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Un prinecipe qui relie la théorie de relativité et la théorie
des quanta
par E. C. G, Stueckelberg.
' (15. 1. 1943.)

Résumél). D’un principe (plus général que celui de la covariance de LORENTZ)
contenant la covariance spinorielle et la covariance de jauge, la théorie de relativité
(constante ¢) et la théorie des quanta (constantes e et h) sont déduites. L’existence
d’un champ de YURAWA (‘mésolrons) montre que dés que des dimensions de I'ordre
du rayon de Uélectron interviennent, les lois de la théorie des quanta ne sont plus
celles que nous connaissons.

Introduetion.

Nous nous proposons de démontrer dans cet article que la
théorie de relatwnité et la théorve des quanta peuvent étre considérées
comme étant la conséquence d’un seul principe de relativité.

Pour énoncer les lois gouvernant les observations, nous devons
introduire certaines notions comme «systéme de Teference T, by,

«axes spinoriels u,», «potentwls electromagnemques A @». Nous
poserons comme principe que ces notons me peuvent pas étre
observées:

1° Le principe de relativité d Einstein, donne aux lois une
forme telle (covariante) qu’aucufne observation ne peut distinguer
entre deuzx systémes de Tefere'nce z, b ( systeme de coordonnées vec-
toriel x#*)),

Nous proposons de compléter ce prmmpe par les deux nouveaux
principes suilvants:

20 Awucune observation n’est possible pour distinguer entre deux
systémes u, des axes spinoriels.

3% Aucune observation n’est possible qui puisse dlstmguer entre
deuz systémes de potentiels électromagnétiques @, A ( systemes de
jauge).

La conclusion & laquelle le ler principe nous ameéne est connue
(conclusion n° 1),

L’analyse des principes 2° et 3° complete les résultats obtenus
du ler principe et nous ameéne aux conclusions n° 2 a 6.

*) p=1,2,3,4; 2t = el
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L’ensemble de ces conclusions peut étre exprimé de la maniére
sulvante :

19 Toute observation de la vitesse v avec laquelle un signal
peut étre transmis donne une valeur v <e¢. Il y a des champs
particuliers (par ex. le champ de Maxwell) pour lesquels tout
paquet d’ondes se propage avec cette vitesse limite ¢. ¢ est ainsi
une premiére constante universelle.

29 Toute observation de 1’énergie totale H; contenue dans une
onde spinorielle u, (de ler ordre et de tout ordre vmpavr) de fré-

quence wj donne pour résultat un multiple entier Hy =Nj h wj
avec Ni = 0,1.

3% Toute observation de [’énergie Hy etc. dans une onde
scalavre ou tensorielle ¢, (=spinorielle de tout ordre pair), influencée
par 'onde spinorielle u,, fournit le résultat Hz = N7 h wp avec
N,.=0,1,2,... co avec la méme valeur de h. h est ainsi une seconde
constante universelle.

4% Dans le cas particulier, ot tout paquet d’ondes de ¢@a¥ se
propage avec la vitesse maximale ¢, une grandeur bilinéaire en ug,
la charge électrigue ey, existe, qui est conservée. La charge par onde
vaut ef = 4+ Nye, avec (Ny= 0,1).

5% Entre un champ chargé uz, un champ ordinaire u, et un
champ tensoriel g7 une interaction peut exister, telle que ce nouveau
champ g7 agit lul aussi sur le champ de MAXwELL {29 et porte lui
aussi de la charge électrique ey.

La charge par onde périodique portée par ce champ tensoriel
(ou scalaire) @; vaut alors e = & Nie avec Ny=01,2,... coavec
la méme valeur de e. e est ainsi une trowszeme constante unwersellez)

6% L’existence d’'un champ tensoriel ¢ apte & porter des charges interdit
toute connaissance exacte des valeurs des composantes de tout champ u(z) ; ou
@ (), sauf celle des valeurs moyennes, prises sur des régicns spatiotemporelles plus
grandes qu’une longueur fondamentale p—* caractéristique de ce champ tensoriel.
Le méme est vrai pour les densités de charge électrique. Les contributions de la
«self énergie » & des quanta u4 les plus faibles (électrons), sont alors qualitative-
ment e?u < Hy, = hxc = melc?.

La «masse de repos » el de ces quanta légers (= des électrons au repos) doit
étre reliée & u~1 par

Mg=-"2 L= 7, ™
hp=m_ . cestla « masse de repos » des quanta de ce champ ¢ (‘masse du méso-
tron). On obtient ainsi la méme relation que celle trouvée dans une théorie clas-
sique de T'électron (proposée par Pauteur?)). u—1 est ainsi une quatriéme constante
fondamentale (longuewr fondamentale®)).
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Pour arriver & ces conclusions, nous considérons les expé-
riences suivantes, qu’on peut faire sur les composantes des champs:

Les trois composantes E; (1 = 1,2,8) qui forment le vecteur E
du champ électrique sont des grandeurs observables. Si un dispositif
pour les mesurer (appareil) nous mesure au méme endroit une fois
les trois composantes E; et une autre fois les trois composantes
différentes K, et si nous savons, pour d’autres raisons, que l'état

électrique E était le méme aux moments des deux observations, une
différence entre les E; et les E;. nous permet de constater que
Vappareil a towrné autour d’un axe. Dans le cas particulier ol cet
axe est I'axe x5, les composantes E; sont relibes aux E, par la
substitution :

E, = E; cos ¢ + Hysin &

Fy = — Ey sin & + By cos & (0,1)

E, = E, |

Cette observation combinée de E; et E correspond a une
réalité physique: la rotation de I'appareil autour d’une direction
spatiale (axe z3) d’un angle &.

Une rotation de & = 27 raméne l’appareil & sa position ini-
tiale. Elle ne peut donc pas étre constatée (li; = E). La théorie du

champ mazwellien s’occupe de telles grandeurs vectorielles E (z,t); et
= .
B(z,t);, qui se transforment suivant (0,1).

Par contre, dans les théories ondulatoires de la matiére, on ren-
contre des grandeurs spinorielles, parmi lesquelles se trouve le

spineur de ler ordre avec 4 composantes u, (4 = 1,3,5,7). Les u,
se transforment en #, suivant une loi semblable a (0,1).

Uy = Uy, COS ¥ + Ug SIn %
Ug = — Uqr SIN Y + Ug COS ¥ (0,2)

dans le plan spinoriel 1,3 (la méme loi régne dans le plan 5,7), si
Pappareil a été tourné dans Uespace physique autour de 'axe x5 par
un angle ¢ = 2 . (0,2) représente une rotation dans le plan spinoriel
1,3 par l'angle 5 = #/2. L’existence d’un dispositif pour mesurer
u4 (appareil) permet donc de constater une rotation de cet appareil
dans Uespace physique. Méme une rotation par l'angle ¢ = 2 @ peut
ainsl &tre constatée. Mais, au résultat d’une observation pareille,
ne correspond certainement aucune réalité physique, parce que la
position de tout objet tourné de 2 s est identique & sa position
1nitiale.
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A cdté du spmeur de ler ordre, les théories ondulatoires de la
matiere (théorie de SCHRODINGER) font intervenir des champs com-
plexes (u = u; + 1 uy) & deux composantes pour décrire la charge
électrique. On montre qu’a la substitution de jauge (x = x (%,t) =
fonction arbitraire)

Z=g’+ﬁ—gradx; (D=(D’——£()tx (0,3)
e e
correspond une transformation de jauge
Uy = Uy’ COS ¥ + Uy SIn ¥
Uy = — Uy  €In ¥ + Uy cOS ¥ (0,4)

entre les composantes du champ complexe. Elle represente une
rotation dans le plan complexe 1,2. Les grandeurs Mazxwelliennes

B=—0,4-grad ®; B=rot 4 (0,5)

restent 1movariantes. Si, donc, un appareil nous mesure au méme en-
droit une fois u, et une fois u,. (4 = 1,2), tandis que 1’état matériel
(décrit par des grandeurs wt4 u,, etc.*)) et Uétat électromagnétique
sont restés les mémes, la différence entre u, et u, permettra de

constater une différence entre les potentiels @, A et ', A, A cette
observation me correspond pas non plus une réalité physique.

Pour rendre impossibles des constatations pareilles ((0,2) et
(0,4)), nous demandons que la théorie contienne les deux restric-
tions suivantes:

1° L’angle % (x,t) dans «tout plan spinoriel A, B» (du ler
ordre) ne peut étre observé qu’a

Ay (z,0) >= (0,6)
pres.

20 Si I'angle y (%,t) dans «un plan complexe 1,2» peut &tre
mesuré exactement & un événement z ¢ (4 x (z,t) = 0), il faut que
la restriction

Ay (Z +de,t+dt) == (0,7)

existe pour toute mesure de y (Z +dZ, {+dt) & un événement voisin.

De 19 1l s’ensuit que 4 (x — y') = 2 4y vaut toujours aw
mowns 2 z. Ceci rend vmpossible toute constatation d’une rotation (0,2)
dans le plan spinoriel. La condition 2° donne aux dérivées de x(?f: t)
les incertitudes 40, y=40, y=00 (0,=0/0t; 0,=0/0x;) et rend ainsi

impossible d’observer A — A’ ¢t ® — &' en (0,3).**)

*) Cf. page 182.
*¥) A la place de = dans l'inégalité (0,7) tout autre angle fini renderait le
méme service.
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Dans cet article, nous proposons des principes d’incertitude
de la forme '

Au (@), du @)y > 2 |r(u()y, u)g)] (0,8)

qui, limitant les précisions 4 u (v), des valeurs observables des
composantes moyennes

w(v)y = o=t [ (d7)® u (0, (0,9)
v
(définies comme des valeurs moyennes des composantes %, et ug
prises sur des (petits) volumes v (et v') de telle maniére que (0,6)
et (0,7) soient remplis.
Les conséquences de ces deux principes sont alors les 4 conclu-
sions n° 2 4 n® 5, mentionnées ci-dessus.

§ 1. Le principe d’incertitude pour P'angle § dans le plan a, b.

Nous considérons un systéme décrit par deux variables (ayant
la méme dimension) a et b. L’état du systeme est alors représenté
par un point dans le plan @, b. Un principe d’incertitude:

(Aa)? (4b)2 > @z v (a, B)? (1,1)

exprime que le point représentatif du systéme ne pourra jamais
étre localisé plus exactement qu'a I'intérieur d’un contour C(a, b)
= const, tel que son aire (awre d’incertitude) vaut

da db = db — bda) = 277 (a, b). 1,2
u()fa gﬂm @) =277 (a,b) (1,2)

Nous définissons ce contour C de telle maniére qu’il ne contient
aucune wntersection avec lui-méme. L’aire d’incertitude (1,2) a alors
un signe défini. La plus grande précision est atteinte si C(a, b) est
un rectangle avec la surface 2z |r (a, b)|. C’est alors que (1,1) ré-
sulte avec le signe =. :

(1,1) et (1,2) montrent que, pour toute paire de grandeurs
observables a, b, il existe une troisiéme observable

r(a,b) = —r (b, a) (1,4)

r est une grandeur observable parce que 'incertitude & laquelle
la paire est soumise peut étre constatée. Si le point représentatif
est localisé dans un contour de surface 2 & r, I’état du systéme est
déterminé d'une maniére optimale. Un tel état est en général trouvé
s1 I'on fait une observation a = ¢’ sur une variable a avec la pré-
cision maximale (Aa = 0). Le contour qui détermine I’état a mainte-
nant dégénéré en un rectangle composé de deux droites de signes

12
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opposés, paralléles a I’axe b, qui coincident et qui coupent I'axe &
I’endroit a = a'.

L’aire d’incertitude AF et AG qui limite la connaissance de
deux fonctions I (a, b) et G (a, b) est représentée par I'aire 2 = r(F,G)
qui correspond & la surface (1,3). On peut considérer F' et G comme
des coordonnées obliques ou curvilignes dans le plan a, b. L’aire
27 r (I, G) s’exprime alors par la déterminante fonctionnelle

oF 0G 0G OF
da 0b  Oa O0b

{F’ G}a,b = (1:5)

si F' et G sont des fonctions linéaires, so't
r(F,G) = {F,G},; r(a,Db) ' - (1,6)

(1,6) est aussi valable pour des fonctions générales, si les valeurs
de I' et de G sont grandes par rapport & AF et AG. De méme, les lois

r (r(F, G), H)+r (r (G, H), F) + 7 (r (H,F), G) = 0
r (FG, H) = Fr (G, H) + Gr (F, H)

tiennent dans ces cas.

Un principe qui limite la précision A6 de Uangle 6 entre le
rayon veclteur et 'axe a est obtenu de la maniére suivante:

« Le point représentatif doit étre situé a lintérieur d’un
contour fixe C!(a, b) = 0.» |

Tout contour d’incertitude C (a, b) se trouve alors entiérement
a lintérieur de Cf = 0. Il remplit ainsi un domaine fini 44 de
I’angle polaire pour autant que » =+ 0.

Nous 1mposons & notre plan la condition d’étre isotrope. Le
contour €7 est alors un cercle de rayon RE:

a2+ b <R Ol=a?+b2— R2=0 (1,7)

(1,6a)

La condition 46 = 2x est remplie s1 27 |r | = @ B? parce
que, alors, le point représentatif est toujours a l'intérieur du
contour C, qui doit étre identique au contour fixe C’. La valeur
moyenne a de a est toujours nulle. Admettons que deux observations
de a fournissent les deux valeurs ¢’ et a¢’’. S1 o’ + a’’, la différence
a’ — a"” permet de distinguer entre deux états différents du sys-
téme. Or une constatation pareille serait contradictoire a la pro-
position que le systéme ne connait qu’un seul état, celul qui est
défini par la coincidence des contours C7 et C. Donc toute observa-
tion de a fowrnt le résultat a = o’ = a'" = 0.

Nous passons maintenant a la restriction moins forte: 4 6 = a.
Elle demande que la surface 27 | » | = § @ BE? ne remplisse que la
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moitié du cercle (1,7). Un état qui contient un optimum de notre
connaissance sur ¢ est représenté par un contour C formé par
Iaxe b et le demi-cercle droit ou gauche de (1,7). Les moyennes.
sont dans ces deux états

S| 2
I

ay = /h
B — o7 ‘(1,8)

ol 4/h est une constante. Une observation de a est définie par
I'opération qui nous fournit un optimum de notre connaissance
sur ¢. Elle détermine un état. Comme deux états (décrits par deux
contours ayant la méme surface 27z r) qui représentent les deux
une connaissance optimale avec un @ > 0 ne peuvent ainsi pas
exister, il faut que toute observation de a donne, ou le résultat a, ou a_.
Nous exprimons ce fait, qui est valable aussi pour b, par la loi:

a® = b2 —h | (1,9

 h est ainsi une constante physique du systéme (déterminée par la
restriction (1,7)).

C’est & ce moment que nous nous heurtons & une contradiction:
L’état déerit, ou @ vaut a, implique Ada = 0. Mais, vu (1,7), 'in-
certitude en b vaut 4b = 2 B (ot = 2 a,) = fini. Pour éviter cette
contradiction, nous étudions la nature de la troisiéme variable c
= r (a, b). Dans notre probléme, elle ne peut prendre que les va-
leurs (¢, > 0 est une constante).

c=c¢c.ouc=c¢c_ =—c¢,; 2mec, =%m R® (1,10)
Nous introduisons maintenant trois variables normalisées.

Oc.:i: ﬁ:—b’“a y:_cw ‘ (]7]1)
., b, B,
qui, toutes les trois, ont la propriété que n’importe quelle Observa-
tion fournit le résultat

a? = f2 =92 =1 (1,11a)

Elles sont reliées par ,
B = ey (Aaf(AF2- Qe s-t (112)
La valeur moyenne y de y est nullesioua =4+ 1ouf=+1
sont connues. De méme, si p est connu (y = + 1), ni 'une ni I'autre
des variables o et § ne peuvent &tre déterminées. Ceci implique une

relation du genre
r(B,y) = ea (1,13)

*
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Elle exprime que la connaissance de « implique une incertitude en
B et en y. Le facteur ¢ semble d’abord étre arbitraire. Mais les va-
leurs observables de «, f§ et y étant de méme nature (1,11), aussi
Vincertitude entre g et y doit avoir la méme grandeur

(48)% (4y)? > (27 &)

Ceci nous permet de trouver une représentation non contradic-
toire du probléme, si 'on introduit & la place du plan un espace a
trois dvmensions «, f, v. Le point représentatif doit alors étre situé:

1% sur dn disque circulaire, de rayon ¢ = 4/2 (avec un contour
ayant un sens de rotation fixe),

20 & l'intérieur d’une sphére de rayon ¢’ = 4/3.

3% le contour du disque touche toujours la surface de la sphére.

Ces trois conditions montrent que toute mesure de « est re-
présentée par un état, ou le disque est normal & ’axe «. Il coupe
alors cet axe & ’endroit « = + 1. Le rayon (au carré) de la sphére
etant alors p'2 = a® + g2 = 8, q. é. d. Les moyennes de y et f sont
y% = 2 = 1. Donec (1,11a) est satisfait. L’aire d’incertitude 2 ey est
observée, si le produit des incertitudes en « et f prend sa valeur
maximale, c.-a-d. sile disque est dans la position normale & I’axe y.
La projection dans le plan «, § est alors égale & la surface du disque,
soit 2mey = mo?y = 2my. Le facteur ¢ est ainsi déterminé a & = 1.

Le sens de rotation est arbitraire. S’1l est choisi de telle maniére
que le disque situé &y = 4 1 projette un contour parcouru dans le
sens positif dans le plan «,8, on obtient les relations cycliques
suivantes :

r(a,b) =c¢; r(b,¢c) = ha; r (¢, a) = hb

a2 = b2 =h; ¢ = 2, = h? (1’14)

L’isotropie de notre systéme permet d’introduire d’autres axes
a® et b0 reliés aux axes a, b par:

a=a"cos y — b®sin g (1,14a)
b=asiny + b%cos g .

L’analyse de ces nouvelles grandeurs physiques a® et b° doit fournir
le méme résultat que celle faite pour a et b, indépendants de la
valeur de x. La loi (1,9) ne résulte, pour a® et b? que si

ab =0 (1,14b)

c.-a-d. si toute observation du produit ab fournit le résultat nul. Ce
résultat (1,14b) est d’ailleurs obtenu directement si I'on fait ’ana-
lyse géométrique dans 'espace o fy.
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Un systéme plus compliqué est décrit par les variables ay, by,
(g, by .... @y, b, qu'on peut représenter dans un espace & 2n di-
mensions. L’analyse faite ci-dessus est d’abord valable indivi-
duellement dans tous les plans de projection a; b; (resp. espaces
a; b; ¢;) de I'espace multidimensionnel. Si 'espace multidimension-
nel est isotrope vis-d-vis d’une rotation simultanée dans les plans
ay @y et by by, les conditions
8y2 = b2 = Bl uu o= B 0 @y = 0y By =y By == wsee = U5
r(al,b)zr(al,%): .=h
doivent étre ajoutées & (1,9) et (1,14b).

La surface d’incertitude limitant A4F . AG sera malntenant la
projection d’un élément de surface (a composantes r (a;, by),
7 (a;, ay) et r (b, by)) dans les plans F, G, si ’on a introduit F = F
(@, ...), G=,H =, .... comme des coordonnées curvilignes dans
I'espace du systéme. Cette projection est donnée par

=13 _?JZ_ ;{F, Glasn, T (@s, be) (1,16)

La sommation doit &tre effectuée sur toute paire de variables
décrite par les indices ¢, k, a, b (1, k = 1,2...n; a et b chacun = q,b).
Finalement, on peut se demander ce qu’est le produit des incerti-
tudes Ar (a; b;) Aa;. Un état est concevable ou 7 (a,, b;) est dé-
terminé dans le plan a; b, laissant a, et b; eux-mémes complétement
indéterminés. Alors a, peut étre déterminé en méme temps dans les
deux plans a,a; et b, a; pour autant que 'indice k n’est pas identique
a 1. Si ceci est le cas, le probléme dégénére en (1,13). En général,
on a donc la relation de Pauri (nous substituons a; pour b;, et a;
pour ay)

(1,15)

r (T(ai, a’k); @z) =h (5izak' =2 61010'72) (1:17)

La normale du disque a le méme signe dans les deux espaces de
projection a;, a, r(a,, ax) et a, a; 7 (a; a)).

Nous appelons ces relations les relations de PauLt, parce que
les trois matrices oy = kx1, 0y = Ix1, 03 = 1x1 et § = 1x1 satisfont
a la relation cyclique*)

) (0,04 — 030,) = — 03; 032 = 0% = 0% = — j2 = (1’18)

et parce qu'il existe un caloul opératoriel qui se base sur (1,18) et
qui exprime le principe (o; = a, 6, = B, g5 = y cf. (1,11))

(da)? (48)* > (27y)? (1,19)
si + 1V(A)? oc) est la fluctuation de «.

*) Pour les définitions des matrices ¢, k et | voir éq. (2,4b).
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§ 2. Le champ de Majorana.**)

Certaines observations faites sur les rayons cathodiques (obser-
vations dont ’analyse est assez complexe) montrent quune onde

cathodique de longueur d’onde 4 =2 n [7;6 |-1 est capable de deuz
polarisations (o = 1,2). Elles se distinguent 1'une de l'autre par
une propriété vectorielle, le spin. Pour des paquets d’ondes ayant
une vitesse ¥ = ¢k (262 4 ]Tc 12)2<¢ (%' est une longueur fonda-
mentale caractéristique de ces ondes cathodiques), une théorie a
amplitude vectorielle fournit toujours frois polarisations. Pour ex-
" pliquer ces deux polarisations, on a d@ concevoir des ondes a- am-
plitude spinorielle (de ler ordre).

Des spineurs qui se transforment suivant (0,2) sont des gran-
deurs & quatre composantes (4 = 1,3,5,7), qui se transforment
suivant®): : L

uy = (0,7 cos g + (Jou) o sin g) up = (%67 Fup  (2,1)

s1 '« appareil » effectue une rotation autour de 'angle ¢ = 2 y dans
le plan x; x;, et qui changent leurs valeurs d’apres

#, = (0,F cosh y' + (’}Q)AB' sinh ') up = (€i%), Fup  (2,2)

s1 '« appareil » a été mis en mouvement avec une vitesse v = ¢ tgh2y’
dans la direction de 'axe z;. (fo1) 42 et (y,) 48 et d’autres grandeurs
sont des coefficients constants a plusieurs indices (1,k = 1 a3, 4, B’
=1,8,5,7), qu'on exprime sous forme de matrices de quaitres lignes
en A, B'. D’un spinewr de 2éme ordre U , 5, qui se transforme comme
un produit ¥ %, de deux spineurs, on peut former un scalaire, un
vecteur, etc. d’espace temps = (2#) (p = 1..4;1 = 1,2,3; 2* = ;;
xt= — x, = ct*)) a 'aide de ces coefficients constants. En parti-
culier, il existe des coefficients §8, @ et 1 tels que

= (B P Usp; S =t PU gy o= dJt =048 Uyp (2,3
Pour que (2,1) et (2,2) forment une représentation (bivoque) du
groupe de Lorentz, il faut que 1° ces matrices a; = af = (ot2 B
existent, 2° que leurs produits a;oy=((a;00) %) = (2;4€ wz ) sa—
tisfassent & | o
o0y + ooy =201 ay=—at= — ©,4)
o0 (jB) + (1B w=0; — (B (GB =—(h*=1

*) Dans les considérations suivantes, nous poserons la vitesse ¢ = 1 et { =
En plus, on pose ud=u4; asdB = ou B, Un indice yu,1, 4, B, paraissent deux fois
de suite sous forme co- et contravariante (p.ex. u}u4) implique la sommation
sur toutes les valeurs de cet indice (p. ex. 4 = 1,3,5,7). J4B est la matrice
d'unité. 0;; le tenseur fondamental ou tenseur d’umte

**) Le champ spinoriel 4 quatre composantes réelles a été envisagé pour la
premieére fois par E. MaJoraNa, Nuov. Cim. 14, 4 (1937).
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et 8% qu’elles soient reliées aux matrices jo,; et y; en (2,1) et (2,2)
par (J0)g = o0 ¥i = (16) a5 (jou)® = — v = — 1 (2,4a).

Les matrices jo,;48 = — jo ., 54 et j48= — 8B4 sont antisy-
métrique en A et B, tandis que x48= «;B4 et y48 des matrices sy-
métriques). 1= (64%) est la matrice unité. Une représentation
particuliére de ces matrices a quatre lignes peut étre obtenue sous
forme de produits directs entre les quatre matrices & deux lignes

t=(o%)s k=(o-1) t=(a) i=( o)
kl=—-1lk=—-4; li=—-4l=+4+Fk; ik=—-ki=1
% = kx1; cx2=l><71; oy =4x3; 9B =xl (2,4b)

0 010
b - s —eas(2)-(3 802)

Cette représentation fournit en (2,1) la transformation (0,2) si
X = P2 et si jo, =jop = — (1x1) (cf. (2,4b)).

Suivant ’exposé du § 1, 'impossibilité d’observer une rotation
P=2y%=2m de lappa,reil suit de la théorie, si les observations

du champ % (v) 4 sont soumises dans chaque plan 4 B 4 la condition
(1,15), soit a
, (”)A u (v)p = 45 hv? (2,9)

hv~1 est une grandeur scalaire par rapport aux rotations spa-
tiales. Elle ne peut dépendre que du volume v, dans lequel les
moyennes sont formées, si 'espace est homogéne. Pour que la loi
(2,5) soit covariante, une fonction spinorielle symétrique de
2¢me ordre D) (z — ¥, t — 1) 45 doit exister dépendant des deux
événements = (Z, z¢=1) et y = (§, y* = 1) telle que (2,5) soit une
conséquence de:

w(®, 1) (G, 7) g=h DD (&G, t~7) yg=—hDD G %, 1~1)g,  (27)

Dans le cas d'un espace-temps homogéne et isotrope, elle ne peut
dépendre que de la distance invariante R? = |Z — ¥ |2 — (t — 7)%
Elle peut étre représentée par des fonctions différentes dans les
différentes régions de U'univers (le présent (R? > 0), le futur (R? < 0,
T > t) et le passé (R? < 0, v < t) de I’événement z).

Aprés ce bref exposé du calcul spinoriel, nous continuons
Uanalyse des ondes cathodiques. La wvitesse de groupe dun paquet
d’ondes a le rapport voulu avec la longuewr d’onde, si la relation
covariante (w = k* = — k)

wp =V + k2> 05 k,kr = — 2 (2,8)
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existe entre la fréquence wy et le vecteur d’onde k. Ceci est le cas
siu 4 est une somme de termes ug, (Z,1), du type des ondes planes:

Wi, (T, 1), = VE{pg, (04 cos (k% — opt)+74sin (kT — opt))
+ gt (— 1, c08 (KT — wpt) + o sin (k% - opt)  (2,9a)
= P%a S (7;:, g, p/m)A. 5 qg—a S (Tﬂ, g, Q/ICE)A

La forme alternative avec des coefficients, fonctions de #, p(t)
et q(t) est quelquefois plus appropriée:

upo (2, 1) = 95, (8) Sk, 0, p/Z) 4+ g5, (1) S(k, 0, ¢/F)4 (2,9D)

Ces coefficients sont reliés aux p? et q° par la rotation dans le

plan pg p(t) = p®cos wt — ¢q°sin wt

q(t) = p°sin ot + ¢° cos wt (2,10)

Chaque composante %, de la fonction spinorielle est, en vertu de
(2,8), solution de l'équation covariante de DE BROGLIE

(4 —x®u=—0;u (2,11)*)

Les o/ p (x4 p=0,5) se transforment comme un quadrivecteur a* et
un spineur de 2éme ordre U, p (leurs valeurs numériques restent
ainsi invariants alll = o1V o112 = ) [’équation de MATORANA

QiPup=((—a, grad) — 78) 4" up = 0, uy (2,12)
est, pour cette raison, covariante (la relation algébrique (2,4) fait
de (2,11) une conséquence de (2,12)). La double fonction DY) (x — 7y,

t —7)4p doit &tre une solution symmétrique de (2,11). On peut dé-
montrer que

D (&, 1) 45 = ((, grad) + 10, + jBap DO (@, 1) (2,13)

est (& une constante numérique pres) la seule solution spinorielle
symétrique de (2,12) s1 DO (Z, 1) est la seule solution scalaire anti-
symétrique de (2,11). Elle a été introduite par HeisENBERG et PAULI
(au cas » = 0) et a été¢ discutée par 'auteur d’autre part4). Elle
répond, pour ¢ = 0, aux propriétés suivantes:

DO (z, 0) = 0; grad DO (z, 0) = 0; 0, DO (Z,0) = 6(x) (2,14)
Son analyse de FoURrIER est la somme

DO (z,8) = — V1D g ~tsin (kX — wfi) (2,15)
2

*) Le symbole A en (2,11) etc. étant I'opérateur laplacien dans I'espace Z n’est
pas & confondre avec le symbole de Pincertitude.
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La sommation est & effectuer sur tout k périodique en V. La
fonction
9%,y = ZZ“%A (2,16)
k o

avec (2,9a) est I'expression générale de la solution de (2,12) que
nous appellerons le champ de Masorana. De (2,7), la fonction (2,15)
résulte, si I’on considére les py et g comme un systéme de variables
physiques a; et b; ayant les propriétés (1,14). Les amplitudes spi-
norielles ¢, et 7, sont normalisées

0,74 =0; 00l =174 =1 o (2,17)%)

On remarque qu’en effet il n’existe que deux solutions Zinéairement
wdépendantes du type (2,9a). Elles représentent deux ondes qui se

propagent en durection de + %. On ne cherche que les solutions de
(2,10) avec wy > 0**) et on se rappelle que les solutions ug,, et
0; ug,4 ne doivent pas étre considérées comme linéairement indé-
pendantes vu le fait que (2,9a) contient les deux constantes p° et ¢°.

Il importe peu, si I’on impose les conditions (1,14) aux fonc-
tions pz (t).... ou aux constantes pg,, vu 'invariance de la condi-
tion (1,9) et (1,11) par rapport aux rotations (1,11a) qui relient ici,
sous forme de (2,10), p(¢) aux p°.

De (2,7) et de (2,14), suit (2,5) dans la forme:

!

I rr : v
% (v)4u (@ )pg =95 a7 h (2,20)

pour les valeurs moyennes de u, dans le volume v’ et de uy dans le
volume v"'. v " est le volume commun & v" et v'’. Toute observation
de u (v) 4 fournit donc une des deux valeurs +4/9=1h. Elle interdit la
connaissance de toute autre composante u(v)gp (B+ A) au méme
endroit et de tout u(v')z (B =, ou £ 4) 4 d’autres endroits v' + ).
L’analyse faite dans le plan a,b au § 1 s’applique & tout plan 4, B
et rend vmpossible l'observation de l'angle y (restriction 1° de Uintro-
duction ).
*) Pour la démonstration, on utilise la relation (wg > 0)
G_zl‘zaAaB:%wAIB:(EoTABw; 8, p) wF 1 (2,18)

qui résulte de la sommation X sur ¢ = 1,2 des deux solutions linéairement in-
dépendantes (et orthonormales) de

. +o0o i T g
(Ea)AB(_tB) +x(1ﬁ)AB(GB)——" wy (__TA) (2,19)
B B 4/
**) La condition w¥ >0 pour la racine de (2,8) est nécessaire pour que 'onde
se propage en direction + k.
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Pour que la théorie ait un sens physique, il faut que des gran-
deurs scalaires et vectorielles W, g et T, J (se transformant comme
les composantes W == T'44 T¢ = T#? d’un tenseur T** resp. d'un
vecteur o = J4, J? = J,) existent, qui satisfont a la loi covariante:

O, W+divTl =0; 0,0+ divd = (2,21)

et qui peuvent étre interprétées comme la densité d’énergie et la
densité de charge électrique transportée par le rayonnement catho-
dique. S1 U (z, y) 45 en (2,3) satisfait & ’équation d’onde (2,12) par
rapport & (x4) et & (yB), les o(%, 1) et J+(§, t) formés en (2,3) avec
U(z,2),5=U(z,t; T, t) 45 ont la propriété (2,21). Il en est de méme
pour les

T4—W=lim 0, U (%, t; T,7)44; T=lim a480,U(%,t; %,7),5 (2,22)
t

=t =T

Ne sont admissibles que des théories ou il n’existe aucun effet qui
ne soit en rapport avec la cause primordiale. Or, toute double
fonction U ,  symétrique en x A et y B admet des effets sous forme

des observables ¢, J et T + 0, tandis que, par intégration partielle,
on constate que l'énergie totale H*) (que nous devons considérer
comme cette cause primordiale) est identiquement nulle.

Nous devons done considérer la double fonction antisymétrique
la plus générale. Elle peut étre mise dans la forme

U (‘/E’ y)AB =72k’2 , %aa, ko' a S (k: a, G/JJ)A S (k’ﬂ Gal a”/y)B
- 229%',?? (t’ T) S (7':’ g, G’/E)A S (l?, O'” a”/y)B
=U (Es t; ?: T)AB (2323)

ou I'indice k dénombre tous les vecteurs d’ondes k, I'indice o les deux

polarisations (¢ = 1,2) possibles d’une onde % et ou @ parcourt les
deux symboles a = p,q, qui distinguent les deux solutions (2,9a) as-

sociées a tout ko. g . (tT)etg . (t7) sont des doubles fonctions
antisymétriques en ¢ et 7, qui satisfont aux mémes équations dif-

férentielles (f = 0,f) par rapport a ¢t (& v = const.), comme les paires
de fonctions
Pto=— ©F GFo;  qFo = OF PFo (2,24)
g°.... sont les valeurs initiales (t = v = 0) de g... (t..,7)
La troisiéme variable r (a(t), b(t)) associée & la paire a(t), b(r)**)
*) H(t) =f!(dx3) W (z,1).

**) a et b parcourent a = p,q.
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satisfait aux mémes équations 0,r = ...; 0, r = ... que les variables
a(f) et b(z) elles-mémes. Posant ainsi pour ¢°  les constantes

Groa®os= 37 (0o boro) + 3|70 | 057 Oorrian  (2,25)

et pourg..,.. (t,7) les doubles fonctionsen t et v (résultant de (2,24),
s1 'on prend la valeur initiale (2,25)), I’énergie totale H et la quantité

de mowvement totale P prennent les formes

H = f da:3W 220)70 (1" Pro: 9% o +|T+ =22hw}?N})ﬂ_c
k

24

§=f(dm3T:....:ZthNk6, Ny, =01 (2,26)
oo

Résumant cet exposé, on arrive & la conclusion suivante:
L’observation que certains rayons (a vitesse < ¢) ont une polarisation
vectorielle qui ne peut prendre que deuwx valeurs, nous a amené & in-
troduire un champ spinoriel de Ier ordre. Pour qu’une rotation autowr
de 27t d'un appareil destiné & observer ce champ me puisse pas étre
constatée, U'énergie par onde plane et périodique doit étre un multiple
entier (0 ou 1) de h wy ; h est une constante caractéristique de ce champ.

La quantité de mouvement est le méme multiple de hk. Le rayonne-
ment a ainsi une nature corpusculaire et peut étre considéré comme
formé de particules ou de quanta dont 1’énergie H est reliée & la

quantité de mouvement P par la relation de la mécanique du point
de masse hx.

H=+Vha)2+ | P2=hx+31hx)t|P2+.. (227

Ces particules satisfont au principe d’exclusion de Pavri, c.-a-d.
qu’elles suivent la statistique de Frrmi-Dirac (FD).
Remarquons qu’on peut écrire (2,25) sous la forme

Uz, y)ap =27 (u(@) s, u(y)p) +3r @ (2),, u® (y)p) (2,28)

ou r est la trovsiéme observable formée des grandeurs u(x), et u(y)p
suivant le procédé de § 1. Le 2éme terme est défini par

r(u®(x),, wEy)g) = hDO) (z,y)4n |
=h ((x, grad) + 1 0,+4B) 5 DD (2 —y,t — 7) (2,29)

Il est une deuxiéme solution fondamentale spinorielle mais anti-
symétrique. Elle a été introduite par Dirac. La fonction scalaire

8 Jmetmque DO solution de 1’é¢q. de pE BRrOGLIE, est lanalogue
de DO (2/15):

D) (Z, 1) =V-1 Z oy tcos (kT — wy i) (2,30)9)
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Elle a les propriétés suivantes:

_lim DO (5,) = (|7 |2 - )
| % |2—12=0 (2,31)
0; DU (2,0) = 0, DO (Z,0) = 0

Jf(dx)® 0,0, DD (7, 0) = oo [(dx)3% D) (2,0) ~1 (2,32)
La fonction DU+) décroit fortement (prop. & e *E) pour B2 > x»~2
~En vertu de (2,32), on a donc le droit d’écrire
lim » D4 (2,0) = 6 (Z) (2,33)
x-1=(
Sa singularité sur le cone de lumiére est déterminée par (2,31)
(lére éq.). L’application de (1,17) est intéressante entre les obser-

vables U, p=1r(uy, ug)+... et u, Le développement de Fourier
(2,28) et (2,25) pour U,y et (2,9) pour u,, donne le résultat

(U (@,9)a5, 0(2)g) = 5 DO (¢ — @) u(y),
DOy~ pouel) (234

Ainsi, au temps t = 7, la valeur de % (Z), peut étre connue simul-
tanément avec toute valeur p(%) sauf pour T = y. Or, a fortiori,
o(Z) peut, & un temps t donné, étre connu simultanément dans tout
Pespace.

§ 3. Le champ de de Broglie.

La double fonction U (&,y) ., en (2,28), dont dérivent W et T,
étant antisyméiriqgue en x4 et y B, 'application (2,3) montre que
o=dJ =0 parce que or48 est symétriqgue. Par contre, la matrice
antisymétrique (7 f)4E8 permet de définir une densité scalavre J (2,3).
Notre champ de Masorana u, (4 =1,8,5,7) se montre donc in-

suffisant pour décrire une réaction sur un champ Mazwellien (E, E),
mails apte & influencer un champ scalavre . Cette réaction est
contenue dans 1’équation inhomogéne de DE BroGLIE (= équation de
Yurawa neutre)

(A~ 2= 0) ¢ (&) = — &' J (&,1) 8,1)

Nous lui donnons une forme causale (analogue 4 celle de 1’équation
de Magjorana) en introduisant deuzx composantes ¢, (a =1,3)
P =@l'=@; g3 = 3= pu 10, p. p~* est une nouvelle longueur fon-
damentale caractéristique du champ de pE Brocrie. L’évolution
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temporelle de ¢, (z,1) est alors donnée en termes de ¢,(Z,0) et de
J, (Z,0) (Jy=4d; J;=0) par
0; 95 = Bl @y + =t e 1,0,
R = ~ i gt (4D 4 ) &)
2p

La densité d’énergie (W = T'44; T — (T T = T'* = T4 est (en
termes de )

Tpy= 0,9 0,0 + 9., (0, 9) (0*¢) + p2pp)  (3,3)
En vertu de (3,1), sa divergence vaut

0, Tl = & J or g (3,4)

L’influence qu’exerce ce champ ¢ sur le mouvement des paqueté
d’ondes de MagoraNa U, doit s’exprimer dans I’équation de 1’évo-
lution en ¢ de cette double fonction (cf. (2,12) pour 'opération

Q47): )
Oty = QB up+ €& (g ﬂ)AB‘ PUp (3,5)_

Il en résulte
0, Tt = — &' Jor g 3.6)

(3,4) et (3,6) montrent que la théorie satisfait au principe de conser-
vation d’énergie. On s’intéresse surtout & l'évolution des aires d’in-
certitudes 7 (o (2,1), wy (2',1)) =1 (Pay W 4), 7 (U, W'p) €6 7 (@0, @3).
La premiere de celles-ci est donnée par (3,1) et (3,5), soit par

07 (@q, ' 4) = RS T @y ' 4) + Q4" (@o; U'p)

+ ¢ ?fo ch’ ¥ (Waa rL"’B) + & 77?;13 u’B r ((pm (pc’) : (337)

+ &' b e e (Jy,u'y) | |
Tei, on a remplacé (7 8) . ¢” par le symbole #%f ¢ avec 7, B=(1B).4*®
et #*8 = 0. ‘

Nous essayons Uhypothése suwante: Les valeurs d’ume com-

posante ¢ (Z,1), = @, et d’une composante w (x',t), =u", au méme
temps t peuvent étre conmnues simultanément:

7 (@a ' a) =0 (3,8)

Cette hypothése réduit & zéro le ler membre et les trois premiers
termes du 2éme membre en (3,7). Les deux termes qui restent sont

alors liés par '

¥ (99@, (Pc) 7]_4 W’B = h M—l 5 (w - .’IZ ) T;ac 77“13 ‘uB (3a9)$¥)

*) 7, k et | sont les matrices a deux lignes i,b = 14, de (2,4b) avec a,b = 1,3.
**) Le dernier membre a été transformé suivant (2,28) et (1,17) soit:

PP r(dr(ug, up), w ) =hy?4Cu, 8 (E-%).



190 E. C. G. Stueckelberg.

Le deuxiéme membre de cette relation a déja été transformé par
Uapplication de (2,3) et (2,34). Le résultat (3,9) est une identité en w ,,
st Uawe v (@,, @,) vaut
" (ar 6) = —h pu g 6 (& — T) (3,10)
Eecrit en termes de ¢ et de 0; ¢ ces aires sont
r (@(%)t)a ‘P@;,Q) =0 . .
r((r,1), 0, p(y,1) = h (z —y) (3,102)
Les relations (3,10a) sont tndépendantes de la constante de couplage &’
Elles doivent ainsi étre valides, méme pour un champ de DE BROGLIE,
qui satisfart a Uéquation homogéne (2,11), (3,10a) et (2,14), déter-
minent 1’évolution temporelle sous forme covariante:
r(p(@,h), ¢(y,0) =h DO (z -y, t —7) (3,11)
ou DO-) est la fonction fondamentale antisymétrigue (2,15). L’ana-
lyse de Fourter du champ ¢ peut étre exprimée par

¢, t)p = (Vo) ? (pf cos (k% — opt) + ¢f sin (k% — w3 1)
= @2 op)tpt S (kp|a) +qf Sk gl ) (3,12)
¢ (@,1) = ox
k
Elle améne au résultat désiré (3,11) s1
r(PEs @) = Ok % h
r{pe, pE) =7 (¢, q%) =0 (3,18)
On démontre (3,11) en appliquant (1,6). Le point représen-
tatif dans 'espace multidimensionnel pj, ¢ ne peut jamais étre
localisé dans un plan pj g que a l'intérieur d’une surface d’in-

certitude
27nr(pr,qr) =27h (3,14)

Les aires ont ainsi la surface 2 wh et leur contour C est parcouru
dans le sens positif. Introduisant le rayon R?*; =p?; +¢% et I'angle
dz entre le rayon vecteur et I’axe pz, aire (3,14) d’incertitude vaut:

2nr (3 B%, 03) = 2nh (3,15)
Elle équivaut & une relation d’incertitude
1A6x AR >2ah (3,16)

On arrive & la détermination optimale de R2;, sil’on renonce a toute
connaissance de l'angle 63 . A 63 prend alors sa valeur maximale 2 7.

*) 0% = 0 ou =1 suivant que % + K oou k= k.
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Le point représentatif d'un tel état est situé a I'intérieur d'un
anneaw, construit de deux cercles concentriques, dont la différence
du (carré du) rayon vaut

AR =2h (8,17)
L’état & rayon minimal est celuil ou la valeur moyenne vaut
R =h (8,18)

Sa surface représentative est le cercle de rayon 4/2h. Les états
consécutifs sont des ammneauz, dans lesquels la valeur moyenne

vaut:
Ry =2h(Ng+3); Nyp=0,12. (3,19)

Nous nous heurtons ic1 & la méme contradiction qu’en § 1. Il faut
que toute observation de R? donne une des valeurs de (3,19).
Ainsi, toute observation de R2nous fournit la certitude que R?; vaut
R2y= (4 R*% =0), tandis que 463 =2 & reste fin. Ceci est en contra-
diction avec (3,16). Nous ne voulons pas trancher ici la maniére par
laquelle le calcul vectoriel crée une représentation géométrique ana-
logue & celle donnée au § 1, et qui évite cette difficulté*).
Pour définir la densité d’énergie nous remarquons que toute
double fonction symétrique ¥ (z,y) = ¥ (z,t; y,7) permet de dé-
finir un tenseur T',, 4 apte & décrire la densité d’énergie par la
dérivation
Lyoipy =1im (=0, 0," + g, (0,0 + p2)) ¥ (z,2")  (3,20)
T=r ;

si analoguement & U (Z, t;%,7) on définit une double fonction:
Y (&,t9,7) =9 @1 ey, — " @&,1) ¢¥P (y,7) (3,21)

Le ler terme de (3,21) satisfait évidemment & (3,1). Si le
second terme est une double fonction ¢@?) (z) @FD) (y), solution sy-
métrique de I'équation homogéne ((3,1) avec ¢ = 0), la loi de conser-
vation (3,6) résulte quand méme. Le développement de (3,21) est

¥ (z,t; Yy, 7)
=S (05 05)7F g (4,7) faive S (kafz) S (Ka'fz")  (3,22)**)

Fa ko’
Il est analogue a (2,23) si1 I'on exprime g par:
i T o= 3240', (t)'?c. a' (7)75-' - %h 67;70- 6& a (3:23)

*) La démonstration la plus simple est fourni par le calcul opératoriel.
**) La sommation sur @ et a’ implique que les deux symboles parcourent
chacun les valeurs p et q.
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L’énergie totale vaut (si &' = 0) (cf. (3,19))

Huy= 2 Hp =2 (b op(k+ ¢§) — dhop) = Xhop N (3,24)
2 % ,

%
Nous sommes ainsl arrivés a la conclusion suivante:

Un champ scalaire ¢ de pE BroGLIE, qui exerce une influence
sur le champ spinoriel u 4, doit satisfaire & un principe d’incertitude
(3,11), qui a pour conséquence que son énergie totale H gy, est com-
posée par l'énergie des ondes périodiques sous forme de quanta
d’énergie h wy. h est la constante introduite pour le chamyp de
Magoraxa. S’il existe plusieurs champs ¢ qui agissent tous sur
plusieurs champs u,, la constante h a toujours la méme valeur. h est
airnst une constante universelle, la constante de PLANCK. h entre ainsi
en parallele avec la vitesse constante ¢ (de la lumiére). La différence
entre ¢ et u, se manifeste en ce que les quanta de ¢ doivent étre
considérés comme des particules suivant la statistique de Bose-
EixnsteIN (BE). Celle-ci résulte du principe de HeisenBErG (3,13)
de la méme maniére que la statistique de FD était la conséquence
du principe de Pavrr (1,14).

Nous ajoutons ici une remarque utile pour toute application:

Le deuxiéme terme de ¥ (z,y) en (3,21), (8,23) et dans le
‘troisitme membre de (3,24) provient de

ED) (5,1) oFD) (5,7) = yh DUD (B —§,t — 7 3,25
¢ @) (f 7

On peut, formellement, le considérer comme formé par un deuziéme
champ scalaire D) (z,1), solution de 1’équation homogéne, mais
avec des coefficients pf et g, qui remplissent les relations de PAurx
(1,14) de la statistique FD.

De méme, le deuxiéme terme de la double fonction U,y en
(2,28) du champ de MajoraNA peut, formellement, étre interprétée
comme l’'aire d’incertitude d’un deuxiéme champ u(F® solution de

la méme équation comme u,, mais avec des coefficients py, et g,
qui remplissent les relations de HreisenBErG (3,14) de la statis-
tique BE.

§ 4. Le champ de Dirae.

Pour décrire une influence du champ u, sur E et ﬁ‘j il faut
pouvoir définir des matrices antisymeétriques aptes & former p et J.
On peut considérer .
(ja) =ixa; j=1ix1 (4,1)
comme de telles matrices, formées par produits derects entre la ma-
trice © (&4 deux lignes) et les o, 1 (& quatre lignes) (2,4b). (4,1)
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sont ainsi des matrices a huit lignes. § a les coefficients nuls,
sauf fip = — Jog = Jag = — J43 = €tc. = — 1. De méme, ja,p vaut
(ja)1e = — (j&)g1 = @13 = Qpp, ete.
A la place de 10, et («, grad), on introduit les matrices D; et
(&, D) définies par
D, B= 6,80, + 7,8¢D (z,1)

4,2)*
D, B=¢,Bgrad — 1,8 ¢ A4 (z,1) 4.2)%)

dans I’équation de MasoraNA, qui devient alors I’équation de Dirac

(04 > Dyuy; grad u, = ﬁuA) (2,12). u, a maintenant 8 compo-

santes 4 = 1,2,3... 8 au lieu de 4 = 1,8,5,7. Le quadrivecteur
e=J =B U, = (4B Uyy (43)

satisfait a .l’équation de continuité, tandis que le tenseur T#” = T3
(défini par (2,22) avec D45 & la place de 0, 648) possede la divergence

0 Wy +div Ty, =eEJ+0 (4,4)

E est relié aux @ et 4 par (0,5). La définition habituelle de 1’énergie
électromagnétique satisfait au théoréme de PoyNTiNG

¢ Winaxy + AV Topay = — B, (4,5)**)

S -
s1 le champ de MaxweLL B = (B;;) et I = (B,,) forment un tenseur
antisymétrique B,, d’espace temps solution de

div E = £0; rot"ﬁ —0,E =—¢J _ (4,5a)

Une analyse (analogue & celle faite pour le champ de pE BROGLIE)
montre que 1'énergie et l'impulsion portées par toute onde plane et
périodique du champ de MaXwELL doit étre quantifiée suivant la

statistique BE. H,,, et f’( , ont ainsi la forme (2,26) avec
Ny, =10,1,2... o0.

Nous remarquons qu’a une substitution (0,3) correspond la
transformation

max

w(2)q = (€75) 7 u (3) @47

Elle représente une rotation dans chacun des plans 12, 34, 56 et
78, qui sont les plans complexes de (0,4).

*) La constante &, qui dépend du choix du systéme d’unités du champ électro-
magnétique, n’est pas & confondre avec le & (= 1) introduit dans la discussion qui
suit (1,12) au § 1.

**) Wmax est & corriger par un terme analogue & (3,21) et suiv. enlevant la
zéropoint énergie.
13
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En l'absence d’'un champ électromagnétique, la solution w de
Dirac peut étre écrite comme la combination de deux champs de

Majorana (2,9a), A tout k appartiennent maintenant quatre
polarisations indépendantes. Soient o) et () des spineurs, c.-a-d.
deux solutions de l'équation (2,9a) pour un premier champ de
MagoraNa (avec des composantes nulles pour 4 = 2,4,6 et 8),
solent ¢ et 7@ les spineurs d’une solution d’'un second champ de
MAJORANA avec les composantes 6@ =7, # 70 et 1@=— 5, o)) pour
A =2,4,6 et 8 (et avec des composantes nulles pour 4 =1,8,5et 7).
Alors on peut considérer, & la place de la solution de (2,9a) avec

les deux constantes p2 cet g | une solution de Dirac oit — 7l et

oll) au deuméme terme de (2,9a) sont remplacés par 7@ = jo'D et

0@ =771, Nous appelons les coefficients de cette onde pE,.. et ad .
Lmeawement mdépendante de cette solution est celle ot I’on pose au
premier terme — 7' et ¢ (pour o4 et 7, (en 2,92)) tandis que le

seconfl s’éerit par 6@ = — 7 et t® = — jo. On a ainsi trans-
formé
pii_o'l:qi:d-l—; q?c“a2:q7fz_a——
A e b (4,9
T wi ™ Plo-? Proe=%%o-

Cette substitutron laisse invariantes les considérations du §1. Ce champ
de Dirac satisfait ainsi a (2,7) comme le faisait le champ de Mago-
RANA) avec A, B =1 & 8. Elle permet d’écrire les solutions parti-
culvéres dans la forme

ufos = V({7

0 N i k% + w=t)\ B *
0 kg ) eFEEg) Doy (49))

La charge électrique totale vaut (A =+, —)

€ = 8f 2 o1 = 216h(Ngoqp — Nio) (4,10)

1,0'2.

Une onde ug,; & «polarisation » Z=+, — porte N%,;, (=0 ou 1)
quanta qui contribuent & la charge + N;, . e avec

e = ¢ch (4,11)

La charge électrique est ainsi quantifiée en ce que 1’on n’observera,
par onde, que des multiples entiers (0 et 1) de & e. La charge positive
ou négative est contribuée par les ondes particuliéres (4,9) & fré-
quence positive (+ wg > 0) ou négative (— wi < 0) dans I'exposant
complexe de (4,9).

1 )
*) (*9"),43:3!—6s B+ —fA tor fAC feB+ ... @9 B=05,8cosg

+ j4Bsing.
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§ 5. Le champ de Schroedinger-Yukawa.

On peut faire agir sur le champ de Dirac le champ de pE BROGLIE
de la méme maniére qu’en § 8. Mais il existe encore une autre pos-
sibilité: Celle-ci est représentée en introduisant en plus du champ de
Dirac, qui représente des quanta chargés & spin /,, un deuxiéme
champ portant des quanta neutres (non chargés) de spin %/, soit
un champ de Magorana. Ceci demande une augmentation du
nombre des composantes de 8 a 12, Elle permet d’ mtrodmre des
matrices antisymétriques & 12 lignes A« Soient

0 -2 0 - /0 =1 0\
la=(x 00); ZAat=(1 0 0})=2 (51%
0 00 0 00
les matrices qui définissent le courant électrique (4, B = 1,2,.,11,12):
Joy= Aa)4B Uyp; o0=4J4= (Aaf)4B U,y (5,2)

qui est ainsi porté par les 8 premiéres composantes du champ .
En D; et D la matrice 4 est substitué & 5. Les deux matrices #*

0 098 0 0 —p
. Ojﬁ); = 0 o jp (5.3)
1B B 0 —-i8 78 0
sont aussi antisymétriques et permettent de définir deux densités
scalarres (o = 1,2) (78 est la matrice & 4 lignes du § 1).
o JO= 4B Uypy A" — n* A =10 n, (5,:4)
A leur tour, ils peuvent étre utilisés pour influencer deux champs de
DE BroGLIE ¢! et @2 par 'action décrite en (3,1) (éq. de Yukawa
avec des charges). Les lois de la commutation entre les matrices A
et 7* (5,4) montrent que
0s ooy + div Jigy = & (¢ (= J2)+g2 JY) = &' i* g, T, (5,5)*%)
D’autre part, les grandeurs
Jwy) = ¢ (grad ¢?) — ¢? (grad @)= —lim grad; i¢® ¥ (Z, Y)us
z=y (5,6)
o) = — @10, 9 + @20, @' = }}_m 0,1 Y (ZT,t;9T)as
satisfont & '
0oy +div d gy = &' (@1 J2 — @2 J1) = —&" b g, J,  (5,7)

*) o et B sont, & partir de maintenant, des matrices a 12 lignes, soit

Z 0 0 ig 0 0 100
x=|0 % 0}); 4§8=10 48 0); at=1=[0 1 0
00 % 0 0jp 00 1

o
**) Dans les considérations qui suivent on a posé 4= @ = 0.
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si les ¢, satisfont & (3 1) muni d'une indicé a = 1,2. La densité
0= Q)T 0w est ainsi conservée. De méme, lenergle W= WU)+
W sa’msfalt a (2,21). - i .
La transformation de jauge du champ Uy garde sa forme (4 7)
avec A & la place de j. | ‘ -
Substituée en (5,4), elle produira une rotatlon dans le plan

a,b=12, ‘Jal= (e=ix),V J,, - . (6,9)

Ceci est en parfait accord avec l'action du champ de MAxwELL
> N

E, B, sur g¢,, si celle-ci est représentée par la substitution des opé-
rations D;? ¢, et D, ¢, & la place de 0, ¢, et grad ¢, en (3,1) et
(5, 6) ). Le champ ¢, subit ainsi la méme rotation (5,9) que J,*).

Le terme T(q) T(l],l)Jr T( W) définissant T'V(,P), peut étre forme

par contraction d’une double fonction ¥ (, )., qui est la fonction
(3,21), les ¢ étant munis d’un indice a (@, et (pb) La densité de
charge (5,6) doit étre formée de la méme maniére (cf. deux1eme
1dentité en (5,6)). '

Nous passons maintenant & 'atre d'incertitude r (@ (Z,1),,
@ (z',1),). Pour ceci, nous transcrivons 1’équation . pour ¢, en (3,2)
ou l'indice a parcourt dés maintenant les valeurs a = 1 & 4:

P1= @15 Po= a5 Q3= P 10,915 ¢y = pu10;@y; .
Jy=dy; Jy=dy; Jy=dJ, =0

Une équation analogue & (3,7) est ainsi obtenue pour l’évolution
des aires, la seule différence étant que l’indice a, b, ... parcourt les
valeurs de 1 & 4 avec #3= 5% = 0. 1 et § sont les deux matrices a

4 lignes i =1xi; j=ix1 O (5,10)%%)

qui relient @y & @5, P & @y (1) €6 @1 & o, @3 8 @4 (7).
Avant de discuter (3,8) et (3,9), nous calculons l'aire d’incerti-

tude entre ¥, = @, ¢ —... et @.” qui résultent de (3,8) et (3,9).

Des grandeurs ainsi obtenues, nous formons, en utilisant (1,6a):

T (Paps @) J'0==h =1 (@0 oot @3 Tae) 0 (T —F )7 42U@,%") 45 (5,11)

On peut s’en servir pour déterminer la fonction = (& — Z'),, inter-

venant en ; =
T (Pas ) = — T(Z — T )ap- (5,12)

La définition de ¥,, a pour conséquence
(P 9) = — @aT @ —F e+ 5T (E —Eae (5,18)

Db = 06,6,0 + 1gb e D (},t); Ijab = grad b — i, be a (E,f).
**) en D, b et T)Qb de la note *) ¢ est & et remplacer par j.
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La définition J° = #4B.U (Z,Z) ,5 montre que la seule maniére de
satisfaire. (5,11) identiquement en J¢ est de poser

TE - E)a = hplind E - ) (514)

Ceci réduit (5,12) a (3 10) Les deux ehamps @, et <p2 satisfont ainsi,
chacun séparément, & (8,10a) ou (8,11), que nous exprlmons dans
la forme analogue & (2,7)

T (@ (@80 @ 7,70 =DO@E - ¥t — Do (5,149)

en termes de (2,15) avec 'indice a,b = 1,2: '
DSV (E, )y = — DO (= F, — )y, = b, D(O—‘(E t)  (5,14b)
Cette théorie quantifiée du champ de SCHROEDINGER a été proposée

par Paut1 et WEIsskoprd). Remarquons que les composantes g
& u;, du champ de Dirac-MaJoRANA 1mphquent la théorie du

neutrino, ¢.-a-d. leurs quanta (& quantlte de ‘mouvement hk) ont
les propriétés du §2: II n’est done pas nécessaire de concevoir un
« antinewtrino'y. Par conséquent, Uangle y (t) entre le rayon vecteur
@1, ¥s €t I'axe @, dans le plan 1,2 peut 8tre déterminé aussi exacte-
ment que désiré, aucune limite n’étant imposée & ¢?+¢?%. Le méme
est vral pour le rayon vecteur 0, p;, 0; @,. Ceci permet dedéter-
niinér simultanément y (¢-+dt). Ce résultat est en contmd@ctwn avec
la 2éme restriction (éq. (0,7)) de Pintroduction. |
Pour y remédier, nous proposons de renoncer & 1 hypothese (3,8)
et de la remplacer par Uhypothése moins forte. -
lim 7 (m® ¥ (v)gp, ZAB U@ =0 (5,14)*)
AL , -

My, étant une matrice quelconque & 4 hgnes (a, b=1, 2 3,4). En mul-
tipliant (3,7) avec ¢, et #'4 et en le symmétrisent en trouve la
conséquence qu’a la place de (3,9), on doit demander que, (pour
les expressions moyennes) I’aire r (.., ..) satisfasse &

im 7 (¥ ()4, ¢ (07)cJ (v')) =
RN i y
—hum (@ (V)00 + f.v(v) &) = J (@")e  (5,15)%)
D’autre part, il résulte de (5,12) \
oz

lim 7 (¥ ()55, ¢ (0")e) = = (¢ ()Mo t@ (V)5 Mac) 7 (5,16)%)
v,y us ' : : RRERRRAN s

81 la fonction 7 a Ia proprlete
lim [ (@) 7 (e = mas f (d:c )0 5) = s (5,17)%)
UDET

*) f(v) est la MOyenné d’une fonctlon f( ) deflme par (0, 9) 'u”’ est defml en
(2,20) comme étant le wolume commun a v et v’

v v
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Le champ ¢ (v),ne contient que les basses fréquences |7{: | <€ . En vertu
de (3,2) dans ’'approximation ¢'=0, cette partie de ¢, est solution de

009 (0)g 2 — wi @ (1) = i g (0)2 iy (5,18)

On peut le décomposer en deux groupes @ (v (v), 4 qui satisfont respec-
tivement & ‘ '

009 Mas 2 F 142 ¢ Oas; ¢ (0) o= 0)ar + ¢ @u (519)

S1 & +0 le groupe ¢ (v),, ne sera, essentiellement, influencé que
par la partie J (v),, de J (v),, qui ne contient que la fréquence
+ wp L u. (5,19) est alors satisfait. Nous imposons encore une
autre restriction & (5,14) et (5,15) en demandant que ces relations
ne solent valables que dans la forme

r (M)(), N (v) = P (v)

ou M, N et P sont des grandeurs imvariantes par rapport & des
substitutions de jauge. N = @, J¢ est une telle variable. ¥,; ne
posséde cette propriété que sion le multiplie avec une matrice m2
commutant avec j*% et si I'on contracte les indices (M = m® ¥,,).
Le deuxiéme membre prend alors automatiquement cette forme
mvariante, '

En plus de cette restriction (v/, v"' > u—"’; (m7)gb = (jm)ab) il
convient de redéfinir les moyennes f (v) par s

rors

(5,20)

t-ET |
f@=or 7 @ [ arf@e) (5,21)
Jer 5180,
Cette définition permet la transformation suivante du deuxwme
membre de (5,15) dés que T'> p': \

m® @y, 1,0 J, (V) L ¢l 3,0 me, IO (V)
F (0, ) ey I° (V)
Y e 0, % ()
£ M® @y o Jos (V)

L £ m® @y 40 I (V) | (5,22)%)
On a d’abord utilisé (1°identité) le fait que la matrice mab**) com-
mute avec 1,° Ceci est le cas pour 7, i,” et 6,% qui suffisent a former
les moyennes de o(p), f(tp),W () et 7’(9’1). Ensuite (2éme identité), on
a substitué (5,18) et (3eme identité) on a intégré par parties sur ¢’

IS IS IS

*) L’argument (v’) signifie, que la moyenne de toute Pexpression est prise sui-
vant (5,21).
*) mabd doit étre symétrique vu la définition de M.
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en (5,21). Comme T est grand par rapport & la période u71, ce n’est
que la partie J,, qui contribue & la moyenne (5,21) si I’on s’occupe
de la partie ®p+. On peut donc substituer (4éme identité) I’équation
(5,19) & laquelle satisfait cette partie J,,. Finalement (5éme iden-
tlte) on écrit formellement encore une fois J, pour J,, afin d’ar-
river & une expression trés semblable au Ier membre, + 7,° étant
substitué pour 4,° Ainsi (5,15) prend la forme

o uhm : T(T (/D,)a,b’ Pe Je (’D”)) =—h lu_l' ((99a+ .._ qua.—) jbu
VOSTINEE (e~ 90 0a) o () (5,28)%)

La comparaison avec (5,16) montre que ]’iden.tiﬁca.tion (5,17) et
T (.13 - LE )ab o :F h /’Vﬂl Jan 6 (‘T i :E ) Sl Pa- z Pa— (5’24)

(ou 6.(%) est une «fonction & (%) » qui peut s’étendre sur un volume
v ~ u~3) présente une deuxiéme alternative, différente de (5,14)
par la substitution de + 7,, pour %,,. Il est & remarquer que (5,23)
et (5,16) avec la condition ¢,, > ¢, ne déterminent 7 (Z — Z'),,
que pour les composantes a, b = 1,2, parce que J3 = J, = 0.
(5,24) peut étre mis sous forme covariante, s1 I'on identifie 6 ()
avec la fonction w DO (z,0) ((2,32) et (2,88)). Ceci implique que,
dans (5,14a), on doit substituer ‘

.D(_) (E)t)arb = _ D(_) (_' E’ = i)'ab e :F jba D(l + (:,E: t) (5325)*)

avec la fonction (2,80). Il exprime dans sa forme (a, b = 1,2)

7 (@ W)a @ (0)5) = F fu b0t g2 (5,26)

que 1 angle % (8) entre I'axe ¢y et le rayon vecteur ¢, @, peut &tre
mesuré avec toute la précision voulue (4y () -0) pourvu qu’on
prenne un champ ¢.2+@2>h (v p)-1. Maxs la smgularlte (2, 31) de
D1+ implique (pour a,b =1,2): :

r (02 @ (0)ar ¢ @ (0)s) = F fup 0 (5 27)

Ceci signifie que le point frepresentat@f du rayon vecteur 0; @q, 0; @;
ne peut étre localisé que dans une bande A0, ¢, = ffmfo, A0; gy = 10~
f’m’b L’angle x (t + dt) ne peut ainst étre conn Qe Ay (t +dt) ==
prés.

Clest cette deuziéme alternative qut correspo'nd @ notre deuxiéme
restriction exprimée en (0,7).

Il faut maintenant discuter le sens physique de la restriction
Pa+ > @o—: Elle signifie que, au temps ¢ et' dans une partie de 1’es-

*) Posant partout u pour x.
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pace. (celle ot ¢, > ¢,_), on peut connaitre séparément pour les
deux champs ¢, et u,; les grandeurs invariantes par rapport aux
transformations de jauge (p. ex. o(p) et ¢, U)) pourvu qu’on les com-

prenne comme des moyennes sur des régions d’espace temps &
dimensions linéaires I; = I et [4 > u=1. Sinous choisissons en (5,25)
p. ex. le signe' —, il existe, en général, des autres régions, avec
Por < @.— dans lesquelles une connaissance simultanée de Py et
de gy n’est pas possible. Dans ces régions (5,14a) avec (5,25) (signe -)
est satisfait mais pas (5,23) et son corollaire (5,14). Les valeurs de
(5,14) doivent, en ce cas, étre calculées en solvant explicitement
(3,7) et les équations correspondantes pour 0;r (u,, up’) et 0,7
(Pas ®a)-

La moyenne (5,21) de la densité de charge & Q( ) peut étre
transformée comme (5,22) _

£ pan, e, (v)

& 1% % (Pos PostPa Po- — (FD-termes))
& 4 (Par % — Po- - — (FD-termes))  (5,28)

e (V)y

IS IS IIS

On voit alors que lamphtude (au carre) de @,.=@?%, représente
la contribution positive et celle de ¢, =@®_ la contribution négative
a la densité de charge ¢ Q(lp)portee par le champ ¢,. La restriction (5,24)

signifie donc: Il est: toujoms poss':}ble de connaitre simultanément la
distribution de charge et d’ energ@e separement pour les contributions
des champs u , et ¢, dans une région ot la contribution de ¢, & la charge
e o (v) est essentiellement limitée & un seul signe,

Pour compléter la théorie, on doit encore étudier la lo1 d’incer-
titude qui résulte de (5,25) (avec un signe choisi) pour un champ du
type ¢ de pE BroeLieE du § 3, qui agit sur le champ de SCHROE-
DINGER. Le champ considéré ¢,, ¢, de ce paragraphe (champ de
SCHROEDINGER) exerce une action du type (3 1) sur le champ de
DE. BROGLIE, qu’on étudie en posant ¢ J =&’ ¥,% comme inhomo-
généité (a, b = 1,2) en (3,1)*) et en ajoutant un terme ue @a u?
dans I'équation homogéne de SCHROEDINGER pour ¢y, ¢,.-L’analyse
analogue 4 (3,7) et sulvantes (avec g; (@ = 1,3) a4 la place de ¢, et
@, a la place de u,) montre alors que le champ de pE BroGLIE ¢
satisfait & (3,11) avec un signe déterminé par le signe choisi en (5,25)
si, dans une partie d’espace, le champ de SCHROEDINGER satisfait
a @+ > @,_. Dans cette région, le champ @ de pE BroGrLIiE et les
grandeurs. covariantes ey ‘du champ ¢;; @, de SCHROEDINGER

peuvent étre connues simultanément. Dans les régions ou la charge

*, Pour &(E, £).
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negatwe devient importante (¢, = < lpam) unepconaissanee stmul-
~ tanée n’est plus possible. s ma g ) =
Il en. est de méme. pour Imteractwn entre la champ de MAX‘

WELL E, B et .celui de SCHROEDINGER O Jg,. La, mgmfmatmn
physique de ce phénomeéne a étéillustrée dans une note précédente®).
Nous rappelons: que: l’analyse de Fourier.de ¢, (¢ = 1,2) peut se
faire de fagon analogue & la transition des u, de (2, 9a) a % 400 (4 9),
s1 I'on passe de (8,12) & . - o 0 a0 .
Pa = Par T Pa = (2 T/‘w;)‘*'(Z (1pg —? @) '(’“’f“f_a’?f)f o

AR i ) oFET ) e, (5,20)%)
La 101 (5 25) demande ‘que-

'_l'r(po‘ & e B T(P*— :EZ+ )'*'ihakk"

Fr T - (5.80)
'r'(p ,c,:t)—r(q @, )—0
La 101 (5, 14b) qul contredisait notre 26me restriction, se distingue
en (5,30) par le signe + dans le second membre de la lére équation
(5,80). Nous voulons (sans preuve) montrer la différence physique
entre notre théorie et la théorie écartée (théorie de PAuLI-WEISSKOPF):

Le passage de p, f aux p, (t) se fait ehcore une f01s a l'aide de

(2,10) (avec wgp> O) La theorle (5 14b) que: nous: avons écartée
avait donc l’avantage de relier les vamables canoniques pyg . et gz ¢
par le méme signe pour pg , €t py . Les relations canoniques ((5,30)
(avec le signe +1)) étant remplies & un moment ¢ = 0, elles le res-
talent pour tout-temps i+ 0, meme si le champ 2 été mﬂuence solt

par U, B soit par g, soit par E B Il en est de méme pour le terme
FD, qu’on soustralt L’ effet de cette dlfferenoe se montre tres

lmportant ; " e _
L’énergie totale & la forme (8 24 tandls que pour la eharge
on a analoguement au champ de DIRAC (4 10) P = Ty
ey = e [ @92 ey = Serm e e - N 381

les valeurs observables de |
2 ' '
hNes () =3 05 + 452 — 4| 7 (PF2, 955 | (5,32)
etant des multiples de h. En général, c’est-a-dire s1 une influence
= i 5 y
B, B est exercée sur ¢, 3 (p,+ qf2) () est fonction de t. Dans la

*) Les g, sont normalisés comme les o, en (2,17).
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théorie canonique écartée, on avait, comme dans la théorie du
champ u, de Dirac, pour le terme % | r ] une constante, méme s1 la

dépendance py ; (1) était influencée par E, B.

Dans la nowvelle théorie (5,25) avec les relations non canoniques
(5,30), | 7| en (5,32) est une fonction de t dés qu’une influence se
mamfeste. La création spontanée (qui apparait dans la théorve
de PAaurLi-WEISSKOPF comme paralléle a I'annihilation spontanée des
quanta d’un champ w,) de paires de quanta du champ ¢, (de charge
opposée) est ume caractéristique de la forme canonique ((5,30)
avec +) parce qu’elle résulte du fait que % | r | est constant. La dé-
pendance % | r | (t) de t dans la nouvelle théorie enléve rigoureuse-
ment cette contribution spontanée et me laisse que la création in-
duite de paires (soit la création proportionmelle au mombre des

P
quanta (de @,) déja présent) par le champ E, B. Ce résultat est
1dentique & la nouvelle mécanique du point de masseS).

Geneéve, Institut de Physique de I’Université.

Littérature.

1) Cf. résumé Soc. Suisse de Physique, Helv. Phys. Acta 15, 513 (1942).

2) La quantification doit se faire suivant la nouvelle méthode qui a été ex-
posée en détail en Arch. de Genéve, 24, 193 et 261 (1942); 25, 5 (1943); cf.
aussi le résumé Helv. Phys. Acta 15, 327 (1942). p. 328 lire Z2 et Z & la place
de Z% et Z2.

%) Cette forme particuliére de I’équation de Dirac a été proposée pour la
premiére fois par Majorana, R. C. Academia de Lincei, 14, 1 (1937).

4) STUECKELBRG, C. R. Soc. Phys. Hist. Nat. Genéve 59, 49 et 53 (1942).

%) PavL1 et WEisskopF, Helv. Phys. Acta 7, 709 (1934).

) Cf. STUECKELBERG. La démonstration est faite en utilisant I’équivalence
entre cette théorie et la nouvelle mécanique proposée par l'auteur, Helv. Phys.
Acta 14, 321, 588 (1941) et 15, 23 (1942).

") Cf. STUECKELBERG, Helv. Phys. Acta 1, 225 et 299 (1938).

8) L’existence d'une grandeur pareille (la longueur fondamentale) a été
considérée depuis Pantiquité. En mathématique (géometrie) moderne elle a été in-
troduite par CAVALIERI (1635) et LETBNIZ (1684). Un exposé historique de ces idées
a été donné par F. KLEIN, Elementarmathematik vom hohern Standpunkte aus
(Springer), Bd. I (4. Aufl.), p. 231 et suiv. (1933), Bd. II (3. Aufl.), p. 203 et suiv.
(1925). En physique moderne clle a été proposée par HEISENBERG, Zs.f. Phys. 101,
533 (1936).



	Un principe qui relie la théorie de relativité et la théorie des quanta

