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Zur Vektormesontheorie?)

von Gregor Wentzel.
(1. XI. 1943.)

Die symmetrische Vektortheorie mit dem allgemeinen, zweiparametrigen
Kopplungsansatz (statische Naherung) wird fiir den Fall starker Kopplung unter-
sucht. Die Rechnung verlauft verschieden, je nachdem ob das Verhaltnis f/g
der beiden Kopplungsparameter dem Betrage nach unterhalb oder oberhalb eines

- kritischen Wertes liegt (§ 11). Im ersten Falle sind die Ergebnisse wesentlich die-
selben wie beim speziellen Kopplungsansatz f = 0 (keine Kopplung der longitudi-
nalen Mesonen). Fiir beide Fille werden abgeleitet: die Isobaren-Energie (§§ 9, 13),
der Mesonstreuquerschnitt (§§ 10, 13) und die statischen Kernkrifte fiir grosse
Abstande (§§ 15, 16).

A. Allgemeines zum Ein~-Nucleon-Problem.

§ 1. Problemstellung.

Beim Vergleich der Feldtheorien der Kernkrifte mit der Erfah-
rung darf man bekanntlich nicht die mittels der Stérungsmethode
abgeleiteten Formeln zugrundelegen; die tatséchliche Stdrke der
Kernkrafte notigt vielmehr zur Annahme einer so starken Kopp-
lung zwischen Feld und Nucleonen, dass die Entwicklungen nach
steigenden Potenzen der Kopplungsparameter unbrauchbar werden.
Zuverléssigere Ergebnisse verspricht die Methode der Entwicklung
nach fallenden Potenzen der Kopplungsparameter?). Jedenfalls
miissen die verschiedenen Varianten der Mesontheorie unter der
Annahme einer starken Kopplung mathematisch durchdiskutiert
sein, bevor man darangehen kann, sie anhand der Erfahrungs-
daten einer mehr quantitativen Priifung zu unterziehen.

Unter diesem Gesichtswinkel soll hier speziell die ,,symmetri-
sche Vektortheorie* in Angriff genommen werden. Es handelt sich
also um Mesonen vom Spin 1 und mit den Ladungen 4-1 und 0,
die mit Nucleonen (Proton-Neutronen) stark gekoppelt sind, und
zwar wird sowohl fiir die longitudinal- als fiir die transversal-
polarisierten Mesonen eine Kopplung angenommen, d.h. es wird
der allgemeinste relativistisch zuldssige Wechselwirkungsansatz ge-

1) Herrn A. SOMMERFELD zu seinem 75. Gaburtstag gewidmet.

?) G. WENTzZEL, Helv. Phys. Acta 13, S. 269, 1940 (im Folgenden als ,,I¢
zitiert), ebenda 14, S. 633, 1941 (,,II), 15, S. 685, 1942 (,,ITI*) und 16, S. 222,
1943 (,,IV®). Weitere Zitate in der na,chsten Fussnote.

*
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macht. Dagegen wird durchweg nur die statische Ndherung behan-
delt, d. h. die Nucleonen werden als unendlich schwer und ruhend
betrachtet.

Die Néherungsmethode ist dieselbe, die sich bereits in der Skalar-
theorie bewéhrt hat (I, IT). Die kompliziertere Struktur der Vektor-
theorie bedingt freilich in einigen Schritten der Rechnung eine
etwas abweichende Darstellung. Dies betrifft namentlich den in
den fritheren Arbeiten eingefithrten Gitterraum, dessen Verwendung
m der Vektortheorie ganz unzweckmissig wire. Die Einfiihrung
des Gitterraumes bedeutet nfAmlich die Entwicklung der Feld-
funktionen nach einem speziellen Orthogonalfunktionensystem,
welches dem Wechselwirkungstypus der Skalartheorie angepasst
ist. Jeder Kopplungstypus stellt aber seine besonderen Anforde-
rungen an das zweckmissig zu verwendende Orthogonalsystem,
dessen Wahl im tbrigen noch weitgehend der Willkiir tiberlassen
bleibt (vgl. §§ 3 und 14)Y). Hiermit hingt zusammen, dass man -
insbesondere iber die Formfunktion des Nucleons noch willkiir-
lich verfiigen kann, wihrend die Einfiihrung des Gitterraumes
auch in dieser Hinsicht eine Spezialisierung bedeutet. In der Ska-
lartheorie, wo man in den Endformeln (statische Niaherung) ohne
Schwierigkeit den Grenziibergang zum ausdehnungslosen Nucleon
vollziehen kann (vgl. II), ist diese Beschrinkung der Allgemein-
heit von geringerer Bedeutung. Anders in der Vektortheorie (und
tbrigens auch in der Pseudoskalartheorie; vgl. IV), wo man mit
einem nicht-verschwindenden Protonradius a zu rechnen gezwungen
1ist, weil der Grenziibergang a - 0 zu absurden Folgerungen fithren
wiirde (schon in der statischen N#herung; z. B. geht die Isobaren-
Anregungsenergie mit @ gegen 0). Dies ist ein Mangel, der vermut-
lich allen Feldtheorien anhaftet, die spin-abhingige Kernkréfte
liefern. Wir missen diesen Mangel in Kauf nehmen, werden aber
dann Wert darauf zu legen haben, dass die Freiheit in der Wahl
der Formfunktion des Protons nicht unnétig eingeschriankt wird.

Das Vektormesonfeld der symmetrischen Theorie besteht aus

3 reellen Vektorfeldern , () mit den 9 rdumlichen Komponenten
Yo () (B=1,2,8; 0=1,2,3); der Index p bezieht sich auf den
siisotopen Spin®. m, (z) sel die zu 4, (#) kanonisch konjugierte

1) Schon in den Rechnungen von OPPENHEIMER und SCHWINGER, deren
Ergebnisse in Phys. Rev. 60, S. 150, 1941, kurz zusammengefasst sind, wurde ein
solches allgemeineres Orthogonalfunktionensystem verwendet;  desgleichen in
einer — hier bisher nicht erhéltlichen — Arbeit von PAULI {iber die symmetrische
Pseudoskalartheorie (Phys. Rev. 1942?). Diese Angaben verdanke ich Briefen
von Herrn W. Pauri an Herrn M. F1ERZ und an mich selbst.
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Feldfunktion. Dann lautet die Hamiltonfunktion .des krifte-
freien Mesonfeldes bekanntlich:

1
= 12del|ng]2+7(d1Vﬂ 24 u? |, 2+|r0t'q19|2} (1.1)

w ist die Mesonruhmasse in reziproken Léingen ausgedriickt (7 und ¢
werden immer = 1 gesetzt). Den Wechselwirkungsterm der Ha-
miltonfunktion schreiben wir sogleich in statischer N#herung an,
und zwar vorerst nur fir das FEin-Nucleon-Problem: Es befinde
sich ein e1nz1ges (ruhendes) Nucleon im Ursprung; selne Form»—
funktion seil d,:

04(x) = reelle Funktion von ||, de o) =1. (1.9

Die Pauli’schen Spinmatrizen des Nucleons werden mit o, die ana-
logen isotopen Spinmatrizen mit 7, bezeichnet. Die Hamilton-
tunktion schreibt sich dann?):

"H=H'+H +H", (1.8)

' 9 >
H=——u E:Gi z, | dX 6, (x) rot; p, (1.4
V2 % f ( ) ¥e 14

—fEtgde 8q (2) div 7, ;

H'" 1st ein Term ~ f2, der aber im Ein-Nucleon-Problem konstant
1st und ignoriert werden kann: H” = 0. Die Dimensionen der
(reellen) Kopplungsparameter sind: g = Linge, f = Flache.

§ 2. Methode.

Unser Niherungsverfahren beruht auf folgendem Grund-
gedanken: H' ist, infolge der bilinearen Abh#ngigkeit von den
zweirethigen Matrizen o, 7,, eine 4-reihige Matrix beziiglich der
Spin- und isotopen Spin-Indices des Nucleons. Diese 4-reihige
Matrix werde zundchst durch Transformation mit einer unitiren
Matrix S diagonal gemacht; wie sich zeigen wird, kann das Er-
gebnis wie folgt geschrieben werden:

S*H’SZ_'}’{y173+9203+930’373}:. (2.1)
wo o3 und 73 diagonal gew&hlt sind (Eigenwerte 4-1); y ist eine

1) Vgl. G. WENTZEL, Quantentheorie der Wellenfelder, Deuticke 1943 (im
Folgenden zitiert als QdW), § 14; die dort fiir die nicht-symmetrische Theorie

(z,u3 = () angegebenen Formeln sind leicht geméss der symmetrischen Theorle
(s: § 10 daselbst) zu erginzen. ;
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positive Konstante, und die g, sind in noch zu bestimmender
Weise von den Feldfunktionen w,7 abhiingig. Die Eigenwerte
von H’ sind also:
Yde=7y(—Y1— Ys— Ys) (za=+1, o3=+1),°
YA =y (= Y1+ Ys + Ys) (1:3=+],o‘3=—1),|
ylzzy(‘kyl%yz—’_y:}) (732‘“]3 03:+1)’J
yis=7y(+ Y1+ Y2 — ¥s) (7s = —1, gg= —1).
Werden die y, = 0 gewdhlt, so ist y 4, der tiefste HEigenwert
(ausser wenn zwel der ¥, verschwinden, welchen Fall wir aus-
schliessen koénnen). In der Schrodingergleichung

(2.2)

(—~E+HF=0 2.9
substituleren wir fiir die (4-komponentige) Schrodingerfunktion F':
F=S-F. (2.4)

Die transformierte Schrodingergleichung lésst sich dann, da S
mit den ¥, kommutiert, folgendermassen schreiben:

S*(—E+H°+H)SF

=B+ SE 7 0 1S 2.5)
+ V{yl (1 —73) +ya (1 —ay) + yz (1 —o575)}) F'= 0.
Die Grosse Ho—, Z v — K 2.8

hat, als Funktion der Feldvariablen, ein Minimum (ebenso auch
S*K S), und 9m Falle starker Kopplung geniigt es, kleine Schwn-
gungen um diese Minimallage zu betrachten. Die dieser Minimal-
lage entsprechenden Werte der y y, sind bei starker Kopplung sebr
gross; genauer gesagt: mindestens zwel der Energieterme y y,
sind sehr gross gegen die zu betrachtenden Anregungsenergien der
kleinen Schwingungen. Wir denken uns nun die der Schrodinger-
gleichung (2.5) entsprechenden Komponentengleichungen einzeln
angeschrieben und beachten, dass die Diagonalmatrix

Y{th (1 —73) + ys (1 —o3) + y5 (1 — 03 T3) }
folgende Diagonalkomponenten hat:

0 fﬁr13:+];0‘3=+1;
29 (Yyg+ys) flir rg=+1, 0g=—1;
2y (y3 + y1) fir 1= —1, 03 = + 1;

2y (yr+ys) firvg=—1, 03=—1
Im Limes unendlich starker Kopplung (z. B. ¢ > c0) gehen diese
4 Komponenten iiber in 0, 00, o0, co. Die Eigenwerte E der Glei-
chung (2.5) zerfallen in 2 Gruppen, die in diesem Limes unendlich
welt auseinanderliegen, und man erkennt leicht, dass die Eigen-
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werte der tiefliegenden Gruppe durch eine einkomponentige Schro-
dingergleichung bestimmt werden, die wir wie folgt schreiben:

(—E + (S*K 8)y) Fy = 0; 2.7)

dabei bedeutet F'y’ diejenige der 4 Komponenten von F’, welche den
Werten 73= 41,03 = +1 der Spin- und isotopen Spin-Indices
entspricht (d. h. dem Eigenwert y 4, von H'), und analog ist unter
(8* K 8)y, dasjenige Diagonalelement der vierreihigen Matrix
S* K S zu verstehen, das zu den Werten 73= +1,0;=+1 ge-
hért (K ist durch (2.6) definiert). Das Gesagte gilt streng im
Limes unendlich starker Kopplung, angendihert aber auch bei
endlicher, immer noch starker Kopplung; was dabeil unter ,,starker
Kopplung® zu verstehen ist, kann erst spiter prizisiert werden
(vgl. (5.13)). In der Tat zerfallen auch dann noch die Eigenwerte
E in zwel Gruppen, die so weit auseinanderliegen, dass man sich
nur fir die tiefliegende Gruppe zu interessieren braucht, und
diese tiefliegenden Eigenwerte bestimmen sich n#herungsweise
durch die einkomponentige Schriodingergleichung (2.7), voraus-
gesetzt, dass die Ausserdiagonalelemente (S* K S)y,, der Matrix
S* K 8 klein sind gegen die nicht-verschwindenden Gréssen y ¥,
(bzw. gegen deren Werte in der Minimallage), was bel starker
Kopplung zutrifft (vgl. § 8). Von (2.7) ausgehend, kann man leicht
durch eine Stérungsrechnung zu sukzessiv verbesserten Approxi-
mationen gelangen, was auf eine Entwicklung nach fallenden
Potenzen der Kopplungsparameter hinauslguft). Alle fir die
Theorie charakteristischen Aussagen sind aber schon aus (2.7) zu
gewinnen, und wir beschrinken uns deshalb in allem Folgenden
auf diese Ndaherung. Die Hauptaufgabe reduziert sich dann auf
die Berechnung des massgebenden Matrixelementes (0,0) der
Matrix S* K 8 = S* (H* —y %’ y.) S, wofiir in erster Linie die

Grossen y, sowie die Matrix S aus (2.1) zu bestimmen sind.

§ 3. Einfiihrung passender Feldvariablen.

Die reellen Ortstunktionen U (z) (s = 1 -+ o) mogen ein voll-
stdndiges Orthogonalsystem bilden:

1) Fir die Skalartheorie wurde die Stﬁrung_srechnung in I, § 6 skizziert.
In den dortigen Formeln (54) bis (57) (mit (29)) ist die den obigen Gleichungen
(2.4 ff) entsprechende S-Transformation durchgefiihrt.
2]
2) X soll andeuten, dass die unter dem X-Zeichen stehenden Indices von 1
bis o laufen, wihrend sonst nur iiber 1, 2, 3 summiert wird.
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Anstelle der Feldfunktionen y,(x), 7, (z) filhren wir neue kano-
nische Variable ¢, p ein durch die Formeln

Vio (@) = S UL(®) Quigs T2ol®) = S Uo(2) Pare
8 § (3.2)7

D5 o =de U () pp(), p8k9=de Uy(x) () ]
In den neuen Variablen ausgedriickt lautet H° (1.1):

Q) = %2 Z (Ark,sl Prio Psio + Brk,sl Qrko qwg)s (33)

rs kle
o 1 02
Ay o= [dXU, (6 ——-—— U
Tk,sl f U'r( kl M2 Omk 09}1) 82 ]
(8.4)
= [aX U (80 (u2— 2+ -2\ T ‘
Brk,sl—f r| Ot \M 'Omkdml P

Um andererseits fiir H' eine mdglichst einfache Darstellung
zu erhalten, wéhlen wir die Funktionen U,, U,, Uz wie folgt:

1 06.(2)

(i=1,2,8); (3.5)

dabei bestimmt sich % durch die Normierungsbedingung f dXUz=1:

772:de(06

1 18t von der Grossenordnung a=%2. Die 8 Funktionen (3.5) sind
offenbar aufeinander orthogonal. U,, Uj, - - - brauchen wir dann
nur den Bedingungen (3.1) zu unterwerfen; eine genauere Kennt-
nis dieser Funktionen wird nicht vonnéten sein. Mit (8.2 und 5)
wird

[aX bu(a) voty h,=—n [ AX (Ua ws, — Ustag) = — 0 (d237—s2)s
[dX 6,(2) div Ty = — 9 [AX D Us;g = — 1 D Pis;

$))22%/dX 0o (x) (— 4) 8,(x);  (3.6)

also nach (1.4):
H = nl\@ D1 To [01 (Ga30— 330) 02 (@a10,— Q13 0) +05 (G120 F21)]

+f2792pug}. (38.7)
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Weiter definieren wir fiir + =1, 2, 3:

(Gir o T Qrio) s Tiro =

\/2 (Qire — Qrio) » ]

Qiix) o = :
2
: V (8.8)

Pirye= \/2 (p%kg Prio) s Plirje = \/2 (pzkg pkie)'l

Fir + + k definieren diese Formeln neue kanonische Variablen-
paare Guz os Plrye PZW- Qurjes Purner dle wir gelegentlich auch
als eigentliche kanonische Koordinaten verwenden werden; die
Definitionsformeln (3 8) sollen aber auch fiir i =k gelten. All-
gemeln verwenden wir bezliglich beliebiger Grossen a, b die Be-
zeichnungen :

1 1
—— (@ + axy), Uig] = —= (@ — )

Qiry =
@) /2 V2

: ) (3.9)
a(i b]::) o Vé;" (ai bk + ak bz) s a;[,,: bk] == 72: (avi bk'_'aqc bi)'

Z. B. wird nach (8.4), bei Beriicksichtigung von (3.1 und 5):

1 .
A[ik],s[ 5 615]1 = v—i“ (632 61{:1 - 6876 611) (7; = 1, 2, 3) . (3.10)

st

Beachtet man dies, so schreiben sich die p-abhéngigen Terme in
H° (3.3) mit den Variablen (8.8) wie folgt: 1)

@ ’ ) .
%2 2 rk, slp?icgpslgz %Z”ZArk,slprkgple
rs ki rs kleo
(v o]
+ ‘12‘_1,' Aiwy, 51 Pimye Psiet ) 2 Aim, 6n Pawe p(yl)g
s iklo tikle
+ 4 2 Pline- (8.11)
ke .

Fiir die g-abhingigen Terme in H gilt eine dhnliche Formel, doch
wird diese im Folgenden nicht gebraucht. Schliesslich fithren wir
die Variablen (8.8) auch in H' (3.7) ein; schreiben wir zur Ab-

kiirzung

] Qrosie = Q1es Ts11e = Q200 uole = T30 (3.12)
so wird
H’xﬂ{gyaﬂgq@ﬁfﬁlr o Pite ) (8.18)
e

1) Ein Strich am Summenzeichen deutet an, dass die Indexwerte 1, 2, 3
auszulassen sind:

2’ Z' Z” Z'Z'

s=4 rs r=4 s=4
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Alternativ fithren wir folgende Bezeichnungsweise ein: <j k> be-
deute den zyklisch zu §, k gehorigen Index, also <23> =1, (81>= 2
<{12>= 3; dann schreibt sich (3.7) oder (3.18): 1)

H = n{g? G<7k>rngk]g+fzr pmo}' (314)

{ik>e :

Zur Verwendung im Folgenden definieren wir hler noch
Gréssen AS, _ Bgl - durch die Formeln:

®©

2 2 Ark, sl ‘Zsl,f'k’ = z Z'Ba"k, sl E.5'11, YR T 6”’ 6}5]5'; (815)

8§

es sind also 4, B die zu den Matrizen 4, B inversen Matrlzen
Dieser Forderung entsprechen die folgenden Ansitze:

— : 2
Asl,,wdeUs(am L 1 )Ur, ]

Oml dﬁk /1,2— A

= 1 02 1 |
By= [ dX Ug(dy— U J
slrk f ( ik M2 OIEL OéEk) /12 — A

wo der Operator (#2—4)~1 in bekannter Weise definiert ist durch

1
‘u}2._.
(die Operationen (u2—A4)~! und 0/0x; sind in der Reihenfolge

vertauschbar). Dass die Relationen (3.15) mit (3.4 und 16) erfiillt
sind, verifiziert man leicht auf Grund der Identitit:

] 1 02 02 1
6 — T e e oa 6 ! =6 e A
;( o u? 0xy 0:{;-;)( w 0x, 0y pc2—A) k%

- Eine besondere Rolle spielen im Folgenden die Grossen Em}’,k
(7 =1,2,8). Beachtet man (3.5), so ergibt sich aus (8.16):

1 .
U,. 18
o (8.18)

Speziell fir r=1 (=1 7 2, 3) wird nach (8.5) und (1.2) aus Sym-
metriegriinden C;; = 6;;- C, also

1 — A
, 172de B () 57— (). (8:19)

1) In der Summe }' kommt natiirlich jede Indexkombination j, &k (j+k)
k>
nur einmal vor; es ist also Y = 1 J/.
k> ik

(8.16)

e F |z —

- (3.17]

dr |z —x|

—Ulz)= f dX' U(x)

Byn e = 85aCipv» W0 Cyp = de U,

b= 0113

ilis

E[ch =C- 0y 0
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B. Spezieller Kopplungsansatz: I = 0.
§ 4. Die Eigenwerte von H'.
Fiir f = 0 haben wir nach (3.18):
H'=y20‘ireqie, mit y = ng. & (4.1)
ie

Um diese 4-reihige Matrix, geméss dem in § 2 skizzierten
Programm, auf Diagonalform zu transformieren, fihren wir zu-
néchst einige Hilfsgrossen ein. Wir betrachten die zwel symme-
trischen Tensoren

TE’” = Zq'ig Gio > T%; = 2%9 Qo (Qy o, 1, ? =1, 2, 3) " (4: 2)
% 0

Man erkennt leicht, dass beide Tensoren die gleichen (positiven)
Eigenwerte haben; wir nennen diese 72 (n = 1, 2, 3) und bezeich-
nen die zugehérigen normierten Eigenvektoren mit s, (Kompo-
nenten s,,) bzw. s,” (Komponenten s;,):

Z Teo on n Son * S‘ Tw S,n ns;n’ | (43)

ngnsgm = anm Y stn z,m ’- !
e

, (4.4)
ngnsofn= 69«17 Esin‘sjn:éij" -
Die Eigenvektoren s, und s,” hingen wie folgt zusammen:
1 g . 1 |
sn:TZSinQig’ SinzTngn%g'
n % n o
Wegen (4.4) folgt hieraus:
Qiqz erns;nsgn‘ i (45)

In dieser Weise konnen also die 9 Grissen ¢;, durch die Eigen-

werte und Elgenvektoren der Tensoren T, T" dargestellt werden.
Wir setzen (4.5) in (4.1) ein:

H' =y S, (S i) (7,500 - .(4.’6)‘

Da die Koeffizientenschemata s,, bzw. s/, Drehungen im drei-
dimensionalen Raum darstellen, kann man bekanntlich unitére
Matrizen Y, Y’ konstruieren mit den Eigenschaften:

DT80 =Y7,Y* Sos,=Yaq Y™ (4.7)
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Da Y nur von den 7,, Y’ nur von den o; abhéingt, gilt: [Y, 0,] =0
[Y',7,]=0, [Y, Y] = 0. Folglich gibt 7(4.6) mit (4.7):

H=y-YY - >r,o0,7, (YY) - (4.8)

Es bleiben also nur noch die 3 Matrizen o, 7, simultan diagonal
zu machen. Dazu kann z. B. die unitdre Matrix

7 = \/% (o1 +i7) @49
dienen; in der Tat verifiziert man leleht
0,T1=—Z4132% 0,79=—Z 03 72%, 63t3=—2Z 03 T3Z* (4.10)
(o3 und 75 seien wieder diagonal gew#hlt). Hiermit wird (4.8):
H ==y 8 (7 + 105+ 1,0,%) §% mit § =Y Y'Z, (4.11)
Dies stimmt mit (2.1) uberem, WO ‘

Yo = T | (4.12)

zu setzen ist. Die Eigenwerte von H' lassen sich also, wie behaup-
tet, in der Form (2.2) darstellen, wo die y, = 7, als Quadratwur-
zeln der Eigenwerte der Tensoren (4.2) zu berechnen sind. Die
Betrachtungen im § 2 setzen iibrigens noch voraus, dass die r, = 0
gewdhlt werden, ferner y = #ng > 0, was durch Wahl des Vor-
zeichens von 7%, d.h. des Normierungsfaktors in (8.5), zu er-
reichen ist.

§ 5. Minimallagen. Bedingung fiir starke Kopplung.
‘Die in (2.6) definierte. Funktion K lautet jetzt, mit (4.12):
K=H'—yr. - (5.1)
In H° denken wir uns geméss (3.8) die Variablen gy, und gy,

eingefiihrt, wobel wir die gy, oder g;, (vgl. (3.12)) gemiss (4.5)
durch die 7, ausgedriickt denken:

Qrik1e = Z L™ S;'Ek>n Son (5.2)
n ’

(beztiglich der Bezeichnung <+ k> vgl. (8.14)). Wir suchen nun das
Minimum von K als Funktion der Variablen ¢,;, und r,, wobei
die gz, mit den 7, durch (5.2) Verknupft Sll’ld Sen und ',
gelten hierbeil als konstant. Fiihren wir- den Nebenbedingung‘en
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(5 2) entsprechende Lagrange-Multiplikatoren ;s , ¢ ein; so haben
wir also das Varlatlonsproblem

— Z Uigy o (q[ik] 9%2 T Sciksn Sen) = 0 (5.8)
<ik>e 7 :
oder mit (5.1) und (3.8) (vgl. auch (8.8 und 9)):
ZZ Bm,szque*”’ Z %eik> o 6s[i‘sk}l =0, , _ (5'4‘)
rE G | |
— 3 Lirso Scikn Sen = 0 (n=1,2,38). (5.5)
ke T ; - .
(5.4) ergibt vermoge (3.15):
o Z 2 le ﬂ*’k<2;r :‘u e s [ k 1= Ekx,;xd'k% e E[i’k’},rk. . | (5'6)

Speziell fir r =i (=1,2,8) folgt hieraus, bei Verwendung von
(3.19): |

Qik.e = Z it ws 0 ak[k’ai’]i v Quime™ 0, . Qiir1 o = C Yiikyo
KTk >

Die Multiplikatoren « haben also die Werte:

1 1 , .
%ikse = O Qririe = _52 T'm S¢ik>m Sem - (5.7)

Wenn man dies in (5.5) einsetzt und dort die Summationen iiber
die Indices ¢ und <7 k> mit Hilfe von (4.4) ausfiihrt, so folgt:

=y (. Die Funktion K nimmt demnach ithren Minimalwert
an fur folgende Werte der r, und g,;,:

Tnz')}c) qug va[jl] rk> S<?l>nsgn’ (58)
inshesondere gilt fir r =4 < 3:
é(ié)g: 0, é[ik}g:.?’czsldmn Som (5-9)

Vollziehen wir also im g-Raum die Translation

=Tp+ 1, Q'fkgzéfk‘g‘_l_q’?kg’. N (2 ]O)
so wird K offenbar in eine quadratische Form plus additive Kon—
stante verwandelt, namlich:

= @ . » .
K = %E ; (A:rk,slprkg pslg + Brk,slqrﬂcg q'slg) + CODSt.,’ ‘ (511)
T8 o
36
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hier sind die g, (# = 8) durch die r', ausgedriickt zu denken
geméss der Formel :

q’[m e = Z Ty S;ik>n Som (5.12)
¥ (3

Obwohl K von den 7" und ¢’ rein quadratisch abh#ngt, ent-
sprechen die Losungen von (2.7) doch nicht unter allen Umsténden
harmonischen Schwingungen. Dies liegt (dhnlich wie in der
Skalartheorie; vgl. I, § 5, und II, 1. Abschnitt) daran, dass die
Variablen r, auf die Bereiche r,= 0, folglich die r,/ =7, —yC
auf die Bereiche r,’= —y C beschriankt sind. Nur wenn diese
Ungleichungen die Bewegungsfreiheit der oszillatorischen Koordi-
naten r," nicht merklich einschrénken, d. h. wenn der Erwartungs-
wert von 7,2 klein gegen (y C)? ist, kann man mit harmonischen
Schwingungen als Losungen rechnen. Fir eine grissenordnungs-
missige Abschitzung gentigt es, y;2 fiir die Nullpunktsschwingung
zu berechnen. Ferner ist leicht zu sehen, dass 7,2 durch den fiir
kriftefreie Mesonen (g = 0) berechneten Erwartungswert von ¢y,
ersetzt werden kann. Man findet so:

Lt apu<Ll,

2 4
7',;‘2 ~ / dX Ul V——“‘zlmd Ul ~ e
=== 1 e
# |W2M‘5~iur ap>1.

Andererseits 1st nach (3.19)

na?

, g fir a;ps({],
yC=gnC ~
lm‘fﬁr U,,u >1 V

Die Bedingung rZ <<€ (y C)? lautet demnach :

lg] >a fir au{l,l (5.13)
g2 >a’u® fir ap >1 .|

Ungestorte harmonische Schwingungen gibt es also nur bet genii-
gend starker Kopplung: Im wichtigeren Falle a 4 €1 muss der
Kopplungsparameter |g| gross gegen den Protonradius a sein, damit
unser Verfahren ohne weiteres anwendbar ist. Wie aus dem Fol-
genden hervorgeht, geniigt dies auch, damit die ersten Schritte
der Entwicklung nach fallenden Potenzen von ¢ rasch konver-
gieren.
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§ 6. Einfiihrung von Winkelkoordinaten.
Mit der Abkiirzung

I'=yC=gnC (6.1)
schreiben wir die Formel (5.9) fiir ¢p;, (vgl. (3.12)):
Qio =T Sip, W0 Sjp= 8108 - 6.2)

Die S;, definieren wiederum eine Drehung:
ZSMSM:aM’ ZSieSia:aeé' (6'3)
¢ 5

Die allgemeine Drehung im dreidimensionalen Raum Il&sst sich
durch 8 Euler’sche Winkel darstellen:

Si1=cosO cos @ cos ¥ +sin@sin¥, -+ Si3=sn6 cos D,
.................................. , Sp3= sin @ sin P,
Sgy=—smn 0@ cos ¥, Sy, =—smB@sin¥, Sz=cosB;
00 ==, 0= <2m, 0 =Y < 2an.

(6.4)

Ferner entnehmen wir aus (6.2) s';, = > S;, $,, und setzen dies
n (5.12) ein: 4

= > Biobior WO Loo= D Tn Bon Fan="Eup - (6.5)

Als symmetrischer Tensor hat & sechs unabhéngige Komponenten.
Vermoge (6.2, 4 und 5) kénnen wir nun die 9 Feldvariablen
Tixte = Tie= Qio + i, durch 9 neue Variable

0, D, ¥, &11s Sazy 335 Sa3 = &30, €31 = &13, E12 = &n (6-6)
darstellen:

Gio= 1" Sig (OBW) + &, 8, (0 B). 6.7)

Die zu den ¢-Variablen (6.6) kanonisch konjugierten Impulse
nennen wir :

PosPos Pw; 711, ag, gz, Tag = T3y, gy = T3, Mg = Ta1. (6.8)

Man erhalt sie als Funktionen der p;, (= Py, mit Hilfe der
nerzeugenden Funktion®

G = ZI’S + 5908)?59

durch die Gleichungen

0G 0G
— “ e N ——1 8 6.9
p@ 0@ ] 3 3 neo 06 ’ ( )
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z. B. wird (wenn man §,,=¢;, beachtet):

nga=2(siapie+siepzd 5 S@gng)

Diese Gleichungen haben wir nach den p;, aufzuldsen. Dies kann
durch Entwicklung nach den £,, geschehen. Man beachte, dass
die Variablen &,, (nach ihrer Definition (6.5)) nur Schwingungen
ausfithren, deren Amplituden klein gegen I' sind; denn dies war
gerade die Aussage der ,,Bedingung fiir starke Kopplung®* (5.13).
Diese Bedingung garantiert also die rasche Konvergenz einer Ent-
wicklung nach &,,/I". Fir das Folgende geniigt die Angabe der
&-freten Terme.

Zur Darstellung des FErgebnisses fithren wir folgende Ope-

ratoren ein:

cos ¥
Py =+sm¥- Po T 1 6 @(P¢+0059 Pw),

sin ¥ (6.10)
Pzﬂ—COST'p9+Sin @(qu—f“COS@'pgy),
Py =py.

Dies sind hermitische Operatoren mit den Vertauschungsrelationen
von Drehimpulsen:

[P2,P3]='iP1, [P3,P1]:’iP2, [Pl,PQ}:iP:;. (6.]1)

Ferner gilt:
[ng Sig] == 07

i 1By, Big] = — 5 [Py, Seg] = B, #os, 7o {aylitaahy. | 4512
Hiermit definieren wir weitere hermitische Operatoren:
_ 1 .
Pir= o p (Si3 Py — 8S;5 Py +1.8;y)
1 i
:ﬁ(P2 Sz3 P 812 Q‘Szl); T, Tt (ZYkllSCh), (613)
Pi1 = Si1 7 + 3 Sip e + § Sigmyg, oo, oo (zyklisch). (6.14)

Das Ergebnis der oben angedeuteten Rechnung lautet dann (in
hermitisierter Form):

pigzﬁie+§ig+"' (6'15)

(die Punkte deuten die & enthaltenden Terme an). In der Tat
folgt aus (6.7, 12, 13, 14):

[plg! QJ a]

5 (68,6 — S0 S, )+----, (6.16)
?’[pwg’ q;pu] % 676

+ Sw S;p) + (6.17)
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so dass die Vertauschungsrelationen 1 [p;,, ¢;,] = 9;; 6,, hinsicht-
lich der &-freien Terme erfiillt sind.

Wir kommen jetzt auf die in § 5 besprochene g-Raum-Trans-
lation zuriick. Unter Verwendung von (5.8, 9) und (6.2, 5) konnen
wir die Translation (5.10) folgendermassen schreiben: £

Qir) o = quk)e’ Qiik1e =i = d g £ Z £eo Sior

r > 3: Qe o = qug + q;kg! WO Qrio = ?’E B[ﬂ],ﬁ'ﬂ S<N>Q'
G

Neben den Variablen (6.6) denken wir uns nun die Grossen gz,
(7 = k), qj;, und q,;, (r > 3) als Lagenkoordinaten eingefiihrt.
Dabei ist zu beachten, dass die Verschiebung ¢, , der g-Variablen
mit r > 3 von den Winkelkoordinaten @ @ ¥ abhéngt. Man
muss daher, um eine kanonische Transformation zu erhalten, noch
eine lineare Transformation des p-Raumes vornehmen. Wir machen
den Ansatz:

(6.18)

Pirre = Pime Pime= Pie = Pio + 2’; Risiste Prte s ] (6.19)
T> 3! Prie = Drico-
Dabei soll p;, denselben Operator bedeuten, der in (6.15) mit p,,
bezeichnet wurde:
o :ﬁig+§ig+."'$ %[pz’g) Qja] —51,9 690 (620}

Damit die kanonischen Vertauschungsrelationen fir die alten und
neuen Variablen gelten, muss man nur dle Koeffizienten 4 1n

(6.19) so wihlen, dass

’b[p?;g, quG] = j’iQ,?’kG i3 ’b[pig, ér!c a] =Ofur r > 8.
Nach (6.18) ergibt dies, bis auf uninteressante &-Terme:

}‘ig,'rkd = —iy 2 E[jl],rk [S!_fig, S(:il)o] 2 L (7’ > 3):

CI2

oder, da S, L2 (y C)1 q<jl;a, nach (6.16):

1 Ly
l 2()<2‘>BW] rk (6z<7l> 0o 30 Sjry )t Llir 1238,
il

l 0 fir » = 8. | | (6.21)

Es bleibt noch iibrig, die neuen Variablen in die Funktion K
(5.11) einzuftihren. Da die Grossen p;, =Py, nach (3.11) nur in
dem Term

]“i o,k o

4Zp[7k]9= 22%9

ie
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vorkommen, kann man das Ergebnis wie folgt darstellen:

K = % Z 2 (Ark,.s-l p’HcQ p;lg + Bfk,sl q;kg q;lg)

rs kle " , (622)
+ _; 2 [—P:ﬁ + {P;g"l“ 2 ?_‘ﬂi@,sza}?;;a} ‘ + const. J
] 8 g

In den ¢'-abhingigen Termen sind gemiss (5.12) bzw. (6.5) die
Gréssen g, durch > &, S, 1y, ersetzt zu denken.

§ 7. Aufspaltung von K in Isobarenterm und Energie der ireien Mesonen.

K (6.22) hingt quadratisch von den Drehimpuls-Operatoren P,
(6.10) ab, ndmlich auf dem Wege tiber die p;, (vgl. (6.20 und 13)).
Um eine Separation in P,-abhingige und P,-unabhéngige Terme
(die ersteren werden die Isobaren-Energie liefern) zu erhalten,
fihren wir eine Translation im p-Raum durch:

Pirye = Pime T Pime Psto = Pito T Dsro (5 >3) (7.1)

(wobei also die p;, untransformiert bleiben und daher hier unter

die ,,Konstanten‘* gerechnet werden kionnen), mit der Forderung,
dass die in den p”" linearen Terme verschwinden sollen.

Die Bestimmung der Translation p erfolgt am einfachsten

durch Bestimmung des Minimums von K (6.22) ber festgehal-

tenen Pj;;,:

0
’ K—s‘ 3] ’i' 0
00 Opsla( <mjgﬁ<_9>e Py ;rL) (7.2)
- 2 2151 A,y Pria + Z 4 evie Pig _;gﬁ(ﬁ}oas[ia,ﬂl: 0,
T e 1

wo unter p;, seine Darstellung aus (6.19) zu verstehen ist. Multi-
pliziert man (7.2) mit 4,; .z, so folgt durch Summation nach s, I
auf Grund von (38.15) und mit Ay ;i ,; = 0, 9,3 (vgl. 3.16)):

Prpa=— 2, IZI Esl,'rk Zz‘ig,slapig—l_(Z;ar[iéj]k Beiisa- (7.3)
8 10 (¥

Bildet man speziell p(;;;,, so verschwindet der Beitrag der ersten

Summe in (7.3), da 4, ;=0 fir s > 8 und 4;, 4, = 0 fir s < 3;
folglich:

Bine = Pne - (7.4)
Gehen wir mit (7.3) in p;, (6.19) ein, so wird dort
Z’Zzig,slap;la:_Z‘/lig,joﬁpja:— (75)
wO 8 g 70 |
Aie,:iU: Z’IEAie,rkr‘Zrk,sl Z’ja,slr' (76)

rs kil



Zur Vektormesontheorie. 567
(6.19) lLiefert somit folgendes Gleichungssystem fiir die p;,:
pig+z Aig,jo‘pjozp;‘g‘ . ‘ (77)
jo

Zur Berechnung der Koeffizienten A (7.6) auf Grund von (6.21)

und (8.16) konnen folgende Formeln dienen:

"EB[“],,“Z IBWM (D —0%) (05,007 —8:05),  (7.8)

?,? v
> — A
-i330% -5 G

(das Auftreten von D — C2 statt D in (7.8) ist dadurch bedingt,
dass die Summationsindices 7, s nur von 4 bis co laufen); ferner

(vgl. (6.8)):
2 (aikagr—SiT_SkQ) (ajkéorfsjraka) = 2 (6ijsgawsiasie) (7'10)

kt

Mit (7.6, 8, 10) ergibt sich:

D
A'ig,j‘a == % ( - 1) (6%? 6@0 - Sio’ Sjg) . ‘ (7_11)

r

0.(z) (7.9

02
. Hiermit lauten die Gleichungen (7.7):

D , D ,
(02_,"1)1)’0:9%%(02_1)28168791)]0 piQ'

Durch Multiplikation mit S;, S;, und Summation iber <, g' folgt:

D D
G+ 1) S0 S et (G 1) o= S80S
e T

Aus diesen beiden Gleichungssystemen lassen sich die Doppel--
summen auf den linken Seiten leicht eliminieren, und man findet
schliesslich :

cz\ |, C2 ,
Pig:%(l +7)“> Pig + %(1 —F)Zsia Sa‘e Pjo - (7.12)
jo

Hiermit kann man nun in (7.8) eingehen, womit, in Verbindung
mit (7.4), die durchzufithrende Translation bestimmt ist. Fir das
Folgende 1st namentlich der Minimalwert von K wichtig. Beachtet
man, dass nach (7.2, 4) und (6.19)

2 2 Ark,slp;kap;la E Z { (p;g"—pw) pq,g—l_p;g} »
ie

rs kic

so folgt fir den Minimalwert:
= L3\ pi, i, T+ cOBSE., (7.18)
te
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K:;}( +->Zp + ( ~-—)2fpw Sje Pjo + const .

ijes (7.14)
Far K (6.22) erhalt man, mit Hilfe von (3.11):

(o]
K K, +1 5 Z” 'rk siPrko Pslﬁ‘% 3 A(wg) slp(ik' pslg]
T8 klo s ikle (715)
- 2 4 (ik), (Jl)p(@k)gp(yl)e Ty 2 kE BM sz’Zrqu31g+ K I
TS o

WO

[ o]

2
= % > (2 zo slo pslcr) : (716)

10 s

~ Zu den vorstehenden Rechnungen ist zu bemerken, dass sie so
ausgefiihrt sind, als seien die 4;,,;, mit den p;, vertauschbar.
In Wirklichkeit sind in den Formeln noch gewisse Symmetrisie-
rungen vorzunehmen, was aber in konsequenter Weise erst ge-
schehen kann, nachdem die p-Raum-Translation (7.1) zu einer
kanonischen Transformation ergénzt worden ist. Die Verschie-
bungen p,;, hingen némlich (vgl. (7.3, 4 und 12) mit (6.13, 14
und 20)) von den Variablen (6.6, 8) ab, was zu #hnlichen Trans-
formationsformeln wie (6.18, 19) fihrt, nur dass die Rollen von
g- und p-Raum vertauscht sind. Die Durchfithrung dieser kano-
nischen Transformation interessiert aber erst, wenn man zur
niachst hoheren Néherung im Sinne der Entwicklung nach fal-
lenden Potenzen von g ibergeht; die aus der Transformation resul-
tierenden K-Terme — sie beschreiben wie K (7.16) Wechselwir-
kungen zwischen freien Mesonen und den Proton-Isobaren —
enthalten mindestens den Faktor g1, wihrend der ,,Streuterm®
K von g frei ist, und sie konnen in erster Néherung vernachlassigt
werden, sofern die ,,Bedingung fiir starke Kopplung* (5.13) erfiillt
1st.  Wir wollen hier iiber diese Nidherung nicht hinausgehen. Dies

bedeutet, dass wir in K (7.15) einfach
& = (7.17)

irko qu@

setzen konnen, wobel geméss friiheren Bemerkungen (vgl. 5.12),

(6.5))
q[.’ik]Q = 2 ‘EQU S(jk>as (718)

wihrend K, und K¢ durch (7.14 und 16) definiert bleiben.
Wir haben schliesslich noch fir die p;, in K, ihre Werte
(6.20) zu substituieren, wobei die kleinen &-abhingigen Terme in
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unserer Niaherung vernachlassigbar sind. Mit IHilfe der Formeln
(6.3, 13 und 14) ergibt sich dann:

_ 1
Zp@g = % ng”‘"pw) ore (2 P2 z ﬂee % Z Egd’_

o0

Z Pio Sic Sie Pie = 2 Big Sio SiePio + Pie Sz‘c S Dic)

ijoo ijec

1
= 2]*2(—;1324‘%)—]' 2”39+ %Zﬂgo

e e

Dies in (7.14) eingesetzt, ergibt (mit I'= g n C, vgl. (6.1)):
1

KOZ‘WB'Z‘Z‘P% 12ﬁ99+49<2'0-ﬂ96+60n8t (7.19)
Hier 1st der erste Term der wichtigste, da er die Isobaren-Energie
iefern wird. Bei der Berechnung seines Koeffizienten miissen wir
die Fille a p <€ und > 1 unterscheiden. Fiir den Fall a u <1
erkennt man leicht, dass in der Definitionsformel (7.9) fir D der
Operator (u? — A) durch (— 4) ersetzt werden kann; definieren
wir nun den Protonradius @ quantitativ durch die Formel?)

1—47:de5($)—6 dede,a(m g ), (7.20
so kommt:

02 D 1 1 3na

" 12ma’ 4¢29*D ~ ¢°

Fiir den weniger interessanten Fall a x> 1 geniige die Angabe
der Grossenordnung:

1 1 as ut

2 i A .
72D aigi’ LgigiD Pz fir a u>1. (7.22)

fir a p €1 . (7.21)

§ 8. S-Transformation.

Fir die Aufstellung der einkomponentigen Schrodingerglei-
chung (2.7) haben wir nun noch den Operator K mit der unitdren
Matrix S zu transformieren und speziell das Diagonalelement
(S* K 8S)yp zu bilden.

Obwohl wir im § 4 eine exakte Konstruktion der Matrix S fiir
beliebige Werte der g;, angegeben haben (vgl. (4.11)), ist es fiir
den gegenwirtigen Zweck bequemer, mit einer Naherungsdarstel-
lung zu arbeiten, die dem Umstande Rechnung trigt, dass die

1) Vgl. OpPENHEIMER und SCHWINGER, l. ¢. (Fussnote S. 552).
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Variablen &,, in (6.7) nur kleine Schwingungen ausfiihren. Be-
trachten wir also zunéchst den ,,Wert nullter Naherung‘* von H’
(4.1), den wir erhalten, wenn wir &,,=0, ¢;, = I' S;, setzen:

£’ =,,'rza;re Sio (8.1)

und bestimmen wir die Matrix S die H' auf Diagonalform trans-
formiert: Die Matrix

X= cosg?5 10 sihg5 cos@mfia s1 i
o 9 3T 9 2 2 B 7

ryro .
005 —- + 1 04 8ln 7) (8.2)
1st so gewihlt, dass
D0: 8, (OPY¥) = X o, X*; (8.8)

daher wird nach (4.10)

H =yl XY o0,7, X*=—y ' XZ(r5+ 05+ 05375 Z* X*.
Mit ) .
S =XZ (8.4)
wird also S* H' S, wie verlangt, diagonal. Kehren wir jetzt zum
vollstindigen Ausdruck (4.1) fir H', mit (6.7), zurick, so wird
-wegen (8.3):

S*H S = —y I' (vg + 05 + 05 75) +y D& (L*0i7,Z) . (8.5)
ie

Die Matrix S kann mit der iiblichen Stérungsmethode durch Ent-

wicklung nach den &;, bestimmt werden. Schreiben wir § = S- 8,
so sind die Matrixelemente?) S;,, und S,, (m = 0) hochstens
von der Grossenordnung &;, /I, also bei starker Kopplung (vgl.
§5) <1

Wir bilden jetzt S* K S = K 4 S*[K, S]. Die einzigen
Terme in K (7.15), die mit S nicht kommutieren, sind in K, (7.19)
enthalten :

§* [K, 8] ——

:W S* [ng, S1+87* [(%gngﬁi;’né),&]. (8.6)
Hier ist der zweite Term, der nur von den &,, und 7, , abhéingt, in
unserer Néherung zu vernachlassigen; in der Tat 1st sein Bei-

trag zum Diagonalelement (S* K 8),, in der Schriodingergleichung

1) Der Index 0 bezieht sich (geméss der Bezeichnung in § 2) auf den tiefsten
Eigenwert von H’ (73 = g3 = 1). ~
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(2.7) von der Ordnung der bereits friiher (§ 7) vernachlissigten
Wechselwirkungsterme. Es bleibt also (vgl. (8.4)):

S* (K, 8] = 4 5o % 2 X* @sz] 79,
Nun folgt aber aus (6.10) und (8.2):
X* P, X=P,+2
| - (8.7)
X% P X = %(Pﬂ+a—2’1)2=2nf’ﬁ+;%13n+%,
S* [KSJ _ 49217721) {;(S’*Z” 0, Z8) P,+2!. (8.8)

Berechnet man die Matrizen Z* o, Z nach (4.9), so zeigt sich, dass
ihre Diagonalelemente verschwinden; infolgedessen sind die Dia-
gonalelemente (8'* Z* ¢, Z §'),, vernachlissigbar klein. In unserer
Néherung ist daher (S* [K, S7)y, eine Konstante, die in die addi-
tive Konstante in K, (7.19) einbezogen werden kann. Somit wird
(S* K 8)yp = K, und die Schrodingergleichung (2.7) lautet:
(—E+ K)F,=0. (8.9)
Im § 2 wurde hervorgehoben, dass die Giiltigkeit der einkom-
ponentigen Gleichung (2.7), d.h. (8.9), auf der Voraussetzung
beruht, dass die Ausserdiagonalelemente (S* K S),, klein gegen
die y y, sind, d.h. hier: klein gegen 2 C (vgl. (4.12) und (5.8)).
Diese Ausserdiagonalelemente sind aber vollstdndig in den Aus-
driicken (8.8) bzw. (8.6) enthalten, und man erkennt leicht, dass
die Forderung ihrer Kleinheit gegen y2 C wieder auf die ,,Bedin-
gung fiir starke Kopplung* (5.18) hinauslduft.

§ 9. Die ProtonQIsobaren.

Fir die Diskussion der Gleichung (8.9) empfiehlt sich eine
Entwicklung nach den Eigenfunktionen des in K, stehenden
Energieterms o
HI — L P2 — ! 1 sin @

“ i D2 T TD (sme Pe O Pe
, 4 o
+p¢+2008'@2p¢p@'+p@'}, (91)
- - sin? @
der mit der Hamiltonfunktion eines Kugelkreisels tibereinstimmt.

In der Gleichung (— EX + HT) f = 0 sind @ und ¥ zyklische Va-
riyble, also o

_fzei(mdi—l—n!lf)u(@) . | . (92)
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Dabei sind m und n halbzahlig; denn die urspriingliche Schrodinger-
funktion F = SF’ (vgl. (2.8, 4)), die in @ und ¥ periodisch mit
der Periode 2 7 sein muss, enthélt nach (8.4 und 2) in ihren Kom-
ponenten die Faktoren

gLil2®. gL il2W .  _ gimEPO. i (DY
Mit pg =m, py =n sind die Eigenwerte und Eigenfunktionen des
Kugelkreisels (9.1) in bekannter Weise zu berechnen!). Die Eigen-
werte sind :

E!

= pep 1G4, o jZIml, iz nl,]

(9.8)
m, n und 9 halbzahlig. I

(Beziiglich des Koeffizienten (4 ¢% % D)-* vgl. (7.21, 22).) Damit
sind die stationdren Zustinde bestimmt, die durch Bindung von
Mesonen an das Nucleon entstehen konnen?). Die Kigenfunktio-
nen %;,, (©) werden wir erst spiater — bei der Berechnung der
Kernkréfte — benotigen.

Die Bedeutung der Quantenzahlen j, m, n ergibt sich durch
die Betrachtung der Gesamtladung und des Gesamtdrehimpulses?3):

@:%(1+'53)7"de?];_1(%1731¢2_%2%1),
0y, 0y,

M, = b 0ap— [ A X S| S, (0 Ghe —a, Fhe) 1 09

<ig> 2 Y 291 ._kn ko O:Ej 10% .

+ (nig y)jgwﬂjgwig)}
Diese Grossen spalten sich, nach Einfihrung der in unserer Nahe-
rung zuletzt verwendeten Variablen, in Beitriige des (zusammen-
gesetzten) Nucleons und der ,,freien’” Mesonen. Wir geben nur
die Nucleon-Beitrége an, und zwar sogleich mit der Matrix S trans-
formiert, d. h. als auf die Schriédingerfunktion F* anzuwendende
Operatoren. Fiir die Nucleon-Ladung erhilt man:

el — S {% (1+1:3)+P3} S — %+P3+§Z* (T3+05) Z

(vgl. (8.4, 7)), oder, da F” praktisch einkomponentig ist und da die
Diagonalelemente von Z* v, Z und Z* ¢4 Z verschwinden:

P | — 1
e =1 +Pp=5+"n. (9.5)
1) Vgl. etwa A. SOMMERFELD, Atombau und Spektrallinien, 2. Band, S. 161 ff.
%) Vgl. IV, wo die Isobaren-Energie gleichzeitig auch fiir die symmetrische
Pseudoskalartheorie und die Mgller-Rosenfeld-Mischung angegeben ist.
3) Vgl. QdW, § 12; insbesondere (12.44, 56, 57, 58).
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Der Drehimpuls des Nucleons wird (vgl. (8.3, 7) und (6.12)):
= é* {lav_ESznPn}é :—'Zszn Pn;
M~ py —m, 2 (o thy(aH) 9.6)

Es sind also 7, m die Spmquantenzahlen, n + % die Ladungszahl
des Nucleons. Hieraus folgt insbesondere, dass die 4 Grund-
zustinde des Nucleons § = %, m = 4+ %, n = 4+ % (vgl. (9.8)) den
empirisch bekannten Proton-Neutron-Zustdnden zugeordnet wer-
den konnen.

§ 10. Die Streuung der Mesonen am Nucleon.

Zieht man die Isobaren-Energie H! von K (7.15 bis 19) ab,
so entspricht der Rest (K — HY) der Hamiltonfunktion der ,,freien**
Mesonen, einschliesslich ihrer Wechselwirkung mit dem Nucleon.
Diese Wechselwirkung dussert sich formelmaéssig in zwelerlel Art:

erstens 1m Auftreten des ,,Streuterms’ K, zweitens darin, dass
anstelle der in H® (3.8, 11) auftretenden Variablen gjz,, Pn,
jetzt in (K — HY) die Variablen &,,, 7,, mit etwas anderen Koeffi-
zienten erscheinen. Schon hierdurch Wurde, auch wenn der K-
Term nicht vorhanden wire, eine Mesonstreuung bewirkt, doch
1st diese sehr schwach verglichen mit der durch Ky bedingten
Streuung, vorausgesetzt, dass die Meson-Energie w, = 1/ u*+k?
< a1 istl). Wir vernachlissigen diese schwache Streuung, indem
wir K — H' durch HY(p",q") + Kg ersetzen. Ferner sei die
kinetische Energie des Mesons w,— p so gross angenommen, dass
die Energieunterschiede der beim Streuprozess mitspielenden Iso-
baren-Zustéande dagegen vernachlissigt werden konnen (HI->-const.).
In dieser Approximation wird die Hamiltonfunktion:

K = H°(p", ¢'") + K4 + const. (10.1)

Zum Ubergang in den Impulsra,um setzen wir:
Ui = — [AR V(0 o Py (), pir, = [AK V2 () 0, Quy (),
Volk) = @)% (X T, (2) 642, 04010 () = 0, 3} bt Vi (),
Ke=13 deZa@Q,w(wh(k) "
Man sieht leicht, dass Z ki 04,15 (k) = 01ist, und dies bedeutet,

1) Der Sachverhalt ist also &hnlich wie in der Skalartheorie; fiir diese wurde
der entsprechende Beweis in I, Anhang 1, ausgefiihrt.
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dass die longitudinal polarisierten Mesonen keine Streuung er-
fahren. Dann wird, bei Beschrinkung auf transversale Mesonen:

S Pry=SHQi =0, K =} [4K S| Py [*+0f]| Qu, [} +Ks.
: eQ

K 15t hiernach gleich der Hamiltonfunktion eines Oszillatoren-
systems, dessen Kigenschwingungen durch das Gleichungssystem

(— 0+ o) Qg (k) + ) o, 14 (k) de'fow vo (K') Quor (K') =
ie (10. 2‘
bestimmt sind. Die Losungen ergeben sich aus dem Ansatz?):

= o> cx’-k

Qull) = 0 (o —Fo) b0, 800, — D110 % “’(kl (0= u+13), (10.3)
wo l, die Spinpolarisation und ¢, die ,,Ladungspolansatmn der
emfallenden ebenen Mesonwelle charakterisiert; erstere ist natiir-

lich transversal zu wihlen: wenn l?u parallel der x,-Achse, [, = 2
oder 3. Durch Einsetzen von (10.3) in (10.2)2) erhédlt man fiir die
Koetfizienten p;, wieder die Gleichungen (7.7) mit (7.6) bzw. (7.11),
nur 1st auf der rechten Seite von (7.7) p;, durch o, ,, (k)
ersetzt; mit dieser Anderung kann die Losung (7.12) iibernommen
Werden Schliesslich erhdlt man fir die Eigenschwingungen im
Ortsraum (asymptotisch fiir grosse |z|):

[ B Quo ) %2 = 68ex 0,800, — 0 52 i

' .{E 2 ¥0 e

fro oo = 2V 2 Ot 8 81,17 Soqn{ Ocivsciirs Poa,— Scivsan Sciirsaf s (10.4)
T

P> <ji'> > -
$ = —— ’ 60 _k_o_ 3 ﬁz & '_”_ko .
lz| = " [kl PR+ kg

Hier ist der Protonradius a wieder durch (7.20 oder 21) definiert
(die oblge Annahme aw << 1 bedingt ap <1).

1) Dieser Ansatz ist dem]emgen nachgebildet, den J. W. WEINBERG (Phys.
Rev. 59, S.776, 1941) in der ,,Paartheorie’ zur Berechnung der Streuung ver-
wendet hat.

) In dem Integral
w la k) %*@' lcr(k)

fd — = 41

ist bei der Integration nach |k| der Pol |k|= |k,| in der negativ-imagindren
Halbebene zu umgehen (ebenso wie bei der Fouriertransformation in den Orts-
raum, die eine auslaufende Streuwelle liefern soll; s. (10.4)). Der im obigen Inte-
gral A auftretende Nenner k%— k% kann aber, bei Vernachliassigung von Termen,
die relativ klein sind wie aw gegen 1, durch k%+ u? = w,? ersetzt werden; dann
wird A gleich der in (7.6 oder 11) definierten Grosse Aip, i’ o'
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Die Amplitude der Streuwelle in (10.4) hingt von den Win-
keln @ @ ¥ ab; sie ist also als ein auf die Nucleon-Eigenfunktionen
(9.2) wirkender Operator aufzufassen; die zugehorige Matrix be-
schreibt die mit dem Streuprozess verbundenen Nucleon-Uber-
ginge. Was den Wirkungsquerschnitt fiir die Streuung in den
Raumwinkel d 2 anlangt, wollen wir ihn hier nur angeben in der
Summe tiiber alle Endpolarisationen I, ¢ und im Mittel iber alle
Anfangspolarisationen [, 0, (wobel die nicht gestreuten longi-
tudinalen Mesonen mitgezéhlt sind):

22 @y, 8 fl, = @B 3 (5t (0007} (10.5)

Schliesslich ist zu bemerken, dass die der Schwingungsenergie
K — H! entsprechende ,,Nullpunktsenergie®, da sie von derjenigen
des kriftefreien Mesonfeldes abweicht, einen Beitrag zur Selbst-
energie des Nucleons liefert, der jedoch spin- und ladungsunab-
hanglg und daher ohne Interesse ist.

C. Allgemeiner Kopplungsansatz.

§ 11. Die Extremallagen.

Wir kehren zum allgemeinen Fall f + 0, g + 0 zuriick und
bestimmen zundchst wieder die Eigenwerte von H’ (3.13). Fir
den Term ~ g konnen die Formeln (4.2 bis 8) unveréndert tiber-
nommen werden; die Hinzufigung des Terms ~f in (4.8) er-
gibt dann: '

H =y-YY'- {2 T4 On Tn+ Zu,n rn} S(YY)*,  (11.1)
~—2pw T (11.2)

9 e

(vgl. (4.4, 7). Das Eigenwertproblem dieser 4-reihigen Matrlx
hat folgende charakteristische Gleichung: '

- +ratug Uyt Uy 0 g < \
ry—7s 0 U1 Uy —AFTg—Ug

Die 4 Wurzeln 4,, dieser biquadratischen Gleichung sind in der

1) In IV (letzte Formel) wurde dieser Streuquerschnitt um einen Faktor 3
zu gross angegeben. — Wenn, statt iiber die Anfangsladungen des Mesons, iiber
die Anfangszustinde des Nucleons gemittelt wird, ist das Ergebnis das gleiche.
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Form (2.2) darstellbar, wo y2, y2, y2 sich als Wurzeln der kubi-
schen Gleichung (,,Resolvente®)

—Z2Z(rz+u2 + 24> 2+ ZT' u2} r2r2r2 =0 (11.4)

n<m

berechnen lassen; d. h. die ¥, kénnen durch die Gleichungen
Z Yi = Z (5, + %)
Eyny?n: it Lo +2¢2 uZ (11.5)

n<m nim
Y1Ys Ys =T1 7373 (Yo = 0)

bestimmt werden. Berechnet man nimlich mit Hilfe wvon (2.2)

und (11.5) die Grijssen—z},, Zl Ai, — zlllkund_[lﬂ“ S0
i<k
ergeben sich gerade die Koefflzlenten der Glelchung (11. 3) Wir

denken uns die y, vermoge (11.5) als Funktionen der r, und u,
berechnet ; eine allgemeine explizite Darstellung dieser Funktionen
wird sich ertibrigen.

Zur Bestimmung des Minimums von K (2.6) gehen wir wieder
von dem Variationsproblem (5.8) aus, wo aber in K jetzt > 4, an-
stelle von >\ r, auftritt. Wahrend die Gleichungen (5.4), und damit
auch (5.6 und 7), unverindert gelten, hat man anstelle von (5.5):

0 >\ Yn
" g —0-
Y oy — 2 %iks o Scikym Som = 03
m <ik> ¢

oder mit (5.7) und (6.1):

g _n_ 11.6
o 7= 0 - ( )

Andererseits ist K jetzt nicht mehr rein quadratisch von den p,,,
abhéngig, und wir haben deshalb 0 K [0 p,;, =0 zu setzen, d. h.
nach (2.6), (3.8) und (11.2):

02%

DD A1 Prre — ¥ 812 S fem =0, (11D
7 k

Mit (3.15) ergibt dies:

Prio= 7V ‘fg‘ (Z Zu,wc)

0>\,
i S

0 Uy,

(11.8)
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Bildet man hiermit u,, nach (11.2), so folgt:

OZyn

Ou,m

r —y(g) EA” Lk‘3(”‘gf) r. (11.10)

Die letzte Gleichung ergibt sich aus (8.16), mit (8.5), (3.19) und
(6.1), durch Verwendung der Identitit A + A2 (u2— A)~1 =
w2 A (u*— A)~1, Als Wert von K in der so bestimmten Extremal-
lage findet man, mit Hilfe von (5.4, 7), (11.2, 7, 9):

_ 22(r+pw2ym). (11.11)

Die Gleichungen (11.6 und 9), die uns zur Bestimmung der mog-
lichen Extremallagen dienen werden, kann man noch umformen,
indem man die auf ihren rechten Seiten stehenden Ableitungen
der y, nach den r,, bzw. u,, mit Hilfe von (11.5) ausrechnet:

u, — I (11.9)

)

2 2 17T
- FZynynJrEr — 2+ uk + Tz‘.Eynlzo,(lng)

n<n’ m )

(Ys + Ys) (Ys + Y1) (Y1 + Y2)

>

umll——F’ n<n’ ynyn’+7'12n
(Y2 + ys) (Ys + y1) (1 + ¥a)

Hier sind natiirlich die y, gemiss (11.5) als Funktionen der 7,
und u%,, zu betrachten.

Die Gleichungen (11.6, 9 bzw. 12, 18) haben mehrere Lo-

9 . . -~ - .
sungen, deren K-Werte wir vergleichen miissen, um das eigentliche
Minimum zu finden.

Fall I: Alle u,, =0. Wie in §§ 4 und 5 ist dann |
Yp=1, =1, Kl=—}9p-8T. (11.14)

—0. (11.18)

Fall IT: wu; =uy — 0, ug+0. Nach (11.4 oder 5) ist dann
Y2 = (Vi + )%+ u? £ —r)? +uf),  Ys=71s;
nach (11.18), m =3: y/(r, + ry)? +ui = I";

nach (11.12), m = 3: ry = I";

(11.12) mit m =1, 2 gibt zwei linear-homogene Gleichungen fiir
37
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r; und 7y, deren Determinante nur fiir I”= 2 I" verschwindet. Es
1st also

ry=1y=0,r5=1I, ug=1I" (wenn "+ 21). (11.15)

Nach (11.11) ist KT = — 1y - (I'+ I") ;
KT < KU, je nachdem I" < 2 I'. (11.16)
Fall 1T1: wu, + 0, uy+ 0, u3 = 0. Dann ist nach (11.13) mit
m=1,2: r, =r, =r. Unter der Voraussetzung r + O folgt

weiter aus (11.12) mit m =1, 2: u; = +uy,=u. (11.4 oder 5)
ergibt dann

91,2:%(]/(T+7"3)2+Quzi]/(T—"’"a)z”*‘Q%z); Ys =1,
(11.13) mit m =1,2: /(r + ry)? +2u? = I";
I'(I”j—I’) I

11.12),m =1,2,8: r—=—> o 20 o T
ALA2,m =128 r=g _gp’ "= apr_3r

Damit % reell wird, muss r + 73 = I sein, d.h. I" =2 I'; an-
dernfalls existiert das Extremum IIT (mit r+ 0) nicht. Nach

(11.11): r r))

gy, (e D)
i ( o —81

Im Sonderfall r =0 wird y; — yo = 0, ys =13 + 4§ + u;
damit gibt (11.6, 9): yy, = I" und (falls I+ I') 7 =0, d.h.
alle 7, = 0. Dies ist der spiter zu behandelnde Fall V.

Fall IV : Alle un += 0. Dannist nach (11.13):7, =1, =15 =7,
und nach (11.12), sofern r =+ 0: u? = uZ = u3 = u2 (r= 0 fihrt
wieder auf Fall V.) Fir r+ 0 wird

Yo =3 (Y42 +8u L Y8 u?), yz=r;

B bl &
nach (11.18): y/4r2+3 u? = I, nach (11.12):r = S AT
Das Extremum IV existiert nur, wenn 2 r = I, d. h. wieder:
I" 22T, Nach (11.11): KV = — 3y I" (1 + 3p57)

Falls die Extrema III, IV tiberhaupt existieren (I =2 I),
gilt: KWV > Kl > KL
Die Falle III, IV kommen daher fiir das Minimum nicht in Be-
tracht, ausser in dem Sonderfall I = 2 I', wo die Extremalwerte

K fir I bis IV alle zusammenfallen.
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Fall V: Alle r,, = 0. Man hat dann y;, =y, = 0, y3 = /2 w2,

— I" (nach (11.9)); KV — —3%y-I" > KII, auch dieser Fall
scheidet also aus. '

Nach (11.16) (vgl. auch (11.10)) lautet das Ergebnis: Das
stabile Glewchgewicht des Systems entspricht

' 2
Fall 1, wenn h ~i(ﬂf—) . g,

2 2\ ¢
' 2
Fall 1I, wenn _B3(#fVS
2r 2 q

Wir nehmen im Folgenden I" /2 I' so weit verschieden von 1
an, dass das tiefste Minimum gentigend tief unterhalb des néchst
hoheren Extremums liegt, dass die Schwingungen um die Gleich-
gewichtslage als harmonisch gelten konnen. Ist ap <1, so
trifft dies jedenfalls fiir alle wichtigen Anwendungen zu, wenn

Iw
2 I

N B4

or

2
o (%) (Fall I) oder -— — 1 > % (Fall TI).
Zur Behandlung der kleinen Schwingungen miissen wir die
Wurzel 4, = — D) y, der Gleichung (11.8) nicht nur im Minimum,

sondern auch in dessen Umgebung kennen. Dazu geniigt eine
Storungsrechnung, und zwar eine ,,zweite Naherung®, da ja die
Anharmonizititen vernachlissigt werden sollen. Zur Durchfiih-
rung der Rechnung setzt man zweckmissig (vgl. (4.9, 10)):

DTy O rn+2un T
n n

—Z(Tlr3+1ﬂ203+r30313)2*—{—{2un By }im Fall T,

(rg 05 T3 + Uz T3) + { DV (Pn On To + Uy Tn) } im Fall TI,
wo jeweils der zweite, in geschweifter Klammer geschriebene Term
als kleine ,,Stérungsmatrix‘‘ zu betrachten ist. Bei Beriicksichti-
gung von (11.14, 15) ergibt die Stérungsrechnung:

1
“V{%%Jr”;“?n}
fir I"<< 2 I' (Fall I,
Phy=—9 D Y= . 2) (11.17)
o TP (ry +72) +u1+u2_
7 3 3 2 Iw F—[— Iw :
fir I"> 2 I' (Fall II).
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Im Falle " < 2 I' ist der Energieterm
1

_%1%%_4_5( ) Z(Epm) (11.18)

der ewnzige Zusatz, der zu den fiir f = 0 berechneten K-Termen
(§8 5 bis 10) hlnzukommt (nach (6 19) und (7.8) ist py,= Pis,)s
und zwar beschreibt dieser Term eine Kopplung der longitudinalen
Mesonen an das Nucleon. * Er ldsst die FEigenfrequenzen

wp = Y+ k* der kleinen Schwingungen unveréndert, ausser
der tiefsten Frequenz w,, die, wenn man I” /2 I" von 0 gegen 1
anwachsen ldsst, bel einem bestimmten Werte von I” /2 I' sich
vom kontinuilerlichen Spektrum ablost!) und von u gegen 0 ab-
nimmt; far I /2 I' > 1 wird o? negativ, d. h. das Gleichgewicht I
wird instabil. Im hauptsidchlich interessierenden Falle a u €1
tritt aber die Ablosung der Frequenz o, vom kontinuierlichen
Spektrum erst ein, wenn I" /21 dem Werte 1 sehr nahe ge-
kommen 1st:

1— i <e,woe~(ap?Ll. (11.19)

2r

Ferner bewirkt der Zusatzterm (11.18) — &hnlich wie Kgin § 10 —
eine Ab#nderung der Normalschwingungen, die dem Auftreten
von Streuwellen im Ortsraum entspricht, und zwar handelt es sich
hier um eine Streuung der longitudinalen Mesonen. Diese Streuung
1st aber sehr schwach im Vergleich zu der in § 10 berechneten
K -Streuung der transversalen Mesonen (der Streuquerschnitt ist
mindestens um einen Faktor ~ (¢ w)* kleiner, wenn wie in § 10
a w <€ 1 vorausgesetzt wird), ausser in dem Sonderfall (11.19),
wo die Streuung der longitudinalen mit derjenigen der trans-

versalen Mesonen vergleichbar werden kann, n#émlich wenn
(@ w)2x1—-I"/21T.

Im iibrigen bleiben, wie leicht zu sehen ist, alle Formeln der
§§ 5 bis 10 unverdndert giltig. Wir kommen also zu dem merk-
wiirdigen Ergebnis, dass der zu | proportionale Term im H'-Ansatz
(1.4) ber starker Kopplung (vgl. (5.13)) praktisch wirkungslos bleibt,
solange (uf/g)% < 2/3, und dies gilt, wie sich zeigen wird, auch
fiir die Kernkrifte. Lisst man aber |f| iber den kritischen Wert

) Die;,; Erscheinung ist aus der ,,Paartheorie’* bekannt; vgl. CRITCHFIELD,
Phys. Rev. 59, S. 48, 1941. Die Frequenz w, bestimmt sich durch die Gleichung
—A 2r r — A

— Wy

sie ist eine dreifach zahlende Eigenfrequenz (entsprechend den 3 Werten von ).
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Av/2/3 | 9| | p hinaus anwachsen, so #ndert sich die Situation grund-
legend; diesem Fall wenden wir jetzt unsere Aufmerksamkeit zu:

' 9
r _2 (’“‘_f) >1. (11.20)
27 2\ g

§ 12. Translation und Einfiihrung von Winkelkoordinaten.

Im ,Falle II* ist die Gleichgewichtslage nach (11.15) be-

stimmt durch
;1:;2:&1:'&;220, ’;:321-', ‘&321-”. (12.1)

Damit die Schwingung der Variablen ry" = r; — I' sich trotz der
Begrenzung 7; = 0 ungestort ausbilden kann, muss wieder die
Bedingung (5.13) erfiillt sein, wie eine sinngemiisse Ubertragung
der Uberlegung aus § 5 lehrt. Nach (11.20) ist dann auch u|f| > a
fir a p <1 bzw. f2>a%p fir ap > 1, und der Erwartungs-
wert von ;% = (ug — I")? ergibt sich als klein gegen 12

Nach (4.5) und (12.1) wird

Qprte = Qio = 17 8i5 5,5 -

S13, Sa3, S33 bilden die Komponenten eines Einheitsvektors e :

S13=6;=5In ¥ COS @, Sy3=€y=5In ¥ sin @, Sgg==€s=cos #; (12.2)

analog :

!

S13=0, =sIn &’ cos @', S,3=—=6," =sin ¥’ sin @', sz3=e5'=cos #'. (12.3)

Fir die tbrigen Komponenten der orthogonalen Transformation
S,n konnen wir dann schreiben:

cosy Oe,
sin @ 0w’

de, siny Oe, Oe,
09 smd 0g ‘2B ¥ogt

entsprechend fir s}, und s/,; die Relationen (4.4) sind damit
namlich erfillt wegen

0 e, 0e,

Ze@dﬁ Z@@"Zwmp 0. Z(a&) é}n?ﬂz( ) ; (12.4)

& & de, Oe, 1 Oe, Oedﬂa

T 99 00 sintd 0p 0p 0
Setzen wir noch zur Abkirzung vy = I'+7," = r, so schreibt sich
die Gleichung (4.5):

Sg1 = COS Y

(12.5)

—rel e, +E 0e; Oe, Le 1 Oe,
Tie = e 09 20&' o g
e .1 de,/ Oe, Lg 1 oe/ 1‘ Oe, . (12.6)

“sind 0¢’ 0%  *sin® 0¢ sind Og
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&y =4r;cosy’ cos p+ry sin g’ siny, &,=-r; cosy’ siny+7r, sin y’'cosy,

(12.7
Eo——r.sin v’ cos w47, cos y’ si £ — 1y’ si 15C0S W CosYy . ( ‘
3 151N Y COS Y-+7, COS W SIN Y, §,—+71SIN Y SINY7T,C08 Y Y

Anstelle der 9 Variablen g; , fithren wir nun die neuen Variablen

ﬂ& (P, &’s (pla 'r: 51’ 52: 53: 54 ’ (12' 8)

die dazu konjugierten Impulse seien

eln :

’ ’
Pss Pos Pys Pys Prs Ty, Ty, T3, Ty

Die (12.6) entsprechende p-Transformation kann man dhnlich wie
in § 6 durch Entwicklung nach den & erhalten; das Ergebnis ent-
spricht der Formel (6.15) mit

_ 1(.,/0e, 1 JOe,
P:{ o0 P07 sinze g o

0g

. oe; |, 1 oe;

Tlloa o Sinr 9oy e }

(12.9)
= g 0e; Oe, ~0e 1 Oe, f

Pie=C%Prt 59 59 ™ T 59 sno 0g 2
1 0é e, 1 0¢ 1 de,

= 7'64.

snd 0¢ 09 BT sind 0¢ snd Og

Mit der Transformation (12.6) ist jetzt wieder die Trans-

lation in den anderen ¢- und p-Richtungen, geméss (5.6, 7) und
(11.8, 9) mit (12.1), zu kombinieren:

Gke — q;kg T ygg.B[;fl],rk e;m €0 (r>3),
]
Qime = quk)e’ i = Q;i95
" f —
Pire = Dogig TV 2 Ay er €, (r>3),
‘ 97 f (12.10)
Pirye = Pim o (7':':@’ Piio = p;ig + ¥ E; Ay gi €

o
Prirle = Pig = Pip T 2 2 (Ao st Psto+ 5 gsto Tuto) »

8 lo

WO pgezﬁi9+ﬁig+"" (1’37:19233)

Diese Formeln, dazu (12.6), stellen eine kanonische Transforma-
tion dar, wenn durch Wahl der Koeffizienten 4, u dafiir gesorgt
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erd da,ss [pteﬁ 4r i G] I:p@g: Pri o‘] = 0 beachtet man (12 5)
kommt (bls auf Terme ~ & oder 73):

, C 2 B[a 0, vk (€ <9z> (B — By )
Zie,rko = i a g ((3 f >3
0 fir r <+39 L 3%- 6<”>)] " 11.r9 ’ (12.11)
' 1/ -
Piorka = "y ZAU::‘L e; (0,5—6, €,) + +-+ (fir alle 7).

Man Sleht leicht ein, dass die beiden Einheitsvektoren & und
e’ unabhiingig voneinander alle Richtungen durchlaufen miissen,
damit der System-Bildpunkt im Raum der ¢ und p alle Minimal-
lagen durchléduft. Es variieren also & und ¢ zwischen 0 und =,
@ und ¢" zwischen 0 und 2 x.

Die Einfiihrung der neuen Variablen in K gibt die (6.22)
entsprechende Formel

K =H(p', ¢)+ Ky + 2[ P2
[ , )2 (12.12)
+ lpig . d Etzl io,sla psla‘}‘ Mio sl QSIG)} ] + const .

Mit K ist der quadratische Term aus (11.17) (Fall IT) gemeint,
der sich nach (11.2, 10) und (12.7) wie folgt schreibt:

Ky=—o { o)+ ()
5 Zp'.. - le’” , 2-{ e (12.13)
2+3 Mf [e i Hg) (‘59 e Q) ]] )

§ 13. Isobaren-Energie und Streuterme.

Es folgt, ahnlich wie in § 7, eine weitere (schwéchere) Trans-
lation des g-p-Raumes, die zur Abseparation der Isobaren-Energie
fiihren soll. Zur Bestimmung dieser Translation suchen wir wieder
das Minimum von K bei konstant gehaltenen p;,, wober wir den
Term Kj in (12.12) vorlaufig beiseite lassen. Es gelten dann wieder
die Formeln (7.2, 8, 4), wo nur p;, jetzt geméss (12.10) zu inter-
pretieren ist. Dazu kommen die Gleichungen:

w
ZZBT]G 81 Q')‘ko & Z Iu'z,g 3lgng O - OdeI”

ogslc 7
-qfkﬁ;HZZBSl rkZMzg,slang (18'1)

*®
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Wird dies mit (7.8) in p;, (12.10) eingesetzt, so ergibt sich wieder
das Gleichungssystem (7.7) fiir die p;,, aber mit folgender Be-
deutung der Koeffizienten A (anstelle von (7.6 und 11)):

®
Ai@,j'o - Z Z (;tig,rkr Ark,sl)"ja,slr T My o, 7kt Brk,sl :ujer,slr)

rs kilr

— e ej (8ps — € ) + B e, 6, (0 —¢€€)), (18.2)
WO o = [1+3( )} ﬂ:—(’%ﬂl.

Die Auflésung der Gleichungen (7.7) nach den p;, ergibt:

, B ’
Pio= ig—g__‘e' 289 p]g 1+5 69260297;0

o ﬂ ! ' £
+(1+ +T+—ﬁ~~)ei %24 ¢ Pja-
Fir den Minimalwert von K gilt wieder die Formel (7.18); setzt

man dort p;, nach (13.8) ein und driickt man die p;, = p;, + Py,
gemass (12.9) aus, so erhalt man mittels der Formeln (12.4):

B A 4 N afe, & g
0o — 9 T2 (1—}—0’.+1+ﬁ) 2 pr—l_,,_—_zlﬁv ’

p2 , 1 ¥ oa s P>
A = v
Pesin? py+ Sin2d’

(18.8)

(18.4)

4= PosSIn Fpy+ —

sin ¢ sin2 9’ sin %

Schliesslich kann man noch zeigen, dass die nachtrégliche Hinzu-
figung des Terms K (12.13) in (12.12) an Lage und Wert des
Minimums nichts éndert, da namlich in der Minimallage nach (7.3)
Piio = 0 1st, und ebenso nach (13.1) gj;;, = 0, daher nach (12.6)
g, = D.

Verschiebt man jetzt den Ursprung des g-p-Raumes in die
Minimallage, so kommt analog zu (7.15, 16):

@ @
' ’” /74 1V ’” 17
K = KO+%2 EArk,slpr[cgpsle—{—Tz Z ZA(ik),slp(ik)gpsle l

rs klo s iklo

® (18.5)
+%% Aai,gp Pane Ponety Z 2 B siieiet KS+KS’J
¥ e

2
- % Z 2 Z (}“'cg sle psla He /’l’zg sle qslg)} (13.6)
s lo

teo

Die weiteren Uberlegungen in § 7 lassen sich sinngeméss iibertragen.
Der n#chste Schritt ist die Bildung von S§* K §. Wir setzen

wieder S = S+, wo § die Matrix H’ (d. h. den Wert von H' in
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der Minimallage (12.1)) diagonal macht. Setzt man die r,- und
u,-Werte aus (12,1) in (11.1) ein, so wird

S*H' S — 9y (Iogts+ I"7) mit S=Y Y, (18.7)
wo Y und Y’ den Gleichungen (4.7) fiir n = 3 geniigen miissen,
also mit (12.2, 3):

Su e, =Y, V¥ Fou="qY*
e 7

Dies leisten die Matrizen

(oos  — iz sin?) foos 2 — i, sin O )
Y ——(COS g — VT3 SN 2) (eos 5 — VTSI 2),

- ¢ .9 LA L
Y—(0052 0,0'381112)(0082 fbazsmz).
Damit ist § =Y Y’ bestimmt, und S’ = S-18 kann storungs-
massig durch Entwicklung nach den &, und rg bestimmt werden,
spielt aber wie in § 8 keine Rolle.
Wir haben nun das in die Schrodingergleichung (2.7) ein-

gehende Matrixelement (S* K S),, zu berechnen. Dabei ergibt
sich die Isobaren-Energie aus den Termen ~ 4 und 4’ in K, (18.4):

1
9|1+«
Mit (13.4 und 8) wird

(18.8)

HI (Y*4 Y)go + Y*A Y Yoot (13.9)

1
T

{% — (T4 cos #—174 sin F) pq)} — Ty (pa“l“% ctg &)

* 1
Y [A,Y]—4+Sin20

Hier liefern die Terme ~7; und 7, keinen Beitrag zum mass-
gebenden Diagonalelement, in dem iiberdies 73 = + 1 zu setzen ist:

| 1 . 2 —cos?p,+ %
ﬂm41Y%0:gEijmnﬁpﬂ+p¢ Sm2;” 1. (18.10)
Entsprechend wird
Ik A 1 i s P p;,z — ¢os ¥ p; + % {
(Y A Y )00 :mpﬁ sin & Po 4 O Y & e (13 ]1)

Abgesehen von der anderen Bezeichnung der Winkel und von der
additiven Konstanten 1/4 gleichen die Operatoren (18.10 und 11)
dem Operator )E P? in (9.1) mit py = — }. Die Eigenfunktionen
von H' sind daher wieder durch die Kugelkreisel-Eigenfunktionen
darstellbar:

f=e motmed y (§) 4 (8), (13.12)
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wo n und m halbzahlig sein miissen, damit F = SF’ die zu for-
dernde Periodizitat in ¢ und ¢’ besitzt; und die Eigenwerte von
H™ sind:
1 (E(k+1)  45(G+1)
572 1+« 118 }+const, | ]
wo k= |n|, § =[m|, m, n g, k halbzahlig.[

II .
By, = (13.18)

Hier haben die Koeffizienten von k (kK + 1) und 4§ (§ + 1) nach
(13.2) mit (6.1) und (7.21, 22) folgende Werte:

£is 1. L hid . 6na
or<ly s (ivy T g8 24 g l

. 1 a® p 1 atps (1319
rap>lior (b~ 8w 21+ " g J

Die Untersuchung der Ladungs- und Drehimpulsgrossen (9.4)
ergibt als Nucleon-Beitrige:

LoV G+ 4P Y =P, =4+ n;

1 [oe, ., Oe
oI Vs ' ’
D e L { o +smﬁ'<o P p‘”)}y

1 de,’ 0e, oy | oe,’
ey 1 14 _ 2 ! o .I t : ﬁf 1 .
Sinﬁ“'(()q)' Po 0w qu,)+ 2 (e*“g oa')’ 18.15)
MY =p =m, (13.16)
‘ 1 ; p2—oggcos ¢ p, + 1
;I g _ ' 19./ Iq @ 3 @ 4 ,
2 (M’b ) sin & Py SIN P + sin2 9 .

oder, da das massgebende Diagonalelement von %' (M™M2 mit dem-
jenigen von (Y'* A" Y — 1) (vgl. (18.11)) iibereinstimmt:

S (MR =g (+1). (18.17)
Es sind also auch hier. 4, m die Spinquantenzahlen und n + % die
Ladungszahl des Nucleons. Die Zahl k, die im ,,LLadungsspinraum
die Rolle des Gesamtspins § spielt, hat keine unmittelbare physi-
kalische Bedeutung. — Die 4 Grundzustinde, die das Nucleon
nach (13.18) besitzt (k =9 = %, n = 4+ %, m = 4 %), konnen nach
dem Gesagten den bekannten Proton-Neutron-Zustéinden zugeord-
net werden. o

Im Falle g2 < (1 f)? wird nach (18.14) der Koeffizient von
9 (7 + 1) in B gross gegen denjenigen von k (k + 1). Wiirde man,
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entgegen der Bedingung fiir starke Kopplung (5.18), g gegen null
gehen lassen, so wiirde die Anregungsenergie der Isobaren vom
Spin § > % gegen oo gehen, d. h. der Spin wiirde in dieser Grenze

auf den Wert j =4 (m = £ §) beschréinkt sein, und man konnte
statt (18.13, 14), z B fir a p <1, einfach Schrelben
27 a

(e

Dies ist aber die Isobaren-Energie nach der Theorie mit dem spe-
ziellen Kopplungsansatz, den man durch- Nullsetzen von ¢ in H’
(1.4) erhalt (mit u /f /> a). Hiernach scheint es, dass die Giil-
tigkeit der Formeln (13.13, 14) nur eine starke f-Kopplung vor-
aussetzt, wihrend g — abgesehen von der durch die Ungleichung
(11.20) festgesetzten oberen Schranke — willkiirlich wéhlbar wire.

k(k+1), wo k;|n|.

Was schliesslich die Mesonstreuung anlangt, so kann man &hn-
lich wie in § 10 — unter denselben Voraussetzungen — begriinden,
dass das Streuproblem néherungsweise auf Grund der Hamilton-
funktion (10.1) behandelt werden kann, wobel aber K ietzt durch
(13.6) gegeben ist. Insbesondere liefert auch der Term K" (12.13)
keinen wesentlichen Beitrag zur -Streuung, solange a o < 1.%)
Wir begntigen uns hier mit der Angabe des Resultats fiir die Streu-
ung longitudinaler Mesonen im Sonderfall g2 <€ (u f)%: Mit den
glelchen Bezeichnungen wie in (10.4) haben die Elgenschwmgungen
im Ortsraum folgendes Aussehen:

’ i1k |z
o (€) =84 65 8, a - 5 e—'&'l_'-i (oo —ey0,) . (13.18)
Die Streuung ist also isotrop; Meson und Nucleon kénnen Ladung
austauschen, aber keinen Spin. Der Wirkungsquerschnitt, sum-
miert tiber die Endladungen und gemittelt tiber die Anfangs-
ladungen des Mesons, hat den Wert

: 3_Q = 2 2 Bt : N (13.19)

1) Hier ist strenggenommen (wie auf S. 580) der Fa]l 172w 1 auszu-
nehmen. — Der erste Term in Kg' (12.13) (~[(&;+&,)2+ (&— 53)2]—— (r1+179)%)
beschreibt eine Kopplung der transversalen Mesonen an das Nucleon; dieser Term
ist es, der bewirkt, dass fiir I""/2 I'<1 das Gleichgewicht IT instabil wird; die dafiir
massgebende Eigenfrequenz o, (sie ist einfach zihlend) bestimmt sich durch
die Gleichung

-4 I -4
de‘Sa(m) =) —og 0a(2) = 5 | 4X 06() o | _6“(@ .
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D. Die Kernkriifte.
§ 14. Ableitung der Gleichgewichtsbedingungen.

Indem wir N ruhende Nucleonen an den Orten x, (v =0---
N — 1) annehmen, setzen wir in der Hamiltonfunktion (1.8), bei
gleichbleibendem H° (1.1): 1

B —— \_}"522 o2 [AX 8, (z—,) rot.,
ﬂfzzl.,gwfdxaa(w—m,) divw, = H,/, (14.1)
v (1] v
H =} (; 7 1:(;)) de 8o (2—12,) Og (z—1,) .
uy

Wir entwickeln  und % wieder gemiiss (8.1, 2) nach einem Ortho-
gonalfunktionensystem, iiber dessen 8 N erste Funktionen wir wie
folgt verfligen:

1 06,(x—w,) .
U3v+i(ﬂ’3):n T(w:O,l N“‘"l,’b=1,2,3). (142)
Dabei sind die Abstéinde [z, —, /| je zweier Nucleonen so gross
angenommen, dass die Formfunktionen J, verschiedener Nu-
cleonen nicht tberlappen:

0, (x—z,) 0, (x—1x,) =0 fiir p + ». (14.8)

Dann sind die 3 N Funktionen (14.2) automatisch aufeinander
orthogonal und normiert (vgl. (1.2), (3.6)). Mit (14.2) ergibt sich
tir H, (vgl. (14.1)) die (8.14) entsprechende Darstellung:
Hy= 1 {g 2 0T Gyt pm et | Z 7o) Payos, i,e} , (14.4)
e

Gk>e

wobei, im Sinne der Bezeichnung (3.9)

1
35 1 [i,k, 0 — 75 (QSv+i,k,g—Q3v+k,i,Q)'

Der Term H'' (14.1) kann wegen (14.3) ignoriert werden.

Sei S, die (von den o), v{) des »-ten Nucleons allein ab-
hiéngende) unitire Matrix, die S} H, S, diagonal macht, so wird
offenbar die 4¥-reihige Matrix H' = >\ H, durch Transformation
mit der unitdren Matrix . ®

S =118, (14.5)

1) Vgl. QdW, § 14, speziell die dortigen Formeln (14.2, 3 und 10, 11).
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auf Diagonalform gebracht. Die Eigenwerte von H' sind Summen
der nach § 11 zu berechnenden Eigenwerte der H,; speziell der haupt-
sichlich interessierende tiefste H'-Eigenwert erd = 2 27 Yy,

wo die y{) sich wie folgt berechnen: man setze gemiss (5 2) und
(11.2)

ov e = S Sa it w2 =L S5m0 (149
® te

dann ist y® als Funktion der r® und % durch die (fiir jedes »

einzeln geltenden) Gleichungen (11.5) bestimmt. Die Uber-

legungen des § 2 — entsprechend ergéinzt — fithren dann wieder

auf die einkomponentige Sehrédingergleichung (2.7) mit

K =Ho—y 5S40, (147

und bei starker Kopplung' reduziert sich das Problem wiederum
auf die Aufgabe, die kleinen Schwingungen um eine Gleichgewichts-
lage zu untersuchen. Um die Kernkrifte in einer ersten Néherung
zu bestimmen, geniigt sogar schon die Bestimmung der Gleich-
gewichtslage und des entsprechenden K-Wertes. Denn die poten-
tielle Energie der statischen Krafte ist nichts anderes als der
abstandsabhingige Teil der ,,Selbstenergie” des Nucleonensystems,
und die Selbstenergie ist in einer ersten Néherung (Beschrankung
auf die Terme héchster Ordnung in ¢ und f) durch den Minimal-
wert von (S* K S),, oder von K gegeben. Nur in dieser Naherung
sollen die Kernkréfte hier untersucht werden.

Zur Bestimmung des Minimums variieren wir zunéchst wieder
die Variablen ¢,;, und 7® unter Beriicksichtigung der ,,Neben-
bedingungen‘* (14.6) (s;¢ o s = const):

Z Z aﬁ‘;bg A (G5 y11i1, 0 E’M $<§;c)>n3gz =1,

r (k>0
S S Bt =S S @, 0 5res 01 =0,  (14.8)
r ok v (kD
02y
Y T aé?mszi?m 4 =0. (14.9)

Bei der Variation der p,;, andererseits sind die «{" gemiss (14.6)
als Funktionen der p zu betrachten (vgl. (11.7)):

< f < 0o
22 Ark,sl'prkg_y——z 63,3v+l 2

s —0. (14.10
opsie T ) 9= m O q(;;,) ° ( )
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Aus (14.6, 8, 9,'10) folgt, dass im Minimum
. 02y

zzBfk;é‘lqugqle_,yz‘z Ir(”)

g m’
rs klo v m O (”) .

® ' ' 0 2 y(i’)

2 Ark slprkgpslg yZZ

rs klo

folgheh erd ach (14 7) und (8.8) der Mlmmalwert von K:

(V) ‘ 2 ® i ;
B = % N Z ( o 4 0% o9 yg;y) (14.11)

m OT”) | 0 ul

=

(,,)

&

Analog zu (5.6, 7) 'schhessen wir aus (14.8):
Grie = 20 2 Bawrpn, e %00

v Gl
= (1) o' (1) (@) o (»)
D3 p+ 16,8, 0= 2 Tm S<zilé>m Sq'um 2 § | B3 v+17, 1, 8 ptli, k] ilve® (]4- 12)

m v <GL
Die 9 N Gleichungen (14.12) kénnen zur Berechnung der Lagrange-
Multiplikatoren «f;,, dienen, worauf diese in (14.9) einzusetzen
sind. Andererseits folgt aus (14.10), in Analogie zu (11.9):

o (1Y T 02y O
U ZV(_) 2(2A3v+l,l,3u+kk)2 23 r Sgme (14.13)
q v kil m’ 0 ’Uz(v) e

Aus den Gleichungen (14.9, 12 und 13) smd die q,;, und p,; , mit
r > 3 N eliminiert.

Im Folgenden sollen diese Glelchungen naherungswelse gelost
werden unter der Annahme, dass die Abstinde aller Nucleonen-
paare gross gegen den Nucleonradius a sind: |

|z, —x, | > a fir p+». - (14.14)

Im Limes unendlich grosser Abstinde verschwinden némlich
By, piy susiin und 2A3v+ll3,u+kk fir » + p (vgl. die

folgenden Formeln (15.7) und.(16.6)) und die Losungen von (14.9,
12, 13) entsprechen dann denjenigen des Ein-Nucleonproblems:
a) > g, T > T, UP > G, Im Falle (14.14) gentigt es daher in
erster Ndherung, in den Gleichungen (14.12 und 13) auf den rechten
Seiten in den ,,kleinen‘ Termen v + u die « und 0 % [ 0 4 durch

ihre Werte nullter Naherung zu ersetzen; d. h. mit (5.7) (auch fiir
=+ 0 giiltig!) und (11.9, 10) (vgl. auch (3.19) und (4.4)):

() ¢ (1) olm)
Z'r‘m 8f<zk>m Qm O a(%k)@
m

T 2 2 By, 17,1, 3 ut[ik] Z Ty <;(z>n Sg})@ ; (14.15)

v G
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0 y(u)

v (1 ,
au,u)+ ( )Z(2A3v+ll3ﬂ+kk)2u 28&282‘53 1416)

Setzt man die o aus (14.15) in (14.9) ein, so fo]gt (vgl._, (4.4), (6.1)):

u(.u) ™

()Zy(.u) 1 .
(0) — I . 5. p v o) )
Tm” = RGP BSv+[f,n,3u+[zk]2°’ Scityn iy m
o C S -

Z s s® . (14.47)

Diese Glelchungen (14.16, 17) treten jetzt an die Stelle der Glei-
chungen (11 9, 6) des Em-Nucleon Problems. Setzen wir in ihnen

r” — gy +Mg), u?” =g +ou, . (14.18)

so haben wir konsequenterweise alle in den 67, 6 u quadra,tlschen
und hoheren Terme zu vernachldssigen. Was die #,, %, anlangt,
werden wir wieder die beiden Fille I £ 2 I' zu unterscheiden
haben; denn die Frage, welches der in § 11 diskutierten Extrema
das elgenthche Minimum darstellt, wird — (14.14) vorausgesetzt —
schon in der' ,hullten Naherung* entschieden.

§ 15. Fall Tz — (ﬂgi) =1,

In diesem Falle ist nach § 11 | C L

' fo=I=yC, 4,=0 firalen. (15.1)

Es ist also % = 6 w, und die ih den u{” quadratischen Terme sind

zZu vernaehlasmgen Fir E ¥ kbnnen Wir dann die in (11. 17) an-
gegebene Naherungsformel heranziehen (fir jedes » emzelq)

0y 0Z Y ug
») (») - o
D e T ¥ o (152)

Hiermit und mit (15.1) gibt (14.16): u{» =0, und (14 17)
2 T;‘?* =3 F"I" Y z le E3w+[j 1], 3,u+[z k] 2 S(yl)g Sﬁf%ﬁ)@ (15 3)

m v {1k

wo gemiss (6.2) g

sﬁv

=S, BT

Fir den Minimalwert von K, d. h. die Selbstenergie des Nucleonen-
systems, erhdlt man aus (14.11) mit (15.2, 3):

3
Ko = — 222? *——VPNJFI}j VD, (15.5)

*

P — — p2 > Bsyiynsutnn Z 8o 8- 15.6
4 GEXG Ty : 15-6)
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Vn ist die statische Wechselwirkungsenergie des Nucleonen-
paares u, » in erster Naherung. Die Fortsetzung der Entwicklung
nach Potenzen von a |z, — x,| wiirde in (15.5) hohere Terme
liefern, die u. a. Mehrkorperkraften entsprechen?).

Die Koeffizienten B in (15.6) berechnen wir auf Grund der
Formeln (8.16, 17) und (14.2) unter der Annahme a x €1, die
bewirkt, dass die Formfunktion d, in diesen Formeln durch die
singuldre d-Funktion ersetzt werden darf:

1, o 0

Bsyitn,sutiin=— 2 52 16“ 0z, 01; Ons 0x; 0,
2 2 —Hur
B 6“—0— vy 0 e , (15.7)
03!:;0 05’35 Omk Oml 4y
wo r=|z,—x|, Zi=2x,;—2

v, 1 ’ M 4: v.
Hiermit wird V) (15.6):

Vs — _Z{(z S S v)) (E S oz ) ( Sy O(zc )} 46;:; . (15.8)

Die Grossen S{) (15.4), die wir uns geméss (6.4) als Funk-
tionen Kuler’scher Winkel @,, @,, ¥, dargestellt denken kénnen
— zu jedem Nucleon » gehoren 3 Euler’sche Winkel —, haben
als Operatoren zu gelten, die auf die Eigenfunktionen der Isobaren-
Energien H] (vgl. (9.1)) der verschiedenen Nucleonen anzuwenden
sind; nach diesen Eigenfunktionen sollte ja die Schrodingerfunk-
tion 'y’ immer entwickelt werden. Nach (15.6 oder 8) ist also V)
ein Operator oder eine Matrix beziiglich der Ladungs- und Spin-
Zustande der Nucleonen p und »; damit ist der Austauschcharakter
der Kriafte gekennzeichnet.

Wir berechnen speziell die Untermatrix von V@), die sich
auf die Grundzustinde beider Nucleonen u, v, d.h. auf deren nor-
male Proton- und Neutron-Zustinde bezieht. Dazu benétigen
wir die Eigenfunktionen (9.2) fir die Grundzustinde § = %,
m=-+%, n =41, die wir der bekannten Theorie des symme-
trischen Kreisels entnehmen konnen?):

v
5 (1) 2 (o-w)
f%,%=0"62 Sin—g—, f%,_%:c-ez eos%,
i o (15.9)
-2+¥) @ Leow) g
2 2
f_%’%=——c € 003—2-, f_é,_é=8 e sm?.

1) Wie in der Skalartheorie: vgl. I, § 9, insbesondere Gleichung (133).
2) Vgl. z. B. A. SOMMERFELD, l. c¢. (Fussnote 1) S. 572), Gleichung (15) auf
S. 162, Die Vorzeichen der f,,, in (15.9) sind zweckméssig gewahlt.



Zur Vektormesontheorie. 593

(¢ = (2~%)~"%). Bildet man hiermit fiir ein bestimmtes Nucleon
— der Index » werde fiir den Moment fortgelassen — die ent-
sprechende 4-reihige Matrix

2n 27

(m' ’I’L’ I S‘ig l mu n”) =/d@ Sil’l @/d @/dgff;tf,ﬂl Sigfm”n"’
0 [} 0

so kann das Ergebnis geschrieben werden: |
(m' n' | 8, | m' 0"y =—1-(m |e;|m”’)-(n|7,[0n"), (15.10)

wo die zweireihigen Matrizen o; und 7,, die sich auf die Spin-
quantenzahl m = 4% bzw. auf die Ladungsquantenzahl n = 11
allein beziehen, die Pauli’schen Matrizen in iiblicher Darstel-

lung sind:
R D U (e D1 B O RO P R RN
10 Ty 1 0 T3 ) 0 -1
Abkiirzend schreiben wir far (15.10), indem wir den Nucleon-

Index » wieder hinzufiigen:

SO = — 14070 (15.12)

0y

(31

Damit ergibt sich fiir V(*» (15.8), genauer gesagt fiir die. auf die
Grundzustédnde beider Nucleonen beziigliche Untermatrix:

Vi) — % . %2 (Z Téﬂ) ‘rg’)) (2 U,g#) 0£V)) A
e 7
0 0 \] e*
- (w) (¥ ; 15.13
(Zi]a" 6%)(209 0@-)]4%7‘ ( )

j

Dies ist 1/, des Wertes, den man bei Annahme schwacher Kopp-
lung mit der Stérungsmethode erhilt, wenn der Kopplungsansatz
(1.4) mit f = 0 gewahlt wird.) — Wenn die Anregungsenergie der
Zustinde = 8/2 als gross gelten kann gegeniiber den bei einem
Nucleonen-Wechselwirkungsproblem ins Spiel kommenden Ener-
gien, so wird man ¥ niherungsweise durch die Untermatrix (15.18)
darstellen konnen, unter Vernachlassigung der tbrigen Matrix-
elemente (z.B. j =4->2). In diesem Grenzfall sind also die
Krafte bei starker Kopplung die gleichen wie bei schwacher Kopp-
lung, abgesehen vom Zahlfaktor und abgesehen vom Fehlen des
in der Storungsrechnung auftretenden Termes ~ f2

1) Zu beachten ist, dass der eine Kopplungsparameter in (1.4) mit g/ 4/2
bezeichnet wurde, fiir den man sonst etwa g schreibt. Vgl. auch IV, S. 224, wo

lgv |2 = g/2.
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2

In diesem Falle sind die r,, %, in (14.18) durch (12.1) be-
stimmt. Bei Vernachlidssigung quadratischer Terme n den or
und 6% gibt (11.17):

» 2
. § 16. Fall II: — (-%’i) > 1.

2 2
S =, OXU 0Ty |
0 r» 0 %) '
; b el , (16.1)
n ot =" =1 % —2 __ fiir m'=1,2.
07 07y I 0 ugp - T + r

Hiermit und mit (12.1) ergeben die Gleichungen (14.16, 17)
fir m = 3: '

1) =T +y 2 ¢ k) ' §3v+[,, 1,3 p+i, k] e<§l}> ;,f% e(;) eg‘) )
¥ i - e
£\2 _ | " (16.2)
ul®) — _r+y(g 3 kZAH”SMM e e,
wo gemadss (12.2, 3) ' ;
o ¢l — g, 8,0 = 5.0 (16.3)

Bei konsequenter Vernachléssigung der in 7¢?, v0), 40, w( quadra-
tischen Terme gibt (14.11) mit (12 1) und (16 1 2) |

g e e 2 T(H)+u(u) N 5 (I'+I") N+ 1>V plen, (16.4)
Vi _ V{uv) + Vi, ' |
Vien — y i e(") e(u)

g sz)qu 3v+[4,1,3 ut[i, k] <:pl> <Hc> 2 (165)
T AN : .
VD = — 2 (?J“ (;. Asgyi1,5uts, k) e e

2 e

Aus (3.16) und (14.2) folgt:

2

ta u? | uto\
% A3v+l,l,'3,u+k,k : _?7_2_de 6{; (LE—'CL',,) (1 '— 1“2“_"‘4) 6@ (33 - x,u) *

Hier kann der einer ,,Nahewirkung® entsprechende T.erm

~ [dX §, (x—=z,) O, (r—x,) mit Riicksicht auf die Annahmen

(14.83 und 14) weggelassen werden?); es bleibt: ,
F Iar r=| ,—ua; | >0). (1{3.6)

2 A, vl L Sputk B
%l Ui

1) Im iibrigen wiirde sich dieser Term in V, gegen den Beitrag von H"
(vgl. (14.1)) bzw. von (S*H"'S),, gerade wegheben, analog wie in der Stérungs-
rechnung (vgl. QdW, S. 94). :

Iu’4 8‘*,’1’?‘
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Hiermit und mit (15.7) ergibt (16.5):
-
Tk — 9 “ o) o) [ PACIPLONNY|
‘g_ 2(%9 e)l(Zz q,) |
e Hrr o
"
S genag)li o
V;(f” ) _ (Mz f)? (2 eg”) e(;)) ;
e

Die Einheitsvektoren ¢, &' denken wir uns wieder gemiss
(12.2, 3) durch Polarwinkel &,, ¢, bzw. &, ¢, dargestellt, und
wir fassen sie als Operatoren auf, die auf die Eigenfunktionen der
Isobaren-Energien H' (vgl: (18.9, 10, 11)) wirken.  Nach (18.12
bis 17) beschreibt der Operator ze: el e einen Ladungsaustausch
zwischen den Nucleonen g und v, wihrend die geschweifte Klam-
mer In V, einen Spin-Austausch-Operator darstellt. Wir berechnen
wieder die den Nucleon-Grundzustinden entsprechende Unter-
matrix V*”), Den 4 Grundzustinden eines Nucleons (k = § = %,
n = 4%, m = 4% entsprechen folgende 4 Eigenfunktionen f
(s. die Fussnote 2 8. 592):

ur

4mr’

(!P+¢P ) 9 Y -"‘ (p—9" S
f1.1 —ce 008 - 808 - , 1, %_ce  cossin—o-,
; » (16.8)
ol ce_ (Wﬂv)m ¥ COS L f cehzkw (p)m 0 s1 "
= N — GOS —, == n—sin— .
-4 % 9 2 4. 2 2

(¢ = (2m@)~1). Mit denselben Bezeichnungen wie in (15.10, 11) wird
(0" [ eg | n") =5 (0" |7, [n"), (m"| €| m") =% (m" [o]m”), (16.9)

oder in der Schreibweise (15.12): e? = 1 7, ;) = 1 6{). Somit wer-
den die auf die Grundzustdnde der beiden Nucleonen u, » beziig-
lichen Untermatrizen von V, und V, (16.7):

1

V(l‘ v) 81 ?‘; (2 'g(eﬂ) -g(g”)) { (2 0'5#) 0',?))_ A

()

(Z (1) > x) (Z () 5 m)} Z:;, (16.10)
1 .

(1) 7(»)
(2 b ) 4 r’

Hiernach ist V, gleich /g, V, gleich 1/, des stérungstheoreti-
schen Wertes. Qualitativ haben also die Kriifte wieder die gleichen

V(.uv) _
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Eigenschaften wie bei schwacher Kopplung, vorausgesetzt dass die
Isobaren-Anregungsenergie so gross ist, dass die hoheren Isobaren
keine Rolle spielen. Dazu ist aber zu bemerken, dass V, — wegen
der Zahlfaktoren in (16.10) und in Anbetracht der Ungleichung
(11.20) — nur klein im Vergleich zu V; sein kann, wenigstens fiir
Abstdnde r der Grossenordnung p—1; die Krifte konnen also nur
recht schwach spin-abhingig sein.

Obwohl also die Krifte — gentigende Hohe der Isobaren-
Anregungsenergie vorausgesetzt — eine ausgepridgte Ahnlichkeit
mit den Kraften bei schwacher Kopplung aufweisen, diirfen doch
auch die Unterschiede nicht iibersehen werden: Wiahrend man es
bei schwacher Kopplung durch Wahl des Quotienten wuf /g er-
reichen kann, dass die Krafte vom V,- und V,-Typus in einem
beliebig vorgebbaren Mischungsverhéltnis auftreten, hat man bel
starker Kopplung entweder reine V,-Kriafte (Fall I, vgl. (15.13))
oder eine Mischung mit relativ schwachem V ,-Anteil (Fall II).
Es bleibt allerdings noch zu untersuchen, wie die Kréfte sich in
dem — hier ausgeschlossenen — schmalen Ubergangsgebiet
(uf/g? <2 /8 verhalten.?)

Ziirich, Physikalisches Institut der Universitit.

1) R. SERBER hat bemerkt, dass die Existenz der héheren Isobaren den
Sattigungscharakter der Kernkrifte gefihrdet, d.h. zu einem Zusammenbruch
der schweren Kerne Anlass geben kénnte. Wie F. CorsTER (auf Grund der in II1
vorgeschlagenen Thomas-Fermi-Niherung) gezeigt hat, ist die Vektor- wie auch
die Pseudoskalartheorie diesem Einwand nicht ausgesetzt (Diss. Univ. Ziirich).
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