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Zur Theorie

der Kapillarsehwing-ungen eines Flüssigkeitstropfens
von M. Fierz.

(9. VI. 1943.)

Es wird gezeigt, dass ein schwingender Flüssigkeitstropfen, dessen Zustand
durch die Zahlen l, m charakterisiert ist, ein Impulsmoment um die z-Achse
besitzt. Die bei grossem l geringe Ausstrahlung eines geladenen Tropfens muss
daher auch als „Drehimpuls-Auswahlregel" aufgefasst werden.

Im Hinblick auf die metastabilen Zustände schwerer Atomkerne

hat S. Flügge1) die Kapillarschwingungen eines geladenen
Flüssigkeitstropfens untersucht. Insbesondere hat er die
elektromagnetische Ausstrahlung eines Tropfens berechnet, der in einem,
durch die „Quantenzahlen" l,m charakterisierten Zustande
schwingt. Flügge hat stehende Wellen betrachtet. Deshalb besitzt
der Tropfen in einem solchen Zustande kein Impulsmoment. So

scheint es, als ob in diesem Falle die bei grossem l auftretende
geringe Ausstrahlung nicht auf grosse Impulsmomentänderungen
des Tropfens bei der Lichtemission zurückgeführt werden könne
(1. c. S. 374 u. 385).

In dieser Arbeit wird gezeigt, dass auch die metastabilen
Zustände des Tröpfchenmodells mit grossen Änderungen des
Impulsmoments zusammenhängen, da auch hier die Zahlen l,m bei
sinngemässer Deutung das Impulsmoment des Zustandes beschreiben.

Um dies einzusehen, hat man an Stelle von stehenden Wellen
um den Tropfen umlaufende Wellen zu betrachten. Dann hat nämlich

der Tropfen, auch wenn er nicht als Ganzes rotiert, ein
Impulsmoment.

1. Es soll gezeigt werden, dass eine Kapillarschwingung einer
Flüssigkeitskugel, die durch die Zahlen l,m, die Frequenz co und
die Energie E charakterisiert ist, um die z-Achse ein Impulsmoment
Jz besitzt, das den folgenden Wert hat:

r E
Jz m —

co

l) S. Flügge, Annalen d. Ph. 39, 373 (1941.)
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Das Geschwindigkeitsfeld der Flüssigkeit leite sich aus einem
Potential 0 ab, das der Gleichung

A cp 0 (1)

genügt. Wir machen den Ansatz

0 ß rl ty (cos &) sin (mcp — cot)

ß, rlJ^=\Y, e-imt-Y, e + imtl (2)

Die Ylm(d-, cp) sind normierte Kugelfunktionen.
Entsprechend soll für die Oberfläche gelten

B(&, cp) - B0.= xu m «p^ m
(cos Û) cos (mcp -cot) (3)

B0 ist dabei der Kugelradius im Gleichgewichtszustand.
Wir nehmen an, dass

I

oc, l<ß0
was zur Folge hat, dass jeweils nur die niedrigste Potenz der au m

in den Formeln berücksichtigt werden muss.
Unsere Ansätze unterscheiden sich von denen bei Flügge (1. c.)

dadurch, dass wir umlaufende Wellen verwenden, und unsere
Funktionen auf 1 normiert sind:

f<$*lm(&)sin2(mcp - cot)da 1

Aus der Bedeutung von cp folgt
d<P\ ÒR
,i i, ' Pi,m D7_i \ /dr Jr=R dt IB\ 1

Um die Energie der Schwingungen zu berechnen, genügt es,
die kinetische Energie anzugeben. Denn da die Bewegung harmonisch

ist, ist die Gesamtenergie gleich der doppelten kinetischen
Energie. Daher gilt:

E 2 EMn q f (-d~\2dr q f div (0 • grad 0) dr (5)

Dabei ist q die Massendichte :

_ dM
6 ~ 4nBl

'

Die Energie kann mit Hilfe des Gauss'sehen Satzes in ein
Oberflächenintegral verwandelt werden und man erhält unter
Berücksichtigung von (2) und (4)

co 2 3
E=oBl *£ M—-oLZm. (6)

l 4 n l
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Nun berechnen wir das Impulsmoment J2:

CIÒ0 00 \ x. r 00 -,Jz= Q / x— y —— dr q —— dtJ \ dy a dx J dcp

mQßi,mf A Vi,m (cos &) cos (mcp - mt)dr. (7)

Man hat hier zu beachten, dass das Integral über das durch die
Fläche r B(&, cp) begrenzte Volumen zu erstrecken ist. Wir
integrieren daher zuerst über r:

r Bl+3(& cp)
Jz mQßi,m I da

77773
^l'm^C0S ^ C0S ^m<p ~ mt^ ^

Setzen wir aus (3) den Wert für B (&, cp) in (8) ein, und nehmen
nur lineare Terme in 0Llm mit, so folgt

Jz mQßUmHmB'+* —^-etfmBl. (9)

Durch Vergleich mit (6) folgt die Behauptung

T
E

Jz m
co

2. Der Tropfen besitzt, falls er elektrisch geladen ist, mit dem"

Impulsmoment Jz auch ein magnetisches Moment /Ug. Die Ladung
habe den Wert eZ und sei gleichmässig über das Volumen verteilt.
Dann wird das erzeugte magnetische Feld durch das
Vektorpotential

.- Zea r gradar) ,..„,A{rQ) —f dr % l (10)
Mc J | ra - r I

gegeben. Der Term proportional l/ra2 bestimmt das Dipolmoment.
Wir entwickeln den Nenner in (10) bis zu Termen l/r02:

i /i-fi + ÊI^ (ii)
j/r2 + r„! - 2 (r r r„

Das Vektorpotential des Dipolmoments wird daher durch den
Ausdruck

___ 7 1

Am(ra) =-^T^aJ (rar)grad0(r)dr (12)

dargestellt. Andererseits hat das Vektorpotential eines Dipols die
Form r- *,

A ltAlL. (13)



368 M. Fierz.

Da ]u in die ^-Richtung orientiert ist, hat Ay an der Stelle (a) :

r~ r„,r„ r. Q den Wert

A(a)--
v

ft*

Entsprechend hat Ax an der Stelle (b) : rv ra,rx
Wert

Also gilt
rj-(Af-Af)

(14)

rz =-- 0 den

(15)

(16)

Betrachtet man nun aber gemäss (12) Adip(ja) an den Stellen
(a) und (b) und bildet die Grösse (16), so folgt

t*2
Zeq dx [ x

d0
2Mc J \ dy

Daraus folgt durch Vergleich mit (7)

Ze
Hz

d0
dx

2Mc

(17)

(18)

3. Zum Schluss möchten wir, der Vollständigkeit halber, die
Ausstrahlung des schwingenden Tropfens berechnen. Diese Rechnung

hat Flügge schon durchgeführt, so dass wir prinzipiell nichts
Neues bieten können. Allerdings kann die Rechnung durch
Verwendung normierter Kugelfunktionen wesentlich vereinfacht werden.

Dadurch ist es auch möglich, einen Rechenfehler, der Flügge
unterlaufen ist, richtig zu stellen.

Die Energieausstrahlung S des Tropfens im Zustande l, m ist
gegeben durch den Mittelwert von

c3E2
L J

über die Kugeloberfläche. Dabei ist

21(0,0) Zeg
M I dr ', 'ret

(Siehe Flügge, 1. c. Formel (28), (31).)
Gemäss (2) gilt

co • Zeq%(6,0) -ß. M

j dr grad rl^ßhm(cos t?) oos (mcp - co -cos &' (19)
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&' ist der Winkel zwischen den Richtungen &, cp und 0, 0. Indem
wir die ^Pi>m durch die Ylm ausdrücken, gilt, mit cojc fe

01(0,0) -A^Y^
V2 M

Jgrad [Yhm(&,cp)e-imt+ikì'cosi>' + Yl<^m(&,cp)eimt-ikrcos{>']dt (20)

Wir betrachten im Integral den Term ~ e~l "l und entwickeln
ei q cos iv m bekannter Weise nach Kugelwellen unter der Annahme
q kr <^ 1:

ée^ ^^^^LiiQlYlm(0,0)Ylm(e,cp).

Nun ist das folgende Integral zu berechnen:

d
£w=/l^[r,Y'.» (*¦*)]

^^^-2"n\i-(kr)-Yt,t(&,cp)YnA(0,^)\dr (21)
tt(n-Yl)\

rlY^m(&, cp) ist ein harmonisches Polynom vom Grade l. Durch
die Differentiation erhält man ein solches vom Grade l — 1 :

~ iT1 YUm (&, cp)) 2 &.'„, y,-x.»- &, 9), r1"1 - (22)
u"Lo. m!

Die Koeffizienten (ft£m, sind leicht anzugeben. Wir brauchen sie

jedoch nicht explizit.
Wegen der Örthogonalität der YUm(&, cp) ergibt die Integration

i\m- (2;+l)!
2'M (iky-^B^^g^m,Yl_l!m,(0, 0). (23)

Beachtet man nun (22), so folgt

Jl*1— 2H\(iky-^B^^-[B^Yltm(0, 0)].

Also ist, da 4n/S B3q M

^9,0) ^Zeco^(ikB)^
dX„

-[R*(YUm(&, 0)e-*-«+(-l)«-ie*-«y, _m(6> 0)]

SZe<oßUm* •

ffcfi)'-1
(2i + l)!x y dXa

[EJ^iWt(cos 0) cos (mç>- ft)<+<3j)]

(24)
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Nun haben wir noch den Mittelwert LfLJL! zu bilden. 2t ist
B2

ein Gradient im Räume der Koordinaten B, 0, 0 und man hat
das Quadrat seiner Komponenten lß zu ermitteln. Wir haben
also zu bilden

J- [da (SI| + 2Ü) ^^ rdaUd¥hm(eos»)-cosm<pA
4n J * 4n J [\ d&

1 j d<$hm(co&ff) cos mcp \21
+ sin^l d^~ --)\- (25)

Da nun ^>m (cos &) cos (mcp) eine normierte Kugelfunktion
darstellt, hat der Mittelwert den Wert 1/4 tt 1(1 + 1) • const. Somit
erhalten wir

-^t,W.2""'('+1W'-'- (26)
4 Tre3 ''"* (2I+1)!2!

V y

Die „ÜbergangsWahrscheinlichkeit" w=8/E wird daher, indem wir
(4) beachten

E Mc3 v ' (2Z + 1)!2
(i+m)'Die Ausstrahlung ist also unabhängig von m. Der Faktor n_mY

bei Flügge (1. c), durch den sich seine Formel von der hier
abgeleiteten unterscheidet, beruht auf einem Irrtum.

Man kann diese Theorie der Kapillarschwingungen eines Tropfens

quantisieren, indem man die Amplituden <x^OTals Operatoren
auffasst. Dabei hat man das Spektrum, ähnlich wie in der Debye-
schen Theorie der spezifischen Wärme, bei einem gewissen Wert
von l ~ A1!3 abzuschneiden, wenn A die Teilchenzahl im Kern
bedeutet. Eine solche Theorie führt bezüglich der Energieausstrahlung

zu den gleichen Resultaten wie die klassische Behandlungs-
weise. Das Quadrat des Impulsmomentes im einfach angeregten
Zustande l, m ist dann ebenfalls quantisiert und hat den Wert
hl(l + l).

Basel, Physikalische Anstalt der Universität.
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