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Zur Vektormesontheorie1)
von Gregor Wentzel.

(1. XI. 1943.)

Die symmetrische Vektortheorie mit dem allgemeinen, zweiparametrigen
Kopplungsansatz (statische Näherung) wird für den Fall starker Kopplung untersucht.

Die Rechnung verläuft verschieden, je nachdem ob das Verhältnis f/g
der beiden Kopplungsparameter dem Betrage nach unterhalb oder oberhalb eines
kritischen Wertes liegt (§ 11). Im ersten Falle sind die Ergebnisse wesentlich
dieselben wie beim speziellen Kopplungsansatz / 0 (keine Kopplung der longitudinalen

Mesonen). Für beide Fälle werden abgeleitet: die Isobaren-Energie (§§ 9, 13),
der Mesonstreuquerschnitt (§§ 10, 13) und die statischen Kernkräfte für grosse
Abstände (§§ 15, 16).

A. Allgemeines zum Ein-Nuclcon-Problem.

§ 1. Problemstellung.

Beim Vergleich der Feldtheorien der Kernkräfte mit der Erfahrung

darf man bekanntlich nicht die mittels der Störungsmethode
abgeleiteten Formeln zugrundelegen; die tatsächliche Stärke der
Kernkräfte nötigt vielmehr zur Annahme einer so starken Kopplung

zwischen Feld und Nucleonen, dass die Entwicklungen nach
steigenden Potenzen der Kopplungsparameter unbrauchbar werden.
Zuverlässigere Ergebnisse verspricht die Methode der Entwicklung
nach fallenden Potenzen der Kopplungsparameter2). Jedenfalls
müssen die verschiedenen Varianten der Mesontheorie unter der
Annahme einer starken Kopplung mathematisch durchdiskutiert
sein, bevor man darangehen kann, sie anhand der Erfahrungsdaten

einer mehr quantitativen Prüfung zu unterziehen.
Unter diesem Gesichtswinkel soll hier speziell die „symmetrische

Vektortheorie" in Angriff genommen werden. Es handelt sich
also um Mesonen vom Spin 1 und mit den Ladungen ±1 und 0,
die mit Nucleonen (Proton-Neutronen) stark gekoppelt sind, und
zwar wird sowohl für die longitudinal- als für die
transversalpolarisierten Mesonen eine Kopplung angenommen, d. h. es wird
der allgemeinste relativistisch zulässige Wechselwirkungsansatz ge-

7 Herrn A. Sommerfeld zu seinem 75. Geburtstag gewidmet.
2) G. Wentzel, Helv. Phys. Acta 13, S. 269, 1940 (im Folgenden als „I"

zitiert), ebenda 14, S. 633, 1941 („II"), 15, S. 685, 1942 („III") und 16, S. 222,
1943 („IV"). Weitere Zitate in der nächsten Fussnote.
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macht. Dagegen wird durchweg nur die statische Näherung behandelt,

d. h. die Nucleonen werden als unendlich schwer und ruhend
betrachtet.

Die Näherungsmethode ist dieselbe, die sich bereits in der Skalar-
theorie bewährt hat (I, II). Die kompliziertere Struktur der Vektortheorie

bedingt freilich in einigen Schritten der Rechnung eine
etwas abweichende Darstellung. Dies betrifft namentlich den in
den früheren Arbeiten eingeführten Gitterraum, dessen Verwendung
in der Vektortheorie ganz unzweckmässig wäre. Die Einführung
des Gitterraumes bedeutet nämlich die Entwicklung der
Feldfunktionen nach einem speziellen Orthogonalfunktionensystem,
welches dem Wechselwirkungstypus der Skalartheorie angepasst
ist. Jeder Kopplungstypus stellt aber seine besonderen Anforderungen

an das zweckmässig zu verwendende Orthogonalsystem,
dessen Wahl im übrigen noch weitgehend der Willkür überlassen
bleibt (vgl. §§ 3 und 14)1). Hiermit hängt zusammen, dass man
insbesondere über die Formfunktion des Nucléons noch willkürlich

verfügen kann, während die Einführung des Gitterraumes
auch in dieser Hinsicht eine Spezialisierung bedeutet. In der
Skalartheorie, wo man in den Endformeln (statische Näherung) ohne
Schwierigkeit den Grenzübergang zum ausdehnungslosen Nucléon
vollziehen kann (vgl. II), ist diese Beschränkung der Allgemeinheit

von geringerer Bedeutung. Anders in der Vektortheorie (und
übrigens auch in der Pseudoskalartheorie; vgl. IV), wo man mit
einem nicht-verschwindenden Protonradius a zu rechnen gezwungen
ist, weil der Grenzübergang a -> 0 zu absurden Folgerungen führen
würde (schon in der statischen Näherung; z. B. geht die Isobaren-
Anregungsenergie mit a gegen 0). Dies ist ein Mangel, der vermutlich

allen Feldtheorien anhaftet, die spin-abhängige Kernkräfte
liefern. Wir müssen diesen Mangel in Kauf nehmen, werden aber
dann Wert darauf zu legen haben, dass die Freiheit in der Wahl
der Formfunktion des Protons nicht unnötig eingeschränkt wird.

Das Vektormesonfeld der symmetrischen Theorie besteht aus
3 reellen Vektorfeldern yg (x) mit den 9 räumlichen Komponenten
VkQ (x) (& 1> 2, 3; o 1, 2, 3); der Index q bezieht sich auf den
„isotopen Spin". nkQ (x) sei die zu y>kQ (x) kanonisch konjugierte

b Schon in den Rechnungen von Oppenheimek und Schwinger, deren
Ergebnisse in Phys. Rev. 60, S. 150, 1941, kurz zusammengefasst sind, wurde ein
solches allgemeineres Orthogonalfunktionensystem verwendet; desgleichen in
einer — hier bisher nicht erhältlichen — Arbeit von Pauli über die symmetrische
Pseudoskalartheorie (Phys. Rev. 1942 Diese Angaben verdanke ich Briefen
von Herrn W. Pauli an Herrn M. Fiebz und an mich selbst.
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Feldfunktion. Dann lautet die Hamiltonfunktion des kräftefreien

Mesonfeldes bekanntlich:

Ho=i2y*dz[|^|27--^(div^)2+/a2|^l2+|rot^|2J.(l.l)
u ist die Mesonruhmasse in reziproken Längen ausgedrückt (h und c
werden immer 1 gesetzt). Den Wechselwirkungsterm der
Hamiltonfunktion schreiben wir sogleich in statischer Näherung an,
und zwar vorerst nur für das Ein-Nucleon-Problem: Es befinde
sich ein einziges (ruhendes) Nucléon im Ursprung; seine
Formfunktion sei ôa:

da(x) reelle Funktion von \x\, / d X ôa(x) 1. (1.2)

Die Pauli'schen Spinmatrizen des Nucléons werden mit at, die
analogen isotopen Spinmatrizen mit rg bezeichnet. Die Hamiltonfunktion

schreibt sich dann1) :

(1.8)

H'=~ -%¦ y\^rei dXôa (x) rot,% (1.4)

H H"' + H¦

+ H' >

9

A/2 ¦2«*
ig

r'f'iXôa (x) rot2¦Ve

/2-veJdXôa (x) div 7cQ ;

H" ist ein Term ~/2, der aber im Ein-Nucleon-Problem konstant
ist und ignoriert werden kann: H" 0. Die Dimensionen der
(reellen) Kopplungsparameter sind : g Länge, / Fläche.

§ 2. Methode.

Unser Näherungsverfahren beruht auf folgendem
Grundgedanken: H' ist, infolge der bilinearen Abhängigkeit von den
zweireihigen Matrizen oi,rQ, eine 4-reihige Matrix bezüglich der
Spin- und isotopen Spin-Indices des Nucléons. Diese 4-reihige
Matrix werde zunächst durch Transformation mit einer unitären
Matrix S diagonal gemacht; wie sich zeigen wird, kann das
Ergebnis wie folgt geschrieben werden:

S* H' S — y { yx t3 7- yz az 7 y„ az t3 }, (2.1)

wo cr3 und r3 diagonal gewählt sind (Eigenwerte ±1); y ist eine

b Vgl. G. Wentzel, Quantentheorie der Wellenfelder, Deuticke 1943 (im
Folgenden zitiert als QdW), § 14; die dort für die nicht-symmetrische Theorie
(y>3 0) angegebenen Formeln sind leicht gemäss der symmetrischen Theorie
(s. § 10 daselbst) zu ergänzen.
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(2.2)

positive Konstante, und die yn sind in noch zu bestimmender
Weise von den Feldfunktionen ip, n abhängig. Die Eigenwerte
von H' sind also:

y K y (— yx — 2/2 — y%> Az + F ^ + F.
y *i 7 (— 2/1 + 2/2 + y3) (t8 7 1, <r3 — i),
y ^2 7 (+ 2/1 — 2/a + yz) (t8 — 1, <r8 7- 1),
7 A3 7 (4- yx + y2 — y3) (t, — 1, o-3 — 1).

Werden die yn A 0 gewählt, so ist 7 A0 der tiefste Eigenwert
(ausser wenn zwei der i/„ verschwinden, welchen Fall wir aus-
schliessen können). In der Schrödingergleichung

(~E + H)F 0 (2.3)
substituieren wir für die (4-komponentige) Schrödingerfunktion F :

F=S-FY (2.4)
Die transformierte Schrödingergleichung lässt sich dann, da S
mit den yn kommutiert, folgendermassen schreiben :

S*(-E + H° + H') SF'
(-E + S*{H°-yZyn}S

Y- 7{2/i (1 -Ta) + 2/2 O - ff3) + 2/3 (1- <b» *3)})F'= 0.
Die Grösse „ _,HO-y^y^K

(2.5)

(2-6)

hat, als Funktion der Feldvariablen, ein Minimum (ebenso auch
S*KS), und im Falle starker Kopplung genügt es, kleine Schwingungen

um diese Minimallage zu betrachten. Die dieser Minimallage

entsprechenden Werte der 7 yn sind bei starker Kopplung sehr

gross; genauer gesagt: mindestens zwei der Energieterme 7 y„
sind sehr gross gegen die zu betrachtenden Anregungsenergien der
kleinen Schwingungen. Wir denken uns nun die der Schrödingergleichung

(2.5) entsprechenden Komponentengleichungen einzeln
angeschrieben und beachten, dass die Diagonalmatrix

7 {2/1 (1 — *s) + 2/2 (1 — 03) + 2/3 (1 — ^3 bi)}
folgende Diagonalkomponenten hat:

0 für t3 7 1, cr3 7 1 ;

2 7 (2/2 + 2/3) für T3 + F cr3 — 1 :

2 7 (2/3 + 2/1) für *3 —l, <*z + 1

2 7 (2/1 + 2/2) für r3 — 1, 0-3 — 1.

Im Limes unendlich starker Kopplung (z. B. gf -> co) gehen diese
4 Komponenten über in 0, co, 00, 00. Die Eigenwerte E der
Gleichung (2.5) zerfallen in 2 Gruppen, die in diesem Limes unendlich
weit auseinanderliegen, und man erkennt leicht, dass die Eigen-
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werte der tiefliegenden Gruppe durch eine einkomponentige
Schrödingergleichung bestimmt werden, die wir wie folgt schreiben:

(-E + (S*KS)O0)Fo' 0; (2.7)

dabei bedeutet F0' diejenige der 4 Komponenten von F', welche den
Werten t3 7l, cr3 7-1 der Spin- und isotopen Spin-Indices
entspricht (d. h. dem Eigenwert y X0 von H'), und analog ist unter
(S* K S)00 dasjenige Diagonalelement der vierreihigen Matrix
S* K S zu verstehen, das zu den Werten t3 7-1, cr3 7-1
gehört (K ist durch (2.6) definiert). Das Gesagte gilt streng im
Limes unendlich starker Kopplung, angenähert aber auch bei
endlicher, immer noch starker Kopplung; was dabei unter „starker
Kopplung" zu verstehen ist, kann erst später präzisiert werden
(vgl. (5.13)). In der Tat zerfallen auch dann noch die Eigenwerte
E in zwei Gruppen, die so weit auseinanderliegen, dass man sich

nur für die tiefliegende Gruppe zu interessieren braucht, und
diese tiefliegenden Eigenwerte bestimmen sich näherungsweise
durch die einkomponentige Schrödingergleichung (2.7),
vorausgesetzt, dass die Ausserdiagonalelemente (S* K S)0m der Matrix
S* K S klein sind gegen die nicht-verschwindenden Grössen y yn
(bzw. gegen deren Werte in der Minimallage), was bei starker
Kopplung zutrifft (vgl. § 8). Von (2.7) ausgehend, kann man leicht
durch eine Störungsrechnung zu sukzessiv verbesserten
Approximationen gelangen, was auf eine Entwicklung nach fallenden
Potenzen der Kopplungsparameter hinausläuft1). Alle für die
Theorie charakteristischen Aussagen sind aber schon aus (2.7) zu
gewinnen, und wir beschränken uns deshalb in allem Folgenden
auf diese Näherung. Die Hauptaufgabe reduziert sich dann auf
die Berechnung des massgebenden Matrixelementes (0,0) der
Matrix S* K S S* (H° — y E yA S, wofür in erster Linie die

n
Grössen yn sowie die Matrix S aus (2.1) zu bestimmen sind.

§ 3. Einführung passender Fcldvariablen.

Die reellen Ortsfunktionen Us(x) (s 1 • • oo) mögen ein
vollständiges Orthogonalsystem bilden:/00d X Ur(x) Us(x) ôrs, 2 u-(x) U*(x') à(x- x') 2) (3.1)

b Für die Skalartheorie wurde die Störungsrechnung in I, § 6 skizziert.
In den dortigen Formeln (54) bis (57) (mit (29)) ist die den obigen Gleichungen
(2.4 ff) entsprechende S-Transformation durchgeführt.

2) Z soll andeuten, dass die unter dem IT-Zeichen stehenden Indices von 1

bis co laufen, während sonst nur über 1, 2, 3 summiert wird.
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Anstelle der Feldfunktionen ykg(x), nkg (x) führen wir neue
kanonische Variable q, p ein durch die Formeln

Vice (x) 2 U'(x) 3*e» n*t(x) 2 U'(x> P°ke>
s s

Iske =fdX Us(x)wke(x), pske jdX Us(x) nke(x).

In den neuen Variablen ausgedrückt lautet H° (1.1):
00

H°(p,q) i^^(Ark:SlprkQpsle + Brk>slqrkeqsle

(3.2)

rs klg

^^JäXU^^^U.,
Brk,sl fdXUrUkl(u2-A)

dxkdx.
Us.

(3.3)

(3.4)

Um andererseits für H' eine möglichst einfache Darstellung
zu erhalten, wählen wir die Funktionen Ux, U2, U3 wie folgt:

l_ddAxi (i=?1>2>8)."
n oxt

(3.5)

dabei bestimmt sich n durch die Normierungsbedingung f dX Uf =1 :

n2 Jdx(d^X^j2=~JdXôa(x)(~A)ÔJx); (3.6)

rj ist von der Grössenordnung a~5/2. Die 3 Funktionen (3.5) sind
offenbar aufeinander orthogonal. U4, U5> • • • brauchen wir dann
nur den Bedingungen (3.1) zu unterwerfen; eine genauere Kenntnis

dieser Funktionen wird nicht vonnöten sein. Mit (8.2 und 5)
wird

JdX êa(x) roti ye=—r]fdX (U2 y)3g — U3y>2g) —rj (c/23e— q32g),

fdXöa(x) divng —r]fdX'2]Uinig — rj^Vu^
i i

also nach (1.4):

H' rjl -j=- 2 Te \Px (223
e — Î32 e) +ff2 («si e ~ 2i3 e) +°3 (îia 8

— fe „)]
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Veiter definieren wir für i 1, 2, 3:

1 1
2(**) e ~~ ~?z? \Qik q + Iki q) %k\ g -J= (aike Iki g) >

1
N

P(«)g /p (Pi*e A Pkie)> V[ikie ~ /~ [Pik g ~Pkig) -

557

(3.8)

Für i 4= k definieren diese Formeln neue kanonische Variablen-
paare q(ik) g, pHk)e bzw. q[ik]g, p[ik)Q! die wir gelegentlich auch
als eigentliche kanonische Koordinaten verwenden werden; die
Definitionsformeln (3.8) sollen aber auch für i k gelten.
Allgemein verwenden wir bezüglich beliebiger Grössen a, b die
Bezeichnungen :

1
N

1

V2 V2
\aik aki)

a(i bk) ~— (at bk + ak b,), a{i bk] —— (c^ bk—ak b(

Z. B. wird nach (3.4), bei Berücksichtigung von (3.1 und 5)

1

(3.9)

A[ik],sl— "s[i"k}l V2
(àsiokl-ôakÔn) (i l,2,8) (3.10)

Beachtet man dies, so schreiben sich die p-abhängigen Terme in
H° (3.3) mit den Variablen (3.8) wie folgt: x)

v7 2y Arkslprkgpslg— 2 2_, z, Arl.slprkepslg
klg klg

"** ^2'2 ^(ik),slP'ik)g Ps/e+i2 -^(i*),ö'i)P(»*)eP(Jöe
s iklg ijklg

+ !2PtW (s-")

Für die g-abhängigen Terme in H° gilt eine ähnliche Formel, doch
wird diese im Folgenden nicht gebraucht. Schliesslich führen wir
die Variablen (3.8) auch in H' (3.7) ein; schreiben wir zur
Abkürzung

3[23]e=2ie> 2[3l]e Izg > 2[l2)e ?3e> (8-12)
so wird

H' nlg^ioizgqis + f^irepîie\. (3.13)
\ ig ig I

b Ein Strich am Summenzeichen deutet an, dass die Indexwerte 1, 2, 3

auszulassen sind: œ oo oo oo oo

E' E, E"-=E E
s «=4 rs r=i s=4
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Alternativ führen wir folgende Bezeichnungsweise ein: (jk)
bedeute den zyklisch zu j, k gehörigen Index, also <23> 1, <31 > 2,
<12>= 3; dann schreibt sich (3.7) oder (3.13): x)

H' v[9^i^<ikytg%k]gY-f^\rgpiig\. (3.14)
l <}k>g ig 1

Zur Verwendung im Folgenden definieren wir hier noch
Grössen Aslrk, Bslrk durch die Formeln:

co co

22 ^rk.il ^sl,rk' 22 i-Tesi "sl,i>V "rr' °kk''> (3.15)
s l s l

es sind also A, B die zu den Matrizen A, B inversen Matrizen.
Dieser Forderung entsprechen die folgenden Ansätze:

A^rk~ i dxua[ètk+d^dx^^Ayr,

Bst,rk=läXUa{ölk-^^)^Ur
(3.16)

JdXUs(ölk-~

wo der Operator C«2 — A)~l in bekannter Weise definiert ist durch

-^— U(x)= fdX'U (x')
*~ \ * (3.17]

u2— A J 4n\x — x\

(die Operationen (fi2 — A)"1 und d/dxk sind in der Reihenfolge
vertauschbar). Dass die Relationen (3.15) mit (3.4 und 16) erfüllt
sind, verifiziert man leicht auf Grund der Identität:

(*"-~uÄ dxZJx-) [ôw +
-Töx-dx^r -ILAAYa) ó"'•

Eine besondere Rolle spielen im Folgenden die Grössen Bul,rk
(j 1, 2, 3). Beachtet man (3.5), so ergibt sich aus (3.16):

Bm,rk ònicnr> wo Cir j dX U,-
2_^ Ur. (3.18)

Speziell für r i 1, 2, 3) wird nach (3.5) und (1.2) aus
Symmetriegründen CH ôji • G also

Bmik=C-ôk[lÔni, C Cxx=^jdXòa(x)-^LLòa(x). (3.19)

b In der Summe E kommt natürlich jede Indexkombination j, k (j 4= k)
<jk>

nur einmal vor; es ist also 27= iE-
<ik> jk
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B. Spezieller Kopplungsansatz: f 0.

§ 4. Die Eigenwerte von H'.

Für / 0 haben wir nach (3.18):

H'= y ^cnrgqig, mit y =rjg (4.1)
te

Um diese 4-reihige Matrix, gemäss dem in § 2 skizzierten
Programm, auf Diagonalform zu transformieren, führen wir
zunächst einige Hilfsgrössen ein. Wir betrachten die zwei
symmetrischen Tensoren

Tea 2 fce 1i° > Tii 2 ««. Ii, (<?» *> i, 1 - F 2, 3). (4.2)
i e

Man erkennt leicht, dass beide Tensoren die gleichen (positiven)
Eigenwerte haben; wir nennen diese r2 (n 1, 2, 3) und bezeichnen

die zugehörigen normierten Eigenvektoren mit sn (Komponenten

sen) bzw. sn' (Komponenten s-n):

2-1 Q°Son, rnSgn> Zj Ü Sjn~ rnSin> V*.ö)
a j

Aj en gm lim ' 2-t in*im °nm '
e i

Aj en an "s«> 2-i ^in^jn "ij -

n n

Die Eigenvektoren s„ und sn' hängen wie folgt zusammen:

1 _ 1

(4.4)

s. ,n~ 2-lSin1ig' Sin „ 2jSQn1i

Wegen (4.4) folgt hieraus:

n

In dieser Weise können also die 9 Grössen qig durch die Eigenwerte

und Eigenvektoren der Tensoren T, T" dargestellt werden.
Wir setzen (4.5) in (4.1) ein:

#' 72U2<^)ŒXv)- (4-6)ni g

Da die Koeffizientenschemata sgn bzw. s/B Drehungen im
dreidimensionalen Raum darstellen, kann man bekanntlich unitäre
Matrizen Y, Y' konstruieren mit den Eigenschaften:

^TgSgn=YrnY*, ^aiS'in=Y'anY'*. (4.7)
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Da Y nur von den re, Y' nur von den 0%. abhängt, gilt: [Y, crj 0,

[Y', tJ 0, [Y, Y'] 0. Folglich gibt (4.6) mit (4.7):

H' 7-YY'-2rTCcrnV(YY')*. (4.8)
n

Es bleiben also nur noch die 3 Matrizen an rn simultan diagonal
zu machen. Dazu kann z. B. die unitäre Matrix

Z ^(ax + ir2) (4.9)
V2

dienen; in der Tat verifiziert man leicht:

ax rx — Zx3 Z*, a2r2 — Z az Z*, a3r3 — Z a3 r3 Z* (4.10)

(cr3 und r3 seien wieder diagonal gewählt). Hiermit wird (4.8):

H' - y S (rx r3 + r2 a3 + r3 az r3) S*, mit S Y Y' Z. (4.11)

Dies stimmt mit (2.1) überein, wo

y« rn (4.12)

zu setzen ist. Die Eigenwerte von H' lassen sich also, wie behauptet,

in der Form (2.2) darstellen, wo die yn rn als Quadratwurzeln
der Eigenwerte der Tensoren (4.2) zu berechnen sind. Die

Betrachtungen im § 2 setzen übrigens noch voraus, dass die rn ï: 0

gewählt werden, ferner y rj g > 0, was durch Wahl des
Vorzeichens von n, d.h. des Normierungsfaktors in (3.5), zu
erreichen ist.

§ 5. Minimallagen. Bedingung für starke Kopplung.

Die in (2.6) definierte Funktion K lautet jetzt, mit (4.12) :

K H°~y^rn. (5.1)
n

In H° denken wir uns gemäss (3.8) die Variablen q^ik)e und q[ik]e
eingeführt, wobei wir die q[ik-\g oder qig (vgl. (3.12)) gemäss (4.5)
durch die rn ausgedrückt denken:

1[ik]e Z-irnS<ik>nSgn (&-2)
n

(bezüglich der Bezeichnung <ife> vgl. (3.14)). Wir suchen nun das
Minimum von K als Funktion der Variablen qs[e und rn, wobei
die q[ik]g mit den rn durch (5.2) verknüpft sind; sgn und s'in
gelten hierbei als konstant. Führen wir den Nebenbedingungen



Zur Vektormesontheorie. 561

(5.2) entsprechende Lagrange-Multiplikatoren a<rt>e ein, so haben
wir also das Variationsproblem:

dK~ 2 a<mA <%[«]<>-2 r«s<«>«se») °> (5-3)
<ik>g n

oder mit (5.1) und (3.3) (vgl. auch (3.8 und 9)):
CO

22BrM*&*!>~2a<«>(A[A]Z=0> (5-4)
r k <ik>

7-2a<«>es<«>"se'» («- !> 2, 3). (5.5)
<ik> e

(5.4) ergibt vermöge (3.15):
CO

1rke 2jZj sl.rkZj a<i'k'> e ^s [i/ ^k'\l 2 ^ii'k'ìe V'k'lrk- v*'.«)
s * <i'*'> <i'k'>

Speziell für r i 1, 2, 3) folgt hieraus, bei Verwendung von
(3.19):

2*fce ^ 2 X<i'k'>e^k[k'^i']i' %k)g ^> %lc\ g ^ V<ik> e "

Die Multiplikatoren a haben also die Werte:

'<«>e ~7t~ ll1® e ~7^2 r™ s<ik>m sem ¦ A- <)oc,

Wenn man dies in (5.5) einsetzt und dort die Summationen über
die Indices q und < i k > mit Hilfe von (4.4) ausführt, so folgt :

•"n= 7 G. Die Funktion K nimmt demnach ihren Minimalwert
an für folgende Werte der rn und qrkg:

r„ yC, tlrse 7 2^«U*2s'<^>»se«' (5-8)
jl n

insbesondere gilt für r — i sS 3 :

<Z(«)e=(F <ï[ik]e Y G2jS'<ik>nsgn ¦ V>-9)

Vollziehen wir also im g-Raum die Translation

rn=f,lr»', &*,,= c|rjte + q'rke, (5.10)

so wird K offenbar in eine quadratische Form plus additive
Konstante verwandelt, nämlich:

..00K iTi^(Aik,siPrkePsigY-Brkslq'rkgq'slg)+ const.; (5.11)
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hier sind die q[ikT (i- ^ 3) durch die r'„ ausgedrückt zu denken
gemäss der Formel

«W E **«'%*>« v.- (5-12)
n

Obwohl K von den r' und q' rein quadratisch abhängt,
entsprechen die Lösungen von (2.7) doch nicht unter allen Umständen
harmonischen Schwingungen. Dies liegt (ähnlich wie in der
Skalartheorie; vgl. I, § 5, und II, I.Abschnitt) daran, dass die
Variablen rn auf die Bereiche rn ^ 0, folglich die rn' rn — y C
auf die Bereiche rn' 2ï —y C beschränkt sind. Nur wenn diese

Ungleichungen die Bewegungsfreiheit der oszillatorischen Koordinaten

rn' nicht merklich einschränken, d. h. wenn der Erwartungswert

von r'n2 klein gegen (y C)2 ist, kann man mit harmonischen
Schwingungen als Lösungen rechnen. Für eine grössenordnungs-
mässige Abschätzung genügt es, ~rY} für die Nullpunktsschwingung
zu berechnen. Ferner ist leicht zu sehen, dass r'n2 durch den für
kräftefreie Mesonen (gf 0) berechneten Erwartungswert von qfik] g

ersetzt werden kann. Man findet so:

r 1 \~iAa,* ftir at*<1,
7*~ fdXUx - Ux~1 '

n J Vu2-A x
I iVu

Andererseits ist nach (3.19)

yC=grjC ~

t]1 /j ci-
inr a/Li^>l

g

loa6

g

rj jn2 a5

für a fi. <^ 1

für a u ^> 1

Die Bedingung r'n ^ (7 G)2 lautet demnach :

| g | ^> a für a u <^ 1
|

32>a5/x3 für a^>l j (5.13)

Ungestörte harmonische Schwingungen gibt es also nur bei genügend

starker Kopplung : Im wichtigeren Falle a u <^ 1 muss der
Kopplungsparameter \g\ gross gegen den Protonradius a sein, damit
unser Verfahren ohne weiteres anwendbar ist. Wie aus dem
Folgenden hervorgeht, genügt dies auch, damit die ersten Schritte
der Entwicklung nach fallenden Potenzen von g rasch konvergieren.
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§ 6. Einführung von Winkelkoordinaten.

Mit der Abkürzung
r yC gnC (6.1)

schreiben wir die Formel (5.9) für c/[rt]9 (vgl. (3.12)):

<Ìit=rSie> wo Sie 2S'"»V- 6.2)
n

Die SiQ definieren wiederum eine Drehung:

2^A <50., 2<^ia cV. (6.3)
e i

Die allgemeine Drehung im dreidimensionalen Raum lässt sich
durch 3 Euler'sehe Winkel darstellen:

(6.4)

Sxx cos 0 cos 0 cos W 7 sin 0 sin W, — SX3 sin 0 cos 0, '

S23 sin 0 sin 0,
S3X — sin 0 cos !P, <S32 —sin 0 sin W, S33 cos 0 ;

0^0 ^n, 0^0 <2n, 0 S W < 2n.

Ferner entnehmen wir aus (6.2) s'in= 2 ^ìasan un(1 setzen dies

in (5.12) ein:

CT ft

Als symmetrischer Tensor hat | sechs unabhängige Komponenten.
Vermöge (6.2, 4 und 5) können wir nun die 9 Feldvariablen
%k\e Sie 2te + S'io durch 9 neue Variable

C/, 0, Y; fu» ?22» S33,' £23 ?32> ?31 *13> s 12 S21 (v.o)
darstellen :

î(e r siQ (0 0W) + 2 £„ sio (0 #n- (6-7)
a

Die zu den q-Variablen (6.6) kanonisch konjugierten Impulse
nennen wir

P&> Pf) Pw\ nXX> n%%-> nZz\ n2Z ~ n32! n3X nXZ> ^12 nzx- (6-8)

Man erhält sie als Funktionen der pit(= Pyk]e) mi* Hilfe der
„erzeugenden Funktion"

G=^(rsig + yiçeasia)pie
ig o

durch die Gleichungen

dß dG ,ßQ.?•-!«*¦¦•• -' ^''TT.'1 (6-9)
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z. B. wird (wenn man fe<r lae beachtet):

ng« 2 (SioPig Y- Sigpia—ôeaSigpig).
i

Diese Gleichungen haben wir nach den pig aufzulösen. Dies kann
durch Entwicklung nach den £ga geschehen. Man beachte, dass
die Variablen £ga (nach ihrer Definition (6.5)) nur Schwingungen
ausführen, deren Amplituden klein gegen r sind; denn dies war
gerade die Aussage der „Bedingung für starke Kopplung" (5.13).
Diese Bedingung garantiert also die rasche Konvergenz einer
Entwicklung nach Çga / T. Für das Folgende genügt die Angabe der
f-freien Terme.

Zur Darstellung des Ergebnisses führen wir folgende
Operatoren ein:

cos ¥
Px 7- sin W¥ • pe 7- ——-7: (pt, 7- cos 0 • pw),

sm 0
sin W

P2 — COS W ¦ p0+ -. tt. (p0 + cos 0 • pw),
sm c

p3 pw.

(6.10)

Dies sind hermitische Operatoren mit den Vertauschungsrelationen
von Drehimpulsen:

[Pa, P3] i Px, [P„ Px] i P2, [Px, P2] i P3. (6.11)

Ferner gilt:
[Pg, Sie] 0,

i[Ps, Si2]= — i[P2, S{3]= Six, ¦¦-,¦¦¦ (zyklisch). J

Hiermit definieren wir weitere hermitische Operatoren:

Pix 777T (Siz P2 — Siz PzY- i Six)

^jr(P2Si3-P3Si2-iSix), ¦¦;¦¦- (zyklisch); (6.13)

pix Sixnlx 7 | Si?nX2 + % Si3nX3, •¦-, ¦¦¦ (zyklisch). (6.14)

Das Ergebnis der oben angedeuteten Rechnung lautet dann (in
hermitisierter Form) :

Pie Pie Y-Pie Y- ••• (6.15)

(die Punkte deuten die £ enthaltenden Terme an). In der Tat
folgt aus (6.7, 12, 13, 14):

i[pig,<ljo\ h(oijòea — SiaSjg) 7 ••••, (6.16)

iÜPie'ljo] i(àijôga + SiaSjg) + ••••, (6.17)
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so dass die Vertauschungsrelationen i[fte, q}-„] àijôea hinsichtlich

der ^-freien Terme erfüllt sind.
Wir kommen jetzt auf die in § 5 besprochene g-Raum-Trans-

lation zurück. Unter Verwendung von (5.8, 9) und (6.2, 5) können
wir die Translation (5.10) folgendermassen schreiben:

%k) e %k) e ' 1[jk] g —li g — -L "ig Y- 2j*8h"ì<"
a

r > 8: Irkg krkg + irk e' WO qrk g =72 BliH,rk S<jl>g-
(6.18)

<ji>

Neben den Variablen (6.6) denken wir uns nun die Grössen q\jk)g
(j 4= fe), qYg und q'rk

e (r > 3) als Lagenkoordinaten eingeführt.
Dabei ist zu beachten, dass die Verschiebung qrke der q-Variablen
mit r > 3 von den Winkelkoordinaten 0 0 IP abhängt. Man
muss daher, um eine kanonische Transformation zu erhalten, noch
eine lineare Transformation des p-Raumes vornehmen. Wir machen
den Ansatz:

P(jk)e — P(.ik)g> P[jk]g— Pig — Pig + 2 2-1 ^ig,sla Psla > (ß. 19)

T> %:Prke =Prkg- I

Dabei soll p'ig denselben Operator bedeuten, der in (6.15) mit pie
bezeichnet wurde:

Pi e Pig + Pia + ' " ' '> i [Pi v ai°] òij ^ (6-20)

Damit die kanonischen Vertauschungsrelationen für die alten und
neuen Variablen gelten, muss man nur die Koeffizienten X in
(6.19) so wählen, dass

ilPie'Irko] =kg,rka + * [p'i e. irk A 0 für r > 3.

Nach (6.18) ergibt dies, bis auf uninteressante f-Terme:

hg,rka —^72 B[jl\,rk[P i e> 8<jl>a\ + "" ir > 3)>
<jl> ¦

oder, da S<jl>a m (y C)"1 q<jlya, nach (6.16):

i _ j—-ôTtS Bun,rk (<W> àg-SlaS<jhe)+--:-îm r>3,
Aig,rka — \ & ^ <;;>

l 0 für r ^3. (6.21)

Es bleibt noch übrig, die neuen Variablen in die Funktion K
(5.11) einzuführen. Da die Grössen Pie P[jk]e nach (3.11) nur in
dem Term

ï 2 P2[jk] g i 2 P2i q
jkg ig
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vorkommen, kann man das Ergebnis wie folgt darstellen:

+ 12

GO

2
rs klg

Pil + \Pie+ 2 Yshg.slaP.

^ - 2 2j2j (^rk.sl P rkgPslg + Brk,sl Irkg Islg)
rs klg

'i g,sla 1rs l o
s la

const.
(6.22)

In den g'-abhängigen Termen sind gemäss (5.12) bzw. (6.5) die
Grössen q[jk]g durch ~^Sga 8<jk>a ersetzt zu denken.

a

§ 7. Aufspaltung von K in Isobarenterm und Energie der freien Mesonen.

K (6.22) hängt quadratisch von den Drehimpuls-Operatoren Pn
(6.10) ab, nämlich auf dem Wege über die p'ig (vgl. (6.20 und 13)).
Um eine Separation in Pm-abhängige und P„-unabhängige Terme
(die ersteren werden die Isobaren-Energie liefern) zu erhalten,
führen wir eine Translation im p-Raum durch:

P{jk)g P(jk)g + P(jk)g, P'sla P's'la + Psla (« >3) (7.1)

(wobei also die plQ untransformiert bleiben und daher hier unter
die „Konstanten" gerechnet werden können), mit der Forderung,
dass die in den p" linearen Terme verschwinden sollen.

Die Bestimmung der Translation p erfolgt am einfachsten
durch Bestimmung des Minimums von K (6.22) bei festgehaltenen

p'[ij]g: d

r) rx,' (K 2 ß<i}> Q P[ij] e)
°Psla <ij>e (7.2)

00

2 2 ^rk,sl Prka + 2 h g, s l a Pi e
~~~ 2 ß<ij>a ^s[i^j]l ®> '

r k ig <ij>

wo unter pig seine Darstellung aus (6.19) zu verstehen ist.
Multipliziert man (7.2) mit Aalr,k,, so folgt durch Summation nach s, l
auf Grund von (3.15) und mit A[ij]rk àr{iòì]k (vgl. 3.16)):

CO

Prka — 22 H'*2 *e,**oP»e+2"r[»"?]*P<»J><» " '
s l ig <ij>

Bildet man speziell p{jk-\a, so verschwindet der Beitrag der ersten

Summe in (7.3), da Aslt Uk] 0 für s > 3 und Xigsla 0 für s < 3;
folglich: „ ,„ë ßma Pma- (7.4)

Gehen wir mit (7.3) in pig (6.19) ein, so wird dort
00

^l^ig,suPsla=-YlAia,ioPja, (7-5)
W0 » la ja

oo

Aie,ja= 2-1 2-1 ie.rkr^rk.sl^ja^lr- ('•«)
rs klr
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(6.19) liefert somit folgendes Gleichungssystem für die pig:

Pig+*ZAg,jaPja Piß- (7-7)
ja

Zur Berechnung der Koeffizienten A (7.6) auf Grund von (6.21)
und (3.16) können folgende Formeln dienen:

S"SBpfl,rt3r*,.iBi/n.i= (•D~C2) (Mi'y-Mi'y) » (7-8)

D iy VC2 =— fdXòAx) ,~A - öAx) (7.9)

(das Auftreten von D — (72 statt D in (7.8) ist dadurch bedingt,
dass die Summationsindices r, s nur von 4 bis oo laufen) ; ferner
(vgl. (6.3)):

Ii{ài.kàer-Sii,Ske)(ôikoaT-Sixôk(!)=2(oijSea-SiaSie) (7.10)
kr
Mit (7.6, 8, 10) ergibt sich:

D
U2

Hiermit lauten die Gleichungen (7.7) :

D

At,t„ i{-^r-^)(àtlòaa~8io8i9), (7.11)

* \(J2 + l) Pig - £ [-£, - 1 j g Si« ^eP^ Pie ¦

Durch Multiplikation mit S^g Sia und Summation über i, q folgt:

* (ß- + *) 2 s>« s«" ^~ * (-£*¦ -x) p»«= 2 s,tsiaP;Q.

Aus diesen beiden Gleichungssystemen lassen sich die
Doppelsummen auf den linken Seiten leicht eliminieren, und man findet
schliesslich :

fte ï(l+-^We + t(l—^-)^SiaSjep;a. (7.12)
v DJ"S '\ D, ,a

Hiermit kann man nun in (7.3) eingehen, womit, in Verbindung
mit (7.4), die durchzuführende Translation bestimmt ist. Für das

Folgende ist namentlich der Minimalwert von K wichtig. Beachtet
man, dass nach (7.2, 4) und (6.19)

00

^i1lÄrk,slP'rkaPSla ^{(Pie-Pig)PigY-P?g},
rs kla ig

so folgt für den Minimalwert:

^o=l2PiêPie + const-' (7-13)
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C2

D 2 P'iQ Si" SJQ Pi» + COnSt •

ijga (7-14)

Für K (6.22) erhält man, mit Hilfe von (3.11):

«^ï2l 2j^rk.slPrkgPslgY' 2 2j 2 A(ik),slP(ik)ePsle
rs klg s iklg

r 2 ""*(«*), (jl) P(ik) e P(jl) e + 7 2 2 Brk,sl oirkglslg + ^S
ijklg rs klg

WO

*W2 2'2V*^'
io \ s lo

(7.15)

(7.16)

Zu den vorstehenden Rechnungen ist zu bemerken, dass sie so
ausgeführt sind, als seien die Xlgala mit den p'jT vertauschbar.
In Wirklichkeit sind in den Formeln noch gewisse Symmetrisie-
rungen vorzunehmen, was aber in konsequenter Weise erst
geschehen kann, nachdem die p-Raum-Translation (7.1) zu einer
kanonischen Transformation ergänzt worden ist. Die Verschiebungen

prkg hängen nämlich (vgl. (7.3, 4 und 12) mit (6.13, 14
und 20)) von den Variablen (6.6, 8) ab, was zu ähnlichen
Transformationsformeln wie (6.18, 19) führt, nur dass die Rollen von
q- und p-Raum vertauscht sind. Die Durchführung dieser
kanonischen Transformation interessiert aber erst, wenn man zur
nächst höheren Näherung im Sinne der Entwicklung nach
fallenden Potenzen von g übergeht; die aus der Transformation
resultierenden if-Terme —¦ sie beschreiben wie Ks (7.16) Wechselwirkungen

zwischen freien Mesonen und den Proton-Isobaren —
enthalten mindestens den Faktor gr-1, während der „Streuterm"
Ks von g frei ist, und sie können in erster Näherung vernachlässigt
werden, sofern die „Bedingung für starke Kopplung" (5.13) erfüllt
ist. Wir wollen hier über diese Näherung nicht hinausgehen. Dies
bedeutet, dass wir in K (7.15) einfach

Irk s
(7.17)

setzen können, wobei gemäss früheren Bemerkungen (vgl. 5.12),
(6-5))

%k]e 2 £ga S<jk>a, (7-18)
a

wahrend K0 und Ks durch (7.14 und 16) definiert bleiben.
Wir haben schliesslich noch für die p'ig in K0 ihre Werte

(6.20) zu substituieren, wobei die kleinen ^-abhängigen Terme in



Zur Vektormesontheorie. 569

unserer Näherung vernachlässigbar sind. Mit Hilfe der Formeln
(6.3, 13 und 14) ergibt sich dann:

2ZPi2g 2 tâg + PÏg) ö™ (2 Bl + 1) + 2 "Ï. + \ 2 »"...
i q i q

-1 n q q<. a

2 Pig Sia Sjg Pja 2 (p~ie Si <* ^e P?° + P*e S" S?'e P%)
iJQö iy q a

1

2P ("2^ + f) + 2-L + }2^
Dies in (7.14) eingesetzt, ergibt (mit F g r/ C, vgl. (6.1)) :

K0 « I^Vd 2 *î + 1 2 »î. + ï 2 »î. + const. (7.19)
^y V u n e g<a

Hier ist der erste Term der wichtigste, da er die Isobaren-Energie
liefern wird. Bei der Berechnung seines Koeffizienten müssen wir
die Fälle a u <At und ^> 1 unterscheiden. Für den Fall a u <^ 1

erkennt man leicht, dass in der Definitionsformel (7.9) für D der
Operator (u2 — A) durch (—A) ersetzt werden kann; definieren
wir nun den Protonradius a quantitativ durch die Formel1)

1 r 1 r r Ò (x) ô (x')-=4n dXôa(x)—-.òa(x) dX dX' " '_,, (7.20)
Cl J ZJ J J \JuJLi\

so kommt:

rj2D — » ar> =—5- für a//<; 1 (7.21)' 12jïa 4g2rj2D g2 ^ v '

Für den weniger interessanten Fall a u ^> 1 genüge die Angabe
der Grössenordnung:

^2D~^^, - 2 2 ~^ für a u > 1. (7.22)
a5/*4 4g2 n2D g1 ^

§ 8. S-Transformation.

Für die Aufstellung der einkomponentigen Schrödingergleichung

(2.7) haben wir nun noch den Operator K mit der unitären
Matrix S zu transformieren und speziell das Diagonalelement
(S* K S)00 zu bilden.

Obwohl wir im § 4 eine exakte Konstruktion der Matrix S für
beliebige Werte der qig angegeben haben (vgl. (4.11)), ist es für
den gegenwärtigen Zweck bequemer, mit einer Näherungsdarstellung

zu arbeiten, die dem Umstände Rechnung trägt, dass die

b Vgl. Oppestheimer und Schwinger, 1. c. (Fussnote S. 552).
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Variablen Çga in (6.7) nur kleine Schwingungen ausführen.
Betrachten wir also zunächst den „Wert nullter Näherung" von H'
(4.1), den wir erhalten, wenn wir £ga=0, qie PSig setzen:

H =yrjiaixgSig, (8.1)
ig

und bestimmen wir die Matrix S, die H' auf Diagonalform
transformiert: Die Matrix

X= cos ¦ i er, sm — | cos —: % cr2 sm —1

2 3 2 J \ 2 2 2

W W\
cos —- + ia3 sin -— (8.2)

2 2 1

ist so gewählt, dass

•2iaiSie(0 0W) XaeX*; (8.3)
i

daher wird nach (4.10)

È' 7 r- X • 2 <rn tb ¦ X* -7 F- XZ (r3 + a3 + a3r3) Z* X*.
n

Mit
S=XZ (8.4)

wird also S* H' S, wie verlangt, diagonal. Kehren wir jetzt zum
vollständigen Ausdruck (4.1) für H', mit (6.7), zurück, so wird
wegen (8.3) :

S* H' S - 7 P (t, 7 cr3 7 cr3 r3) 7 y £ £ie ' Œ**« reZ) (8.5)
ig

Die Matrix S kann mit der üblichen Störungsmethode durch
Entwicklung nach den £ig bestimmt werden. Schreiben wir S S ¦ S',
so sind die Matrixelemente1) S'0m und S'm0 (m 4= 0) höchstens
von der Grössenordnung £ig j P, also bei starker Kopplung (vgl.
§5)<1.

Wir bilden jetzt S* K S K + S* [K, S]. Die einzigen
Terme in K (7.15), die mit S nicht kommutieren, sind in K0 (7.19)
enthalten :

S* ^ 81 =TYT^nS* [2P-S]+S'*t(i2^+i2^)>s']- (8-6)
4 g rj u n g g<a

Hier ist der zweite Term, der nur von den £ „ und ng „ abhängt, in
unserer Näherung zu vernachlässigen; in der Tat ist sein
Beitrag zum Diagonalelement (S* K S)00 in der Schrödingergleichung

b Der Index 0 bezieht sich (gemäss der Bezeichnung in § 2) auf den tiefsten
Eigenwert von H' (t3 as 1).
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(2.7) von der Ordnung der bereits früher (§ 7) vernachlässigten
Weehselwirkungsterme. Es bleibt also (vgl. (8.4)):

1
S* [K, S] S'* Z* X*

4g2n2D
Nun folgt aber aus (6.10) und (8.2):

2pl-* Z S'

X* - P -X= P + 2

x»-spj-z-s(p„+|)1-sp;+sa.p. + f,
n -n. \ A ' n n

2(S" Z* anZ S) Pn+s* K,S

(8.7)

(8.8)
4g2r)2D

Berechnet man die Matrizen Z* anZ nach (4.9), so zeigt sich, dass
ihre Diagonalelemente verschwinden; infolgedessen sind die
Diagonalelemente (S'* Z* an Z S')qq vernachlässigbar klein. In unserer
Näherung ist daher (S* [K, S])00 eine Konstante, die in die additive

Konstante in K0 (7.19) einbezogen werden kann. Somit wird
(S* K S)qq K, und die Schrödingergleichung (2.7) lautet:

(-E + K)F'o 0. (8.9)

Im § 2 wurde hervorgehoben, dass die Gültigkeit der einkom-
ponentigen Gleichung (2.7), d.h. (8.9), auf der Voraussetzung
beruht, dass die Ausserdiagonalelemente (S* K S)om klein gegen
die y yn sind, d.h. hier: klein gegen y2 C (vgl. (4.12) und (5.8)).
Diese Ausserdiagonalelemente sind aber vollständig in den
Ausdrücken (8.8) bzw. (8.6) enthalten, und man erkennt leicht, dass
die Forderung ihrer Kleinheit gegen y2 C wieder auf die „Bedingung

für starke Kopplung" (5.13) hinausläuft.

§ 9. Die Proton-Isobaren.

Für die Diskussion der Gleichung (8.9) empfiehlt sich eine
Entwicklung nach den Eigenfunktionen des in K0 stehenden
Energieterms

HI ---' - 2 Pl T-T^ fr^S Pe si* e Pe
4g2n2D 4g2n2D (sin 0

p| 7 2 cos 0 p&pw 7 Pw
¦ ,in ,.- (9.1)

sm2 0
der mit der Hamiltonfunktion eines Kugelkreisels übereinstimmt.
In der Gleichung (— E1 7 EP) / 0 sind 0 und W zyklische Va-
riyble, also

/ ei(«*+»ff)„(0). (9.2)
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Dabei sind m und n halbzahlig; denn die ursprüngliche Schrödinger -

funktion F SF' (vgl. (2.3, 4)), die in 0 und W periodisch mit
der Periode 2 n sein muss, enthält nach (8.4 und 2) in ihren
Komponenten die Faktoren

e± */2 0 e± i/2 W j ^ ei (m ± i) * ei (n±|) !F

Mit p<p =m, pw=n sind die Eigenwerte und Eigenfunktionen des

Kugelkreisels (9.1) in bekannter Weise zu berechnen1). Die Eigenwerte

sind :

E^ 4g^D'j{j + 1)' W° J'SIH.J£|»I.| (9.8)

m, n und j halbzahlig. I

(Bezüglich des Koeffizienten (4 g2 rf P>YX vgl. (7.21, 22).) Damit
sind die stationären Zustände bestimmt, die durch Bindung von
Mesonen an das Nucléon entstehen können2). Die Eigenfunktionen

Ujmn (0) werden wir erst später — bei der Berechnung der
Kernkräfte — benötigen.

Die Bedeutung der Quantenzahlen j, m, n ergibt sich durch
die Betrachtung der Gesamtladung und des Gesamtdrehimpulses3) :

e | (1 7 t3) 7 / d A 2 (Wkx nk2 — fk2 nk 1)
»

J k

^-<ij> I tr<i3-> — j d X 2 j 2 w*e v" * ö ;r. -; ô ,r

d%e „ö%( (9.4)

+ {7ligVjo~njgViQ)i
Diese Grössen spalten sich, nach Einführung der in unserer Näherung

zuletzt verwendeten Variablen, in Beiträge des (zusammengesetzten)

Nucléons und der „freien" Mesonen. Wir geben nur
die Nucleon-Beiträge an, und zwar sogleich mit der Matrix S
transformiert, d. h. als auf die Schrödingerfunktion F' anzuwendende
Operatoren. Für die Nucleon-Ladung erhält man:

ei ^ S* {î (l+r3) + P3} S ± + P3+t\Z* (t3 + o3) Z

(vgl. (8.4, 7)), oder, da F' praktisch einkomponentig ist und da die
Diagonalelemente von Z* r3 Z und Z* a3 Z verschwinden :

eI ~+Pw j+n. (9.5)

b Vgl. etwa A. Sommerfeld, Atombau und Spektrallinien, 2. Band, S. 161 ff.
2) Vgl. IV, wo die Isobaren-Energie gleichzeitig auch für die symmetrische

Pseudoskalartheorie und die Moller-Rosenfeld-Mischung angegeben ist.
3) Vgl. QdW, § 12; insbesondere (12.44, 56, 57, 58).
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Der Drehimpuls des Nucléons wird (vgl. (8.3, 7) und (6.12)):

Ml. S* 1 er. — Y S. P \ S — V S- P •
i \ 2 i 2-1 in -1- n\ u / i "in x n >

n n

M\ p0 m, S (M*)2 2 P» ?'(? + !)• (9-6)

Es sind also j, m die Spinquantenzahlen, n 7 i die Ladungszahl
des Nucléons. Hieraus folgt insbesondere, dass die 4
Grundzustände des Nucléons ] \, m Yz h n ± I (vgl- (9-3)) den

empirisch bekannten Proton-Neutron-Zuständen zugeordnet werden

können.

§ 10. Die Streuung der Mesonen am Nucléon.

Zieht man die Isobaren-Energie fl1 von K (7.15 bis 19) ab,
so entspricht der Rest (K — H1) der Hamiltonfunktion der „freien"
Mesonen, einschliesslich ihrer Wechselwirkung mit dem Nucléon.
Diese Wechselwirkung äussert sich formelmässig in zweierlei Art:
erstens im Auftreten des „Streuterms" Ks, zweitens darin, dass
anstelle der in H° (3.3, 11) auftretenden Variablen 2[a]e, P[ik,g
jetzt in (K — H1) die Variablen Çea, nga mit etwas anderen
Koeffizienten erscheinen. Schon hierdurch würde, auch wenn der Ks-
Term nicht vorhanden wäre, eine Mesonstreuung bewirkt, doch
ist diese sehr schwach verglichen mit der durch Ks bedingten
Streuung, vorausgesetzt, dass die Meson-Energie cok t/ u2 + k2

<A.a_1 ist1). Wir vernachlässigen diese schwache Streuung, indem
wir K — H1 durch H° (p", q") 7 Ks ersetzen. Ferner sei die
kinetische Energie des Mesons cx>k—/u, so gross angenommen, dass
die Energieunterschiede der beim Streuprozess mitspielenden
Isobaren-Zustände dagegen vernachlässigt werden können (HI->const.).
In dieser Approximation wird die Hamiltonfunktion:

K H° (p", q") 7 Ks 7 const. (10.1)

Zum Übergang in den Impulsraum setzen wir:

qsle -JdKVs (k) co"1 Plg (fe), p's'lg =fdKV: (fc) cok Qlg (fe)/COd X Ua (x) é**, aigaa (fc) œk 2 XigtSla V\ (fc),
s

l g
I -o la '

Man sieht leicht, dass 2 \ at g i a (A) jf= 0 ist, und dies bedeutet,

b" Der Sachverhalt ist also ähnlich wie in der Skalartheorie ; für diese wurde
der entsprechende Beweis in I, Anhang 1, ausgeführt.
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dass die longitudinal polarisierten Mesonen keine Streuung
erfahren. Dann wird, bei Beschränkung auf transversale Mesonen :

2We=2fe*&e 0> K i [dK%{\Ple\2+a>l\Qlg\2}+Ks.
I l J lg

K ist hiernach gleich der Hamiltonfunktion eines Oszillatorensystems,

dessen Eigenschwingungen durch das Gleichungssystem

(- co27cof) Qla (fc) 7 2 <e,ia (fe) [dK 2 *ie,vc 00 Qr* 00 0

ig J l'a' (10-2)
bestimmt sind. Die Lösungen ergeben sich aus dem Ansatz1) :

Qla(k) =d(k- fc0) òlh òaa-^pig a|^Ì (co2 u2+k2) (10.3)
ie K Ko

wo l0 die Spinpolarisation und a0 die „Ladungspolarisation" der
einfallenden ebenen Mesonwelle charakterisiert; erstere ist natürlich

transversal zu wählen : wenn fc0 parallel der xx-Achse, l0 2

oder 3. Durch Einsetzen von (10.3) in (10.2)2) erhält man für die
Koeffizienten pig wieder die Gleichungen (7.7) mit (7.6) bzw. (7.11),
nur ist auf der rechten Seite von (7.7) p'iQ durch v-ig,i,o, (fc0)

ersetzt; mit dieser Änderung kann die Lösung (7.12) übernommen
werden. Schliesslich erhält man für die Eigenschwingungen im
Ortsraum (asymptotisch für grosse \x\):

JdK Qla(k) ë** e**.- ôlloôaao -fa/?2 eli-~--
flaiKa.

110,1,0, 22 àl[i'-ôi\\[j' 80/j{<W><m"> ^a<r0— S<iï>o, S<jj'>o}A (10.4)
^ <«'> <jj'y _

|a| ° |fc0|
F

/*27fc2

Hier ist der Protonradius a wieder durch (7.20 oder 21) definiert
(die obige Annahme a co <Ai 1 bedingt au <^ 1).

b Dieser Ansatz ist demjenigen nachgebildet, den J. W. Weinberg (Phys.
Rev. 59, S. 776, 1941) in der „Paartheorie" zur Berechnung der Streuung
verwendet hat.

2) In dem Integral
Ea,

f ro^igJoWo-i'g'.loW
äK fe2 _ fco =A

ist bei der Integration nach | k| der Pol |k\ \kQ\ in der negativ-imaginären
Halbebene zu umgehen (ebenso wie bei der Fouriertransformation in den
Ortsraum, die eine auslaufende Streuwelle liefern soll; s. (10.4)). Der im obigen Integral

A auftretende Nenner k2 - k2, kann aber, bei Vernachlässigung von Termen,
die relativ klein sind wie aa> gegen 1, durch k2 + [i2 a>k

wird A gleich der in (7.6 oder 11) definierten Grösse AiBi i'e\
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Die Amplitude der Streuwelle in (10.4) hängt von den Winkeln

0 0 W ab ; sie ist also als ein auf die Nucleon-Eigenfunktionen
(9.2) wirkender Operator aufzufassen; die zugehörige Matrix
beschreibt die mit dem Streuprozess verbundenen Nucleon-Über-
gänge. Was den Wirkungsquerschnitt für die Streuung in den
Raumwinkel d û anlangt, wollen wir ihn hier nur angeben in der
Summe über alle Endpolarisationen l, a und im Mittel über alle
Anfangspolarisationen l0, a0 (wobei die nicht gestreuten
longitudinalen Mesonen mitgezählt sind) :

4w=(jaßy-ii 2 /Ä,^ o'/J4-ilir{5+(».»o)8}-1) (!0-5)
"iJ lo,l,o.

Schliesslich ist zu bemerken, dass die der Schwingungsenergie
K — H1 entsprechende „Nullpunktsenergie", da sie von derjenigen
des kräftefreien Mesonfeldes abweicht, einen Beitrag zur
Selbstenergie des Nucléons liefert, der jedoch spin- und ladungsunabhängig

und daher ohne Interesse ist.

C. Allgemeiner Kopplungsansatz.

§ 11. Die Extremallagen.

Wir kehren zum allgemeinen Fall / =1= 0, g 4= 0 zurück und
bestimmen zunächst wieder die Eigenwerte von H' (3.13). Für
den Term ~ g können die Formeln (4.2 bis 8) unverändert
übernommen werden; die Hinzufügung des Terms ~/ in (4.8)
ergibt dann:

H' 7 • YY' • ¦£>« on t„7 2>» M • (JY')*, (11.1)
[ n ni

«*. -Jr2p««*«» (1L2)
o) ig

(vgl. (4.4, 7)). Das Eigenwertproblem dieser 4-reihigen Matrix
hat folgende charakteristische Gleichung:

-X + r3 + u3 ux — iu2 0 rx—ra

ux+iu2 —X—r3—u3 Tx + r2 0
0 rx+r2 —X—r3 + u3 ux—i u2

rx — r2 0 Ut+ìu2 —X + r3—

0. (11.3)

Die 4 Wurzeln Xm dieser biquadratischen Gleichung sind in der

b In IV (letzte Formel) wurde dieser Streuquerschnitt um einen Faktor 3

zu gross angegeben. — Wenn, statt über die Anfangsladungen des Mesons, über
die Anfangszustände des Nucléons gemittelt wird, ist das Ergebnis das gleiche.
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Form (2.2) darstellbar, wo y2, y2, y\ sich als Wurzeln der
kubischen Gleichung („Resolvente")

*3-*22(^ + <) + 42 r'rl + ^riuA-rlrlrl =0 (11.4)
n m<m n

berechnen lassen; d. h. die yn können durch die Gleichungen

2 vi 2 W (.21

2«=2« + 2«n< m n<.m n

Vx 2/2 2/s rx H r3 (yn ^ 0)

¦i'-Y

(11.5)

bestimmt werden. Berechnet man nämlich mit Hilfe von (2.2)
und (11.5) die Grössen—2"^> 2^^'> — " 2 h^i^a und_//A,-, so

t i<j iKjCk i
ergeben sich gerade die Koeffizienten der Gleichung (11.3). Wir
denken uns die yn vermöge (11.5) als Funktionen der rn und un
berechnet; eine allgemeine explizite Darstellung dieser Funktionen
wird sich erübrigen.

Zur Bestimmung des Minimums von K (2.6) gehen wir wieder
von dem Variationsproblem (5.3) aus, wo aber in K jetzt 2 2/« an"
stelle von 2 f» auftritt. Während die Gleichungen (5.4), und damit
auch (5.6 und 7), unverändert gelten, hat man anstelle von (5.5):

y ~At 2 a<**>9 S<ik>m sem U'
" 'm <ik>g

oder mit (5.7) und (6.1) :

à^yn
rm P »—. (11.6)

drm

Andererseits ist K jetzt nicht mehr rein quadratisch von den psie
abhängig, und wir haben deshalb d K \ d pslQ 0 zu setzen, d. h.
nach (2.6), (3.3) und (11.2):

f à 2 Vn

E^rtlI-^-r «tlEi!rs'« 0' (1L7)
r k y m u *¦

Mit (3.15) ergibt dies:

Prke^ V ~ (2 ¦^¦ll.rk) 2 ^aT, Sam- ^

y \ l Im" "'m

f _
à 2 Vn
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Bildet man hiermit um nach (11.2), so folgt:

*.-'-£-. ai.»)

Die letzte Gleichung ergibt sich aus (3.16), mit (3.5), (3.19) und
(6.1), durch Verwendung der Identität A 7- A2 (fi2 — A)-1
u2 A (u2 — A)-1. Als Wert von K in der so bestimmten Extremal-
lage findet man, mit Hilfe von (5.4, 7), (11.2, 7, 9):

Die Gleichungen (11.6 und 9), die uns zur Bestimmung der
möglichen Extremallagen dienen werden, kann man noch umformen,
indem man die auf ihren rechten Seiten stehenden Ableitungen
der yn nach den rm bzw. u.m mit Hilfe von (11.5) ausrechnet:

1 p 2-1 "ii an' ' 2-1 » m ni ' 2 2j "» I n fil 1 o\^ ± nin' n 'm n I —u> Vli-lJ-^V
i 2 2/n yn> + 2*5- 2 1 2 1 :2 2/„(

(2/2
i + 2/3) (2/3 + 2/1) (2/1 + 2/2)

1

2 2
1

ttm .1 __ r; noi' yn yn' + rOT o. (H-1^)
l (2/2 + 2/3) (2/3 + 2/1) (2/1 + 2/2) J

Hier sind natürlich die yn gemäss (11.5) als Funktionen der rm
und um zu betrachten.

Die Gleichungen (11.6, 9 bzw. 12, 18) haben mehrere

Lösungen, deren K-Werte wir vergleichen müssen, um das eigentliche
Minimum zu finden.

Fall I: Alle um 0. Wie in §§ 4 und 5 ist dann

yn=rn r, Zi=-l7-3P. (11.14)

Fall II: ux u2 0, u3 4= 0. Nach (11.4 oder 5) ist dann

2/1,2 i (V(fi + rzV + «I ± l/K —r2)27w|), y3=r3;
nach (11.13), m 3: -j/fo 7 r2)2 7 *t| P' ;

nach (11.12), m 3: r3 P ;

(11.12) mit m 1, 2 gibt zwei linear-homogene Gleichungen für
37
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rx und r2, deren Determinante nur für P' 2 P verschwindet. Es
ist also

^ r2 0, r3 P, u3 P (wenn P' * 2 P) (11.15)

Nach (11.11) ist Zn - ì 7 ¦ (P 7 P') ;

K1 $ K11, je nachdem P' ^ 2 P. (11.16)

PaM 77/: ux 4= 0, wa7 0, m3 0. Dann ist nach (11.13) mit
»1 1, 2: rx r2 =o r. Unter der Voraussetzung r 4= 0 folgt
weiter aus (11.12) mit m 1, 2: % ±m2= u. (11.4 oder 5)

ergibt dannlöA

2/i,2 1 (y(r + r3)2 + 2u2 ± /(r-r3)2 + 2tt2) t/8 r ;

(11.13) mit m 1, 2 : j/(r 7 r3)2 7-2 m2 P' ;

f (/" _ r) F2

Damit m reell wird, muss r + r3^ P' sein, d. h. P' Ss 2 P;
andernfalls existiert das Extremum III (mit r 4= 0) nicht. Nach
(11.11): rir—D- 2^ I7 ' 2P'-3P

Im Sonderfall r 0 wird yx y2 0, j/3 ]/r| 7 wf 7 u\ ;

damit gibt (11.6, 9): y3 P' und (falls P'4= P) r3 0, d.h.
alle rM 0. Dies ist der später zu behandelnde Fall V.

Fall IV: Alle um 4= 0. Dann ist nach (11.13) : rx ra r3 r,
und nach (11.12), sofern r 4= 0: wf w§ m§ «7. (r 0 führt
wieder auf Fall V.) Für r 4= 0 wird

2/i, 2 ï (]/4 r2 7 3 m2 ± -|/3 m2) y3 r ;

ffnach (11.13): t/4 r2 7 3 u2 P', nach (11.12): r

Das Extremum IV existiert nur, wenn 2r^ P', d. h. wieder:

P' Sg 2 P. Nach (11.11) : Tx^ _ i y f' (l 7 3J/4r) •

Falls die Extrema III, IV überhaupt existieren (P' ^2 7),
gilt: oooKIV ^ K111 A K11

Die Fälle III, IV kommen daher für das Minimum nicht in
Betracht, ausser in dem Sonderfall P' 2 P, wo die Extremalwerte
TT für I bis IV alle zusammenfallen.
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0. Man hat dann yx

579

2/a 0, 2/3 l/^<
o o ' m

P' (nach (11.9)); KY - J 7 • P' > K11; auch dieser Fall
scheidet also aus.

Nach (11.16) (vgl. auch (11.10)) lautet das Ergebnis: Das
stabile Gleichgewicht des Systems entspricht

Fall I, wenn

Fall II, wenn

r
~2F

F'

uf
9

9

< 1

> 1

Wir nehmen im Folgenden P' / 2 P so weit verschieden von 1

an, dass das tiefste Minimum genügend tief unterhalb des nächst
höheren Extremums liegt, dass die Schwingungen um die
Gleichgewichtslage als harmonisch gelten können. 1st a u <^C 1, so
trifft dies jedenfalls für alle wichtigen Anwendungen zu, wenn

P'
27 -1 < —

a\z P'
-) (Fall I) oder ^ - 1 > - (Fall II).

Zur Behandlung der kleinen Schwingungen müssen wir die
Wurzel X0 — —2 2/n der Gleichung (11.3) nicht nur im Minimum,

n
sondern auch in dessen Umgebung kennen. Dazu genügt eine
Störungsrechnung, und zwar eine „zweite Näherung", da ja die
Anharmonizitäten vernachlässigt werden sollen. Zur Durchführung

der Rechnung setzt man zweckmässig (vgl. (4.9, 10)):

/ \ l'n Gn Tn 1 / Un Tn
n n

- Z (rx t3 + r2a3 + r3 a3 r3) Z* 7 2 M«
n

(bi 0-3 T3 + % T3) 7 { 2 (?« °n T« **«, f'n

im Fall I,

im Fall II,

wo jeweils der zweite, in geschweifter Klammer geschriebene Term
als kleine „Störungsmatrix" zu betrachten ist. Bei Berücksichtigung

von (11.14, 15) ergibt die Störungsrechnung:

y K — y 2 y»

— y 2.1 rn Y~ a ri 2j
1

4P-
fürP'<2P(FallI),
(r, 7 rY)2 «f + t

P' ' 7+7'
für r> 2 r (Fall II).

(11.17)
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Im Falle P' < 2 P ist der Energieterm

der einzige Zusatz, der zu den für / 0 berechneten K-Termen
(§§ 5 bis 10) hinzukommt (nach (6.19) und (7.3) ist p.iie= p"ie),
und zwar beschreibt dieser Term eine Kopplung der longitudinalen
Mesonen an das Nucléon. Er lässt die Eigenfrequenzen
cok -\Jfi2 7 k2 der kleinen Schwingungen unverändert, ausser
der tiefsten Frequenz co0, die, wenn man P' / 2 P von 0 gegen 1

anwachsen lässt, bei einem bestimmten Werte von 7'/2 7 sich
vom kontinuierlichen Spektrum ablöst1) und von u gegen 0

abnimmt; für 7' /2 7 > 1 wird co3, negativ, d. h. das Gleichgewicht I
wird instabil. Im hauptsächlich interessierenden Falle a u <A.1.

tritt aber die Ablösung der Frequenz m0 vom kontinuierlichen
Spektrum erst ein, wenn P' / 2 P dem Werte 1 sehr nahe
gekommen ist:

P'1- Yf < e, wo e ~(ffl/tt)2<l. (11.19)

Ferner bewirkt der Zusatzterm (11.18) — ähnlich wie Ks in § 10 —
eine Abänderung der Normalschwingungen, die dem Auftreten
von Streuwellen im Ortsraum entspricht, und zwar handelt es sich
hier um eine Streuung der longitudinalen Mesonen. Diese Streuung
ist aber sehr schwach im Vergleich zu der in § 10 berechneten
Kg- Streuung der transversalen Mesonen (der Streuquerschnitt ist
mindestens um einen Faktor ~ (a co)i kleiner, wenn wie in § 10

a m <A. 1 vorausgesetzt wird), ausser in dem Sonderfall (11.19),
wo die Streuung der longitudinalen mit derjenigen der
transversalen Mesonen vergleichbar werden kann, nämlich wenn

(flfl))^l-7/2 7.

Im übrigen bleiben, wie leicht zu sehen ist, alle Formeln der
§§ 5 bis 10 unverändert gültig. Wir kommen also zu dem
merkwürdigen Ergebnis, dass der zu f proportionale Term im H'-Ansatz
(1.4) bei starker Kopplung (vgl. (5.13)) praktisch wirkungslos bleibt,
solange (u f I g)2 < 2/3, und dies gilt, wie sich zeigen wird, auch
für die Kernkräfte. Lässt man aber | / j über den kritischen Wert

b Diese Erscheinung ist aus der „Paartheorie" bekannt; vgl. Cbitchfield,
Phys. Rev. 59, S. 48, 1941. Die Frequenz cü0 bestimmt sich durch die Gleichung

JdXoJX)(^/)_(Oo2öa{x) ^JäX3a(X)-0Foa{x);
sie ist eine dreifach zählende Eigenfrequenz (entsprechend den 3 Werten von q).
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V2/8 \g\ I u hinaus anwachsen, so ändert sich die Situation
grundlegend; diesem Fall wenden wir jetzt unsere Aufmerksamkeit zu:

T" r\ I ll { \ 2
' P' » > 1. (11.20)27 2 V g

§ 12. Translation und Einführung von Winkelkoordinaten.

Im „Falle II" ist die Gleichgewichtslage nach (11.15)
bestimmt durch

fx f2= ux û2 0, r3 F, m3=P'. (12.1)

Damit die Schwingung der Variablen r3 r3 — P sich trotz der
Begrenzung r3 7 0 ungestört ausbilden kann, muss wieder die
Bedingung (5.13) erfüllt sein, wie eine sinngemässe Übertragung
der Überlegung aus § 5 lehrt. Nach (11.20) ist dann auch u\f\ ^> a
für a ji <^C 1 bzw. /2 ^> as /j, für a ji ^> 1, und der Erwartungswert

von u'A (w3— P')2 ergibt sich als klein gegen P'2.
Nach (4.5) und (12.1) wird

9[jk]e ~ 2ig ¦* s»3 se3 •

si3 > s23 ' s33 bilden die Komponenten eines Einheitsvektors e :

si3=ei=sin & cos cp, s23=e2=sin & sin cp, s33=e3=cos &; (12.2)

analog :

Sj3=e1'=sin &' cos cp', s23=e2'=sin &' sin cp', s'33=e3'=cos &'. (12.3)

Für die übrigen Komponenten der orthogonalen Transformation
sgn können wir dann schreiben:

d en sin tp d e„ d e. cos y> de0
seX=cosf—{- ^-A^r^, «e2 aux y e '

de sind' dcp ' eZ ' Y de sin & dip'
entsprechend für s'ix und s'i2; die Relationen (4.4) sind damit
nämlich erfüllt wegen

Setzen wir noch zur Abkürzung r3 F+r3 r, so schreibt sich
die Gleichung (4.5) :

d e/ de„
q, r e/ e, 7 Ii 7 h de/ 1 dee

dfl'
de/

sin # d cp

1 dee1 de' de 1

sin &' dcp' d d- sino1' d95' sin & d<
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!1 7»'iCOsy/cos ^7ra sin f' sinxp, l2=-r1 cosy'sin^7r2 sin ip'cosip,)
(12.7

|3=-f1siny'cos y7r2cos^'sin^, |4 7risiny/siny>7r2cos y/cosy

Anstelle der 9 Variablen qig führen wir nun die neuen Variablen
em *

», tp, &', cp', r, ix, |2, f„ it; (12.8)

die dazu konjugierten Impulse seien

Pa, P9> 2V P'9> Pr, nx, n2, n3, n,.

Die (12.6) entsprechende p-Transformation kann man ähnlich wie
in § 6 durch Entwicklung nach den | erhalten; das Ergebnis
entspricht der Formel (6.15) mit

1 d_ee

d»
1 de„

sin2 » à cp

/del ' 1

sin2 # d <p'
P?>

ei ee Pr Y-
de, de„ de', 1

n. -d»' d» *¦ ' d»' sin» dcp

1 d e, à e„ 1 d e • 1 öe„
sin j?' t) cp' d» sin #f d cp' sin # f) >

(12.9)

Mit der Transformation (12.6) ist jetzt wieder die Translation

in den anderen q- und p-Richtungen, gemäss (5.6, 7) und
(11.8, 9) mit (12.1), zu kombinieren:

9rkg irk g + V 2 B[JH rk e'<il> % (r >-3) »

(12.10)

2(;'We %k)g> 9-iig ~ lue'

Prkg =PrkgY-y-;^iAlhrkeQ (f > 3)

Pü»e PüWe 0' + fc)' Püe Pïie + r 77 2 ^M» ee '

00

P[?*]es Pie P*e "^2 2 v^ie,«*" PsZo "^ ^ig.sla 9slo)
s la

wo p'ig =pig +pig 7 •••• (i, 7=1, 2, 3).

Diese Formeln, dazu (12.6), stellen eine kanonische Transformation

dar, wenn durch Wahl der Koeffizienten X, u dafür gesorgt
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wird, dass [pie, qrka]-= [Pie> Prko) 0; beachtet man (12.5), so
kommt (bis auf Terme ~ £ oder r's) :

1

fürr>3,ki g, rk a
Ji<jl> ei e<jl>)\

r"i g, rk a '2^n,rtei(ö„„-e„e„ (für alle r)

(12.11)

~r 2 B\i l], rk [ei e<j l>[àgo eg eo)

+ %ea(öi
0 für r ^3;
Hrt ~ / i J-t-llirk "i v-1 g a -g ~oj

Man sieht leicht ein, dass die beiden Einheitsvektoren "e und
e' unabhängig voneinander alle Richtungen durchlaufen müssen,
damit der System-Bildpunkt im Raum der q und p alle Minimallagen

durchläuft. Es variieren also » und »' zwischen 0 und n,
(p und cp' zwischen 0 und 2 n.

Die Einführung der neuen Variablen in K gibt die (6.22)
entsprechende Formel

K H°(p',g') + 2?5 + *2[-P2
ig y

I ' °°
/ l2"

+ Pie +2S(1iMl«?«!«+ftMl«4!J
l s (a "

J

Mit TC^ ist der quadratische Term aus (11.17) (Fall II) gemeint,
der sich nach (11.2, 10) und (12.7) wie folgt schreibt:

const
(12.12)

K's
1 r2c\n,fYm+hY + ^-"*n

7
/2

</2+3 (W)2
2(2;

g \ i
2pu-3 e

(12.13)

§ 13. Isobaren-Energie und Streuterme.

Es folgt, ähnlich wie in § 7, eine weitere (schwächere) Translation

des g-p-Raumes, die zur Abseparation der Isobaren-Energie
führen soll. Zur Bestimmung dieser Translation suchen wir wieder
das Minimum von K bei konstant gehaltenen p'iB, wobei wir den
Term K's in (12.12) vorläufig beiseite lassen. Es gelten dann wieder
die Formeln (7.2, 3, 4), wo nur pie jetzt gemäss (12.10) zu
interpretieren ist. Dazu kommen die Gleichungen:

dK œ

-TZ— 22-Brt,^^ia + 2fte,^aPie 0'- oder:
" olslo r k ig

co

Irka — 2 2 Bsl, rk 2 Vie, slo Pig ¦ (18-1)
s l ig
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Wird dies mit (7.3) in pig (12.10) eingesetzt, so ergibt sich wieder
das Gleichungssystem (7.7) für die pig, aber mit folgender
Bedeutung der Koeffizienten A (anstelle von (7.6 und 11)):

ie.jo 2-1 Aj [ ie,rkr ^rkxSl^jo^slr ' iUig,rkr "rk,sl !lja,slA
rs klr

a • e/ e/ (ò —eea) + ß- eg ea (ôi3- — e\ e')

wo a
D_ 173 uf A, ß=£-l' H C2

(13.2)

Die Auflösung der Gleichungen (7.7) nach den pie ergibt:

Pi Q PlQ

7-

a

17-a

a

ei 2-1 e' Pie

ß

ß

1+/S
¦ 2e"Pia

i+«+TSr.»e«'6»S«/«.p;--

(13.3)

Für den Minimalwert von K gilt wieder die Formel (7.13) ; setzt
man dort piä nach (13.3) ein und drückt man die p'ig pig 7 pig
gemäss (12.9) aus, so erhält man mittels der Formeln (12.4):

Kn M^+^ì) + i{Y'+É"
1

sm v sm^ » sm ir
-pêsin»'p'û+^-l-r

sm2i7

(13.4)

Schliesslich kann man noch zeigen, dass die nachträgliche
Hinzufügung des Terms K's (12.13) in (12.12) an Lage und Wert des
Minimums nichts ändert, da nämlich in der Minimallage nach (7.3)
Piig 0 ist, und ebenso nach (13.1) q[jk]a 0, daher nach (12.6)
S, 0.

Verschiebt man jetzt den Ursprung des cpp-Raumes in die
Minimallage, so kommt analog zu (7.15, 16):

K — 7C07|2 2-l^-rk, slPrkgPslgY--, 2-1 2-1 ^(ik),slP(ik) gPsl t
k l é ik lg

+ 8 2 (**),öö P(.ik)g P(jl)gY-\j2-l2jBrk,sl9rkg9slgY-Ks+Ks,
ijklg rskle

> 12

K* i2 2-1 2 [*-ig,slo Psla + Vigila Isla)
la

(13.5)

(13.6)

Die weiteren Überlegungen in § 7 lassen sich sinngemäss übertragen.
Der nächste Schritt ist die Bildung von S* K S. Wir setzen

wieder S — S ¦ S', wo S die Matrix 77' (d. h. den Wert von 77' in
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der Minimallage (12.1)) diagonal macht. Setzt man die r„- und
un-Werte aus (12.1) in (11.1) ein, so wird

S* H' S =7 (Pcr3 t3 7 P' t3) mit S Y Y', (13.7)

wo Y und Y' den Gleichungen (4.7) für n 8 genügen müssen,
also mit (12.2, 3):

2rcee Yr3Y*, 2 *« < Y' ^ Y'*'
e »

Dies leisten die Matrizen

» »
cos 7r — u3 sm -jr I I cos — — %x2 sm-r-

93 .95Y' cos — — i cr3 sin -7-1 I cos — — % a% sm
»' »' (13.8)

Damit ist S Y Y' bestimmt, und S' S-1 S kann störungsmässig

durch Entwicklung nach den £r und r3 bestimmt werden,
spielt aber wie in § 8 keine Rolle.

Wir haben nun das in die Schrödingergleichung (2.7)
eingehende Matrixelement (S* K S)00 zu berechnen. Dabei ergibt
sich die Isobaren-Energie aus den Termen ~ A und A' in K0 (13.4) :

flII^{l^^JY)«o + rT7(Y'^'Y')oo}. (13.9)

Mit (13.4 und 8) wird

Y* [A, Y] i 7- gT^ { i - (t, cos »- rx sin ») pv} - x2 (p»7f ctg »)

Hier liefern die Terme ~ xx und t2 keinen Beitrag zum
massgebenden Diagonalelement, in dem überdies r3 7-1 zu setzen ist:

{Y"AY^-^P^&P^+n~Z2&»PV+ì + Ì- (13-10)

Entsprechend wird

(Y'^' Y^o ^P» si- »' P^ + P;2~^y; +
- + t (13.11)

Abgesehen von der anderen Bezeichnung der Winkel und von der
additiven Konstanten 1/4 gleichen die Operatoren (13.10 und 11)

dem Operator E P2 in (9.1) mit pw — £. Die Eigenfunktionen
von 77n sind daher wieder durch die Kugelkreisel-Eigenfunktionen
darstellbar :

f ei(n <P+m ?') u (^ u (&'j t (13.12)
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wo n und m halbzahlig sein müssen, damit F S F' die zu
fordernde Periodizität in cp und cp' besitzt ; und die Eigenwerte- von
TT11 sind:

1 ffe(fe + l) j(j + l)\E"=2Til-TTor+TTTJ+COnSt' (13.13)
wo k 2ï.[ n |, j 2; | m |, m, n, j, k halbzahlig. j

Hier haben die Koeffizienten von 7« (fe 7 1) und j (j + 1) nach
(13.2) mit (6.1) und (7.21, 22) folgende Werte:

1 Qn a 1 67t a
ÌUTafl^1:2F2(l + oó)=g2 + S(juf)2' 2 72(l7^)=lr;

1 a5/t4 1 aY> ui^ 2P2(l7-<x) ~flf2 + 8(/«/)2' 2 P2 (1 + /3) 31"'

(13.14)

Die Untersuchung der Ladungs- und Drehimpulsgrössen (9.4)
ergibt als Nucleon-Beiträge :

eii Y* {J (1 + t3) + pJ Y i 7- p içj — 2 n;

'«/ „ » de/ „ A °s /„, „^ .q/ öe/rft'-iirft' +7T K+ctg»'^r (13-15)
sin»'\dcp' rv d»' ^ '

2 \ l ö d*'

M? p; m, (13.16)

2 (Mff -4^ p; sb *' p; 7 p;2-^cos^p; + i
^T"1 sin # sm2#

oder, da das massgebende Diagonalelement von E (M11)2 mit
demjenigen von (Y1* A'Y' — J) (vgl. (13.11)) übereinstimmt:

2(MI/)2 y(j + l). (13.17)
i

Es sind also auch hier j, m die Spinquantenzahlen und n + \ die
Ladungszahl des Nucléons. Die Zahl fe, die im „Ladungsspinraum"
die Rolle des Gesamtspins j spielt, hat keine unmittelbare
physikalische Bedeutung. — Die 4 Grundzustände, die das Nucléon
nach (13.13) besitzt (fc =j \, n= 7z I, m.= ±i), können nach
dem Gesagten den bekannten Proton-Neutron-Zuständen zugeordnet

werden.

Im Falle g2A?.(uf)2 wird nach (13.14) der Koeffizient von
j (j Y- 1) in E11 gross gegen denjenigen von fc (fc 7 1). Würde man,
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entgegen der Bedingung für starke Kopplung (5.13), g gegen null
gehen lassen, so würde die Anregungsenergie der Isobaren vom
Spin j > J gegen oo gehen, d. h. der Spin würde in dieser Grenze
auf den Wert / \ (m Ai) beschränkt sein, und man könnte
statt (13.13, 14), z. B. für a u <^ 1, einfach schreiben:

pn
2 na -Je (k + l), wo felini.
(uf)2

Dies ist aber die Isobaren-Energie nach der Theorie mit dem
speziellen Kopplungsansatz, den man durch Nullsetzen von g in 77'

(1.4) erhält (mit /j, / f /^> o). Hiernach scheint es, dass die
Gültigkeit der Formeln (13.13, 14) nur eine starke /-Kopplung
voraussetzt, während g — abgesehen von der durch die Ungleichung
(11.20) festgesetzten oberen Schranke — willkürlich wählbar wäre.

Was schliesslich die Mesonstreuung anlangt, so kann man ähnlich

wie in § 10 — unter denselben Voraussetzungen — begründen,
dass das Streuproblem näherungsweise auf Grund der Hamiltonfunktion

(10.1) behandelt werden kann, wobei aber Ks jetzt durch
(13.6) gegeben ist. Insbesondere liefert auch der Term Ks' (12.13)
keinen wesentlichen Beitrag zur Streuung, solange aco<^l. a)

Wir begnügen uns hier mit der Angabe des Resultats für die Streuung

longitudinaler Mesonen im Sonderfall g2 <^(uf)2: Mit den
gleichen Bezeichnungen wie in (10.4) haben die Eigenschwingungen
im Ortsraum folgendes Aussehen:

V„ (x) 60 #*> * Saa.- a ß2, ¦ 6 4^r • (àoa, ~ ea O • (13.18)

Die Streuung ist also isotrop; Meson und Nucléon können Ladung
austauschen, aber keinen Spin. Der Wirkungsquerschnitt,
summiert über die Endladungen und gemittelt über die
Anfangsladungen des Mesons, hat den Wert

d®
\a2ß*. (13.19)

dQ

b Hier ist strenggenommen (wie auf S. 580) der Fall F'ß F ys 1

auszunehmen. — Der erste Term in Ks' (12.13) (~[(fi+ f4)2 + (f2-£3)2]= (r, + r2)2)
beschreibt eine Kopplung der transversalen Mesonen an das Nucléon; dieser Term
ist es, der bewirkt, dass für J"/2 J'<1 das Gleichgewicht II instabil wird; die dafür
massgebende Eigenfrequenz ca0 (sie ist einfach zählend) bestimmt sich durch
die Gleichung

JdXoa(x){^_mo2öa(x) -Y^JdXöa{x) -ß^ 6a(x).
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D. Die Kernkräfte.
§ 14. Ableitung der Gleichgewichtsbedingungen.

Indem wir N ruhende Nucleonen an den Orten xv (v 0 • • •

N — T) annehmen, setzen wir in der Hamiltonfunktion (1.3), bei
gleichbleibendem 77° (1.1): ^

77' -7^22 W fdXô- (*-*.) rot*^
y " v ig •>

(14.1)

V2

-/22^ \àXòa(x-xY div^e=2ff/,
V Q * V

H" i(^/)22(2TeM>4v)i /'dXèa(x-x„) òa(x-xv)
iiv \ e I J

Wir entwickeln yi und n wieder gemäss (3.1, 2) nach einem
Orthogonalfunktionensystem, über dessen 8 iV erste Funktionen wir wie
folgt verfügen:

ü3,+i (*) \ dÖa(f~Xv) (v 0,1 ••• N- 1; i 1, 2, 3). (14.2)
rj i/ J'ï

Dabei sind die Abstände j xIL — xv / je zweier Nucleonen so gross
angenommen, dass die Formfunktionen öa verschiedener
Nucleonen nicht überlappen:

da (x — Xp) òa (x — xr) 0 für u =t= v (14.3)

Dann sind die 3 N Funktionen (14.2) auto matisch aufeinander
orthogonal und normiert (vgl. (1.2), (3.6)). Mit (14.2) ergibt sich
für 77'„ (vgl. (14.1)) die (3.14) entsprechende Darstellung:

H'v=n\g 2 <),>^)23, + [^Le + /2^,P3, + i,i,el> (14.4)
l <jk> g ie J

wobei, im Sinne der Bezeichnung (3.9)

9z v + [i,*], e /~ö [9zv + i,k,e 9-Zv + k,i, ei '

Der Term 77" (14.1) kann wegen (14.3) ignoriert werden.
Sei Sv die (von den oi"\ Av) des v-ten Nucléons allein ab-

hängende) unitäre Matrix, die S*v H'v Sv diagonal macht, so wird
offenbar die 4JV-reihige Matrix 77' 2 B'v durch Transformation
mit der unitären Matrix "

S 77 Sv (14.5)

b Vgl. QdW, § 14, speziell die dortigen Formeln (14.2,3 und 10, 11).
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auf Diagonalform gebracht. Die Eigenwerte von 77' sind Summen
der nach § 11 zu berechnenden Eigenwerte der 77^,; speziell der
hauptsächlich interessierende tiefste 77'-Eigenwert wird —y E E w<v),

v n ,Jn

wo die ytf sich wie folgt berechnen: man setze gemäss (5.2) und
(11.2)

t f
9z v + [i,k],e 2-irn S<ik>nSgn> Un ~~2jPsv + i,i, gSgn> (14.0)

» y ie

dann ist j/W als Funktion der rW und «M durch die (für jedes v

einzeln geltenden) Gleichungen (11.5) bestimmt. Die
Überlegungen des § 2 — entsprechend ergänzt — führen dann wieder
auf die einkomponentige Schrödingergleichung (2.7) mit

z Ho__.v22^)> (i4-7)
v n

und bei starker Kopplung reduziert sich das Problem wiederum
auf die Aufgabe, die kleinen Schwingungen um eine Gleichgewichtslage

zu untersuchen. Um die Kernkräfte in einer ersten Näherung
zu bestimmen, genügt sogar schon die Bestimmung der
Gleichgewichtslage und des entsprechenden TT-Wertes. Denn die potentielle

Energie der .statischen Kräfte ist nichts anderes als der
abstandsabhängige Teil der „Selbstenergie" des Nucleonensystems,
und die Selbstenergie ist in einer ersten Näherung (Beschränkung
auf die Terme höchster Ordnung in g und /) durch den Minimalwert-

von (S* K S)qq oder von K gegeben. Nur in dieser Näherung
sollen die Kernkräfte hier untersucht werden.

Zur Bestimmung des Minimums variieren wir zunächst wieder
die Variablen qslg und r<b unter Berücksichtigung der
„Nebenbedingungen" (14.6) (s'A> SW const) :

^-2E4>c^(î3H[a],f-2^<!t^) o.

22^M^-2241>e^+[i<b:H 0> d4-»)
r k v (ik>

àEyM
y o,Jv) ~ 2 a<«> e SKik> m Sg"m " • (14-9)

" 'm <ik>g

Bei der Variation der pslg andererseits sind die «W gemäss (14.6)
als Funktionen der p zu betrachten (vgl. (11.7)):

dK °° / d E y(*'

-J2- 22 ^rkxSlPrkg-y-li <W* 2 ^TToY 41 0- (14-10)
" rsle r k y v m O U,
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Aus (14.6, 8, 9, 10) folgt, dass im Minimum

-

• Îi'ZBrk,sl9rkgqslg y'Z?idA?<:)r%,
v m à r$

E A*>ir >

Un .,(»)2j 2-l^rk,slPrkgPslg~ y 2j 2-1
^ .« -

rs klg v m à U%>

folglich wird nach (14.7) und (3.3) der Minimalwert von K:
v dEAv- ¦ dEA") \

^min |22hr^r-+4r^<>-2^) ^14-11)
^ m \ d rW d<> /

Analog zu (5.6, 7) schliessen wir aus (14.8):

9rke ~ 2.1 2.1 ¦B3v+[j,T!,rk a<jl>g>
v <jl>

% ix + [i, k], g ~ 2-1 Tm S<.ik>m Sem 22 3 »+[»,!], 8 *«+[»,*] a<7'Z>e* (14-12)

Die 9N Gleichungen (14.12) können zur Berechnung der Lagrange-
Multiplikatoren o^/oe dienen, worauf diese in (14.9) einzusetzen
sind. Andererseits folgt aus (14.10), in Analogie zu (11.9):

<' y (~Î2i (s3.+«.,+m) 24ft?2 41- 41- (w.is)
\9 / v \kl I m' 0 «W e

Aus den Gleichungen (14.9, 12 und 13) sind die grie und prie mit
r > 3 2V eliminiert.

Im Folgenden sollen diese Gleichungen näherungsweise gelöst
werden unter der Annahme, dass die Abstände aller Nucleonen-
paare gross gegen den Nucleonradius a sind:

\xn— xv\^> a für u 4= v (14.14)

Im Limes unendlich grosser Abstände verschwinden nämlich
Bsp + lj,H,Sß + [i,k] und 2 Azv + i,i,zn + k,k für ¦» * A« (vg1- die

folgenden Formeln (15.7) und (16.6)) und die Lösungen von (14.9,
12, 13) entsprechen dann denjenigen des Ein-Nucleonproblems :

aH-> <xie, rW->rn, «W->tt„. Im Falle (14.14) genügt es daher in
erster Näherung, in den Gleichungen (14.12 und 13) auf den rechten
Seiten in den „kleinen" Termen v 4= u die a und à y / à u durch
ihre Werte nullter Näherung zu ersetzen; d. h. mit (5.7) (auch für
/4= 0 gültig!) und (11.9, 10) (vgl. auch (3.19) und (4.4)):

Sr(i>) 7 (i>) Jn) Ä n „M1m °<ik>m °gm w w<rt>e
m J

+ "TT 2-1 2-1 BZv + [j,l],Zp + [i,k] 2 rn S<jVl>n Sgn > (14.15)
u v ijly n



u

m_ p "g* i lv- v r v; /<»> s'(">
m /W(i<«) ^ P Aj 2j tSZv + \3,l\,Zv + \i,ki2-i rn\jl>nò<lk>
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dEy^ y./j\f.r._ \ '..
™= i, M +~Tr\~r7} 2 (2<43,,+u,3^+7C,J2MM2se«sem- (14.16)

0Um -1 \y I v \kl 'n g

Setzt man die oc aus (14.15) in (14.9) ein, so folgt (vgl. (4.4), (6.1)) :

dZyi* i
— 1—
àr™ G -, <m<jl>

• 2 4t 41- (14-17)
e

Diese Gleichungen (14.16, 17) treten jetzt an die Stelle der
Gleichungen (11.9, 6) des Ein-Nucleon-Problems. Setzen wir in ihnen

r^ rn +^t u^ ûn + ôu^, (14.18)

so haben wir konsequenterweise alle in den ôr, du quadratischen
und höheren Terme zu vernachlässigen. Was die r n, u„ anlangt,
werden wir wieder die beiden Fälle P' ^ 2 P zu unterscheiden
haben; denn die Frage, welches der in § 11 diskutierten Extrema
das eigentliche Minimum darstellt, wird — (14.14) vorausgesetzt —
schon in der1 „nullten Näherung" entschieden.

§15. FaIH:|(^j2<l. ¦"
: .7

In diesem Falle ist nach § 11

rn P 7 C, ün — 0 für alle n (15-1)
Es ist also u ô u, und die in den vfjp quadratischen Terme sind

zu vernachlässigen. Für •£ 2/i*0 können wir dann die in (11.17)
angegebene Näherungsformel heranziehen (für jedes v einzeln,) :

2 Vn 2 &> " " 1- n n =Y\.: '

(15.2
n

n
n

n
dr% d <> 2 P

V '

Hiermit und mit (15.1) gibt (14.16): <> 0, und (14.17):
'

2^> 3 PT- 7 2' 2 1,,+HI^ 2 S%e Si?k>g (15.3)
m v <ikXjl> e

wo gemäss (6.2)
S,HS<,,S,,. mn

Für den Minimalwert von K, d. h. die Selbstenergie des Nucleonen-
systems, erhält man aus (14.11) mit (15.2, 3):

Kmin -|-22W -ivrN + i2'v<lir)> (15.5)
fi m fiv

y(/") _ v2 v "r v sW ,sf(rtK / Zj ß 8 »+0,0, 8/» + [*,*]¦ Zj °<*i> e ° <**>«' l-IKa\<ikxjl> g \XO.O)
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yi/xv) igt die statische Wechselwirkungsenergie des Nucleonen -

paares u, v in erster Näherung. Die Fortsetzung der Entwicklung
nach Potenzen von af\xß—x,\ würde in (15.5) höhere Terme
liefern, die u. a. Mehrkörperkräften entsprechen1).

Die Koeffizienten B in (15.6) berechnen wir auf Grund der
Formeln (3.16, 17) und (14.2) unter der Annahme au-^.1, die
bewirkt, dass die Formfunktion ôa in diesen Formeln durch die
singulare (^-Funktion ersetzt werden darf:

ILO2 d2 ¦

BZv+ [j,l],Zß + [i,k]

— Oo,

2rj'\

dx,, dx,
+ *u

à Xfd Xj

e-ßr

dxkdxl) 4nr '

wo — | Xp xv j

Hiermit wird F"*' (15.6):
Xi — Xpt i Xv^

U *Jb4 U 3C ]

fl * V

(15.7)

^•»--rSlS^^H-iS-fi« Ifi\ (15.8)
2 ^\W~le ~ier WiQ dxiJYf'ieàxjì\4nr~

Die Grössen SH (15.4), die wir uns gemäss (6.4) als Funktionen

Euler'scher Winkel 0V, Ö>„, \PV dargestellt denken können
— zu jedem Nucléon v gehören 3 Euler'sehe Winkel —, haben
als Operatoren zu gelten, die auf die Eigenfunktionen der Isobaren-
Energien H] (vgl. (9.1)) der verschiedenen Nucleonen anzuwenden
sind; nach diesen Eigenfunktionen sollte ja die Schrödingerfunk-
tionP0' immer entwickelt werden. Nach (15.6 oder 8) ist also V-^
ein Operator oder eine Matrix bezüglich der Ladungs- und Spin-
Zustände der Nucleonen u und v; damit ist der Austauschcharakter
der Kräfte gekennzeichnet.

Wir berechnen speziell die Untermatrix von F'""', die sich
auf die Grundzustände beider Nucleonen u, v, d.h. auf deren
normale Proton- und Neutron-Zustände bezieht. Dazu benötigen
wir die Eigenfunktionen (9.2) für die Grundzustände j — i,
m 7zi, n — Yci, die wir der bekannten Theorie des
symmetrischen Kreisels entnehmen können2):

4i T(*+y) e
c'e sm7T' k-

(cD-oF)
c • e cos

- c • e cos^-, /_i_è=C.e sin-

j9

e
(15.9)

7 Wie in der Skalartheorie : vgl. I, § 9, insbesondere Gleichung (133).
2) Vgl. z. B. A. Sommerfeld, 1. c. (Fussnote 7 S. 572), Gleichung (15) auf

S. 162. Die Vorzeichen der fmn in (15.9) sind zweckmässig gewählt.
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(c (2ns)-^). Bildet man hiermit für ein bestimmtes Nucléon
— der Index v werde für den Moment fortgelassen — die
entsprechende 4-reihige Matrix

n 2ä 2»

(m'n'\ Sig\m"n") jd& sin 0Jd&f dW.f^n, Siefm„n„
0 0 0

so kann das Ergebnis geschrieben werden:

(rn' n' \ Sig | m" n") — 1 • (m' | or« | m") • («' | rg \ n") (15.10)

wo die zweireihigen Matrizen at und rg, die sich auf die
Spinquantenzahl m 7: i bzw. auf die Ladungsquantenzahl n Ysz è

allein beziehen, die Pauli'schen Matrizen in üblicher Darstellung

sind:

di I /0 1\ 0*2) /0 -i\ ax] fl 0

1 0/ ' T2J \i 0/ ' T3j \0 -1/"
°' '

Abkürzend schreiben wir für (15.10), indem wir den Nucleon-
Index v wieder hinzufügen:

^=-H*>r<;>. (15-12)

Damit ergibt sich für T^/»») (15.8), genauer gesagt für die auf die
Grundzustände beider Nucleonen bezügliche Untermatrix:

F<"" "1 ' t (s Ti" *f) j "<" °!'*)J

Dies ist x/9 des Wertes, den man bei Annahme schwacher Kopplung

mit der Störungsmethode erhält, wenn der Kopplungsansatz
(1.4) mit / 0 gewählt wird.1) — Wenn die Anregungsenergie der
Zustände j 3/2 als gross gelten kann gegenüber den bei einem
Nucleonen-Wechselwirkungsproblem ins Spiel kommenden Energien,

so wird man V näherungsweise durch die Untermatrix (15.13)
darstellen können, unter Vernachlässigung der übrigen
Matrixelemente (z.B. is=|->|). In diesem Grenzfall sind also die
Kräfte bei starker Kopplung die gleichen wie bei schwacher Kopplung,

abgesehen vom Zahlfaktor und abgesehen vom Fehlen des
in der Störungsrechnung auftretenden Termes ~ /2.

b Zu beachten ist, dass der eine Kopplungsparameter in (1.4) mit g I \/2
bezeichnet wurde, für den man sonst etwa g schreibt. Vgl. auch IV, S. 224, wo
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| 16. Fall ri: } (^)2 > 1.

In diesem Falle sind die r„, ün in (14.18) durch (12.1)
bestimmt. Bei Vernachlässigung quadratischer Terme in den ô r
und òu gibt (11.17):

22/(;(") r3* + u<3»
à Etf _ df y«

d r<8"> ö «w

d rw $ ^w P' duA>

1,

wtt:

P7P'7 für m =1,2.
(16.1)

Hiermit und mit (12.1) ergeben die Gleichungen (14.16, 17)
für m 3 :

r(i>) r + vV V R »'H/wv.W.WJ Tf Zi Zj -°3 »+[»,'], s/*+[»,*] e<?;> e<ifc> Zj ee e '
v (ikXjlì

«î° ^ + r (jj2' (2 ^3,t« 3 ,+k, k) 2e!(") Aß)
g

wo gemäss (12.2, 3)
,M «<»!. «» 'M

(16.2)

(16.3)

Bei konsequenter Vernachlässigung der in r(p, r(r), w(v>, w^ quadratischen

Terme gibt (14.11) mit (12.1) und (16.1, 2):

K -^-Y(¦"¦¦"-mm q Z_J v
.(rt.

2 ^J v'3
,<<«b (r+r)N + \^v^, (w.A)

yb">) _ yù»») _j_ y(/*»)

ff A ._Zj_ D3»+[),!],3j< + [i,t] e<jZ> e<i*> /1 B" B

T/f^v) r
KikXjl>

'f\2
9

e ee '

43v-K i, 3 ju + A;, 4 2«:¦(») /j(rt

(16.5)

Aus (3.16) und (14.2) folgt:
/2 r

2^3,
»J

+ Z,i, 3/* + *, k
Ja
rj2

dXôAx-x.) 1- <5„ (a; — a;„

Hier kann der einer „Nahewirkung" entsprechende Term

~ JdXôa (x—xv) ôa(x—Xp) mit Rücksicht auf die Annahmen
(14.3 und 14) weggelassen werden1); es bleibt:

YiÄ3v+i,i,z„+k,k -7^737 (*• xß-xv\^>a). (16.6)
kl tj2 4nr

b Im übrigen würde sich dieser Term in Vf gegen den Beitrag von H"
(vgl. (14.1)) bzw. von (S*H"8)m gerade wegheben, analog wie in der Störungsrechnung

(vgl. QdW, S. 94).
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Hiermit und mit (15.7) ergibt (16.5):

e>> e;w\ A
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yii")
ff T (2 4"> 4*>) j (Ç «;w <w)

- s<<fe

y (a< ») V fl° (2 <"«?») j£.
2 <7 ô xA I 4 TT r ' (16.7)

Die Einheitsvektoren ew, e'(v) denken wir uns wieder gemäss
(12.2, 3) durch Polarwinkel »v, cpv bzw. &'r, cp'v dargestellt, und
wir fassen sie als Operatoren auf, die auf die Eigenfunktionen der
Isobaren-Energien TP1 (vgl. (13.9, 10, 11)) wirken. Nach (13.12
bis 17) beschreibt der Operator ** e("> eW einen Ladungsaustausch
zwischen den Nucleonen /u, und v, während die geschweifte Klammer

in Vg einen Spin-Austausch-Operator darstellt. Wir berechnen
wieder die den Nucléon-Grundzuständen entsprechende
Untermatrix V^v\ Den 4 Grundzuständen eines Nucléons (fe j §,
n 7z i, m ±i) entsprechen folgende 4 Eigenfunktionen /
(s. die Fussnote 2 S. 592) :

¦ (?>+¥>')

c e

f-hi=ce

» »' J
COS — COS -rr-, fi,-i=ce

(v—vl

2

i-V + tp')

2

»'

» »'
cos—sm-—

2 2

» „sin-cos-—» /_i,_e ce
t(-<p-<p') » »'

sm-smy

(16.8)

(c (2 7t)-1). Mit denselben Bezeichnungen wie in (15.10, 11) wird

n") rg | n"), (m' \ e\ \ m") J- (m' | cr^m"), (16.9)3 v- i "e i '" " v" i "i i "" / 3

oder in der Schreibweise (15.12) : e<;> i xf, e'Y-'- \ A«. Somit werden

die auf die Grundzustände der beiden Nucleonen u, v bezüglichen

Untermatrizen von Vg und Vf (16.7):

Fi-) 1 (2 t« xWj {(2 <tf° <f>) 4
81 2

d x,

^"^^•(^2/)9 (?¦

d x,/ 4îir'

4jt r '

(16.10)

Hiernach ist Vg gleich 1/81, Vt gleich x/9 des störungstheoretischen
Wertes. Qualitativ haben also die Kräfte wieder die gleichen
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Eigenschaften wie bei schwacher Kopplung, vorausgesetzt dass die
Isobaren-Anregungsenergie so gross ist, dass die höheren Isobaren
keine Rolle spielen. Dazu ist aber zu bemerken, dass Vg — wegen
der Zahlfaktoren in (16.10) und in Anbetracht der Ungleichung
(11.20) — nur klein im Vergleich zu Vf sein kann, wenigstens für
Abstände r der Grössenordnung /*_1; die Kräfte können also nur
recht schwach spin-abhängig sein.

Obwohl also die Kräfte — genügende Höhe der Isobaren-
Anregungsenergie vorausgesetzt — eine ausgeprägte Ähnlichkeit
mit den Kräften bei schwacher Kopplung aufweisen, dürfen doch
auch die Unterschiede nicht übersehen werden: Während man es

bei schwacher Kopplung durch Wahl des Quotienten uf/g
erreichen kann, dass die Kräfte vom Vf- und F^-Typus in einem
beliebig vorgebbaren Mischungsverhältnis auftreten, hat man bei
starker Kopplung entweder reine F^-Kräfte (Fall I, vgl. (15.13))
oder eine Mischung mit relativ schwachem V„-Anteil (Fall II).
Es bleibt allerdings noch zu untersuchen, wie die Kräfte sich in
dem — hier ausgeschlossenen — schmalen Übergangsgebiet
(uf I g)2 m 2 /3 verhalten.1)

Zürich, Physikalisches Institut der Universität.

b R. Seebeb hat bemerkt, dass die Existenz der höheren Isobaren den
Sättigungscharakter der Kernkräfte gefährdet, d. h. zu einem Zusammenbruch
der schweren Kerne Anlass geben könnte. Wie F. Coestee (auf Grund der in III
vorgeschlagenen Thomas-Fermi-Näherung) gezeigt hat, ist die Vektor- wie auch
die Pseudoskalartheorie diesem Einwand nicht ausgesetzt (Diss. Univ. Zürich).
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