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Ueber den piezoelektrisch bedingten /lE-Effekt
der Seignetteelektrika

von Bernd Matthias.
(7. I. 1943.)

Zusammenfassung. Das anomale elastische Verhalten der Seignetteelektrika
wird durch eine Theorie erklärt, welche in ihren Grundzügen zum Teil in formaler
Analogie zu derjenigen des A .E-Effekts bei den Ferromagnetika steht. Der anomale
Verlauf eines Elastizitätsmoduls des Seignettesalzes kann jetzt allein aus dem
anomalen Temperaturgang der Dielektrizitätskonstanten berechnet werden.

Die Ursache der übergrossen Dämpfung von Resonanzfrequenzen, bei welchen
der Kristall unter 45° zur b- und c-Achse, und senkrecht zur a-Achse schwingt,
wird in Hysteresisverlusten gefunden; die Messungen geben eine quantitative
Bestätigung für diese Behauptung. Sämtliche Messungen werden nach zwei verschiedenen

Methoden durchgeführt. Einmal wird die Resonanzkurve dynamisch
aufgenommen, das andere Mal mittels eines geeichten Generators „stationär" bestimmt.

Man gelangt zu einer anschaulichen Deutung des Abfalls der Dielektrizitätskonstanten

mit der Frequenz von statischen Messungen bis in das Gebiet oberhalb

der piezoelektrischen Resonanzstellen der Kristalle.

I. Einleitung.

1. Dispersion der Dielektrizitätskonstanten.

Von verschiedenen Autoren ist die Frequenzabhängigkeit des
dielektrischen Verhaltens von Seignettesalz untersucht worden. Die
zahlreichen Arbeiten umfassen das Gebiet von statischen Messungen
bis in den Bereich der Dezimeterwellen, im wesentlichen immer mit
dem Ziel, die Relaxationszeit der die Seignetteelektrizität
bewirkenden „Dipole" dadurch zu bestimmen, dass nach einer
Dispersionsstelle der Dielektrizitätskonstanten {DK) gesucht wird. Man
hoffte, auf diese Weise näheren Aufschluss über die Art und
Bindung dieser „Dipole" zu erhalten. Dabei weisen die Resultate der
verschiedenen Autoren sehr grosse Unterschiede auf.

Errera1) berichtet über eine Dispersionsstelle aussergewöhn-
licher Breite der DK zwischen IO3 Hz und IO5 Hz. Da Seignettesalz

stark piezoelektrisch ist, waren in diesem Frequenzgebiet jedoch
piezoelektrische Resonanzen der Kristalle zu erwarten, an denen
bekanntlich die im Kondensator gemessenen Stromstärken sich
anomal verhalten. Um zu zeigen, dass diese Dispersionsstellen
piezoelektrisch bedingt seien, untersuchte Busch2) den Dispersionsver-
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lauf in seiner Abhängigkeit von den Dimensionen der Kristalle.
In der Tat verschob sich das Maximum der DK mit wachsender
Grösse der Kristalle zu kleineren Frequenzwerten. Eine einwandfreie

Zuordnung der Dispersionsfrequenzen zu den Kristalldimensionen

war aber hier nicht möglich. Der Wert der DK für
Frequenzen oberhalb des piezoelektrischen Resonanzgebiets erwies
sich stets kleiner als für Frequenzen unterhalb desselben.

Zeleny und Valasek3) fanden, dass bei Frequenzen von
104 Hz die DK auf die Grössenordnung 100 abgefallen ist, während
sie bei 50 Hz etwa 20000 gemessen haben. Ausserdem zeigen ihre
Messungen eine Dispersionsstelle bei etwa 107Hz, die als wahre
Dispersionsstelle von den Kristalldimensionen unabhängig zu sein schien.

Wie Bantle und Busch4) zeigen konnten, handelte es sich
jedoch um einen durch die benützte Apparatur vorgetäuschten
Effekt. Tatsächlich zeigt die DK bis zu den Dezimeterwellen
keinen plötzlichen Abfall und keine Anomalie. Sie bleibt konstant
in der Grössenordnung von IO2. Erwähnt seien auch die Arbeiten
von Schulwas- Sorokina und Posnov5), sowie die Untersuchung
von Goedecke6). Die erstgenannten fanden Dispersionsstellen der
DK bei tiefen Frequenzen, wobei die tiefste zwischen 1 und 100 Hz
lag. Goedecke versuchte die Unübersichtlichkeit, die in Folge der
verschiedenen Arbeiten geschaffen war und durch das Auftreten
der piezoelektrischen Resonanzen noch vergrössert wurde, zu
vermeiden, indem er die zeitliche Ausbildung der Polarisation
bestimmte. Zu diesem Zweck mass er die Spannung in Funktion der
Zeit an einem sich entladenden Seignettesalzkondensator. Aus den
Abweichungen der Entladekurve von einem Exponentialgesetz
schloss er auf das Vorhandensein von drei verschiedenen
Ladungsträgergruppen. Infolge der Remanenz und wohl auch der Leitfähigkeit

ist es aber schwierig, aus den so gewonnenen Entladekurven
festzustellen, wie und durch welche Träger die grosse Polarisation
bedingt wird. Erwähnt sei auch die DK-Messung von Hablützel24).

Sicher ist auf jeden Fall, dass die DK bei statischen Messungen
einen grösseren Wert hat als bei Radiofrequenzen. Es stellt sich
nun die Frage: Gibt es in diesem Frequenzgebiet eine wahre, d. h.
allein durch den Mechanismus des Polarisationsvorgangs bedingte
Dispersionsstelle der DK, die für alle Seignettesalzkristalle bei der
gleichen Frequenz liegt, oder rührt der Abfall von den piezoelektrischen

Resonanzstellen her und ist somit dimensionsbedingt?
Wir haben nun untersucht, ob es eine dimensionsunabhängige

Dispersionsstelle der DK gibt, die für Kristalle der verschiedensten
Grössen bei der gleichen Frequenz liegt. Mit der in Fig. 8 gezeigten
Apparatur Wurden etwa 50 Seignettesalzkristalle gemessen, indem
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mit Hilfe einer Braun'schen Röhre die Spannung am Kristall in
Funktion der Frequenz bestimmt wurde.

Das elektrische Feld war immer parallel der a-Achse gerichtet ;

in der b, c-Ebene waren die Kristalle dagegen verschieden
dimensioniert und orientiert. Es wurde keine Dispersionsstelle gefunden,
die nicht mit einer piezoelektrischen Resonanz verbunden, also
dimensionsbedingt war.

2. Die piezoelektrischen Besonanzen

bilden ebenfalls den Gegenstand verschiedener Arbeiten. Unter
diesen zeigte sich nun eine prinzipielle Divergenz. Bei Busch2) hat
die Resonanzfrequenz eines Kristalls in Funktion der Temperatur
am oberen seignetteelektrischen Curiepunkt ein ausgeprägtes
Minimum. Dagegen zeigen Messungen der Resonanzfrequenzen nach
Davis7), Mikhailov8) und Mattiat9) einen stetigen Temperaturverlauf.

Mason10) wies wohl als erster klar auf diesen Unterschied
hin. Er fand bei seinen Messungen eine ausgeprägte
Temperaturabhängigkeit — wie Busch — für den Fall, dass der Kristall mit
völlig dicht anliegenden Elektroden versehen war. Wurde der
Kristall jedoch in einem Kondensator durch ein elektrisches Feld
erregt, wobei ihn ein Luftspalt aber von beiden Platten isolierte, dann
verhielten sich die gemessenen Resonanzfrequenzen genau so, wie
dies von 7), 8) und 9) beschrieben worden war. Mason stellte die
Behauptung auf, dass für den Kristall, auf dessen Oberflächen die
Elektroden direkt angebracht sind (beklebter Kristall), die
Resonanzfrequenz stark temperaturabhängig sei. Befinde sich aber der
Kristall im Luftspalt, so sei das elastische Verhalten normal (Fig. 1).
Diese Behauptung wurde später von Müller unterstützt11).

Die piezoelektrische Resonanzfrequenz eines bestimmten
Kristalls ist eine. Funktion der verschiedenen Elastizitätsmoduln, der
Dichte q und der Dimensionen. Im allgemeinen gibt es eine grosse
Anzahl möglicher Schwingungszustände. Um nur eine ausgeprägte,
Resonanzstelle zu erhalten, wird ein Stäbchen betrachtet, dessen

Längsdimension gross gegen die beiden anderen ist. Für diese

Längsrichtung kann dann ein bestimmter Elastizitätsmodul
angegeben werden, der jetzt eine Funktion der ursprünglichen Moduli
ist. Die Resonanzfrequenz für Schwingungen in dieser Längsrichtung

berechnet sich nach folgender Formel :

2 n + 1 -x i E
2L r g

]/A
L ist die Dimension in der Längsrichtung und E der dieser

Richtung entsprechende Elastizitätsmodul, n 0 entspricht der
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Grundfrequenz. Die Dichte g verhält sich im ganzen betrachteten
Temperaturbereich normal. Die ausgeprägte Temperaturabhängigkeit

kann also nur durch eine der die Funktion E bildenden Grössen

hervorgerufen werden. Dieser Gedanke liegt den Arbeiten von
Mason10) und Müller zugrunde11).

Es ist nun zu erwarten, dass mechanische statische Messungen
des Elastizitätsmoduls in der Schwingungsrichtung dasselbe
Resultat ergeben. Mit anderen Worten : Würde der Elastizitätsmodul
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Fig. 1.

Verlauf der Resonanzfrequenz mit der Temperatur.

A: Resonanz eines vollständig beklebten Kristalls.
B: Antiresonanz für den gleichen Fall.
C: Resonanz und Antiresonanz eines im Luftspalt schwingenden Kristalls.
D: Normaler Temperaturverlauf der Resonanzfrequenz.

(Nach Mason: Phys. Rev. Bd. 55; S. 775; 1939.)

am isoliertenKristall gemessen, so musste sein Verhalten in Funktion

der Temperatur normal sein. Für den Fall aber, dass die
Oberflächen leitend gemacht und kurzgeschlossen würden, sollte er eine
ausgeprägte Temperaturabhängigkeit zeigen. Seignettesalz zeigt
sein bekanntes anomales piezoelektrisches Verhalten nur für
Schubbeanspruchungen in der b, c-Ebene. Aus diesem Grund
interessiert hier auch nur der Elastizitätsmodul eines Stäbchens, dessen

Längsrichtung einen Winkel von 45° mit der b- und c-Achse und
einen solchen von 90° mit der a-Achse bildet; künftig als 45°-Stäb-
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chen bezeichnet. Statische Messungen in dieser Richtung sind von
Isely12), Mandell13) und Hinz14) ausgeführt worden, wobei
jedoch die Resultate der drei Autoren völlig voneinander abweichen.
Die von den beiden Erstgenannten gefundenen Werte sind auch
für den isolierten Kristall bedeutend kleiner als der Wert, den man
mittels Resonanzfrequenzmessungen von 7), 8) und 9) aus Formel I
erhalten würde. Diesen Wert findet allein Hinz. Obwohl Mandells
Werte noch etwa 50% grösser sind als diejenigen Iselys, so sind
sie doch noch so klein, dass Hinz darüber schreibt: „Eine Erklärung

für diese Diskrepanz gibt es nicht". Da Hinz auf statischem
Weg den gleichen Wert findet, wie er durch dynamische Messungen
erhalten wird, ist anzunehmen, dass nicht von einem prinzipiellen
Unterschied zwischen statischem und dynamischem Elastizitätsmodul

gesprochen werden kann. Wie werden weiter unten zeigen,
dass alle besprochenen Messungen miteinander gut in Einklang
gebracht werden können.

Wie eingangs erwähnt, wurde nach elektrischen Dispersionsstellen

rein atomarer oder molekularer Natur bei kleinen Frequenzen

gesucht, indem Kristalle der verschiedensten Grössen und
Orientierungen, im Bereich der Radiowellen gemessen wurden.
Ausser piezoelektrischen Resonanzstellen konnte, wie schon gesagt,
nichts gefunden werden. Die Kristalle waren mit einer im Vakuum
aufgedampften Silberschicht als Elektroden versehen, derart, dass
das erregende Feld parallel der a-Achse gerichtet war. Neben den
temperaturabhängigen Resonanzfrequenzen wurden nun auch solche
bemerkt, die praktisch temperaturunabhängig waren. Die
temperaturabhängigen Resonanzfrequenzen hatten eine ganz aussergewöhnlich

grosse Resonanzbreite, während die temperaturunabhängigen

sich als sehr scharf, ähnlich denen des Quarzes erwiesen.
Taschek und Osterberg15) schlössen ans der Existenz der breiten
Resonanzkurve auf einen anomal grossen mechanischen
Viskositätskoeffizienten. Die atomare Ursache dieser Anomalie haben sie
aber nicht weiter untersucht. Müller11) erklärt die übergrosse
Resonanzbreite der piezoelektrischen Schwingungen durch eine
Spannungsabhängigkeit des Elastizitätsmoduls und einer daraus
resultierenden Frequenzmodulation. (Eine kurze Rechnung auf
Grund der von ihm angegebenen Formel, auf die wir später noch
zurückkommen werden, zeigt die Unhaltbarkeit dieser Behauptung.)

Die Ursache für die ausserordentlich grosse Halbwertsbreite
der piezoelektrischen Resonanzkurven werden wir weiter unten
erklären können, wobei sich zeigen wird, dass sie in engstem
Zusammenhang mit der Anomalie des Elastizitätsmoduls und der
DK steht. Es ist das der Zweck dieser Arbeit.
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II. Theoretische Ueberlegungen.

Obwohl bei den Ferromagnetika und den Seignette-elektrika
die atomaren Mechanismen grundverschieden sind, so weisen doch
beide in ihrem makroskopischen Verhalten starke Ähnlichkeiten
auf. Die Tatsache, dass der Elastizitätsmodul der Ferromagnetika
sich unterhalb des Curiepunkts anomal verhält, ist schon seit
langem bekannt, doch nie in Verbindung mit den Seignetteelektrika
betrachtet worden. Der sogenannte A JE-Effekt der Ferromagnetika
und dessen Folgen stehen aber in engster Analogie zur Anomalie
des Elastizitätsmoduls der Seignetteelektrika und der
ausserordentlich grossen Dämpfung der entsprechenden piezoelektrischen
Schwingungen. Wie wir sehen werden, lassen sich diese Erscheinungen

auf einen elektrischen A E-Effekt zurückführen.

dyn/cm'

-W

< 20

300

Temperatur

Fig. 2.

Der Elastizitätsmodul von Nickel in Abhängigkeit von der Temperatur für
verschiedene Werte der relativen Sättigung JjJs. [Nach S. Siegel u. S. L. Quimby :

Phys. Rev. Bd. 49 (1936) S. 663.]

Als ZlE-Effekt der Ferromagnetika bezeichnet man die
Erscheinung, dass der Elastizitätsmodul von der makroskopischen
Sättigung der Substanz abhängt und im magnetisch gesättigten
Zustand grösser ist als im ungesättigten. Der Elastizitätsmodul
einer ferromagnetischen Substanz zeigt am Curiepunkt einen stark
unstetigen Verlauf (Fig. 2). Wird jetzt durch ein äusseres Feld das

Ferromagnetikum gesättigt, so verschwindet die Unstetigkeit am
Curiepunkt vollkommen (vereinzelte Spezialfälle ausgenommen).
Beim gesättigten Ferromagnetikum haben wir nur noch die
normale Abhängigkeit des Elastizitätsmoduls von der Temperatur.
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Die Anomalie des Elastizitätsmoduls hat ihren Ursprung in
der Magnetostriktion. Im magnetisch ungesättigten Zustand stellen
sich unterhalb des Curiepunktes bei Zug oder Druck die Vektoren
der spontanen Magnetisierung derart ein, dass die damit verbundene

Magnetostriktion gleichsinnig mit dem äusseren Zug oder
Druck wirkt, so dass das Material nach aussen hin weicher
erscheint, der Elastizitätsmodul also sinkt. Wird durch ein genügend
starkes Gleichfeld die spontane Magnetisierung festgehalten, so
zeigt die Substanz wieder ein normales elastisches Verhalten (Fig. 2).
Es gibt wohl Abweichungen von diesem Verhalten, die aber für
unseren Fall weniger wichtig sind16).

R. Becker16) leitet auf anschaulichem Weg her, um wieviel
sich der Elastizitätsmodul ändert, wenn das Material vom völlig
unmagnetischen Zustand bis zur Sättigung magnetisiert wird, und
er kommt zu folgender Formel:

AE X° V /TD
E0- E \ Js

Xs Sättigungsmagnetostriktion
Js Sättigungspolarisation
%a Anfangssuszeptibilität
E Elastizitätsmodul (Index 0 bezeichnet den Wert für den gesättigten

Zustand)

wobei die Konstante c von der Grössenordnung 1 ist und davon
abhängt, ob die durch die inneren Spannungen verursachte
Deformationsenergie klein oder gross im Verhältnis zur Orientierungs-
energie der Polarisation im Gitter ist.

Wird ein Eisenstab gedrückt, so stellen sich die Bereiche der
spontanen Magnetisierung senkrecht zur Druckrichtung, im Falle
eines Zuges dagegen parallel und antiparallel zu dieser Richtung.
In allen Fällen wirkt aber die mit der Drehung der Bereiche
verbundene Magnetostriktion in der gleichen Richtung und im
gleichen Sinn wie die äussere Kraft16)17). In allen Fällen bleibt das
Material nach aussen hin unpolarisiert, da die Magnetostriktion ein
quadratischer Effekt ist und somit beide Richtungssinne der
Magnetisierung im Mittel gleich besetzt sind.

Mittels der Magnetostriktion ist es möglich, einen Eisenstab
in einer seiner Resonanzfrequenzen zu erregen. Diese Resonanzen
sind bekanntermassen ausserordentlich stark gedämpft16). Diese

Dämpfung beruht bei den Ferromagnetika im wesentlichen auf drei
Ursachen: Mikroskopische Wirbelströme an den „Wänden" der
Weiss'sehen Bezirke, makroskopische Wirbelströme und Hysteresis-
verluste16). Wird der Stab rein mechanisch zu Schwingungen
angeregt, so sind auch dann noch Hysteresisverluste vorhanden, die
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jetzt nur magnetomechanischer Art sind. Die von der Hysteresis
herrührende Dämpfung wird, solange nicht Sättigung erreicht wird,
mit der Schwingamplitude zunehmen. Diese Zunahme der Dämpfung

und der damit zusammenhängende Verlauf des Elastizitätsmoduls

sind von Kornetzki18) untersucht worden. Er findet für die
Spannungs-Dehnungskurve den in Fig. 3 dargestellten Zusammenhang.

Im Bereich kleiner Amplituden (um nicht zur Sättigung zu
gelangen) nimmt die Dämpfung mit der Amplitude zu, der Elastizi-

&E<

0\ a
Fig. 3.

OG: Spannungs-Dehnungsverlauf, der einem konstanten Elastizitätsmodul ent¬

spricht.
OA: Wirklicher Verlauf.

Xs ist der Sättigungswert der zusätzlichen Dehnung.
(Nach Koenetzki: Wiss. Veröff. Siemens-Werk, Bd. 17; S. 48; 1938.)

tätsmodul dagegen ab. Das Verhalten der beiden Grössen ist durch
Formel (III) miteinander verknüpft.

1 dE
En T

dA
Alfdf

A logarithmisches Dämpfungsdekrement
/ Dehmmgsamplitude.

(III)

Eine Abnahme des Elastizitätsmoduls mit zunehmender Amplitude,

kleine Werte vorausgesetzt, wurde bereits von Förster und
Köster19) experimentell festgestellt. Wie aus Fig. 3 weiter ersichtlich

ist, tritt eine Umkehr bei immer mehr wachsender Amplitude
ein, indem der Elastizitätsmodul wieder zu, der relative Anteil der
Dämpfung durch Hysteresisverluste dagegen wieder abnimmt; ein
Verhalten, das ebenfalls (III) entspricht.
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Da die Dämpfung amplitudenabhängig ist, geschieht das
Abklingen jeder Schwingung nicht mehr nach einem Exponential-
gesetz. Die Dämpfung ist nicht mehr konstant und kann deshalb
jetzt auch nicht ohne weiteres aus der Halbwertsbreite der
Resonanzkurve nach Formel (IV) bestimmt werden.

— -AAA (IV,

In seiner Arbeit18) unterscheidet Kornetzki somit auch
zwischen der wahren und der nach Formel IV bestimmten scheinbaren
Dämpfung. Er findet, dass letztere grössere Werte ergibt, falls die
Dämpfung mit der Amplitude zunimmt.

Der durch Hysteresisverluste bedingte Anteil der Dämpfung
lässt sich durch ein genügend starkes Gleichfeld vermeiden, indem
dieses die spontan magnetisierten Bereiche am Umklappen
verhindert.

Wie schon ausgeführt, zeigen bei Seignettesalz die durch den
Piezoeffekt erregten Resonanzschwingungen eine ganz ausserge-
wöhnliche Dämpfung, die offensichtlich in Analogie zur Dämpfung
der magnetostriktiven Schwingungen steht. Bei dem Dielektrikum
fällt aber jetzt der Dämpfungsbeitrag durch mikroskopische und
makroskopische Wirbelströme weg, so dass nur der durch
Hysteresisverluste bedingte Anteil bleibt. Da der Piezoeffekt linear ist,
werden hier aber auch bei rein mechanischer Anregung elektro-
mechanischer und rein elektrischer Anteil bestehen bleiben.

Äusserlich zeigen also Seignetteelektrikum und Ferromagnetikum
im elastischen Verhalten eine bemerkenswerte Analogie. Man

könnte nun annehmen, dass alle bei den Ferromagnetika
aufgestellten Theorien sich ohne weiteres auf das Seignetteelektrikum
übertragen Hessen. Das ist nun nicht der Fall, weil wir auch
makroskopisch eine Verschiedenheit zwischen beiden haben. Während
beim ferromagnetischen Einkristall die Magnetisierung jede Richtung,

allerdings leichter oder schwerer, einnehmen kann, haben
wir beim Seignettesalz nur eine mögliche Richtung der
spontanen Polarisation, nämlich parallel und antiparallel der a-Achse.
Ein Zustandekommen von elastischen Spannungen durch Herausdrehen

der Polarisation aus der a-Achse, wie das beim Eisen für
entsprechende Richtungen der Fall ist, tritt hier nicht auf. Dafür
kommt in erster Linie die als Piezoeffekt mit dem Umklappen der
spontanen Polarisation verbundene Deformation in Frage. Der
Piezoeffekt nimmt bekanntlich beim Seignetteelektrikum grössere
Werte an, als bei irgendeinem anderen bekannten Dielektrikum.
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Es muss noch erwähnt werden, dass es auch einen quadratischen
Piezoeffekt gibt, welcher in formaler Analogie zur Elektrostriktion
steht. Die Formel für die Deformation in einem elastischen Körper,
der zugleich piezoelektrisch ist, lautet nach Osterberg und Cook-
son20) :

6 3 3 3

%ic S s*n A.n + Yi AuEi + i 2 2 amEiEj (V)
« 1 4 1 1 1 }-l

Xn Mechanische Spannung
Et Elektrische Feldstärke
skn Elastizitätskoeffizienten
dik Piezoelektrische Moduli.

Die 216 Konstanten gm, von Osterberg als piezodielektrische
Moduli bezeichnet, lassen sich nach folgendem Schema auf die
Matrix der 36 piezooptischen Konstanten ghk nach Pockels
zurückführen.

/i 123445566
^ 123323121
/=1232 31312

Die entsprechenden Matrizen lauten für Seignettesalz:

ÇJKk

0 0 0

0 0 0

0 0 0

äu 0 0

0 a25 0

0 0 "'S 6

0n 012 013 0 0 0

021 922 023 0 0 0

931 032 033 0 0 0

0 0 0 014 0 0

0 0 0 0 055 0

0 0 0 0 0 fff

Man sieht, dass im Fall eines zur a-Achse parallelen elektrischen
Feldes, der Kristall in erster Näherung nur auf Schub beansprucht
wird. In zweiter Näherung kommen auch die Normalkräfte xx;yv; zz

hinzu. Sie werden aber nur einen von dem Feldrichtungssinn
unabhängigen Zug oder Druck des Kristalls bedingen, im Gegensatz
zum linearen Piezoeffekt. Diesem werden sie sich einfach
überlagern, indem sie eine Dichteänderung des Kristalls zur Folge haben.
Eine reine Kontraktion xx bei Anlegen eines Feldes parallel der
a-Achse wurde von Müller21) experimentell gefunden. Diese Kon-
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traktion war unabhängig vom Richtungssinn des Feldes und der
Grössenordnung nach etwa 103mal grösser als irgendein bekannter
elektrostriktiver Effekt.

Im Curiegebiet ist der Modul du beim Seignettesalz etwa IO3
mal grösser als die Moduli d25 und d36. dXi zeigt zugleich Hysteresis
und eine ausgeprägte Temperaturabhängigkeit. Wenn also ein
Seignettesalzkristall auf den Schub yz beansprucht wird, klappt
seine innere spontane Polarisation in den entsprechenden
Richtungssinn der a-Achse. Wird auf einen Kristallstab, dessen

Längsrichtung unter 45° zur b- und c-Achse liegt, ein Zug oder
Druck in der Längsrichtung ausgeübt, so wird die spontane Polarisation

sich nach dem entsprechenden Richtungssinn der a-Achse
ausrichten, wodurch sich die zu dieser Achse senkrechten Flächen
mit einander entgegengesetztem Vorzeichen aufladen. Der durch
Ausrichten der spontanen Polarisation bedingte Piezoeffekt wird
nun eine zusätzliche Deformation im Richtungssinn der ursprünglichen

ausüben.
Man könnte annehmen, dass der Kristall sich auf diese Weise

gleich spontan bis zur Sättigung polarisieren und somit zu einem
Elektreten würde. Dem Vorgang ist nun durch Entstehen der
Oberflächenladung, sowie durch innere Spannungen, eine Grenze
gesetzt. Die Oberflächenladung kann man durch Anbringen
kurzgeschlossener Elektroden vermeiden; es bleiben also nur noch die
inneren Spannungen. Die Überlegung, dass die inneren Spannungen
die völlige Polarisation begrenzen, bildet aber gerade den
Ausgangspunkt für die Ableitung der Formel (II) von Becker22).

Bei einer formalen Übertragung berechnet sich jetzt der
zljE-Effekt für das Seignetteelektrikum nach folgender Formel:

1 1 AE
E E0 E0-E

(f (VI)

(ALL
\ *

bei elektrischer Sättigung erfolgte Längenänderung

ea DK in Richtung der a-Achse
Ps Sättigungspolarisation
E Elastizitätsmodul; Index 0 bezeichnet den normalen Wert, wie er

im Luftspalt oder bei vollständiger Sättigung gemessen wird.

Formel (VI) lässt sich auch thermodynamisch herleiten.
Die Arbeit SA, die durch das elektrische Feld ® und die

mechanische Kraft Z am Kristall geleistet wird, ist gegeben durch

SA <£dP + ZdL
P bedeutet hierbei die makroskopische Polarisation.
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Man findet entsprechend für die freie Energie F
dF - SdT + <£dP + ZdL

und das Gibb'sche Potential

0 =F - g- P - Z-L
Da

d0 - SdT - Pd® -LdZ
ein totales Differential ist, ergibt eine zweimalige Differentiation
von d0 nach ® und Z

ÒP
OZ /(£

(VII)

In Formel (VII) ist enthalten, dass die spontane Polarisation
sich derart einstellt, dass die damit verbundene piezoelektrische
Deformation die ursprüngliche verstärkt, d. h. unter dem Einfluss
einer mechanischen Spannung richtet sich die spontane Polarisation
so aus, wie wenn sie durch ein elektrisches Feld hervorgerufen
würde, dessen Richtungssinn derart ist, dass der damit verbundene

Piezoeffekt im gleichen Sinn wie die mechanische Spannung
auf den Kristall wirkt.

Die Polarisation ist eine Funktion der elektrischen Feldstärke
und der mechanischen Spannung. Wir haben nun zwischen zwei
verschiedenen Elastizitätsmoduln zu unterscheiden: dem
Elastizitätsmodul bei konstanter Polarisation: EP, wenn also ein
Umklappen der Polarisation nicht stattfinden kann und bei konstantem

äusseren Feld: E%, das z. B. auch 0 sein kann. Aus der
Definition des Elastizitätsmoduls ergeben sich dann die folgenden
Formeln:

EL
Jc^

i
Err.

]
~ôcA

ôi
Tp

sp
To7

Formel (VII) ergibt auf Spannung und relative Längenänderung
umgeformt

1 / Ol \ ÔP

17 \W)a \ÔV
wobei nach der Kettenregel gilt

Ol \
_

Ol \ / ÔP

~w)a~\dp)a\m
In die Formeln der Elastizitätsmoduln eingesetzt, erhalten wir für
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die Differenz der reziproken Werte und somit für den ZIE-Effekt

1 1 T (AL)}
2

Eg Ep (AL)\m Ja

oder nach anderer Substitution

/ÔP\ 1 / Ol \ / ÖP\
{ôa)a~ l0 [op)a{ô<z)B

für den ZlE-Effekt

AE
En-E -

ri ,ôi_y
2 / 6P\

(Vili)

Man sieht, dass Formel (VI), die auf anschaulichem Weg bei den
Ferromagnetika gefunden wurde und die wir formal auf das

Seignetteelektrikum übertrugen, nur eine Näherung darstellt, indem
der Quotient

I AV
1 Ol \ (—
lc ÔP dort durch

P.
ersetzt wird.

Dieser Quotient ist — vor allem bei kleinen Amplituden — von
der Temperatur unabhängig, wie aus den Messungen von Norgor-

(f).den23) hervorgeht.Für
Ps

stimmt dies mit den von Hinz14) und

Hablützel24) gefundenen Werten nur in der Umgebung des
Curiepunkts. Auch ist der absolute Wert grösser als bei kleinen Amplituden,

was, wie noch gezeigt werden wird, dem Sinken der
Resonanzfrequenz mit wachsender Amplitude entspricht.

In der thermodynamisch abgeleiteten Formel kommt die von
Becker eingeführte Konstante c nicht mehr vor. Dadurch ist die
früher gemachte Annahme gerechtfertigt, dass sie in der Grössenordnung

von 1 liegt. Es ist möglich, dies auch auf andere Weise
zu zeigen:

In der Formel (VI) sind alle Grössen bis auf c bekannt. Der
Zl-E-Effekt kann aus den Resonanzfrequenzmessungen von Mason
rein experimentell ermittelt werden. Unter Benützung der ebenfalls

von Mason10) gemessenen DK kann er aber auch berechnet
werden, indem c durch Anpassung eines Werts erhalten wird. Für

— ("Xp") wurde der von Norgorden23) gefundene Wert an Stelle

von —p-- eingesetzt, da Messungen der Resonanzfrequenz immer
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nur mit Feldstärken ausgeführt werden, die weit von der
Sättigungsfeldstärke entfernt sind. Fig. 4 gibt die graphische Darstellung
der experimentell gefundenen, sowie der berechneten Werte.

NachNoRGORDEN findet man bei einer Feldstärke von 47 V/cm

~j~\~Äp~) 1)38 • 10^7 pro E SE, und daraus für die Konstante

c 5,6.
Setzt man die Werte von Hinz14) und Hablützel24) für den

Sättigungsquotienten ein, so erhält man für

l js
5,37 • 10~7 pro E SE, und daraus 0,27.

AE
E,, E

¦(3-10"
cm->\

' Dyn)
m

E0E "F(T)

•/
\ • ber

exp

sehnet

•erimentell

•/

#\
'

"•

• • *"**—--^.

1

l

15 20 25

Fig. 4.

30 35 40° C

Vergleich der experimentell ermittelten Werte des A E-Effekts (aus
Resonanzfrequenzmessungen von Mason umgerechnet) mit den nach Formel VIII berechneten.

(Für die DK wurden die von Mason angegebenen Werte eingesetzt.)

Für Fig. 4 spielt der Unterschied der beiden Quotienten keine
Rolle, da beide temperaturunabhängig sind (letzterer nur in der
Umgebung des Curiepunkts). In der graphischen Darstellung wurde
nur ein Wert angepasst, folglich würde sich mit dem Quotienten
nur die Konstante ändern. Würde man diese dagegen unverändert
lassen, so ergibt sich, wenn auch vorerst nur qualitativ, die später
noch mitzuteilende Beobachtung, dass der ZlË-Effekt spannungsabhängig

ist, indem er mit wachsender Feldstärke zunimmt.
Durch ein überlagertes elektrisches Gleichfeld wird der Kristall

im entsprechenden Richtungssinn polarisiert. Ein Teil der Polarisation

wird auch noch beim Schwingen durch dieses Feld festge-
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halten und kann somit keinen Beitrag zum AE-Wîekt und zur
Dämpfung liefern. Es kann aber nicht erwartet werden, dass die

ganze Polarisation festgehalten wird, da der in Resonanz schwingende

Kristall sich durch den Piezoeffekt ein eigenes Wechselfeld
bildet, das in der einen Hälfte der Periode dem überlagerten Gleichfeld

entgegengesetzt gerichtet ist. So erklärt sich, wie später noch
berichtet werden wird, dass selbst bei einem überlagerten Gleichfeld

vom Fünffachen des Sättigungswerts immer noch ein gewisser
Teil der Polarisation umklappt und deshalb ein Abweichen des
Elastizitätsmoduls vom normalen Verlauf bedingt. Um diesen Verlauf

auch im Curiegebiet mit beklebten Elektroden normal halten
zu können, musste man Feldstärken anwenden, die den Kristall
zerstören würden. Da beim Eisen kein Piezoeffekt auftritt, gelingt
es dort schon mit der Sättigungsfeldstärke, Unstetigkeiten des
Elastizitätsmoduls am Curiepunkt zu verhindern.

Auch die Ursache der grossen Dämpfung der Resonanzfrequenzen

ist nach dem Ausgeführten verständlich. Es sind Hystere-
sisverluste, elektrischer und mechanischer Natur, hervorgerufen
durch das Umklappen der spontanen Polarisation. Durch Anlegen
eines Gleichfeldes können sie vermindert werden. Zum gleichen
Zweck kann man den Kristall auch im Luftspalt schwingen lassen.
Die auf den Kristall wirkende Feldstärke ist dann infolge der hohen
DK so klein, dass ein Umklappen nicht mehr erfolgen kann und
man auch wieder den normalen Elastizitätsmodul misst. Dasselbe
erreicht man angenähert beim vollständig beklebten Kristall, wenn
man die erregende Feldstärke so klein wie möglich hält. Eine andere
Erregung wurde von Hiltscher25) angewandt, der die Elektroden
wohl aufklebte, sie aber nur einen kleinen Teil der Kristalloberfläche

bedecken liess. Hiltscher erhielt so durch Cady'sche Leuchtfiguren

ebenfalls den normalen Elastizitätsmodul.

Nun ist es möglich, die Differenz zwischen den verschiedenen
statischen Messungen des Elastizitätsmoduls zu erklären. Wir rufen
uns zu diesem Zweck nochmals Fig. 3 in Erinnerung, d. h. den
Zusammenhang zwischen mechanischer Spannung und Dehnung
eines spontan polarisierten Mediums. Danach steigt der
Elastizitätsmodul von einer gewissen mechanischen Spannung an, was die
Erklärung dafür liefert, dass Isely12) bei kleinen Drucken kleinere
Werte erhielt als Mandell13), der bei einem grösseren Druck
arbeitete. Hinz14) endlich erhielt den normalen Wert, da er den
Kristall mit 26 kg/cm2 belastete, was ungefähr dem Sättigungsdruck

entspricht. Mit wachsendem Druck muss aber, wie man ohne
weiteres sieht, der Unterschied zwischen dem normalen Elastizitäts-
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modul und dem anomalen verschwinden, da die zusätzliche
Dehnung einem Grenzwert, welcher der Sättigungsdeformation
entspricht, zustrebt.

III. Apparatur und Messergebnisse.

1. Der reine AE-Effekt.
Die Verschiebung der Resonanzfrequenzen mit wachsendem

überlagerten Gleichfeld wurde bereits von Müller11) festgestellt,
jedoch nur für einzelne Temperaturen und dazu an einer Platte,
bei der die einzelnen Schwingungen nicht zugeordnet werden
konnten.

Es wurden jetzt an einem Stäbchen, dessen Elektrodenflächen
senkrecht zur a-Achse lagen und dessen Längsrichtung unter 45°
zur b- und c-Achse orientiert war, die Resonanzfrequenz über das

KHz ¦ cm
200

180

160

V„„=F(T) V*=50VI

140

o ohne überlagertes Gleichfeld

• mit 1500 V/cm

-20 -10 0 10 20 30'C
Fig. 5.

Verlauf der Resonanzfrequenz eines beklebten 45°-Stäbchens im Curiegebiet, mit
und ohne überlagertes Gleichfeld.

ganze Curiegebiet mit und ohne überlagertem Gleichfeld bestimmt.
Die Elektroden bestanden aus einer im Vakuum aufgedampften
Silberschicht. Das überlagerte Gleichfeld betrug 1500 V/cm, was
dem Fünffachen der Sättigungsfeldstärke entspricht. Das Resultat
ist in Fig. 5 dargestellt. Die Messung geschah auf zwei Arten :

a) Die erste Methode war eine rein qualitative, dafür aber
sehr anschaulich. Mit Hilfe eines Frequenzmodulators (Wobbier)
wurde der Strom durch den Kristall in Funktion der Frequenz über
eine Breite von ungefähr 50 Khz auf dem Schirm eines Kathoden-
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Strahloszillographen sichtbar gemacht. Die gesamte Anordnung
zeigt Fig. 6. Der Wobbier stellt einen Generator der Frequenz 4 Mhz
dar, der mit Hilfe einer äusseren Synchronisationsspannung periodisch

eine Änderung seiner Eigenfrequenz um max. A 25 Khz erfährt.
Das geschieht durch eine als variable Selbstinduktion geschaltete
Penthode nach folgendem Prinzipschema, in Fig. 7 dargestellt. Wie

njiJL

L-.J A
300 V A

Fig. 6.

Apparatur zur Aufnahme der Resonanzkurve.
6: Hochfrequenzgenerator (4 Mhz+nKhz) S„: Synchronisationsgerät
M: Frequenzmodulator
C: Kapazitäten
K: Kristall
D : Niederfrequenzdrosseln
Die mit dem Index

ß0: Braun'sche Röhre
V0 : Breitbandverstärker

Wr,: Eingangswiderstand des Ver¬
stärkers

0 bezeichneten Schaltelemente sind im Kathodenstrahloszillo-
graphen Philips GM 3152 eingebaut.

ü

J,\\

E,

h

r\

Fig. 7.

Prinzipschema des Frequenzmodulators (Wobbier).

Der Widerstand R sei gross gegenüber dem kapazitiven Widerstand. Dann ist
1 E, ¦ „ J,.

icoC

Et-S

Ry>
œC Jl" B E,=

JÌ=SEÌ S-E2

8 sei die Steilheit der Röhre, demnach ist

J» ——A und L2 %coL

C-R
_ S

icoCR
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man sieht, ist also die Selbstinduktion des Systems eine Funktion
der Steilheit der Röhre und somit der Schirmgitterspannung. Diese
wird durch die Kippspannung des Oszillographen geliefert. Erhält
nun das Gitter einer Mischröhre im Wobbier eine Frequenz von
4 Mhz + n Khz, so entsteht als Differenzfrequenz n Khz, die ihrerseits

jetzt mit Yz 25 Khz frequenzmoduliert ist, falls die
Schirmgitterspannung, wie oben beschrieben, variiert wird. Da dieser
Vorgang synchron mit dem Oszillographenstrahl läuft, wird jedem
Abszissenpunkt ein bestimmter Frequenzwert zugeordnet. Schickt

-sw
TR

300 V

A B0

- +

20 V

Fig. 8.

Apparatur zur direkten Bestimmung der Resonanzfrequenz.
G: Generator

W: Widerstand, um Belastungsschwankungen des Generators zu vermeiden.
C: Kapazitäten
D : Mederfrequenzdrosseln
K: Kristall
B0: Braun'sche Röhre im Oszillograph
Tr: Zwei einpolige Schalter eines Telephonrelais
3 • I

A\ \ Entsprechende Zuführungen zu dem Philips Oszillograph GM 3152

Die beiden unteren Schaltelemente beziehen sich auf die später noch zu beschreibende

Aufnahme der Abklingkurven. Im Fall der Bestimmung der
Resonanzfrequenzen ist der obere Schalter geschlossen und der gestrichelte Teil nicht in

Betrieb.

man das Frequenzgemisch durch den Kristall und misst den Strom
durch die Vertikalablenkung des Oszillographen, so erhält man
direkt die Resonanzkurve. Für eine ausführliche Beschreibung des
Wobbiers sei auf Philips Technische Rundschau 1939 verwiesen,

b) Als zweite Methode wurden die Resonanzfrequenzen mittels
eines geeichten Generators direkt bestimmt. Die Schaltung hierfür
ist in Fig. 8 wiedergegeben. Die Spannung wird in Funktion der
Frequenz auf einer Braun'schen Röhre beobachtet. Die Resonanz
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machte sich durch Sinken (die Antiresonanz durch Steigen) des

Spannungsabfalls am Kristall bemerkbar. Unsere Messungen
beziehen sich sämtlich auf die Resonanz.

Es sei noch kurz auf den Unterschied zwischen den beiden
Methoden eingegangen. Die Wobbiermethode ist sehr anschaulich.
Der Kristall wird geschont, da er sich immer nur Bruchteile einer
Sekunde in Resonanz befindet. Auf der anderen Seite ist es nur
mit der zweiten, sogenannten stationären Methode möglich, die
Werte der Resonanzfrequenz exakt zu bestimmen. Geschieht das
mit einer zu starken Wechselspannung, so erwärmt sich der Kristall,
wodurch sich dann im Curiegebiet die Resonanzfrequenz stark
ändert.

200

180

160

140

KHz

O ^V
^i ^v *res F(V~)

\ x - 2"

o= 15,5° C
"s. • -16°

^^^^ ^^""
j

25 75 100 V/cm50

Fig. 10.

Abhängigkeit der Resonanzfrequenz eines 45°-Stäbchens von wachsender Wechsel¬

spannung bei verschiedenen Temperaturen.

Wie schon ausgeführt, reagieren die spontan polarisierten
Bereiche im Kristall gegenteilig auf Gleich- und Wechselspannung.
Durch ein überlagertes Gleichfeld werden sie am Umklappen
verhindert, man arbeitet in einer Lanzettkurve auf einem Ast der
Hysteresisschleife, wodurch sich eine Verminderung der Dämpfung
und ein Steigen des Elastizitätsmoduls ergibt. Wird jedoch die
Amplitude des den Kristall in Resonanz erregenden Wechselfeldes
gesteigert, so steigt anfänglich die Dämpfung und der Elastizitätsmodul

sinkt. Die qualitative Bestätigung ergibt sich ohne weiteres
im Frequenzspektrum, indem beim Steigern der Wechselspannung
das Strommaximum sich zu tieferen Frequenzwerten verschiebt.
(Fig. 9). Diese Messungen sollten aber auch auf die stationäre Me-
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V fai const. i 20°C
V _ =0

1000 F'cm

-1000 Vj'cm
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Fig. 9. Abhängigkeit der gedämpften und ungedämpften Resonanzfrequenzen

einer Platte, einmal von einem überlagerten Gleichfeld, das andere
Mal von wachsender Wechselspannung. Die Resonanzfrequenz bei konstantem

Wechselfeld ist ungefähr bei 50 Khz, bei konstantem Gleichfeld bei ungefähr

55 Khz. Für die Aufnahmen in einer Kolonne ist die Abszisse, d. h.
die Frequenzskala unverändert.
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thode ausgeführt werden. Sie gestalteten sich hier infolge der
erwähnten Erwärmung des Kristalls wesentlich schwieriger. Wie aus
Fig. 5 ersichtlich ist, hängt der Elastizitätsmodul am stärksten in
der Umgebung der Curiepunkte von der Temperatur ab. Aus diesem
Grund wurde die Messdauer mit Hilfe eines Morsetasters möglichst
kurz gehalten, wodurch die Resultate gut reproduzierbar wurden
(Fig. 10). Der beste Beweis liegt Wohl in den Messungen bei - 16° C.

Hier würde ein Steigen der Temperatur ein Steigen der Resonanzfrequenz

zur Folge haben. Dadurch wird aber die Vortäuschung
eines positiven Resultats durch Erwärmung des Kristalls
ausgeschlossen, da ein Sinken der Resonanzfrequenz erwartet und
beobachtet wurde. Für die Temperatur - 2° besteht keine Gefahr, da
in diesem Gebiet die Temperaturabhängigkeit des Elastizitätsmo-

KHz ' cm

220

200

FTRES

180

160

a beklebter Kristall mit 0J V/cm erregt
b im Luftspalt (nach Mason)

-20 -10 10 20 30° C0

Fig. 11.

Resonanzfrequenz eines beklebten 45°-Stäbchens bei einer maximalen Feldstärke

von 0,2 V/cm.

duls verhältnismässig klein ist. Um nun das Steigen des
Elastizitätsmoduls bzw. der Resonanzfrequenz mit kleiner werdenden

Amplitude des Wechselfeldes eindrücklich zu zeigen, wurde
die Resonanzfrequenz im ganzen Curiegebiet mit einer Feldstärke
von weniger als 0,2 V/cm nochmals auf die stationäre Weise
gemessen. Das Resultat ist in Fig. 11 dargestellt.

Diese verschiedene Abhängigkeit von Gleich- und
Wechselspannung ist ein guter Beweis für das Mitwirken der spontanen
Polarisation beim Schwingen des Kristalls. Die Abhängigkeit wird
durch unsere Theorie richtig erklärt, im Gegensatz zur Arbeit von



120 Bernd Matthias.

I

o
Q

Fig. 12.

Verschiedene Temperaturabhängigkeit der gedämpften und
ungedämpften Resonanzfrequenzen einer Platte. Die praktisch
temperaturunabhängige Resonanzfrequenz liegt bei etwa 65 Khz. Der
Übersichtlichkeit wegen ist die Frequenzskala der einzelnen Abbildungen

verschoben.
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Müller21), wonach der Elastizitätsmodul mit dem Quadrat der
Polarisation zunehmen sollte.

Wie ausgeführt, findet ein Umklappen der spontanen Polarisation

nur bei einer y2-Deformation statt. Für ein 45"-Stäbchen klappt
also beim Schwingen in seiner Längsrichtung die Polarisation um.
Ist die Länge des Stäbchens gross im Vergleich zu den anderen
Dimensionen, so wird in der Hauptsache die Resonanzfrequenz
dieser Längsschwingung und ihrer Oberschwingungen beobachtet
werden, da alle anderen Schwingungen bei viel höheren Frequenzen
liegen. Für diese wird, da sie keinen Schub bedingen, kein
Umklappen erfolgen. Sie sind deshalb, im Verhältnis zu den ersteren,
praktisch ungedämpft und unabhängig von Temperatur, Elektroden,

sowie Gleich- und Wechselspannung. Im Frequenzspektrum
sieht man in der Tat das Auftreten solcher Resonanzen bei hohen
Frequenzen.

Bei einer Platte liegen die Verhältnisse dagegen anders. Für
sie als dreidimensionales System gibt es Schwingungen, die keinen
Schub yz bedingen und doch in der gleichen Grössenordnung wie
diejenigen liegen, die einen solchen zur Folge haben. Es ist das

aus den Fig. 9, 12, und 18 zu ersehen. Des weiteren sind noch
„elektrostriktive" Schwingungen möglich, die, da sie quadratisch
vom Feld abhängen und keinen Schub bedingen, ebenfalls kein
Umklappen zur Folge haben und dadurch auch von allen äusseren
Umständen weitgehend unabhängig sein werden. Es sei noch
bemerkt, dass Dickenschwingungen in Richtung der a-Achse infolge
des endlichen xx sicher möglich sind. Das Problem der ungedämpften

Schwingungen sei hier nur erwähnt. Es ist so mannigfaltig,
dass es den Rahmen der Arbeit weit überschritten hätte.

2. Die Dämpfung.

Auch sie steht, wie bereits mehrfach erwähnt, in Analogie zur
Dämpfung der Ferromagnetika. Es ist nochmals zu wiederholen,
dass sie nur für Schubschwingungen auftritt, d. h. für
Längsschwingungen eines 45°-Stäbchens. Die Dämpfung erfolgt durch
Hysteresisverluste und steigt dementsprechend mit der Frequenz. Im
Fall der Resonanz ändert sich noch zusätzlich die Phasenbeziehung
zwischen Strom und Spannung am Kristall im Sinne zunehmender
Verlustleistung in diesem. Wird bei einem gewöhnlichen piezoelektrischen

Kristall die Amplitude des den Kristall erregenden
Wechselfeldes zu sehr gesteigert, so wird der Kristall in regelmässige
Stücke springen. In unserem Fall, wo die enormen inneren
Dämpfungsverluste vorherrschen, schmilzt der Kristall.
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Als Mass für die Dämpfung gibt es zwei verschiedene Grössen.
Das logarithmische Dekrement A und die Dämpfungskonstante ô.

Das logarithmische Dekrement ist der natürliche Logarithmus des
Verhältnisses zweier aufeinander folgender Amplitudenmaxima
einer freien abklingenden Schwingung. Die Dämpfungskonstante
ist numerisch gleich dem reziproken Wert der Zeit, in der die Amplitude

auf 1/e ihres Anfangswerts abgefallen ist. Beide sind miteinander

verknüpft durch die Beziehung

¦ A-±
V

wobei v die Frequenz der Schwingung ist. Bei dem normalen festen
Körper ist das logarithmische Dekrement oder die Dämpfungskonstante

von der Amplitude unabhängig. Das bedeutet, dass immer
der gleiche Bruchteil der aufgewandten Energie, wie gross diese
auch immer sein möge, in der Dämpfungsverlustleistung verloren
geht. Diese rührt im allgemeinen von elastischen Nachwirkungen
und, plastischen Verformungen her.

Beim Seignettesalz kommen nun noch die durch die Hysteresis

erfolgenden Verluste hinzu. Diese wachsen aber (solange keine
Sättigung erreicht wird) mit der Amplitude stärker an, als die vorher

beschriebenen Dämpfungsanteile. Das gilt allerdings nur so

lange, als keine Sättigung erreicht ist. Wird die Amplitude so gross,
dass das doch der Fall ist, so bleibt bei noch grösseren Werten
der Energieverlust durch Hysterese, auch absolut genommen,
konstant, indem er gleich der Fläche der durchlaufenen Hysteresisschleife

ist. Als Folge dieses Verhaltens wird auch das
Dämpfungsdekrement veränderlich sein. Es muss bei kleinen Amplituden
mit diesen steigen, um im Bereich der Sättigung ein Maximum
zu durchlaufen. Bei noch grösseren Schwingungsweiten wird es

dann wieder sinken und dem normalen Wert als Grenzwert
zustreben. Das ist der Wert, den man ausserhalb des Curiegebietes
bei ganz beliebigen Amplituden erhalten würde.

Betrachtet man die Abklingkurve eines in Resonanz befindlichen

Kristalls im Curiegebiet, so wird die Amplitude hier nicht
mehr nach einem Exponentialgesetz abnehmen. Die Kurve kann
durch den inversen Piezoeffekt auf dem Schirm einer Braun'schen
Röhre sichtbar gemacht werden. Trägt man dann den Abklingvorgang

logarithmisch auf, so zeigt sich die variable Dämpfung in
einer Abweichung von der Geraden, deren Steigung einer
konstanten Dämpfung entsprechen würde. Fig. 13 zeigt eine solche
Auswertung innerhalb und ausserhalb des Curiegebiets. Innerhalb
von diesem Temperaturgebiet zeigt die Abklingkurve selbst, ahn-
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lieh wie bei Becker und Kornetzki26), einen anfänglich praktisch
linearen Abfall, der erst für kleine Amplituden in eine Exponentialkurve

übergeht. In schöner Analogie zur gleichen Arbeit zeigt sich
beim Überlagern eines Gleichfelds eine weitgehende
Dämpfungsverminderung.

Die Messungen der Dämpfung wurden wiederum auf zwei
verschiedene Arten ausgeführt.

a) Durch photographische Aufnahme der Resonanzkurve eines
Stäbchens auf dem Oszillographenschirm und nachheriger Ausmessung

der Halbwertsbreite. Sämtliche Aufnahmen geschahen mit
und ohne überlagertem Gleichfeld. Beispiele dafür, sowie der Verlauf

der so bestimmten Dämpfungskonstanten zeigen die Figuren
14 und 15.

1.0

/<t)

0,5

» -33°
° + 23J

0.1

0,05

5 10 15 20 25W'SeC'

Fig. 13.

Logarithmisch aufgetragene graphische Auswertung der Abklingkurven eines
45°-Stäbchens von 20 mm Länge, bei Temperaturen innerhalb und ausserhalb des

Curiegebiets.
Die gestrichelte Zeitskala gehört zum Verlauf bei + 23,2°.

b) Aus den Photographien der Abklingkurve des gleichen
schwingenden Kristallstäbchens. Die Auswertung der Aufnahmen
zeigt sehr deutlich (Fig. 13), dass die Abklingkurve keine reine
Exponentialkurve ist. Wenn man trotzdem eine Dämpfungskonstante

angeben will, so kann es sich infolge der veränderlichen
Dämpfung immer nur um einen Mittelwert handeln. Dieser muss,
wie schon ausgeführt, kleiner sein als der, den man mittels der
ersten Methode nach Formel (II) berechnet.

Die Aufnahmen der Abklingkurven (Fig. 16) sind nach Anordnung

in Fig. 8 erhalten worden. Der Philips Kathodenstrahl-
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15° C

V= 1500 V/cm

23° C

F_=0 1500 Vi cm

31° C

07== 1500F-/cm

Fig. 14.

Aufnahmen der Resonanzkurve eines 45°-Stäbchens von 20 mm Länge bei
verschiedenen Temperaturen, mit und ohne überlagertes Gleichfeld.
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Oszillograph GM 3152 besitzt eine Einrichtung, um die Horizontalablenkung

des Strahls durch Unterbrechung einer Gleichspannung
einmalig auszulösen. Die Schreibgeschwindigkeit ist dabei einstellbar.

Ein Telephonrelais mit zwei voneinander getrennten einpoligen
Schaltern wird so eingestellt, dass ihre Schaltdifferenz zwischen
IO-5 und 10~6 sec liegt. Zuerst wird die Spannung unterbrochen,
welche die Strahlablenkung freigibt, worauf die den Kristall
erregende Wechselspannung abgeschaltet wird. Der ganze Vorgang
geschieht bei offenem Objektiv der Kamera. Die Zeitdauer, in der
die Amplitude auf 1/e abgefallen war, betrug am Curiepunkt
ungefähr 10~4 sec. Die Ablenkgeschwindigkeit wurde entsprechend

d-10- Q — F(T) aus Resonanzkurven
32

V*>=50V cm

o ohne überlagertes Gleichfeld
• mit 1500 V/cm

24

>>~~~

30°C20 20

Fig. 15.

Verlauf der Dämpfungskonstanten im Curiegebiet, aus Halbwertsbreiten der
Resonanzkurven gemessen, mit und ohne überlagertes Gleichfeld.

eingestellt, um den Schirm mit der Abklingkurve ganz auszufüllen.

Beispiele dafür, sowie den so bestimmten Verlauf der
Dämpfung zeigen die Figuren 16 und 18.

Berechnet man jetzt den Energieverlust pro Schwingung, das
eine Mal aus der Abklingkurve, das andere Mal aus der entsprechend

durchlaufenen Hysteresisschleife, so kommt man zu einer
numerischen Prüfung der gemachten Aussagen. Da die einzelnen
Daten wie DK und Sättigungspolarisation in den verschiedenen
Arbeiten voneinander etwas abweichen und wohl auch von Exemplar

zu Exemplar kleine Verschiedenheiten aufweisen, kann keine
absolute Übereinstimmung erwartet werden.
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Fig. 16.

Abklingkurven, an einem 45°-Stäbchen von 20 mm Länge aufgenommen.

5 mm= 3,3 -10~4 sec

t°C Khz
a) -13,0 76,5 ohne Gleichfeld
b) -13,0 98,4 mit 1500 V/cm
c) 17,3 80,6 ohne Gleichfeld
d) 17,3 91,5 mit 1500 V/cm

5 mm 2,7 • IO"4 sec
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Ein Schwingungsvorgang, dessen Amplitude nach einer Formel
der Art

A A0 ¦ e-fit

abfällt, hat einen relativen Energieverlust pro Schwingung

1 du 1

rn =-2 —
u dt v v

2A (IX)

(u Energie/cm3)

v ist die Frequenz der Schwingung. Bei einer Schwingungsperiode
eines seignetteelektrischen Kristalls ist der irreversibel verbrauchte
Teil der elektrischen Energie gegeben durch

i> <ZdP

32

24

16

6 ¦ 10~3 ô F(T) aus Abklingkurven

o ohne überlagertes Gleichfeld
m mit 1500 V/cm

>v c

o/

t

S o

J*i •^jf^r
"•

-20 -10 0 10 20 30°C

Fig. 17.

Verlauf der Dämpfungskonstanten im Curiegebiet, aus Abklingkurven gemessen,
mit und ohne überlagertes Gleichfeld.

und nach Obigem

$ <£dP
du

~dt~ (X)

Die elektrische Energie eines isotropen und idealen Dielektrikums

ist gegeben durch
1

8n
®2

Diese Formel wenden wir nun auch für unseren Kristall an, wobei
e ea gleich|der DK in Richtung der a-Achse ist. Der Formel ist
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ein linearer Anstieg der Polarisation mit dem Felde zugrunde
gelegt, was einer feldunabhängigen DK entspricht. Das ist aber bei
Seignettesalz sicher nicht der Fall. Man hat deshalb für die DK
einen passenden Mittelwert zu nehmen. Vergleicht man die
eingangs erwähnten Arbeiten, so findet man am Curiepunkt ungefähr
den Wert

£a 2,5 • IO3

Im Fall der Resonanz haben wir, immer am Curiepunkt, bei
gleichbleibender Feldstärke ein Anwachsen des Stroms auf etwa
den dreifachen Wert. Formal ist das gleichbedeutend mit einem
gleichen Anstieg der DK. Wir haben also den dreifachen Energiebetrag

zu setzen. Für den Curiepunkt ergeben unsere Messungen
an einem 45"-Stäbchen von 20 mm Länge ein mittleres logarithmisches

Dämpfungsdekrement

A ôjv 4,1 • IO"1

und daraus, mit Hilfe von Formel IX und X, für die irreversibel
verbrauchte Energie bei einer maximalen Feldstärke von 50 V/cm

2 A • 3 u 9,8 erg/cm3 Periode.

Vergleichen wir diesen Wert mit der Fläche der Hysteresisschleife
bei der gleichen Temperatur, wie sie in den Arbeiten von
Hablützel24), und Sawyer und Tower27) angegeben ist, indem man
angenähert setzt

<ZdP tv 2 P„<£„

so erhalten wir für
f>

(h <fdP 11,8 erg/cm3 Periode.

Man sieht, die Übereinstimmung ist weit über die Grössenordnung
hinaus gut. Sie wird aber nur so lange möglich sein, als die
erregende Feldstärke gross genug ist, um die vollständige Hysteresisschleife

zu durchlaufen. Da am Kristall eine maximale Feldstärke
von 60 V/cm lag, die nur an den Curiepunkten genügte, um das
Koerzitivfeld ganz zu überwinden, werden wir mithin nur dort eine
Übereinstimmung erwarten dürfen. Für Zwischentemperaturen ist
die Koerzitivfeldstärke immer so gross, dass in der Hauptsache
nur ein reversibler Teil durchlaufen wird. Mit der gleichen
Maximalfeldstärke findet z. B. David28) bei Zimmertemperatur für

i <SdP 3 erg/cm3 Periode.

Entsprechend dem flachen Abfall der Koerzitivfeldstärke gegen den
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unteren Curiepunkt hin24),haben auch wir dort einen viel flacheren
Anstieg der Dämpfung als gegen den oberen Curiepunkt gefunden.
Da die verwendete Feldstärke verhältnismässig klein ist, finden
wir die zwei Maxima der Dämpfung bei Temperaturen in der
Umgebung der Curiepunkte und entsprechend das Minimum bei der
Temperatur der maximalen Koerzitivfeldstärke. Mit wachsender
Feldstärke am Kristall würden beide Maxima sich somit einander
nähern. Könnte man die erregende Feldstärke so gross machen,
dass im ganzen Curiegebiet die vollständige Hysteresisschleife
durchlaufen würde (was aber bei den in Frage kommenden
Frequenzen infolge der grossen Verluste nicht möglich ist), hätte man
einen Verlauf der Dämpfung proportional dem Integral

f<£dP

und somit
~ Pc ¦ ®c

indem beide Maxima in ein einziges zusammenfallen (siehe
Hablützel24)).

Bei der strengen Kopplung zwischen Polarisation und inversem
Piezoeffekt, werden wir auch eine mechanische Hysterese
erwarten. Die dadurch bedingten Verluste berechnen sich, in der
gleichen Weise wie oben, aus dem logarithmischen Dämpfungsdekrement

und der anfänglichen mechanischen Energie. Diese erhält

man aus der mechanischen Amplitude —j- und dem Elastizitätsmodul

nach folgender Formel

E f JM2
%last - -y y~~f

Für (—) findet man nach Norgorden23) am Curiepunkt einen

Wert'
AI

2,5 • IO-6

bei einer Feldstärke von 47 V/cm. Für die mechanische Verlustleistung

erhält man somit

A
A 1(a)

—,— da 0,82 • MBlast 0,63 erg/cm3 Periode
Elast

Im Fall der Resonanz würden bei einer nur dreimal grösseren
mechanischen Amplitude die Verluste den neunfachen Wert annehmen
und dadurch in die Grössenordnung der überhaupt verfügbaren
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elektrischen Energie fallen, die aber ihrerseits schon ganz in der
elektrischen Hysteresisschleife verloren geht.

So kommen wir zu der Erklärung von Beobachtungen, die uns
anfänglich unverständlich waren. Als wir das erstemal gedämpfte
und ungedämpfte Resonanzfrequenzen am beklebten Kristall
nebeneinander bemerkten, jedoch nichts über ihren Zusammenhang wuss-
ten, stellte sich damals die Frage, ob sich bei beiden Schwingungsarten

das Anwachsen des Stroms im Resonanzfall auch in einem
entsprechenden Anstieg der mechanischen Amplitude nachweisen
lasse. Um das zu entscheiden, wurden die verschiedensten Methoden
zum Nachweis von mechanischen Schwingungen angewandt. Es

zeigte sich, dass ein verstärktes mechanisches Schwingen nur bei den

ungedämpften, temperaturunabhängigen Resonanzfrequenzen festzustellen

war, was nun verständlich ist, da bei den gedämpften die

ganze Energie zum Umklappen der spontanen Polarisation
verbraucht wird.

Folgende Experimente wurden ausgeführt:
1. Ein Lichtstrahl wurde am Kristall gespiegelt und nach der

Reflexion auf einer Mattscheibe beobachtet. Der Lichtweg wurde
zur Erhöhung der Empfindlichkeit durch Spiegel verlängert. Ein
mechanisches Schwingen ergab eine Verbreiterung des abgebildeten
Spalts. Legte man eine genügend hohe Spannung an, so war auch
das mechanische Schwingen ausserhalb jeglicher Resonanz feststellbar.

Bei gedämpften Resonanzfrequenzen, die durch Strommessungen

kontrolliert wurden, war so gut wie kein Anwachsen der
mechanischen Amplitude zu bemerken, während das mechanische
Schwingen bei scharfen Resonanzen sehr stark ausgeprägt war.

2. Das Cady'sche Leuchten schwingender Kristalle wurde
beobachtet. Für Schwingungen eines 45°-Stäbchens in seiner
Längsrichtung hatte Hiltscher25) auf den Flächen senkrecht zur a-Achse
das Leuchten an den Schwingungsbäuchen beobachtet. Das gleiche
Ergebnis erzielten wir nur bei starker Reduktion der Elektroden,
andernfalls das Leuchten im Curiegebiet unsichtbar war. Dagegen
zeigten sich bei einer Platte, deren Elektroden die ganzen zur
a-Achse senkrechten Flächen bedeckten, die verschiedensten Leuchtfiguren

an den Kanten. Wurden die Elektroden reduziert, so
erstreckten sie sich auch über den unbeklebten Teil der Oberfläche.
Für das 45"-Stäbchen war ausserhalb des Curiegebiets ebenfalls
keine Reduktion der Elektroden notwendig, indem sich hier die
Längsschwingungen an den Kanten beobachten Hessen. Das
Verhalten der gedämpften und ungedämpften Resonanzfrequenzen sei
noch ergänzend durch die Fig. 18 beschrieben.
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Fig. 18.

AbkUngkurven an einer Platte und einem 45°-Stäbchen.

a) praktisch temperaturunabhängige, scharfe Resonanzfrequenz einer Platte
t 21,9° 78,5 Khz 5 mm 6,9-IO"4 sec

b) 45°-Stäbchen, 20mm Länge; t -33° 102 Khz 5mm=4,6- IO"4 sec

c) gedämpfte Resonanzfrequenz der gleichen Platte wie a) t 23,8°
40,4 Khz 5 mm 1,01 ¦ 10~4 sec
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3. Die durch ein mechanisches Schwingen erzeugte
photoelastische Doppelbrechung wurde untersucht. In der Hauptsache
wurde hier bei hohen Feldstärken die überaus starke Erwärmung
für die gedämpften Resonanzfrequenzen beobachtet. Ein mechanisches

Schwingen zeigte sich nur bei den ungedämpften
Resonanzfrequenzen.

4. Eine Kristallplatte wurde auf ihren zur a-Achse senkrechten
Oberflächen gut poliert und gleich darauf im Hochvakuum eine
Silberschicht auf sie aufgedampft. Dann wurde mittels einer feinen
Feder und einer dazwischen liegenden dünnen Aluminiumfolie der
Kristall an den Generator angeschlossen. Die andere Elektrode war
eine als Unterlage dienende polierte Messingplatte. Auf den Kristall
wurden sehr gut getrocknete Bärlappsamen gestreut. Beim Schwingen

in Resonanz wurden die Staubteilchen an den Bäuchen
fortgeweht und blieben nur an den Knotenstellen liegen. Bei den
scharfen Resonanzfrequenzen zeigten sich so ausserordentlich
schöne Figuren. Bei den Gedämpften dagegen war im Curiegebiet
nur ein leises Vibrieren über die ganze Oberfläche sichtbar, was
aber auch von statischen Aufladungen des Pulvers herrühren konnte.

In früheren Arbeiten25) war schon einmal der Versuch gemacht
worden, Staubfiguren auf Seignettesalz zu erhalten. Das negative
Resultat lag wohl hauptsächlich daran, dass die Bärlappsamen
kleben blieben, denn allein schon zum Gleiten ist ein Versilbern
notwendig. Diese Methode war von allen bei weitem die empfindlichste.

IV. Diskussion.

Eine Diskussion wäre nicht vollständig, wollte man nicht kurz
ein anderes Seignetteelektrikum, das KH2P04 erwähnen. Bei
diesem zeigt in Richtung der c-Achse die DK ein dem Seignettesalz
ähnliches Verhalten29). Messungen der DK bei hohen Feldstärken
geben für Seignettesalz und primäres Kaliumphosphat ein ähnliches
Bild, wenngleich die Curiepunkte auch bei ganz verschiedenen
Temperaturen liegen. Es wurde nun eine vollständigere Untersuchung
der DK bei kleinen Spannungen und verschiedenen Frequenzen
durchgeführt. Gleich wie im Fall des Seignettesalzes zeigte sich
ein Abfall der DK oberhalb des Gebiets der piezoelektrischen
Resonanzfrequenzen. Es ist das verständlich, wenn man bedenkt, dass
die hohe DK durch das Umklappen der spontanen Polarisation
bedingt ist. Wie oben ausgeführt, wird dieses Umklappen noch
mechanisch verstärkt. Befindet man sich jetzt oberhalb des Gebiets
der Resonanzfrequenzen, so wird die mechanische Schwingamplitude

gegen 0 streben und ebenso mit ihr die mechanische Verstär-
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kung des Umklappens. Da die DK aber auch weiterhin gross, d. h.
in der Grössenordnung von IO2 bleibt, setzt sie sich also aus einem
ursprünglichen elektrischen und einem bei kleinen Frequenzen
mechanisch verstärktem Umklappen der spontanen Polarisation
zusammen. Es ist möglich, dass wir hier eine Erklärung für den
reversiblen und irreversiblen Teil der DK bzw. der Hysteresisschleife

haben. Man kann nämlich auf diese Weise die Divergenz
zwischen den Messungen von Hablützel24) und Goedecke6)
verstehen. Nach Goedecke zeigt Seignettesalz bei IO5 Hz keine
Hysteresisschleife mehr, in vollständigem Gegensatz zu Hablützel. Beide
Arbeiten lassen sich nun miteinander vereinbaren, unter der
Annahme, dass hier das Gebiet beginnt, in welchem der mechanische
Beitrag verschwindet. Der genauere Wert hängt von den Dimensionen

des Kristalls ab. Hablützels Kristall musste also kleiner
als der Goedeckes gewesen sein. Er war in der Tat ein Kreisscheib-
chen von nur 5 mm 0. Goedeckes Kristallplatten hatten dagegen
eine Oberfläche von 35 • 55 mm2. Es wird so für alle Seignettesalzkristalle,

deren Dimensionen zwischen 1 mm und 10 cm variieren,
das Gebiet der mechanisch bedingten ersten Dispersionsstelle der
DK zwischen 104 und IO6 Hz liegen.

Die DK-Messung mit kleinen Feldstärken zeigte nun beim
KH2P04 einen grundsätzlichen Unterschied zu der entsprechenden
Messung an Seignettesalz. Für das letztere wird die DK am oberen
und am unteren Curiepunkt eine Spitze durchlaufen. KH2P04 zeigt
dagegen nur eine Spitze, und zwar am oberen Curiepunkt. Der
Abfall der DK bei tieferen Temperaturen ist stark frequenz- und
spannungsabhängig, indem er sich mit wachsender Frequenz und
sinkender Feldstärke zu höheren Temperaturen verschiebt. Diese
Tatsache, sowie die Aufnahme der Hysteresisschleifen30) und die
Messung der spezifischen Wärme31) deuten darauf hin, dass bei
KH2P04 die spontane Polarisation erhalten bleibt und einfriert.
Der untere Curiepunkt wird also nur durch ein Anwachsen des inneren

Feldes vorgetäuscht.
Da nun die Maxima der DK und des ZlJE-Effekts die Folgen

einer labilen spontanen Polarisation sind, zeigt auch für KH2P04,
wie erwartet, der zlE-Effekt eine Spitze am oberen Curiepunkt.
Die Messungen wurden von Lüdy32) ausgeführt. Da bei KH2P04
der untere Curiepunkt der Messung nicht zugänglich war, setzte
Lüdy die Untersuchung auch an KD2P04 fort, dessen Curiegebiet
um etwa 90° zu höheren Temperaturen verschoben ist. Hier konnte
das ganze Gebiet der anomalen DK beobachtet werden, jedoch
zeigte sich wieder nur am sogenannten oberen Curiepunkt der
AE-Mieki.



134 Bernd Matthias.

Schliesst man aus dem Maximum des zlE-Effekts auf den
Curiepunkt, so zeigt sich aus Fig. 5 eine Curiepunktsverschiebung
bei überlagertem Gleichfeld. Bancroft33) fand bei grossen
hydrostatischen Drucken eine Curiepunktsverschiebung, des unteren
sowie des oberen, zu höheren Temperaturen. Am oberen Curiepunkt
haben wir die Verschiebung im gleichen Sinn, am unteren jedoch
im entgegengesetzten. Diese Verschiebung lässt sich dadurch
erklären, dass beim Verschwinden des inneren Feldes das überlagerte
mit diesem vergleichbar wird, und so das Verschwinden der
spontanen Polarisation um wenige Grade verzögert wird.

Viele der zitierten Arbeiten würden eine vollständigere Ausführung

erfordern. Der Elastizitätsmodul sollte kontinuierlich bei
kleinsten mechanischen Spannungen und in Funktion der Temperatur
gemessen werden. Wenn einmal die Natur der ungedämpften Schwingungen

geklärt sein wird, muss es möglich sein, Kristalle zu erhalten,
die um Zehnerpotenzen stärker als Quarz schwingen. Weiterhin
musste man versuchen, den kontinuierlichen Übergang vom
vollständig beklebten Kristall zu dem im Luftspalt schwingenden zu
realisieren. Ahnlich wie Seignettesalz wird nun auch KH2P04 auf
sein mechanisches Verhalten untersucht werden; so zum Beispiel
bei Variation der Wechselspannung oder einem überlagerten Gleichfeld.

Vielleicht wird man hier im Temperaturgebiet des Einfrierens

der spontanen Polarisation neue Aufschlüsse über das Wesen
der Seignette-Elektrizität erhalten.

Meinem verehrten Lehrer, Herrn Prof. Dr. P. Scherrer, bin ich
für sein stets förderndes Interesse an dieser Arbeit und die vielen
wertvollen Diskussionen zu grossem Dank verpflichtet. Dem
Aluminiumfonds Neuhausen danke ich für die Überlassung von Apparaten.

Physikalisches Institut an der E.T.H., Zürich.

Literaturverzeichnis.

1) Erbeea: Phys. Ztschr. 32, 369, 1931.
2) Busch: HPA 6, 315. 1933.
3) Zeleny und Valasek: Phys. Rev. 46, 450, 1934.
4) Bantle und Busch: HPA 10, 261, 1937.
5) Schulwas-Sokokina und PoSNOV: Phys. Rev. 47, 166, 1935.
6) Goedecke: Ztschr. f. Phys. 94, 574, 1935.
7) Davis: Phil. Mag. 16, 97, 1933.
8) Mikhailov: Techn. Phys. USSR 3, 652; 4, 461.
9) Mattiat: Hochfrequenztechn. und Elektroak. 50, 115, 1937.

10) Mason: Phys. Rev. 55, 775, 1939.

«) Mülleb: Phys. Rev. 57, 829 und 840, 1940.
A) Isely: Phys. Rev. 24, 569, 1924.



Piezoelektrischer AE-Eilekt der Seignetteelektrika. 135

13) Mandell: Proc. Roy. Soc. A 116, 623, 1927.

") Hinz: Ztschr. f. Phys. IM, 617, 1938.
15) Taschek und Osterberg: Phys. Rev. 50, 572, 1936.
16) Becker-Döring: Perromagnetismus, Verlag Springer 1939.

") Akulov und Kondorsky: Ztschr. f. Phys. 78, 807, 1932.
17) Kersten: Ztschr. f. Phys. 85, 708, 1933.
18) Kornetzki: Wiss. Veröff. Siemens-Werk 17, 48, 1938.
19) Förster und Köster: Naturw. 25, 436, 1937.
2°) Osterberg und Cookson: Phys. Rev. 51, 1096, 1937.
21) Müller: Phys. Rev. 58, 565 und 805, 1940.
22) Becker und Kersten: Ztschr. f. Phys. 64, 660, 1930.
22) Kersten: Ztschr. f. Phys. 71, 553, 1931.
23) Norgorden: Phys. Rev. 49, 820, 1936.
24) Hablützel: HPA 12, 489, 1939.
25) Hiltscher: Ztschr. f. Phys. 104, 672, 1937.
26) Becker und Kornetzki: Ztschr. f. Phys. 88, 634, 1934.
2?) Sawyer und Tower: Phys. Rev. 35, 269, 1930.
28) David: HPA 8, 431, 1935.
2S) Busch: HPA II, 269, 1938.
30) Busch und Ganz: HPA 15, 501, 1942.
31) Bantle und Scherrer: HPA 14, 146, 1941.
31) Bantle: HPA 15, 373, 1942.
32) Lüdy: HPA 15, 527, 1942.
33) Bancroft: Phys. Rev. 53, 587, 1938.


	Ueber den piezoelektrisch bedingten ΔE-Effekt der Seignetteelektrika

