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Un principe qui relie la théorie de relativité et la théorie
des quanta

par E. C. G. Stueckelberg.
(15. I. 1943.)

Résumé1). D'un principe (plus général que celui de la covariance de Lorentz)
contenant la covariance spinorielle et la covariance de jauge, la théorie de relativité
(constante c) et la théorie des quanta (constantes e et h) sont déduites. L'existence
d'un champ de Yukawa (mesotrons) montre que dès que des dimensions de Forare
du rayon de l'électron interviennent, les lois de la théorie des quanta ne sont plus
celles que nous connaissons.

Introduction.

Nous nous proposons de démontrer dans cet article que la
théorie de relativité et la théorie des quanta peuvent être considérées

comme étant la conséquence d'un seul principe de relativité.
Pour énoncer les lois gouvernant les observations, nous devons

introduire certaines notions comme «système de référence x, t»,

«axes spinoriels uA», «potentiels électromagnétiques A, d>». Nous

poserons comme principe que ces notions ne peuvent pas être
observées :

1° Le principe de relativité d'Einstein, donne aux lois une
forme telle (covariante) qu'aucune observation ne peut distinguer
entre deux systèmes de référence x, t, (système de coordonnées
vectoriel xf*)).

Nous proposons de compléter ce principe par les deux nouveaux
principes suivants:

2° Aucune observation n'est possible pour distinguer entre deux
systèmes uA des axes spinoriels.

3° Aucune observation n'est possible qui puisse distinguer entre
deux systèmes de potentiels électromagnétiques 0, A (systèmes de

jauge).
La conclusion à laquelle le 1er principe nous amène est connue

(conclusion n° 1).
L'analyse des principes 2° et 3° complète les résultats obtenus

du 1er principe et nous amène aux conclusions n° 2 à 6.

*) fi= 1,2,3,4; xi ct.
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L'ensemble de ces conclusions peut être exprimé de la manière
suivante :

1° Toute observation de la vitesse v avec laquelle un signal
peut être transmis donne une valeur v < c. Il y a des champs
particuliers (par ex. le champ de Maxwell) pour lesquels tout
paquet d'ondes se propage avec cette vitesse limite c. c est ainsi
une première constante universelle.

2° Toute observation de l'énergie totale Hv contenue dans une
onde spinorielle uA (de 1er ordre et de tout ordre impair) de

fréquence co% donne pour résultat un multiple entier H% =°N% h ct>£

avec N% 0,1.

3° Toute observation de l'énergie Hw etc. dans une onde
scalaire ou tensorielle cpa spinorielle de tout ordre pair), influencée
par l'onde spinorielle uA, fournit le résultat H%=N%hco% avec
Nk=0,1,2,... oo avec la même valeur de h. h est ainsi une seconde

constante universelle.

4° Dans le cas particulier, où tout paquet d'ondes de çj(™ax> se

propage avec la vitesse maximale c, une grandeur bilinéaire en uA,
la charge électrique ev, existe, qui est conservée. La charge par onde
vaut e% ± N%e, avec (N% 0,1).

5° Entre un champ chargé uj, un champ ordinaire uA et un
champ tensoriel cp- une interaction peut exister, telle que ce nouveau
champ cp- agit lui aussi sur le champ de Maxwell ç^™8*) et porte lui
aussi de la charge électrique ew.

La charge par onde périodique portée par ce champ tensoriel
(ou scalaire) cp- vaut alors e% ± N%e avec Nt- 0 1,2,... oo avec
la même valeur de e. e est ainsi une troisième constante universelle2).

6° L'existence d'un champ tensoriel cp- apte à porter des charges interdit
toute connaissance exacte des valeurs des composantes de tout champ u x) A ou
<p{x)~ sauf celle des valeurs moyennes, prises sur des régions spatiotemporelles plus
grandes qu'une longueur fondamentale pr1 caractéristique de ce champ tensoriel.
Le même est vrai pour les densités de charge électrique. Les contributions de la
« self énergie » à des quanta uA les plus faibles (électrons), sont alors qualitativement

e2fi < Eq hxc meic2.

La « masse de repos » me\ de ces quanta légers des électrons au repos) doit
être reliée à ptr1 par

e2 e2

mdSS7r/*= 17'mmes

/ï/i mmeg c est la « masse de repos » des quanta de ce champ cp- (masse du méso-

trou). On obtient ainsi la même relation que celle trouvée dans une théorie
classique de l'électron (proposée par l'auteur7)), pr1 est ainsi une quatrième constante

fondamentale (longueur fondamentale*)).



La théorie de relativité et la théorie des quanta. 175

Pour arriver à ces conclusions, nous considérons les
expériences suivantes, qu'on peut faire sur les composantes des champs:

Les trois composantes Et (i 1,2,3) qui forment le vecteur E
du champ électrique sont des grandeurs observables. Si un dispositif
pour les mesurer (appareil) nous mesure au même endroit une fois
les trois composantes Ei et une autre fois les trois composantes
différentes Er, et si nous savons, pour d'autres raisons, que l'état

électrique E était le même aux moments des deux observations, une
différence entre les E{ et les Er nous permet de constater que
l'appareil a tourné autour d'un axe. Dans le cas particulier où cet
axe est l'axe x3, les composantes Et sont reliées aux Etr par la
substitution :

E-L Ev cos # + E2, sin &

E2 - Ey sin & 4 E2, cos & (0,1)

E3 Ezr

Cette observation combinée de Et et Ev correspond à une
réalité physique: la rotation de l'appareil autour d'une direction
spatiale (axe x3) d'un angle &.

Une rotation de # 2 n ramène l'appareil à sa position
initiale. Elle ne peut donc pas être constatée (Et E^)- La théorie du

champ maxwellien s'occupe de telles grandeurs vectorielles E (x,t)i et

B(x,t)i, qui se transforment suivant (0,1).
Par contre, dans les théories ondulatoires de la matière, on

rencontre des grandeurs spinorielles, parmi lesquelles se trouve le
spineur de 1er ordre avec 4 composantes uA (A 1,3,5,7). Les uA
se transforment en uA, suivant une loi semblable à (0,1).

ux Uy cos x Y- u3> sin %

u3 - ur sin x + u3r cos x (0,2)

dans le plan spinoriel 1,3 (la même loi règne dans le plan 5,7), si

l'appareil a été tourné dans l'espace physique autour de l'axe x3 par
un angle & 2 x. (0,2) représente une rotation dans le plan spinoriel
1,3 par l'angle x $/2. L'existence d'un dispositif pour mesurer
uA (appareil) permet donc de constater une rotation de cet appareil
dans l'espace physique. Même une rotation par l'angle d- 2 n peut
ainsi être constatée. Mais, au résultat d'une observation pareille,
ne correspond certainement aucune réalité physique, parce que la
position de tout objet tourné de 2 tt est identique à sa position
initiale.
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A côté du spineur de 1er ordre, les théories ondulatoires de la
matière (théorie de Schrödinger) font intervenir des champs
complexes (u u1 + i m2) à deux composantes pour décrire la charge
électrique. On montre qu'à la substitution de jauge (x X (x A)
fonction arbitraire)

2 1' + - grad x; 0 *' - - dtX (0,3)
e e

correspond une transformation de jauge

% u,' cos x Y- u2 sin x
u2 — Ui sin x Y- «a' cos x (0,4)

entre les composantes du champ complexe. Elle represente une
rotation dans le plan complexe 1,2. Les grandeurs Maxwelliennes

È - dt A - grad 0; B rot A (0,5)

restent invariantes. Si, donc, un appareil nous mesure au même
endroit une fois uA et une fois uA. (A 1,2), tandis que l'état matériel
(décrit par des grandeurs u+A uA, etc.*)) et l'état électromagnétique
sont restés les mêmes, la différence entre uA et uA, permettra de

constater une différence entre les potentiels 0, A et 0', A'. A cette
observation ne correspond pas non plus une réalité physique.

Pour rendre impossibles des constatations pareilles ((0,2) et
(0,4)), nous demandons que la théorie contienne les deux restrictions

suivantes:
1° L'angle x OM) dans « tout plan spinoriel A, B» (du 1er

ordre) ne peut être observé qu'à

AxÇx,t)>n (0,6)
près.

2° Si l'angle / (x,t) dans « un plan complexe 1,2» peut être
mesuré exactement à un événement x t (A x (x,t) 0), il faut que
la restriction

A x (x + dx,t 4 dt) > n (0,7)

existe pour toute mesure de x (x +dx, t+dt) à un événement voisin.
De 1°, il s'ensuit que A (x — x) 2 Ax vaut toujours au

moins 2 n. Ceci rend impossible toute constatation d'une rotation (0,2)
dans le plan spinoriel. La condition 2° donne aux dérivées de x(x>t)
les incertitudes A dtx=A dtx=co (dt=djdt; o,=d/oa;î) et rend ainsi
impossible d'observer A — A' et 0 — 0' en (0,3).**)

*) Cf. page 182.

**) A la place de n dans l'inégalité (0,7) tout autre angle fini renderait le
même service.
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Dans cet article, nous proposons des principes d'incertitude
de la forme

A u (v)A A u (v')B > 2 n \ r (u(v)A, u(v')B) | (0,8)

qui, limitant les précisions A u (v)A des valeurs observables des

composantes moyennes

u(v)A v-if(dx)3u(x,t)A (0,9)
v

(définies comme des valeurs moyennes des composantes uA et uB
prises sur des (petits) volumes v (et v') de telle manière que (0,6)
et (0,7) soient remplis.

Les conséquences de ces deux principes sont alors les 4 conclusions

n° 2 à n° 5, mentionnées ci-dessus.

§ 1. Le principe d'incertitude pour l'angle ô dans le plan a, b.

Nous considérons un système décrit par deux variables (ayant
la même dimension) a et b. L'état du système est alors représenté
par un point dans le plan a, b. Un principe d'incertitude:

(Aa)2(Ab)2 > (2nr(a, b))2 (1,1)

exprime que le point représentatif du système ne pourra jamais
être localisé plus exactement qu'à l'intérieur d'un contour C(a, b)

const, tel que son aire (aire d'incertitude) vaut

f f dadb <£ (adb - bda) =2nr(a,b). (1,2)
"c c

Nous définissons ce contour C de telle manière qu'il ne contient
aucune intersection avec lui-même. L'aire d'incertitude (1,2) a alors
un signe défini. La plus grande précision est atteinte si C(a, b) est
un rectangle avec la surface 2 n \r (a, b)\. C'est alors que (1,1)
résulte avec le signe

(1,1) et (1,2) montrent que, pour toute paire de grandeurs
observables a, b, il existe une troisième observable

r (a, b) - r (b, a) (1,4)

r est une grandeur observable parce que l'incertitude à laquelle
la paire est soumise peut être constatée. Si le point représentatif
est localisé dans un contour de surface 2nr, l'état du système est
déterminé d'une manière optimale. Un tel état est en général trouvé
si l'on fait une observation a a' sur une variable a avec la
précision maximale (Aa 0). Le contour qui détermine l'état a maintenant

dégénéré en un rectangle composé de deux droites de signes
12
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opposés, parallèles à l'axe b, qui coïncident et qui coupent l'axe à
l'endroit a a'.

L'aire d'incertitude A F et A G qui limite la connaissance de

deux fonctions F (a, b) et G (a, b) est représentée par l'aire 2 nr(F,G)
qui correspond à la surface (1,3). On peut considérer F et G comme
des coordonnées obliques ou curvilignes dans le plan a, b. L'aire
2nr(F, G) s'exprime alors par la déterminante fonctionnelle

,_, „, oF dG dG oF
^G^^-Ja-~cW-^a--W (1'5)

si F et G sont des fonctions linéaires, soH

r(F,G)= {F,G}a,br(a,b) (1,6)

(1,6) est aussi valable pour des fonctions générales, si les valeurs
de F et de G sont grandes par rapport à A F et A G. De même, les lois

r (r(F, G), H)+r (r (G, H), F) + r (r (H, F), G) 0

r (FG, H) Fr (G, H) + Gr (F, H)
[ ' '

tiennent dans ces cas.
Un principe qui limite la précision A ô de l'angle ô entre le

rayon vecteur et l'axe a est obtenu de la manière suivante:
« Le point représentatif doit être situé à l'intérieur d'un

contour fixe Cf (a, b) 0. »

Tout contour d'incertitude C (a, b) se trouve alors entièrement
à l'intérieur de C1 0. Il remplit ainsi un domaine fini A ô de

l'angle polaire pour autant que r 4 0.
Nous imposons à notre plan la condition d'être isotrope. Le

contour C' est alors un cercle de rayon B:
a2 4 b2 < R2; C a2 + b2 - R2 0 (1,7)

La condition A ô 2 n est remplie si 2 n | r | n R2, parce
que, alors, le point représentatif est toujours à l'intérieur du
contour C, qui doit être identique au contour fixe CL La valeur
moyenne a de a est toujours nulle. Admettons que deux observations
de a fournissent les deux valeurs a' et a". Si a' t^ a", la différence
a' — a" permet de distinguer entre deux états différents du
système. Or une constatation pareille serait contradictoire à la
proposition que le système ne connait qu'un seul état, celui qui est
défini par la coïncidence des contours Cf et C. Donc toute observation

de a fournit le résultat a a' a" 0.

Nous passons maintenant à la restriction moins forte : A ô n.
Elle demande que la surface 2 n | r | J n R2 ne remplisse que la
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moitié du cercle (1,7). Un état qui contient un optimum de notre
connaissance sur a est représenté par un contour C formé par
l'axe b et le demi-cercle droit ou gauche de (1,7). Les moyennes
sont dans ces deux états

a a+ Vh ,j q-,

a a_ — Vh

où Vh est une constante. Une observation de a est définie par
l'opération qui nous fournit un optimum de notre connaissance
sur a. Elle détermine un état. Comme deux états (décrits par deux
contours ayant la même surface 2nr) qui représentent les deux
une connaissance optimale avec un a > 0 ne peuvent ainsi pas
exister, il faut que toute observation de a donne, ou le résultat a+ ou a„.
Nous exprimons ce fait, qui est valable aussi pour b, par la loi:

a2 b2 h (1,9)

h est ainsi une constante physique du système (déterminée par la
restriction (1,7)).

C'est à ce moment que nous nous heurtons à une contradiction :

L'état décrit, où a vaut a+ implique A a 0. Mais, vu (1,7),
l'incertitude en b vaut A b 2 R (où 2 aA fini. Pour éviter cette
contradiction, nous étudions la nature de la troisième variable c

r (a, b). Dans notre problème, elle ne peut prendre que les
valeurs (c+ > 0 est une constante).

c c+ ou c c_ — c+; 2nc+ \\nR2 (1>10)

Nous introduisons maintenant trois variables normalisées.

a= —, ß=^, y=~ (1,11)
a+ b+ c+

qui, toutes les trois, ont la propriété que n'importe quelle observation

fournit le résultat
„? ß2 y2 1 (1,11a)

Elles sont reliées par

r(*;ß) ey; (Acx)2 (A ß)2 (2 n ef ; e -£- (1,12)
h

La valeur moyenne y de y est nulle si ou a ± 1 ou ß ± 1

sont connues. De même, si y est connu (y ± 1), ni l'une ni l'autre
des variables a et ß ne peuvent être déterminées. Ceci implique une
relation du genre

r (ß, y) ea (1,13)
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Elle exprime que la connaissance de a implique une incertitude en
ß et en y. Le facteur s semble d'abord être arbitraire. Mais les
valeurs observables de a, ß et y étant de même nature (1,11), aussi
l'incertitude entre ß et y doit avoir la même grandeur

(Aß)2 (Ay)2 >(2 n e)2

Ceci nous permet de trouver une représentation non contradictoire

du problème, si l'on introduit à la place du plan un espace à
trois dimensions a, ß, y. Le point représentatif doit alors être situé:

1° sur un disque circulaire, de rayon q V2 (avec un contour
ayant un sens de rotation fixe),

2° à l'intérieur d'une sphère de rayon q' V3-
3° le contour du disque touche toujours la surface de la sphère.
Ces trois conditions montrent que toute mesure de oc est

représentée par un état, ou le disque est normal à l'axe a. Il coupe
alors cet axe à l'endroit a +_ 1. Le rayon (au carré) de la sphère
étant alors o'2 a2 + p2 3, q. é. d. Les moyennes de y et ß sont
y2 ß2 1. Donc (1,11a) est satisfait. L'aire d'incertitude 2 ney est
observée, si le produit des incertitudes en oc et ß prend sa valeur
maximale, c.-à-d. si le disque est dans la position normale à l'axe y.
La projection dans le plan oc, ß est alors égale à la surface du disque,
soit 2 ney no2y 2 ny. Le facteur e est ainsi déterminé à e 1.

Le sens de rotation est arbitraire. S'il est choisi de telle manière
que le disque situé à y + 1 projette un contour parcouru dans le
sens positif dans le plan a, ß, on obtient les relations cycliques
suivantes :

r (a, b) c; r (b, c) ha; r (c, a) hb
1

a2 b2 h; c2 c2+ h2 ' '

L'isotropie de notre système permet d'introduire d'autres axes
a0 et b° reliés aux axes a, b par :

a a° cos y — ò° sin y M
j o -, 1.0

(1,14a)
b a0 sm x + b° cos x

L'analyse de ces nouvelles grandeurs physiques a0 et b° doit fournir
le même résultat que celle faite pour a et b, indépendants de la
valeur de x- La loi (1,9) ne résulte, pour a0 et b°, que si

ab 0 (1,14b)

c.-à-d. si toute observation du produit ab fournit le résultat nul. Ce

résultat (1,14b) est d'ailleurs obtenu directement si l'on fait l'analyse

géométrique dans l'espace aßy.



La théorie de relativité et la théorie des quanta. 181

Un système plus compliqué est décrit par les variables a1; blt
a2, b2 an, bn qu'on peut représenter dans un espace à 2n
dimensions. L'analyse faite ci-dessus est d'abord valable
individuellement dans tous les plans de projection at b{ (resp. espaces
at bi Ci) de l'espace multidimensionnel. Si l'espace multidimension-
nel est isotrope vis-à-vis d'une rotation simultanée dans les plans
ax a2 et bx b2, les conditions

ax2 bx2 a22 h; ata2 bxb2 a-,b2= 0;

r (ax, bx) r (av a2) h

doivent être ajoutées à (1,9) et (1,14b).
La surface d'incertitude limitant AF AG sera maintenant la

projection d'un élément de surface (à composantes r (at, bk),
r (aif ak) et r (bit bk)) dans les plans F, G, si l'on a introduit F F
(a-,, G H comme des coordonnées curvilignes dans
l'espace du système. Cette projection est donnée par

r (F, G) i2 S 2 S {F, G}aih r (a„ bk) (1,16)
a b i k

La sommation doit être effectuée sur toute paire de variables
décrite par les indices i,k, a, b (i,k 1,2...n; a et b chacun a,b).
Finalement, on peut se demander ce qu'est le produit des incertitudes

Ar (a{, bi) Aak. Un état est concevable où r (a{, b{) est
déterminé dans le plan at bt laissant at et b{ eux-mêmes complètement
indéterminés. Alors ak peut être déterminé en même temps dans les
deux plans e^a,. et btak pour autant que l'indice fe n'est pas identique
à i. Si ceci est le cas, le problème dégénère en (1,13). En général,
on a donc la relation de Pauli (nous substituons ak pour bi; et az

pour ak)

r (r(at, ak), a,) h (ônak - ôklaY. (1,17)

La normale du disque a le même signe dans les deux espaces de

projection at, ak, r(a{, ak) et at, ah r (a{, at).
Nous appelons ces relations les relations de Pauli, parce que

les trois matrices ax fexl, a2 Ixl, a3 ixi et j lxi satisfont
à la relation cyclique*)

j (axa2 - a2ax) - a3; ax2 a\ a\ - j2 1 (1,18)

et parce qu'il existe un calcul opératoriel qui se base sur (1,18) et
qui exprime le principe (ax a, cr2 ß, a3 y cf. (1,11))

(AA)2(Aß)2> (2ny)2 (1,19)

si 4- V(à A)2 est la fluctuation de oc.

*) Pour les définitions des matrices i, k et l voir éq. (2,4b).
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§ 2. Le champ de Majorana.**)

Certaines observations faites sur les rayons cathodiques
(observations dont l'analyse est assez complexe) montrent qu'une onde

cathodique de longueur d'onde A 2n | fc j"1 est capable de deux
polarisations (a 1,2). Elles se distinguent l'une de l'autre par
une propriété vectorielle, le spin. Pour des paquets d'ondes ayant
une vitesse v ck (x2 + ]fe|2)_ì< c (k~x est une longueur
fondamentale caractéristique de ces ondes cathodiques), une théorie à
amplitude vectorielle fournit toujours trois polarisations. Pour
expliquer ces deux polarisations, on a dû concevoir des ondes à
amplitude spinorielle (de 1er ordre).

Des spineurs qui se transforment suivant (0,2) sont des
grandeurs à quatre composantes (A 1,3,5,7), qui se transforment
suivant*) :

uA V cos x + (joik)AB' sin x) »* (e"'*x)a b'^ (2,1)

si 1'« appareil » effectue une rotation autour de l'angle # 2 x dans
le plan xt xk, et qui changent leurs valeurs d'après

uA ÔAB' cosh x' + (n)AB' sinh f) uB> (&**).A B'uB, (2,2)

si I'« appareil » a été mis en mouvement avec une vitesse v c tgli2 y;'

dans la direction de l'axe x{. (jcrik)AB' et (yi)AB' et d'autres grandeurs
sont des coefficients constants à plusieurs indices (i, k 1 à 3, A, B'

1,3,5,7), qu'on exprime sous forme de matrices de quatres lignes
en A, B'. D'un spineur de 2ème ordre UAB, qui se transforme comme
un produit uA uB de deux spineurs, on peut former un scalaire, un
vecteur, etc. d'espace temps x (xß) (/li 1...4; i 1,2,3; x1 xf;
xi — x. et*)) à l'aide de ces coefficients constants. En
particulier, il existe des coefficients jß, a et 1 tels que

J=(jßABUAB; J* af**VAB; Q J4 Ò** UAS (2,3)

Pour que (2,1) et (2,2) forment une représentation (bivoque) du

groupe de Lorentz, il faut que 1° ces matrices a4 a* (AAB')
existent, 2° que leurs produits aia,c=((ociaJ.)^-B') (œiAc cckCB')

satisfassent à

a.iXk + a.kcr.i 2 ôik 1 ; a4 - oc4 - 1

*t(jß)+(jß)*t 0; -(jß)(jß) -(jß)2 l [ZA)

*) Dans les considérations suivantes, nous poserons la vitesse c 1 et t a;4

En plus, on pose u-A=uA; aM-B oH*A-B. Un indice pi,i, A, B, paraissent deux fois
de suite sous forme co- et contravariante (p. ex. u^uA) implique la sommation
sur toutes les valeurs de cet indice (p. ex. A— 1,3,5,7). ô-&B est la matrice
d'unité. ôik le tenseur fondamental ou tenseur d'unité.

**) Le champ spinoriel à quatre composantes réelles a été envisagé pour la
première fois par E. Majobaua, Nuov. Cim. 14, 4 (1937).
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et 3° qu'elles soient reliées aux matrices jaik et y( en (2,1) et (2,2)

par (ja)ik «<<*,.; yt (jß) a,-; (jaik)2 - y* - 1 (2,4a).
Les matrices jaikAB - jcrikBA et jßAB= - jßBA sont

antisymétrique en A et B, tandis que cr.AB= atBA et jv1* des matrices
symétriques1). l=(ôAB) est la matrice unité. Une représentation
particulière de ces matrices à quatre lignes peut être obtenue sous
forme de produits directs entre les quatre matrices à deux lignes

H5Î); *-G-!)i < ("); '-TS)
kl — Ik — i; li — il + fc; ik — ki l

a., fe x 1 ; oc2 ï x 1 ; oc3 t x i ; j ß ixl (2,4b)

lxfe
/0 0 1 0\

/fc 0\ m - A • -, / 0 1\ /0001M; *xi 0 o); -txl=l-i oj l-i ooo\ 0 -1 o o/
Cette représentation fournit en (2,1) la transformation (0,2) si

X m et si jaik jffM - (ixl) (cf. (2,4b)).
Suivant l'exposé du § 1, l'impossibilité d'observer une rotation

& — 2 x 2 tt de l'appareil suit de la théorie, si les observations
du champ tt (»)^ sont soumises dans chaque plan A B à la condition
(1,15), soit à

u (v)A u (v)B ÔAB hv-1 (2,5)

hv-1 est une grandeur scalaire par rapport aux rotations
spatiales. Elle ne peut dépendre que du volume v, dans lequel les

moyennes sont formées, si l'espace est homogène. Pour que la loi
(2,5) soit covariante, une fonction spinorielle symétrique de
2ème ordre D<+> (x - y, t - r)AB doit exister dépendant des deux
événements x — (x, x1 t) et y (y, y* x) telle que (2,5) soit une
conséquence de:

u (x, t)Au(y, r)B=hD(+)(x~y, t-r)AB=-hD^+](y-x, r-t)BA (2,7)

Dans le cas d'un espace-temps homogène et isotrope, elle ne peut
dépendre que de la distance invariante B2 | x — y \2 - (t — t)2.
Elle peut être représentée par des fonctions différentes dans les

différentes régions de l'univers (le présent (B2 > 0), le futur (R2 < 0,

t > t) et le passé (R2 < 0, r < t) de l'événement x).
Après ce bref exposé du calcul spinoriel, nous continuons

l'analyse des ondes cathodiques. La vitesse de groupe d'un paquet
d'ondes a le rapport voulu avec la longueur d'onde, si la relation
covariante (co fe4 — fe4)

caT VV 4 | fc |2 > 0; k^k» - x2 (2,8)
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existe entre la fréquence co% et le vecteur d'onde fc. Ceci est le cas
si«^est une somme de termes u%„ (x,t)A du type des ondes planes:

u%a (x, t)A V-i{p%„ (aA cos (kx - co^t)+rA sin (kx - co%t))

4 q%a(~ rA cos (kx - co%t) + aA sin (kx - co%t)) (2,9a)

p%a8 (fc, o-, pjx)A Jr q%aS (fc, o-, qjx)A

lia forme alternative avec des coefficients, fonctions de t, p (t)
et q(t) est quelquefois plus appropriée:

uk a (x, i) Pl-o (t) 8(k, a, p/x)A+ qta (t) S(%, a, q\x)A (2,9b)

Ces coefficients sont reliés aux p° et q° par la rotation dans le

plan pq „p(t) p° cos cot - q° sm cot

q(t) p° sin cot + q° cos cot \ '

Chaque composante uA de la fonction spinorielle est, en vertu de
(2,8), solution de l'équation covariante de de Broglie

(A - h2) u - dl u (2,11)*)

Les aoAB (ocAB=ôAB) se transforment comme un quadrivecteur a1" et
un spineur de 2ème ordre UAB (leurs valeurs numériques restent
ainsi invariants a111 a1'1'1', a112 L'équation de Majorana

Qab «*=((- S, grad) - jß)AB uB dt uA (2,12)

est, pour cette raison, covariante (la relation algébrique (2,4) fait
de (2,11) une conséquence de (2,12)). La double fonction D<+) (x —y,
t-r)AB doit être une solution symmétrique de (2,11). On peut
démontrer que

£>(1+) (5, t)AB ((S, grad) 4 1 d, 4 jß)AB D<°-> (x, t) (2,13)

est (à une constante numérique près) la seule solution spinorielle
symétrique de (2,12) si D<-0~'> (x, t) est la seule solution scalaire
antisymétrique de (2,11). Elle a été introduite par Heisenberg et Pauli
(au cas x 0) et a été discutée par l'auteur d'autre part4). Elle
répond, pour t 0, aux propriétés suivantes :

D<°-> (x, 0) 0; grad D<°-> (x, 0) 0; dt D«»-) (x, 0) Ô(x) (2,14)

Son analyse de Fourier est la somme

D<-°> (x,t) - V-^coi-1 sin (kx - tajrt) (2,15)
T

*) Le symbole A en (2,11) etc. étant l'opérateur laplacien dans l'espace î n'est
pas à confondre avec le symbole de l'incertitude.
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La sommation est à effectuer sur tout fe périodique en V. La
fonction

UA S S Uh°A (2>16)
k a

avec (2,9a) est l'expression générale de la solution de (2,12) que
nous appellerons le champ de Majorana. De (2,7), la fonction (2,15)
résulte, si l'on considère les pr et gr comme un système de variables
physiques at et b{ ayant les propriétés (1,14). Les amplitudes
spinorielles aA et rA sont normalisées

oArA 0; oAoA rArA l (2,17)*)

On remarque qu'en effet il n'existe que deux solutions linéairement
indépendantes du type (2,9a). Elles représentent deux ondes qui se

propagent en direction de + fc. On ne cherche que les solutions de

(2,10) avec eor> 0**) et on se rappelle que les solutions u%aA et
dt ukaA ne doivent pas être considérées comme linéairement
indépendantes vu le fait que (2,9a) contient les deux constantes p° et q°.

Il importe peu, si l'on impose les conditions (1,14) aux fonctions

pr (t) ou aux constantes p%a, vu l'invariance de la condition

(1,9) et (1,11) par rapport aux rotations (1,11a) qui relient ici,
sous forme de (2,10), p(t) aux p°.

De (2,7) et de (2,14), suit (2,5) dans la forme:

u(v')Au(v")B ôAB4^77^ (2,20)
V V

pour les valeurs moyennes de uA dans le volume v' et de uB dans le
volume v". v' " est le volume commun à v' et v". Toute observation
de u (v)A fournit donc une des deux valeurs ± Vv~1h- Elle interdit la
connaissance de toute autre composante u(v)B (B t A) au même
endroit et de tout u(v')B (B ou 4= A) à d'autres endroits v' $ v).
L'analyse faite dans le plan a,b au § 1 s'applique à tout plan A,B
et rend impossible l'observation de l'angle x (restriction 1° de

l'introduction).

*) Pour la démonstration, on utilise la relation (cor > 0)

E oAoB= ZrA rB (H*AB + cor ôAB) cot'1 (2,18)
<t=1,2 a

qui résulte de la sommation 27 sur cx 1,2 des deux solutions linéairement
indépendantes (et orthonormales) de

**) La condition cor >0 pour la racine de (2,8) est nécessaire pour que l'onde
se propage en direction + k.
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Pour que la théorie ait un sens physique, il faut que des

grandeurs scalaires et vectorielles W, g et T, J (se transformant comme
les composantes W T44, T* Téi d'un tenseur T*" resp. d'un
vecteur q J4, J* J,) existent, qui satisfont à la loi covariante :

dtW + div f 0; dtß + divJ 0 (2,21)

et qui peuvent être interprétées comme la densité d'énergie et la
densité de charge électrique transportée par le rayonnement
cathodique. Si TJ (x, y)AB en (2,3) satisfait à l'équation d'onde (2,12) par
rapport à (xA) et à (yB), les q(x, t) et J(x, t) formés en (2,3) avec
U (x, x)AB=TJ (x ,t; x, t)AB ont la propriété (2,21). Il en est de même
pour les

T"=W=limdrU(x,t; x,r)AA; T=limaABdrTJ(x,t; x,r)AB (2,22)

Ne sont admissibles que des théories ou il n'existe aucun effet qui
ne soit en rapport avec la cause primordiale. Or, toute double
fonction TJAB symétrique en xA et yB admet des effets sous forme
des observables o, J et Tt 0, tandis que, par intégration partielle,
on constate que l'énergie totale H*) (que nous devons considérer
comme cette cause primordiale) est identiquement nulle.

Nous devons donc considérer la double fonction antisymétrique
la plus générale. Elle peut être mise dans la forme

U (x> V)ab =S2x S 9Îca, kW a' S (k, a, a\x)A S (fe', a,' a'jy)B
k o a k' a' a' '
2SöT.,P.. (t, A S (fe, a, afx)A S (fc', a', a'\y)B

TJ(x,t;y,r)AB (2,23)

où l'indice fc dénombre tous les vecteurs d'ondes fe, l'indice o les deux

polarisations (a 1,2) possibles d'une onde fe et ou a parcourt les
deux symboles a p,q, qui distinguent les deux solutions (2,9a)
associées à tout ka. g..p,..(t,r)etg 3, (t,r) sont des doubles fonctions
antisymétriques en t et r, qui satisfont aux mêmes équations
différentielles (/ dtf) par rapport kt (kr const.), comme les paires
de fonctions

Vta - oj% q%n; qta cor pr„ (2,24)

3°.... sont les valeurs initiales (t r 0) de g... (t..,r)
lia troisième variable r (a(t), b(r)) associée à la paire a(f), b(r)**)
*) H(t)=f(dx»)W(x,t).

r
**) a et b parcourent a p,q.
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satisfait aux mêmes équations dtr ...; dr r que les variables
a(t) et b(x) elles-mêmes. Posant ainsi pour g"0.,., les constantes

9Ìaa, Po'b i r (ako, bpa,) 4 | | r+ | c5rp òaa,iab (2,25)

et pour g..,.. (t,r) les doubles fonctions en i et t (résultant de (2,24),
si l'on prend la valeur initiale (2,25)), l'énergie totale H et la quantité
de mouvement totale P prennent les formes

H =f(dx)3 W i22^ (r (Pia, 3F a) +1 r+ \) JVfccorlVr,,
k a k a

P=J (dx)3 T 22 hk Nta; Nto 0,1 (2,26)
k a

Résumant cet exposé, on arrive à la conclusion suivante:
L'observation que certains rayons (à vitesse < c) ont une polarisation
vectorielle qui ne peut prendre que deux valeurs, nous a amené à
introduire un champ spinoriel de 1er ordre. Pour qu'une rotation autour
de 2 n d'un appareil destiné à observer ce champ ne puisse pas être

constatée, l'énergie par onde plane et périodique doit être un multiple
entier (0 ou 1) dehco^ ;h est une constante caractéristique de ce champ.
La quantité de mouvement est le même multiple de hk. Le rayonnement

a ainsi une nature corpusculaire et peut être considéré comme
formé de particules ou de quanta dont l'énergie H est reliée à la

quantité de mouvement P par la relation de la mécanique du point
de masse hx.

H + i(hx)2 + YP\2 hr. + \ (hx)-1 | P |2 4 (2,27)

Ces particules satisfont au principe d'exclusion de Pauli, c.-à-d.
qu'elles suivent la statistique de Fermi-Dirac (FD).

Remarquons qu'on peut écrire (2,25) sous la forme

U (x, y)AB \r(u (x)A u(y)B) + 12r («<**> (x)A, «(**> (y)B) (2,28)

où r est la troisième observable formée des grandeurs u(x)A et u(y)B
suivant le procédé de § 1. Le 2ème terme est défini par

r(uW)(x)A, u^\y)B) ÄD&-) (x, y)AB

h ((a, grad) 4 1 d, 4 jß)AB D<*+> (x - y, t - r) (2,29)

Il est une deuxième solution fondamentale spinorielle mais
antisymétrique. Elle a été introduite par Dirac La fonction scalaire
symétrique D(1+), solution de l'éq. de de Broglie, est l'analogue
de D»-> (2,15):

D&+) (x, t) F-1 2 cor -1 cos (fe x - cor t) (2,30)4)
I"
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Elle a les propriétés suivantes:

lim D<1+>(S,i)= (\x |2 -t2)-1
|ï|»-f-o (2,31)
dt D<i+) (œ,0) - d, D<1+> (x, 0) 0

/ (d x) » d„ dr D&+) (S, 0) oo / (ci x)3 x £>«+> (î, 0) ~ 1 (2,32)

La fonction D(1+> décroit fortement (prop, à e-"R) pour P2 ;> x-2.
En vertu de (2,32), on a donc le droit d'écrire

lim *D<1+>(5,0) ô(x) (2,33)

Sa singularité sur le cône de lumière est déterminée par (2,31)
(1ère éq.). L'application de (1,17) est intéressante entre les
observables TJAB r(uA,uB)+... et uc. Le développement de Fourier
(2,28) et (2,25) pour TJAB et (2,9) pour uc, donne le résultat

h
r {U(x,y)AB, u(z)c) -BM (z - x)CA u(y)B

-B^)(y~z)BCu(x)A) (2,34)

Ainsi, au temps t r, la valeur de u(x)A peut être connue
simultanément avec toute valeur g(y) sauf pour x y. Or, a fortiori,
q (x) peut, à un temps t donné, être connu simultanément dans tout
l'espace.

§ 3. Le champ de de Broglie.

La double fonction TJ (x,y)AB en (2,28), dont dérivent W et T,
étant antisymétrique en x A et yB, l'application (2,3) montre que
o J 0 parce que oc''^ est symétrique. Par contre, la matrice
antisymétrique (j ß)AB permet de définir une densité scalaire J (2,3).
Notre champ de Majorana ua (A 1,3,5,7) se montre donc in-

suffisant pour décrire une réaction sur un champ Maxwellien (E, B),
mais apte à influencer un champ scalaire cp. Cette réaction est
contenue dans l'équation inhomogène de de Broglie équation de

Yukawa neutre)

(A - u2 - d2)cp(x,t) - e'J(x,t) (3,1)

Nous lui donnons une forme causale (analogue à celle de l'équation
de Majorana) en introduisant deux composantes cpa (a 1,3)
cpx cp1 cp; cp3 cp3 ß~x dt cp. ju,-1 est une nouvelle longueur
fondamentale caractéristique du champ de de Broglie. L'évolution
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temporelle de cpa (x, t) est alors donnée en termes de <pa (x, 0) et de

Ja (x,0) (Jx J; J3 0) par
dt <pa Rab <pb + /e""1 e' ij> Jb

Bab^-iabu+~(i + l)AA*) <3'2)

2 H

La densité d'énergie (W T44; T (Tt); Tt T* T4») est (en
termes de cp)

T,v=- (d, cp) (d, cp) + ig^ ((da cp) (d« cp) + u2 cpcp) (3,3)

En vertu de (3,1), sa divergence vaut

0V Tfâ e'Jd»cp (3,4)

L'influence qu'exerce ce champ cp sur le mouvement des paquets
d'ondes de Majorana TJab doit s'exprimer dans l'équation de
l'évolution en t de cette double fonction (cf. (2,12) pour l'opération
Qab)--

àt uA QAB uB + e' (jß)AB cpuB (3,5)
Il en résulte

d, Tfa -e'Jd"cp (3,6)

(3,4) et (3,6) montrent que la théorie satisfait au principe de conservation

d'énergie. On s'intéresse surtout à l'évolution des aires
d'incertitudes r(cpa (x,t), uA (x',f))=r(cpa, u'A), r(uA, u'B) et r (cpa, cpb').

La première de celles-ci est donnée par (3,1) et (3,5), soit par

àt r (cpa, u'A Bab r (cpb, u'A) + Q'AB r (cpa, u'B)

+ e' rfl cpc' r (cpa, u'B) + s' rfl u'B r (cpa, cpc') (3,7)

4 e' iab e' fi"1 r (J6, u'A)

Ici, on a remplacé (jß)AB cp' par le symbole rfB cpB avec ¦]iAB=(jß)AB
et r]3AB 0.

Nous essayons l'hypothèse suivante: Les valeurs d'une
composante cp (x,t)a cpa et d'une composante u(x',t)A u'A au même

temps t peuvent être connues simultanément:

r (9a, AA) 0 (3,8)

Cette hypothèse réduit à zéro le 1er membre et les trois premiers
termes du 2ème membre en (3,7). Les deux termes qui restent sont
alors liés par

r (<Pa, Vc) VaB ub - h f*"1 à (x - x') i/ r,eAB uB (3,9)**)

*) i, fc et l sont les matrices a deux lignes ij> iab de (2,4b) avec a,b 1,3.
**) Le dernier membre a été transformé suivant (2,28) et (1,17) soit:

i]bCDr(ir(uc, uD), u'A) hrjbAOucô (x-x').
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Le deuxième membre de cette relation a déjà été transformé par
l'application eie (2,3) et (2,34). Le résultat (3,9) est une identité en uA,
si l'aire r (cpa, cph') vaut

r i<Pa, 9b) -h u-1 iab ô (x -x') (3,10)

Ecrit en termes de cp et de dt cp ces aires sont

r(cp(x,t),<p(y,t)) 0

r (<p(x,t), dt <p(y,t)) h ô(x - y) (3,10a)

Les relations (3,10a) sont indépendantes de la constante de couplage e'.
Elles doivent ainsi être valides, même pour un champ de de Broglie,
qui satisfait à l'équation homogène (2,11), (3,10a) et (2,14),
déterminent l'évolution temporelle sous forme covariante:

r (cp(x,t), 9Çy,A) h D^ (x-y,t~r) (3,11)

où P/0-> est la fonction fondamentale antisymétrique (2,15). L'analyse

de Fourier du champ cp peut être exprimée par

9(xA)t= <7«î)~è (Pk cos (kx - cor t) + q% sin (kx - cori))

(2 cor)-* (p% S (k,p \x)+g$S(k,q\ x)) (3,12)

9(x,t) =y,9k
k

Elle amène au résultat désiré (3,11) si

ripk'ÇA') àt*> h

i- (Pt, Pk') =r(q%, qp) 0 (3,13)

On démontre (3,11) en appliquant (1,6). Le point représentatif

dans l'espace multidimensionnel p%, qp ne peut jamais être
localisé dans un plan p% qp que à l'intérieur d'une surface
d'incertitude

2nr(pt,qt) 2nh (3,14)

Les aires ont ainsi la surface 2 nh et leur contour C est parcouru
dans le sens positif. Introduisant le rayon P2ï=P2î4ç22r et l'angle
órentre le rayon vecteur et l'axe pr, l'aire (3,14) d'incertitude vaut :

2 7tr(|P2r,ór) 2nh (3,15)

Elle équivaut à une relation d'incertitude

\A ór A P2r >2nh (3,16)

On arrive àia détermination optimale de RYp, si l'on renonce à toute
connaissance de l'angle ór. A ór prend alors sa valeur maximale 2 n.

*) äpp 0 ou =1 suivant que fc £ k' ou k k'.
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Le point représentatif d'un tel état est situé à l'intérieur d'un
anneau, construit de deux cercles concentriques, dont la différence
du (carré du) rayon vaut

A P2r 2 h (3,17)

L'état à rayon minimal est celui où la valeur moyenne vaut

P2r h (3,18)

Sa surface représentative est le cercle de rayon V2 h ¦ Les états
consécutifs sont des anneaux, dans lesquels la valeur moyenne
vaut:

P2r^=2fc(% + i); JVr 0,1,2... oo (3,19)

Nous nous heurtons ici à la même contradiction qu'en § 1. Il faut
que toute observation de P2 donne une des valeurs de (3,19).
Ainsi, toute observation de P2 nous fournit la certitude que P2r vaut
R2m% (A P2|- =0), tandis que A <5r =2 n reste fini. Ceci est en
contradiction avec (3,16). Nous ne voulons pas trancher ici la manière par
laquelle le calcul vectoriel crée une représentation géométrique
analogue à celle donnée au § 1, et qui évite cette difficulté*).

Pour définir la densité d'énergie nous remarquons que toute
double fonction symétrique W (x,y) W (x,t; y,r) permet de
définir un tenseur T „^ apte à décrire la densité d'énergie par la
dérivation

TMV(W) lim (- d„ dJ 4 g,v (da d" + fi2)) W (x,x') (3,20)

si analoguement à U (x, t; y9r) on définit une double fonction:

W(x,t;y,x) cp(x,t)cp(y,x)- <pVD (x,t) <pVm (y,T) (3,21)

Le 1er terme de (3,21) satisfait évidemment à (3,1). Si le
second terme est une double fonction <p(FD> (x) cp(FD> (y), solution
symétrique de l'équation homogène ((3,1) avec e' =0), la loi de conservation

(3,6) résulte quand même. Le développement de (3,21) est

W(x,t;y,r)
=22 K cop)-* g (t,r) ïaSa.S (laß) S (Va'fi') (3,22)**)

ka k'af

Il est analogue à (2,23) si l'on exprime g par:

9ka,Pa> I « (t)% a' {A)p - ï h c5rr- ôaa. (3,23)

*) La démonstration la plus simple est fourni par le calcul opêratoriel.
**) La sommation sur a et a' implique que les deux symboles parcourent

chacun les valeurs p et q.
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L'énergie totale vaut (si e' 0) (cf. (3,19))

tfm 2#î=2(l «*(pl + à) - ihcot)=yihœtNV (3,24)

Nous sommes ainsi arrivés à la conclusion suivante:
Un champ scalaire cp de de Broglie, qui exerce une influence

sur le champ spinoriel uA, doit satisfaire à un principe d'incertitude
(3,11), qui a pour conséquence que son énergie totale H(W) est
composée par l'énergie des ondes périodiques sous forme de quanta
d'énergie h cof. h est la constante introduite pour le champ de

Majorana. S'il existe plusieurs champs cp qui agissent tous sur
plusieurs champs uA, la constante h a toujours la même valeur, h est

ainsi une constante universelle, la constante de Planck, h entre ainsi
en parallèle avec la vitesse constante c (de la lumière). La différence
entre cp et uA se manifeste en ce que les quanta de cp doivent être
considérés comme des particules suivant la statistique de Bose-
Einstein (BE). Celle-ci résulte du principe de Heisenberg (3,13)
de la même manière que la statistique de FD était la conséquence
du principe de Pauli (1,14).

Nous ajoutons ici une remarque utile pour toute application:
Le deuxième terme de W (x, y) en (3,21), (3,23) et dans le

troisième membre de (3,24) provient de

cpW (x,t) <pW> (y, r) \ h D&+) (x ~y,t-r) (3,25)

On peut, formellement, le considérer comme formé par un deuxième
champ scalaire <p<FI>) (x,t), solution de l'équation homogène, mais

avec des coefficients pf et q%, qui remplissent les relations de Pauli
(1,14) eie la statistique FD.

De même, le deuxième terme de la double fonction TJAB en
(2,28) du champ de Majorana peut, formellement, être interprétée
comme l'aire d'incertitude d'un deuxième champ ulE) solution de

la même équation comme uA, mais avec des coefficients p%a et qpa
qui remplissent les relations de Heisenberg (3,14) eie la statistique

BE.

§ 4. Le champ de Dirae.

Pour décrire une influence du champ uA sur E et B, il faut
pouvoir définir des matrices antisymétriques aptes à former q et J.
On peut considérer

(ja.) s i x oc ; j i x 1 (4,1)

comme de telles matrices, formées par produits directs entre la
matrice i (à deux lignes) et les a, 1 (à quatre lignes) (2,4b). (4,1)
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sont ainsi des matrices à huit lignes, j a les coefficients nuls,
sauf j12 - j21 j3i - ji3 etc. — 1. De même, ja.AB vaut
0«)l2 - 0«)21 «11 «22. etc-

A la place de 1 dt et (oc, grad), on introduit les matrices Dt et
(oc, D) définies par

DtAB=ôABdt + jABe0(x,t)
DAB=ôABgrad-jABeA(x,t) ['>>

dans l'équation de Majorana, qui devient alors l'équation de Dirac
(dtuA->DtuA; grad uA DuA) (2,12). uA a maintenant 8 composantes

A 1,2,3... 8 au lieu de A 1,3,5,7. Le quadrivecteur

Q j^jABjjAB. J {jï)4*VAB (4,3)

satisfait à l'équation de continuité, tandis que le tenseur T>*v Tfö,
(défini par (2,22) avec DAB à la place de dr ôAB) possède la divergence

dtW{ü) + divf(V) eEJ$0 (4,4)

E est relié aux <P et A par (0,5). La définition habituelle de l'énergie
électromagnétique satisfait au théorème de Poynting

àt W(max) 4 div T(max) - sÊJ (4,5)* *)

si le champ de Maxwell B (Bik) et E (Pi4) forment un tenseur
antisymétrique PA„ d'espace temps solution de

div Ê eq; rot B - dtÈ - e J (4,5a)

Une analyse (analogue à celle faite pour le champ de de Broglie)
montre que l'énergie et l'impulsion portées par toute onde plane et

périodique du champ de Maxwell doit être quantifiée suivant la

statistique BE. iî(max) et P(max) ont ainsi la forme (2,26) avec
%„ 0,1,2... «ao.

Nous remarquons qu'à une substitution (0,3) correspond la
transformation

u(x)A (e-'*W)AB'u(x)Br (4,7)

Elle représente une rotation dans chacun des plans 12, 34, 56 et
78, qui sont les plans complexes de (0,4).

*) La constante e, qui dépend du choix du système d'unités du champ
électromagnétique, n'est pas à confondre avec le e 1) introduit dans la discussion qui
suit (1,12) au § 1.

**) Wmnx est à corriger par un terme analogue à (3,21) et suiv. enlevant la
zéropoint énergie.

13
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En l'absence d'un champ électromagnétique, la solution «r de
Dirac peut être écrite comme la combination de deux champs de

Majorana (2,9a), A tout fc appartiennent maintenant quatre
polarisations indépendantes. Soient a^ et t^ des spineurs, c.-à-d.
deux solutions de l'équation (2,9a) pour un premier champ de

Majorana (avec des composantes nulles pour A 2,4,6 et 8),
soient ct® et t<?> les spineurs d'une solution d'un second champ de

Majorana avec les composantes Af=jAB A£ et t®= — jAB ct^> pour
A 2,4,6 et 8 (et avec des composantes nulles pour A 1,3,5 et 7).
Alors on peut considérer, à la place de la solution de (2,9a) avec
les deux constantes p& et q& une solution de Dirac où - t(1> et

1 k al ^k al A

o^ au deuxième terme de (2,9a) sont remplacés par Af ja(V et
o-(2) oT(i) Nous appelons les coefficients de cette onde p& et a-S

A l A rr ^ka+ ^-ka+'
Linéairement indépendante de cette solution est celle où l'on pose au
premier terme — r^> et o-W (pour aA et rA (en 2,9a)) tandis que le
second s'écrit par ct® — ÌxÌa e^ za — JaA- ^n a amsi
transformé

o o
>

o o

Pkal 1% a+ •> Ik a 2 ~ 1k a — (Afl\
9f c 1 ~ P* a- ' Pko2~nka-

Cette substitution laisse invariantes les considérations du §1. Ce champ
de Dirac satisfait ainsi à (2,7) comme le faisait le champ de Majorana)

avec A, B Ì à 8. Elle permet d'écrire les solutions
particulières dans la forme

«ta* ^((PJLi1 ± C± j) ^X±mtl))AB OB (4,9)*)

La charge électrique totale vaut (A 4, —

eW) e f (dx)3 q(U)= £ epaX ^eh(Nta+ - N%aA) (4,10)
k a /\ k a

Une onde u%aX à «polarisation» X=+, — porte N%aX 0 ou 1)

quanta qui contribuent à la charge ± Nka±e avec

e eh (4,11)

La charge électrique est ainsi quantifiée en ce que l'on n'observera,
par onde, que des multiples entiers (0 et 1) de ± e. La charge positive
ou négative est contribuée par les ondes particulières (4,9) à

fréquence positive (+ cor > 0) ou négative (— cor < 0) dans l'exposant
complexe de (4,9).

*) (*V= "öV ÔA* + TT 1aB +TT Îa° f°B+ ¦ ¦ ¦ ^'^* ÔaB °os *
+ jAB sin cp
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§ 5. Le champ de Schroedinger-Yukawa.
On peut faire agir sur le champ de Dirac le champ de de Broglie

de la même manière qu'en § 3. Mais il existe encore une autre
possibilité: Celle-ci est représentée en introduisant en plus du champ de

Dirac, qui représente des quanta chargés à spin 1j2, un deuxième
champ portant des quanta neutres (non chargés) de spin 1/2 soit
un champ de Majorana. Ceci demande une augmentation du
nombre des composantes de 8 à 12. Elle permet d'introduire des
matrices antisymétriques à 12 lignes X a.1*. Soient

/0 -Ôc 0\ /0 -1 0\
X* h 00); Aoc4s|i 0 0)= A (5,1)*)

\0 0 0/ \0 0 0/
les matrices qui définissent le courant électrique (A,B 1,2,., 11,12) :

Jm (Xa)AB TJAB; g J4 (X^)AB TJAB (5,2)

qui est ainsi porté par les 8 premières composantes du champ uA.
En Dt et D la matrice X est substitué à j. Les deux matrices rf

/0 0 jß\ /00 -jß\
rA= 0 0 jß ; v2 { 0 0 jß) (5,3)

\jß jß o) \-jß jß 0 J
sont aussi antisymétriques et permettent de définir deux densités
scalaires (a 1,2) (j ß est la matrice à 4 lignes du § 1).

Ja ^aAB JJ^, ^«-^^i«»^ (5,4)

A leur tour, ils peuvent être utilisés pour influencer deux champs de

de Broglie cp1 et cp2 par l'action décrite en (3,1) (éq. de Yukawa
avec des charges). Les lois de la commutation entre les matrices X

et rf (5,4) montrent que

d, Q(V) 4 div J(U) e' (cp1 (- J2) + cp2 J1) e'Ab cpa Jb (5,5)**)
D'autre part, les grandeurs

J(ÏF) 91 (grad cp2) - cp2 (grad cp1) —lim gradri*6 W (x,y)ui
z=y (5,6)

Qm -91àt 9'2 Y- 92 àt cp1 lim driabìP (x, t; yr)ab

satisfont à

dt q(V) 4 div J(W) e' (cp1 J2 - cp2 Ji) -e'iabcpa Jb (5,7)

*) œ et jß sont, à partir de maintenant, des matrices à 12 lignes, soit
0 0\ /jß 0 0\ /10 0"

0 a 0 j ; jß I 0 jß 0 J ; a4 1 0 1 0

K0 0 a / \0 0 jß) \0 0 1

**) Dans les considérations qui suivent on a posé A «S 0.
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si les cpa satisfont à (3,1) muni d'une indice a 1,2. La densité

q= Q(U)+ 6($) es* ainsi conservée. De même, l'énergie W=W,V)+
W((p) satisfait à (2,21).

La transformation de jauge du champ uA garde sa forme (4,7)
avec A à la place de j.

Substituée en (5,4), elle produira une rotation dans le plan
a'6 1'2-

Ja=^(e-i%b'Jv (5,9)

Ceci est en parfait accord avec l'action du champ de Maxwell*-*¦¦*¦.•.E, B, sur cpa, si celle-ci est représentée par la substitution des

opérations Dtab cph et Dab cpb à la place de dt cpa et grad cpa en (3,1) et
(5,6)*). Le champ cpa subit ainsi la même rotation (5,9) que Ja*).

Le terme Tfâ. T,»" + T^, définissant W,w., peut être formé

par contraction d'une double fonction W (x,y)ab, qui est la fonction
(3,21), les cp étant munis d'un indice a (cpa et <pb). La densité de

charge (5,6) doit être formée de la même manière (cf. deuxième
identité en (5,6)).

Nous passons maintenant à l'aire d'incertitude r(cp(x,t)a,
cp (x',f)b). Pour ceci, nous transcrivons l'équation pour cpa en (3,2)
où l'indice a parcourt dès maintenant les valeurs a 1 à 4:

1àiq>1; 9V= fi-1dtcp2;
0

Une équation analogue à (3,7) est ainsi obtenue pour l'évolution
des aires, la seule différence étant que l'indice a, b, parcourt les
valeurs de 1 à 4 avec v3 r]4, 0. i et j sont les deux matrices à
4 hgneS t- lx*; j ixl (5,10)**)

qui relient cpx k cp3, cp2 à ç?4 (i) et cp-, à cp2, cp3 à cp. (j).
Avant de discuter (3,8) et (3,9), nous calculons l'aire d'incertitude

entre Wab cpa cpb —... et cpc' qui résultent de (3,8) et (3,9).
Des grandeurs ainsi obtenues, nous formons, en utilisant (1,6a) :

r&ab, (Pc) J'c=-h z^-1« Hc+9b i,,) à (x-x')rfABU(x,x')AB (5,11)

On peut s'en servir ponr déterminer la fonction r (fi — x')ab intei-

r{<Pa, 9b) - T (x - x~')ab- (5,12)

La définition de Wab a pour conséquence

rJWob, 9c) ~ <par. (x -x')be + 9br(x. - x')ac (5,13)

*) Dtab ô, ôabj iab e 0 (At); Dab grad fij> - iabel (x,t).
**) en Dt(b et Dab de la note *) i est à et remplacer par j.

1 9i, 9% 92, 9s ¦ rJi-, J,-- <J%\ Js J,
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La définition Jc rfAB TJ (x,x)AB montre que la seule manière de

satisfaire (5,11) identiquement en Jc est de poser

r(x-x')ab hfi-1iabô(x-x') (5,14)

Ceci réduit (5,12) à (3,10). Les deux champs cp1 et <p2 satisfont ainsi,
chacun séparément, à (3,10a) ou (3,11), que nous exprimons dans
la forme analogue à (2,7)

r (9 (x,t)a, 9 (y,t)b) P(_) Ifi-'y'A- x)ab (5,14a)

en termes de' (2,15) avec l'indice a, b 1,2:
£(-> (xA)ab - I*"' (- *, ~ t)ba Kb D^ fiA) (5,14b)

Cette théorie quantifiée du champ de Schroedinger a été proposée
par Pauli et Weisskopp5). Remarquons, que les composantes u9
à u12 du champ de Dirac-Majorana ua impliquent la théorie du

neutrino, c.-à-d. leurs quanta (à quantité de mouvement hk) ont
les propriétés du § 2 : Il n'est donc pas nécessaire de concevoir un
« antineutrino ». Par conséquent, l'angle x (t) entre le rayon vecteur

cpx, cp2 et l'axe cpx dans le plan 1,2 peut être déterminé aussi exactement

que désiré, aucune limite n'étant imposée à 952i4-c/)22. Le même
est vrai pour le rayon vecteur dt cpx, dt cp2. Ceci permet de déterminer

simultanément % (t+dt). Ce résultat est en contradiction avec
la 2ème restriction (éq. (0,7)) eie l'introduction.

Pour y remédier, nous proposons de renoncer à l'hypothèse (3,8)
et de la remplacer par l'hypothèse moins forte.

lim r (mab ¥ (v')ab, XAB U (v")AB) 0 (5,14)*)
v', v" » pr3

mabétant une matrice quelconque à 4 lignes (a, &=1,2,3,4). En
multipliant (3,7) avec cpb et u'A et en le symmétrisent en trouve la
conséquence qu'à la place de (3,9), on doit demander que, (pour
les expressions moyennes) l'aire r satisfasse à

f
lim r(W(v')ab, cp(v")cJ(v"Y)

V''V">}^ - h u-1 (cp (v')a i,x 4 9 (A)b iac) -^rr J (O. (W*)
D'autre part, il résulte de (5,12)

" A"lim r(¥(v')ab,cp(v'')A -(f(v')ambc+cp(v')bmJ-T-- (5,16)*)
v',v"y)pr* ¦¦ v v-

si la fonction r a la propriété

lim f(dx)3z(x)ab=mabf(dx)3ô(x)=mab (5,17)*)

*) f(v) est la moyenne d'une fonction f(x) définie par (0,9). v'" est défini en
(2,20) comme étant le volume commun à v' et v".
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Le champ cp (v)a ne contient que les basses fréquences | fc | -A. u. En vertu
de (3,2) dans l'approximation e' 0, cette partie de cpa est solution de

Ot 9 (v)a ÇQ. — fi iab 9»» /" 9 (v)b iba (5,18)

On peut le décomposer en deux groupes cp (v)a± qui satisfont
respectivement à

dt 9 (v)a± T/i JA 9 («).±; 9 W 9 (»)«+ + 9? («)«- (5,19)

Si e' 4: 0 le groupe cp (v)a+ ne sera, essentiellement, influencé que
par la partie J (v)a+ de J (v)a, qui ne contient que la fréquence
4 cor &5 ^. (5,19) est alors satisfait. Nous imposons encore une
cwire restriction à (5,14) et (5,15) en demandant que ces relations
ne soient valables que dans la forme

r (M)(A), N (v")) P (v') X^rr (5,20)
v v

où M, N et P sont des grandeurs invariantes par rapport à des

substitutions de jauge. N cpe Jc est une telle variable, Wab ne
possède cette propriété que si on le multiplie avec une matrice mab

commutant avec jab et si l'on contracte les indices (M mab Wa^).
Le deuxième membre prend alors automatiquement cette forme
invariante.

En plus de cette restriction (v', v" ^> fi~3; (mj)ab (jm)ab) il
convient de redéfinir les moyennes f (v) par

t + iT
f(v)=v-1T~1f(dxA f dt'f(x,t') (5,21)

V t-i T

Cette définition permet la transformation suivante du deuxième
membre de (5,15) dès que T j> /u-1:

mab 9b± ia Jc (A) m 9± iab mcb Jc (v')
m 4 fi-1 (dt cpa±) mca J* (v')
m - fi-1 9± mca dt J° (v')

m± mabcpb±ja°Jc± (v')

^±m°b<pb±ja°Jc(v') (5,22)*)

On a d'abord utilisé (1° identité) le fait que la matrice mab**)
commute avec iab. Ceci est le cas pour jab, iab et ôab qui suffisent à former
les moyennes de o(lF), J(\P),W(ip) et T<\ny Ensuite (2ème identité), on
a substitué (5,18) et (3ème identité) on a intégré par parties sur t'

*) L'argument (v') signifie, que la moyenne de toute l'expression est prise
suivant (5,21).

*) mab doit être symétrique vu la définition de M.
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en (5,21). Comme T est grand par rapport à la période fiA, ce n'est
que la partie Jc+ qui contribue à la moyenne (5,21) si l'on s'occupe
de la partie cpb+. On peut donc substituer (4ème identité) l'équation
(5,19) à laquelle satisfait cette partie Jc+. Finalement (5ème identité),

on écrit formellement encore une fois Jc pour Jc+ afin
d'arriver à une expression très semblable au 1er membre, ± jac étant
substitué pour iac. Ainsi (5,15) prend la forme

lim r (W (v')ab, cpc J" (v")) =-hfi~1 ((<pa+ - cpaA jb°
Av",T*y>^ +(9b+-9bALe)Jc(A) (5,23)*)

La comparaison avec (5,16) montre que l'identification (5,17) et

tfi - x')ab Thfi-1 jab ô fi - x') si cpa+ > cv (5,24)

(ou ô fi) est une «fonction ô fi) » qui peut s'étendre sur un volume
v ~ fi~3) présente une deuxième alternative, différente de (5,14)

par la substitution de ± jab pour iba. Il est à remarquer que (5,23)
et (5,16) avec la condition <pa+ ^ cpa_ ne déterminent x fi — x')ab
que pour les composantes a, b 1,2, parce que J3 Ji 0.

(5,24) peut être mis sous forme covariante, si l'on identifie ôfi)
avec la fonction fi D<1+) (5,0) ((2,32) et (2,33)). Ceci implique que,
dans (5,14a), on doit substituer

DH (x,t)ab - D(-) (- x, - t)ab + jba D»+) fi, t) (5,25)*)

avec la fonction (2,30). Il exprime dans sa forme (a, b 1,2)

r (9 (»)«> 9 (»)») T jab h »_1 u'1 (5>26)

que l'angle x (0 entre l'axe cpx et le rayon vecteur cpx, cp2 peut être
mesuré avec toute la précision voulue (A x (t) -> 0) pourvu qu'on
prenne un champ 9'i24c/)12 ^>h (v fi)-1. Mais la singularité (2,31) de
£)d+) implique (pour a, b 1,2) :

r (àt 9 (v)a, dt cp (v)b) + jab oo (5,27)

C7ec* signifie que le point représentatif du rayon vecteur dt cp-,, dtcp2

ne peut être localisé que dans une bande Adt cpx fini, Adt cp2

infini. L'angle x (t 4 dt) ne peut ainsi être connu qu'à Ax (t 4 dt) n
près.

C'est cette deuxième alternative qui correspond à notre deuxième
restriction exprimée en (0,7).

Il faut maintenant discuter le sens physique de la restriction
9a+ > 9a-'- Elle signifie que, au temps t et dans une partie de l'es-

*) Posant partout pt pour x.
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pace (celle où cpa+ ^> çsa_), on peut connaître séparément pour les
denx champs cpa et uA, les grandeurs invariantes par rapport aux
transformations de jauge (p. ex. g,,™ et Q A, pourvu qu'on les

comprenne comme des moyennes sur des régions d'espace temps à

dimensions linéaires lt V- et Z4 ^ /i'1. Si nous choisissons en (5,25)
p. ex. le signe —, il existe, en général, des autres régions, avec
9a+ < 9a- dans lesquelles une connaissance simultanée de çwv et
de £(j7)n'est pas possible..Dans ces régions (5,14a) avec (5,25) (signe-)
est satisfait mais pas (5,23) et son corollaire (5,14). Les valeurs de

(5,14) doivent, en ce cas, être calculées en solvant explicitement
(3,7) et les équations correspondantes pour dt r (uA, uB') et dt r
(9a, 9a')-

La moyenne (5,21) de la densité de charge e o (v) peut être
transformée comme (5,22)

e o(v)ym e fii\ jbc Wa c(v)

^e fi iab jb° (cpa+ cpc++cpa_ cpc_ - (FD-termes))
E r1 (9a+ 9a+ - 9a- 9"- ~ (FD-termes)) (5,28)

On voit alors que l'amplitude (au carré) de y(,+ ?'a+ représente
la contribution positive et celle de ç>a_=ç9a_ la contribution négative
à la densité de charge e q.^portée par le champ cpa. La restriction (5,24)

signifie donc: Il est toujours possible de connaître simultanément la
distribution de charge et d'énergie séparément pour les contributions
des champs uA et q>a dans une région où la contribution de cpa à la charge
e q (v) est essentiellement limitée à un seul signe.

Pour compléter la théorie, on doit encore étudier la loi d'incertitude

qui résulte de (5,25) (avec un signe choisi) pour un champ du
type ~q> de de Broglie du § 3, qui agit sur le champ de Schroedinger.

Le champ considéré cplt cp2 de ce paragraphe (champ de

Schroedinger) exerce une action du type (3,1) sur le champ de

de Broglie, qu'on étudie en posant e J e' Wa. comme inhomogénéité

(a, b — 1,2) en (3,1)*) et en ajoutant un terme fi e' ~cp à fi2
dans l'équation homogène de Schroedinger pour <plt cp2. L'analyse
analogue à (3,7) et suivantes (avec 9- (a 1,3) à la place de cpa et
cpa à la place de uA) montre alors que le champ de de Broglie cp

satisfait à (3,11) avec un signe déterminé par le signe choisi en (5,25)
si, dans une partie d'espace, le champ de Schroedinger satisfait
à cpa+ ^> cpa_. Dans cette région, le champ y de de Broglie et les

grandeurs covariantes g™,, du champ cpx, cp2 de Schroedinger
peuvent être connues simultanément. Dans les régions où la charge

*; Pour cp(x,t).
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négative devient importante (<pa+ < 9aA, une connaissance simultanée

n'est plus possible.
Il en est de même pour l'interaction entre le, champ de Max-

x- V» i.
well E,B et.;celui de Schroedinger oxp, J^. La signification
physique de ce phénomène a été illustrée dans une note précédente6).
Nous rappelons que l'analyse de Fourier de cpa (a 1,2) peut se

faire de façon analogue à la transition des uA de (2,9a) à uA en (4,9),
si l'on passe de (3,12) à \ ..-. .-.,

9a 9a+ + &-.'=; .(2 Vcop)A(^(l p*.
+ - j Ç+) è * *~h »

k

Y- (1 P"
_

Y- j ql _) é <rr+ «T ') )a6 oy (5,29) *)

La loi (5,25) demande que

r(p^,py=r(ql + ,qO%/±)=0

La loi (5,14b), qui contredisait notre 2ème restriction, se distingue
en (5,30) par le signe + dans le second membre de la 1ère équation
(5,30). Nous voulons (sans preuve) montrer la différence physique
entre notre théorie et la théorie écartée (théorie de PauldWeisskope) :

Le passage de pi aux pi (t) se fait encore une fois à l'aide de

(2,10) (avec cor > 0). La théorie (5,14b) que nous avons écartée
avait donc l'avantage de relier les variables canoniques pr+ et qp +
par le même signe pour pr+ et pr_. Les relations canoniques ((5,30)
(avec le signe + étant remplies à un moment t 0, elles le
restaient pour tout temps t + 0, même si le champ a été influencé soit

_ *- • ^
par TJAB, soit par cp, soit par E, B. Il en est de même pour le terme
FD, qu'on soustrait. L'effet de cette différence se montre très
important:

L'énergie totale à la forme (3,24) tandis que, pour la charge,
on a analoguement au champ de Dirac (4,10) (X +, -)

em ef(dx)3e{W)=^ie%>=-21eh(N%+~N% Y) (5;31)
li K k

les valeurs observables de

& N\%x A) i (PU Y- qpx) --\\r (p%x, q%A | (5,32)

étant des multiples de h. En général, c'est-à-dire si une influence

E, B est exercée sur <pa, \ (pf, + q% Y (t) est fonction de t. Dans la

'") Les ab sont normalisés comme les aA en (2,17).
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théorie canonique écartée, on avait, comme dans la théorie du
champ uA de Dirac, pour le terme i\r\ une constante, même si la

-r- S-
dépendance prA (t) était influencée par E, B.

Dans la nouvelle théorie (5,25) avec les relations non canoniques
(5,30), \\r\ en (5,32) est une fonction de t dès qu'une influence se

manifeste. La création spontanée (qui apparaît dans la théorie
de Pauli-Weisskopp comme parallèle à l'annihilation spontanée des

quanta d'un champ uA) de paires de quanta du champ cpa (de charge
opposée) est une caractéristique de la forme canonique ((5,30)
avec +) parce qu'elle résulte du fait que \\r\ est constant. La
dépendance \ | r | (t) de t dans la nouvelle théorie enlève rigoureusement

cette contribution spontanée et ne laisse que la création
induite de paires (soit la création proportionnelle au nombre des

quanta (de cpa) déjà présent) par le champ E, B. Ce résultat est
identique à la nouvelle mécanique du point de masse6).

Genève, Institut de Physique de l'Université.
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