont les propriétés suivantes : Elles
disparaissent pour t= t' et satisfont à

lim dtD(x, x') lim dtDA (x, x') t>(£ — x'). (6,16)

Ainsi elles servent à définir les potentiels retardés ret^ qa resp.
ret p des inhomogénéités de (6,8) et (6,11) dans la limite — T — co

t

ret^ QA(x,t)= J dt' J (dx')3 DA (x, t; x', t') qa (x', t') (6,17)
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On vérifie alors que l'opérateur

H(t) =-f (dx)3L(x,t) eHW(t)+e*H®>(t) (6,18)

et les opérateurs u(x ,t) et dfu(x t) (6,7) (resp. cp (x, t) et dtcp(x, t)
de (2,1)) substitués en (6,3) définissent des espérances mathématiques

ü et ~cp qui satisfont à (6,8) et (6,11). Soit alors W(— T) un
état initial quelconque. L'équation de Schroedinger peut être
résolue de la manière suivante. On développe l'opérateur a suivant

<x(t) eAV(t) 7 e2AV(t) + e3oc<3>(t) 7 (6,19)

et on compare (6,4) à (6,18). Le résultat est

t

e a») (t) =e f dt'H^(t')
-T

i l K l
e2a(2)(i) _ e* Jdt> jdf> : ]bP>(V), m>(t") ] 7 e2/" d t'H™ (f)

'—T -T —T
e3«<3)(i) (6,20)

On s'aperçoit alors que l'opérateur e™a(m)(i) est une fonction du
(n7-2)ème ordre des opérateurs a, a*, c, c* et correspond ainsi à

une réaction (dans le sens chimique) entre n 7 2 particules ou
quanta. En particulier, le terme e2oc(2) contient une expression
tétralinéaire en a, a*. Dans la limite — T — oo, le commutateur
i[cp, cp"\ s'exprime par (6,15) et (6,17) et cette partie de l'opérateur
a(2) devient (dans le cas d'un seul u et avec cr 1)

e2af(t) — \ f dt' f (dx)3 emu2 (x t') ret (emu2 (x, t'))
-T

e2A2\T) -~e2\m2 2*2*2* 2* <$ <$ 4" aP" (fc4 fe'4 fe"4 fc'"4)-*4

((,1, fc" (î) fe'", (î, IA (±| /O + *F ô+t+%,+ Vf+ n V-1

(-)(-)(-) (-)
«((Ì)fc*(ì)A'*(Ì)fc"4(Ì)fc,Wl) (6'21)*)

Après une longue période (t — (— T) 2 T), cet opérateur et tout
autre opérateur en An) n'admet ainsi que des transitions compatibles

avec les lois de conservation (î) fc (t) fc ft) k (t) k'" 0. Ainsi
que le montre la première équation (6,21) e2a(2) contient l'influence
du champ retardé d'une densité de charge emu2 sur elle-même.

*) La relation ret ei(h x) ((J, l) + x2)-1ei(h m) a été utilisée. E* exprime que
la somme est à effectuer sur a et a* avec + k et — fc.
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(6,21) contient ainsi des transitions où deux particules ayant des

impulsions fe" et fe'" disparaissent et deux autres sont créées dans
les états fc et fc'. Un telle transition est la diffusion de Rutherford
d'une particule chargée fc" par une autre fc'" (tenant compte des
effets d'échange et de l'annihilation mutuelle*). Mais des termes
du type 2(fc)' aI* y ak* ak (•••) Nk 2 (#) (•••) contribuent à

une somme sur les fc' qui diverge (prop, à r-1 -> oo si l'annihilation

mutuelle est exclue et prop, à — m log mr -> m log oo si
l'annihilation mutuelle est admise). Des divergences semblables
apparaissent dans les termes supérieurs An\ Ces divergences sont l'analogue

quantique des divergences en théorie classique.

Pour remédier à ce défaut, on peut, en principe, procéder
comme en théorie classique. Introduisons des champs 0®,
commutant entre eux et avec cp, et soumis à i [0(i), <?w'] ocf D(i) (x, x')
avec EXi — 1. Alors le terme divergent prend la forme
e2 oc<2) (T) ~2 TX-f1 où Xx est une constante. Ce procédé a le grand
défaut qu'il n'introduit pas seulement des quanta nouveaux, mais
qu'une partie d'entre eux possèdent des énergies négatives**).

Mais une autre méthode, beaucoup plus simple, se présente.
Il suffit de redéfinir a par la série (6,19), mais où, dans chaque
terme en oc(M> (t) (calculé d'après (6,20)) tous les opérateurs a^A* et
c** sont placés à gauche de tous les a%A et c» A ceci correspond
une soustraction covariante de la forme a (corrig) a (haWtuei) — °o,
où les termes oo ont la même covariance que le a(haMtuel) de la
théorie habituelle. Les intégrales en en aSn- (t) dépendent maintenant
explicitement de — T et, pour avoir une théorie définie, nous devons
fixer une fois pour toutes — T — oo. Dans cette théorie corrigée,
il n'existe plus d'opérateur H(t) indépendant de — T. Elle est
entièrement définie par son <x(t), soit par la série corrigée (6,20).
Chaque terme en a'"' ne fait alors intervenir que des réactions entre
n + 2 particules (tandis que, dans la théorie habituelle, un tel
terme contenait toujours encore des réactions d'un ordre inférieur,
par ex. le terme divergent de a(2) avec une seule particule initiale
et une seule particule finale).

Nous allons démontrer que cette théorie corrigée correspond

*) cf. à ce sujet la thèse de J. Pibennb, Université de Lyon, 1943').
**) Cette critique s'applique en particulier à la théorie de Bopp6). Mais on

peut se demander, si, dans l'éleotrodynamique quantique de l'électron de Dirac,
le procédé étudié en / (la compensation des divergences du champ électromagnétique

et d'un champ scalaire à énergie positive) n'a pas son analogue quantique.



22 E. C. G. Stueckelberg.

à nos modèles quantiques introduits en théorie classique. Nous
développons d'abord

y(-T) 22WM; ~T)ô0Ni...ô1N^...ô1N_* A ii k(p)A

avec k (ji) =p — ~~u (6,22)

pour le cas où un seul quantum et un seul atome ou électron est
présent. Le seul W(— T) qui représente un état physiquement
possible pour — T — co est celui où l'atome est dans son état
fondamental (mA m0). Dans tout autre état, il existe une histoire
antérieure à — T — oo qui décrit comment cet atome a été excité.
Calculons W(+ T). Les lois de conservation nous montrent que,

pour tout paquet d'onde WQi., 0, — T) cÖnc) du § 2), la contribution

de e A1' (T) est négligeable. En effet, notre atome ne peut se

trouver dans un état excité mA m0 7 co^0 que si la fréquence du
quantum incident co pii est exactement égale à coA0. Cette
probabilité est proportionnelle à F-1 et peut être négligée. Ces mêmes
lois nous montrent que, pour t + T, f N ; t) ne peut avoir
des amplitudes de probabilité non nulles que pour des états où
un seul atome ou électron est présent, pour autant que u* co

< 2 m0 2 m. Les éléments de matrice de e2 oc,2) peuvent alors
s'exprimer dans un espace hermitien WQi, A). Dans le cas de l'électron,

un calcul analogue à celui qui aboutissait à (6,21) (mais où

le terme iî(2) contribue) donne pour fe= 0, fe4 m et (u, u) — x 0
le résultat ^ ^ (y) ^e2cos »'(mk'ïcoco')-1/*- nV^òfa' 7fe'4 — co — m) (6,23)

et, pour l'atome, si fe 0 et m0 ^> mA — mB coAB

A a<2>(T) (îi',ATu,A) -e2 (t»o>')-*2 (coc^,7 coCA) oA,c aCA
c

ÌK^ca— A)'1 (<»CA,+ m)-1 ± (coCA— co')-1(coCAr+ co')-1}

•7t7-1(3(ft)'-(co-ft)^4)) (6,24)

Dans le cas de l'électron et pour des fréquences où les gerbes
peuvent être négligées (cf. § 2), on peut donc poser <x(T) e2 <x(2)

parce que les An > 2> ne contiennent que de ces effets d'ordre
supérieur. Alors le calcul de W(+T) se réduit à (4,1) et (4,9) où oc est
la matrice (6,23). Elle n'est autre chose que la matrice de la théorie
classique (4,7) corrigée pour l'impulsion du photon (effet Compton).

Pour l'atome, cette approximation n'est justifiée que si co < co20.
On vérifie qu'alors seul A2' contient un facteur de résonance. En
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particulier, si la correspondance classique exprimée en (6,10) est
valable et rend 2 (mCA'Y- (^ca) °a'c gac mo ^a'a, l'élément (6,24)
est égal à l'élément classique (4,10) : La dispersion d'une onde
incidente monochromatique (f(fl, 0; — T) 1 pour un seul ]u) est
égale à celle produite par le modèle quantique en théorie classique.
L'excitation de l'atome par un choc ÇF Qt,, 0; — T) const pour
tout ]ul/Jt,fQ, et comjix<co20 et \P=0 pour tout autre Ji), donne une
probabilité prop, à \2ng0(co') |

2 qu'on trouve un quantum de

fréquence co' (~ co10) émis.

Si le choc est très exactement défini, (co^x^ œco) un quantum

avec tout co' ~ coA>A peut être présent en ip(+ T). Mais les

termes e3 oc(3> (T) contiennent maintenant des facteurs de résonnance.
Ceci signifie que, dans le cas de l'irradiation monochromatique,
une probabilité finie existe, que l'atome émette deux quanta
m' ¥2 co — o>a'a (quantum de Raman) et co" iQ coArA (émission de

l'énergie absorbée dans l'effet de Raman). Les termes e3 oc'1' a'2'
provenant du développement de e~ia donnent lieu au même
effet. En plus un tel choc aura pour conséquence que ê3 oc'3'

produira deux quanta co &Q taCAr et co" coA,A correspondant à

l'émission successive de deux quanta par l'atome exité dans un
état «îç^mj. On observera ainsi un spectre de ligne.

§ 7. La généralisation du modèle en théorie quantifiée.

Au premier abord, il semble que notre manière de soustraire les

infinités en théorie quantifiée ne nous amène qu'aux modèles quan-
tiques introduits en § 1 et § 3. Mais on peut démontrer (analogie
parfaite avec la théorie classique) que la soustraction des singularités

peut être faite de plusieurs manières, dont chacune définit
un modèle caractérisée par une fonction a(ß). Nous exprimons
l'opérateur unitaire S en (6,1) en termes d'un opérateur hermitien ß

S(t) S(ß(t)) e-i«<-M» (7,1)

où oc est une .série définie par des constantes réelles ocK

*(ß) ß + v.2ß2 + Hß3+ (7,2)

Pour ß, nous écrivons son développement en termes de e (6,19)

ß eßU +e2 ß® 7£3/S(3> 7 ...;
ß2 e2 ß(X) 2 + £3 (ßX) ß(2) + ß(2) ß{X)) + _ # (7>8)
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et égalisons les coefficients de en en (6,4). On trouve ainsi la série

e ßV(t) E J dt' HW (f)
-T

t t'
£2 ß(2) (t) ~e2±- J dt' J dt" i [HV (f), flW (<")]

7 e2 f dt' H® (f) - ê2 oc2 /9« (t)2 (7,4)
e3 ß^ (t) ~T

qui se distingue de (6.20) par les termes contenant les coefficients
oc2, oc3, Une substitution ultérieure de (7,4) en (7,3) et (7,2) donne
naturellement la même série pour oc en termes de H(i), que celle
obtenue par le procédé simple du § 6. Mais nous sommes libres en
(7,4) de redéfinir l'opérateur — e2 a2 ß'1'2 et les autres opérateurs (par
ex. — e4 oc2 ß^ 2 en e4 /S(4)) de la série, sans porter atteinte ni à la
covariance ni àl'unitarité de S, en transposant dans ces termes aussi

tous les a^A et c* à gauche des a^A et &- (sans changer rien aux
intégrales spatiotemporelles!). De cette manière, e2/?(1) 2

corrig en
(7,4) est une matrice correspondant à une réaction entre 6 particules
et quanta et le terme (e4 ßW2) corrig à ajouter à e4 ßW représente
une réaction entre 8 quanta, etc. Opérant sur les fonctions W(— T)
considérées au § 6, où le nombre de particules est limité à deux
particules initiales et deux particules finales, ces termes
supplémentaires ne contribuent en rien à l'approximation qui
néglige les gerbes. Par contre, dans la série (7,2), où les puissances
de l'opérateur ß apparaissent explicitement, la série S(ß) changera.

On trouvera ainsi, pour S(ß), une série unitaire plus générale

8 (ß) 1 7 Sx ß 7 S2 ß2 7 Si seuls les processus de 2ème
ordre interviennent, on a évidemment e2 ß&i e2 oc<2) et S (ß)
S (e2 oc*2) (T)) sera la fonction unitaire la plus générale dont les deux
premiers termes sont 1 — i e2 A2' (T). La relation entre la fonction
i] (co2) caractérisant un modèle classique et la série S (ß) caractérisant

le modèle correspondant, est

-S (ß) (r, ((2 X0)-2 ß2)-ii ß) (rj ((2 X0)-2 ß2) 7 i iß)-1 (7,5)

On l'établit en comparant (4,3) avec (1,23) (1ère équation). Cette
relation avec n 1 (modèle de Dirac) correspond aux formules.
trouvées par Gora8) et Heitler9) (cf. (4.8)).
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§ 8. Conclusions.

Nous avons démontré que la théorie classique de l'électron
ponctuel proposée en I peut être modifiée d'une telle manière

que seul le champ Maxwellien interagit avec la particule. Un
nombre infini de modèles possibles existent, qui se distinguent
physiquement entre eux par l'effet du champ propre. Ceci a pour
conséquence que tout résultat qui, en théorie dé l'électron étendu
(Lorentz4)), dépend de la structure de la particule, ne peut être
calculé dans notre théorie que si une certaine fonction invariante
(fonction du modèle rj rj(co2)) est donnée.

La théorie peut être quantifiée sans que des divergences
apparaissent. Une équation de Schrödinger n'existe plus. Par
contre, une matrice unitaire 8 envisagée par Heisenberg3) caractérise

chaque modèle quantifié. Une relation est établie (7,5) entre
cette matrice de Heisenberg S (oc) exprimée comme fonction d'un
invariant oc et de la fonction de modèle r](co2).

Les effets suivants sont indépendants du modèle (pour autant
que l'action de freinage de l'effet considéré n'intervient pas) :

1° Termes en e2: La diffusion de Rutherford*), l'effet Compton

et la production de paires;
2° Termes en e3: Le rayonnement de freinage et la production

d'une gerbe simple constituée de deux quanta (hco + mc2

hco' 7 hco" 7"/m2 7- | fc|2).
Un modèle de l'atome est discuté, où celui-ci est considéré

comme une particule élémentaire possédant un degré de liberté
intérieure. Mais cette théorie est insuffisante en ce qu'elle ne permet
pas encore de comprendre comment un proton et un électron
peuvent se combiner pour former un atome d'hydrogène et un
photon. Dans l'état actuel, il faut introduire chaque atome comme
un nouvel être élémentaire, caractérisé par ses niveaux d'énergie
mA—mB coAB et par ses matrices de transitions (cr^, xAB
moments dipole, quadrupole, etc.).

Cette difficulté nous semble être due à l'impossibilité de distinguer

entre « quantum lié » et « quantum libre », qui a été introduite

par Pauli et Fierz5). En théorie classique, c'est la décomposition

du champ cp en Ç3(ret) + ç>(lnc) qui correspond à cette distinction.
Pour des raisons de simplicité, nous avons exposé la théorie

d'un électron sans spin dans une électrodynamique longitudinale.

*) Dans le cas ou x est rigoureusement nul des difficultés se manifestent

par le fait que l'opérateur (ocj2')2 formé de (6,21) diverge.



26 E. C. G. Stueckelberg.

L'étude d'un électron à spin 1/2 dans l'électrodynamique de
Maxwell est l'objet d'une thèse en préparation.

Ce travail est dû en grande partie à des discussions avec
MM. G. Wentzel et M. Fierz, au Séminaire de physique théorique
de Zurich. Je remercie tout particulièrement le président du conseil
de l'E. P. F., M. le Professeur Rohn, et le directeur de l'Institut
de Physique de l'E. P. F., Monsieur le Professeur P. Scherrer, de

l'aide qu'ils m'ont accordée en me permettant d'assister régulièrement

à ce séminaire.

La mise au point de la théorie classique, ainsi que la rédaction
de cette publication ont été faites en collaboration avec mon ami
et collègue, Monsieur J. Weigle, auquel je tiens à exprimer ma
sincère gratitude.
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