
Zeitschrift: Helvetica Physica Acta

Band: 15 (1942)

Heft: VII

Artikel: Versuch über die Keimbildung in übersättigten Lösungen

Autor: Amsler, J.

DOI: https://doi.org/10.5169/seals-111325

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 17.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-111325
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Versuche über die Keimbildung in übersättigten Lösungen
von J. Amsler.

(4. IX. 1942.)

Zusammenfassung. Die Vorgänge bei der Bildung einer neuen Phase

aus der übersättigten alten Phase sind heute theoretisch weitgehend abgeklärt.
Ein Überblick über die Entwicklung und den gegenwärtigen Stand des Problems
ist von M. Volmer1) gegeben worden. Zahlreiche Untersuchungen über die
Bildung von Tröpfchen in unterkühlten Dämpfen, die besonders im Zusammenhang
mit der Wilson'sehen Nebelkammermethode gemacht wurden, ergaben eine sehr

befriedigende Übereinstimmung mit der Theorie. Im Falle der KeimMldung aus
übersättigten Lösungen wurden jedoch Resultate erhalten, die mit den theoretischen
Aussagen nicht in Einklang zu bringen waren. Es erhob sich daher die Frage,
ob hier vielleicht noch andere Gesetzmässigkeiten eine Rolle spielen. Die vorliegende

Arbeit wurde zu dem Zwecke unternommen, diese Verhältnisse zu klären.
Untersucht wurden die wässerigen Lösungen von KCl, KBr und KJ. Ferner

eine Lösung von KCl in einem Gemisch von Alkohol und Wasser: Wir wählten
diese Substanzen, weil sie infolge ihres einfachen Gitterbaues der Berechnung
zugänglich sind. Die bei 30° C genau gesättigten Lösungen wurden durch schnelles
Abkühlen auf einen bestimmten bekannten Übersättigungsgrad gebracht. Darauf
bestimmten wir die Zeit, die bis zum Eintritt der Kristallisation verstrich. Dieses

Ereignis kündet sich, durch eine plötzlich einsetzende Veränderung der elektrischen

Leitfähigkeit an, so dass der entsprechende Zeitpunkt mittels Brückenschaltung
und Verstärker sehr genau festgelegt werden kann.

Die in Vorversuchen erhaltenen Resultate zeigten, dass sich infolge der relativ
geringen Diffusionsgeschwindigkeit der Ionen in der Lösung um die wachsenden
Kristallenen ein Hof geringerer Konzentration ausbildet. Die Keime wachsen
daher gar nicht in der makroskopisch gegebenen Konzentration, wodurch sich
die Abweichungen vom erwarteten Verhalten erklären lassen. Der Gedanke hegt
nahe, die Ausbildung dieses Hofes durch intensivstes Rühren zu verhindern. In
der Tat zeigen die so behandelten Lösungen genau das von der Theorie geforderte
Verhalten. Bei kleinen Übersättigungen konnte auch nach tagelangem Rühren
keine Kristallisation mehr erhalten werden. Mit steigender Übersättigung kommt
man jedoch zu einer scharf bestimmbaren Grenze, oberhalb welcher die Kristallisation

schon innerhalb weniger Minuten eintritt. Mit zunehmender Oberflächenspannung

der ausfallenden Kristalle bezüglich der Lösung verschiebt sich diese
Grenze im Sinne steigender Übersättigung. Der Wert der Übersättigung an der
Grenze lässt sich theoretisch angenähert berechnen. Die Übereinstimmung mit
den gemessenen Werten ist sehr befriedigend. Die Theorie ist somit imstande,
die Gesetzmässigkeiten bei der Keimbildung in übersättigten Lösungen
wiederzugeben.
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A. Einleitung.

Die Übersättigung und alle damit verbundenen Erscheinungen
waren schon sehr frühzeitig Gegenstand der Forschung. Um die
Jahrhundertwende gab W. Ostwald durch Zusammenfassen der
hauptsächlich an übersättigten Lösungen gewonnenen
Beobachtungsergebnisse eine Übersicht über dieses verwickelte Gebiet. Die
in der Folge unternommenen experimentellen Arbeiten wurden
hauptsächlich an Dämpfen (C. T. R. Wilson2)) und an Schmelzen
(G. Tammann3)) ausgeführt. M. Volmer4) gelang es, im Anschluss
an die lange nicht beachteten thermodynamischen Arbeiten von
Gibbs5), im einfachsten Falle der Tröpfchenbildung aus dem
übersättigten Dampfe zu einer quantitativen Theorie zu kommen. Eine
strengere kinetische Begründung dieser Theorie wurde von L. Far-
kas6) gegeben. Hinsichtlich der Kristallkeimbildung aus^Dämpfen
brachten die Arbeiten von Volmer und Estermann7), Volmer)8,
Kossel9) und I. N. Stranski10) eine weitere Klärung. Es gelang
darauf R. Kaischew und I. N. Stranski11), die kinetische Theorie
der Kristallkeimbildung aus Dämpfen zu entwickeln. Schliesslich
führten die theoretischen Arbeiten von R. Becker und W. Döring12)
zu einer vollständigen Beherrschung der ungeheuren Mannigfaltigkeit

der molekularen Einzelvorgänge beim Aufbau eines Kristalls.
M. Volmer1) verdanken wir eine bis in alle Einzelheiten

gehende Darstellung der bisherigen Entwicklung dieses
Wissensgebietes. Die experimentelle Prüfung bietet jedoch besonders bei
Lösungen noch grosse Schwierigkeiten. Vor einiger Zeit ist eine
Arbeit von U. Dehlinger und E. Wertz13) über die Keimbildung
in übersättigten Alaunlösungen erschienen. Die Autoren glauben,
auf Grund ihrer Resultate die Gibbs-Volmer'sche Keimbildungstheorie

in ihrer Anwendung auf Lösungen ablehnen zu müssen. Im
Verlaufe der vorliegenden Arbeit, die zu dem Zwecke unternommen
wurde, die Keimbildung in übersättigten Lösungen einer weiteren
Klärung zuzuführen, werden wir noch einmal Gelegenheit haben,
auf die eben besprochene Arbeit näher einzugehen.

B. Theoretischer Teil.

Im vorliegenden Abschnitt wird die Theorie der Keimbildung
in übersättigten Dämpfen kurz dargestellt. Es kann sich im Rahmen
dieser Arbeit nicht darum handeln, ein in jeder Einzelheit gut
fundiertes Bild zu entwerfen, vielmehr sind nur die prinzipiellen
Gesichtspunkte, die zum Verständnis der nachfolgenden experimentellen

Untersuchungen notwendig sind, behandelt worden. Bezug-
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lieh der Einzelheiten muss auf die einschlägige Literatur verwiesen
werden. (Vgl. etwa M. Volmer1).) Es wurde im weiteren untersucht,

in welcher Weise sich die Gesetze, die die Keimbildung in
Dämpfen bestimmen, auch auf Lösungen anwenden lassen. Am
Schlüsse dieses Abschnittes wurden schliesslich die wesentlichen
theoretischen Aussagen zusammengestellt, die einer experimentellen

Prüfung zugänglich sind.
Am einfachsten liegen die Verhältnisse für die Bildung von

Flüssigkeitströpfchen aus dem zugehörigen übersättigten Dampf.
Die Grundgedanken der Keimbildung seien deshalb an diesem
Beispiel entwickelt. Sie lassen sich sinngemäss auf den komplizierteren
Fall der Kristallkeimbildung aus übersättigten Lösungen erweitern.

Wir betrachten ein abgeschlossenes System, das aus einer
flüssigen und einer gasförmigen Phase gebildet wird, also etwa
Wasser mit dem darüber befindlichen Wasserdampf. Ein solches
System strebt einem Gleichgewichtszustand zu. Das Gleichgewicht
ist dann erreicht, wenn in der Zeiteinheit ebensoviele Moleküle
pro cm2 der Flüssigkeitsoberfläche verdampfen, wie aus dem Dampf-
Moleküle dahin zurückkehren. Sei nA die Zahl der sekundlich pro
Flächeneinheit verdampfenden Moleküle und nA die Zahl der
zurückkehrenden, dann ist die Bedingung für das Gleichgewicht
gegeben durch die Gleichung nA n/. Die Zahl nA ist bestimmt
einerseits durch die Abreissarbeit der Moleküle von der
Flüssigkeitsoberfläche, die wir mit 93 bezeichnen; andrerseits durch die
Zahl der günstig gelegenen Moleküle, die, infolge der Schwankungs-
erscheinungen der thermischen Energie, einen genügend grossen
Bewegungsimpuls besitzen, um die Abreissarbeit leisten za können.
Die Maxwell-Verteilung der kinetischen Energie der Moleküle und
ihre Abhängigkeit von der absoluten Temperatur bringt es mit sich,
dass je Zeiteinheit um so mehr Moleküle die Oberflächeneinheit
verlassen können, je höher die absolute Temperatur ist. n/ ist somit
eine Funktion von T und cp allein, so dass wir schreiben können:
nA f(T, cp).

Die Zahl der sekundlich pro Flächeneinheit kondensierenden
Moleküle n/ berechnet sich, homogene Verteilung der Dampfmoleküle

vorausgesetzt, sehr einfach. Die Rechnung, die hier nicht
ausgeführt werden soll, ergibt, dass n/ proportional ist zur Zahl der

pro cm3 vorhandenen Moleküle, die wir mit n bezeichnen wollen,
so dass wir setzen können: n/ p(T) ¦ n. In dieser Gleichung
bedeutet p lediglich einen von der Temperatur abhängigen Faktor.

Setzen wir die Ausdrücke für nA und n/ in die Gleichgewichts-
bedingung ein, dann erhalten wir die Gleichung:

p(T)-n f(T,cp). (1)
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Bei gegebener Temperatur T ist demnach die Gleichgewichtsdampfdichte

n nur durch die Abreissarbeit cp bestimmt. Die
Abreissarbeit ist nun aber für ein und dieselbe Flüssigkeit keine
konstante Grösse, vielmehr hängt sie von der äusseren Form des
betreffenden Flüssigkeitsvolumen ab. Da ein Flüssigkeitstropfen bei
Abwesenheit äusserer Kräfte immer Kugelform annimmt, können
wir uns auf diesen Fall beschränken. Die Flüssigkeitskugel bildet
sich unter dem Einfluss der Oberflächenspannung. Bei der
Verkleinerung des Kugelvolumens leistet dieses Spannung Arbeit.
Gerade das geschieht aber, wenn ein Molekül von der Kugeloberfläche

verdampft. Dadurch verkleinert sich das Volumen der Kugel
ein wenig und die dabei geleistete Arbeit kommt dem verdampfenden

Molekül zugute, dessen Abreissarbeit um diesen Betrag geringer
wird. Wir schreiben deshalb folgerichtig für die Abreissarbeit <pr,

wobei der Index r andeutet, dass cp vom Kugelradius abhängig ist.
Die Folgerung, die aus dieser Abhängigkeit zu ziehen ist, liegt

auf der Hand. Dadurch wird bei konstanter Temperatur T die
Gleichgewichtsdampfdichte abhängig von der Tröpfchengrösse.
Unter der Voraussetzung, dass sich der Dampf wie ein ideales Gas

verhält, wird der Zusammenhang zwischen Dampfdichte und
Tröpfchenradius durch folgende Gleichung wiedergegeben:

B T ln (nJnœ) (2 a • Mfr ¦ g). (2)

Diese Gleichung wurde von W. Thomson erstmals abgeleitet.
(Vgl. M. Volmer1).) Es bedeuten darin:

R Gaskonstante des idealen Gases.
T Absolute Temperatur.
nr — Zahl der Moleküle pro cm3 des Dampfes, der mit dem kugel¬

förmigen Tröpfchen vom Radius r im Gleichgewicht steht.
nm Zahl der Moleküle pro cm3 des gesättigten Dampfes, der

mit der ebenen Flüssigkeitsoberfläche (r co) im
Gleichgewicht steht.

tr Oberflächenspannung der flüssigen Phase.
M Molekulargewicht.

g Dichte (gr/cm3).

In der Fig. 1 ist nr in Funktion von r dargestellt. Es ist daraus
ersichtlich, dass die Gleichgewichtsdampfdichte erst mit sehr kleinen
Radien merklich zunimmt. Bei der Keimbildung in übersättigten
Dämpfen haben wir es aber gerade mit Tröpfchen von dieser
Grössenordnung zu tun. '

Die Zunahme der Oberflächenkrümmung ist nicht die einzige
Ursache für das Anwachsen der Gleichgewichtsdampfdichte. Wir
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haben noch zu berücksichtigen, dass wir mit abnehmendem r
schliesslich die Wirkungssphäre der atomaren Anziehungskräfte
unterschreiten, so dass wir nicht mehr mit der makroskopisch
definierten Oberflächenspannung rechnen dürfen. Qualitativ tritt
dadurch keine Änderung im Mechanismus der Keimbildung ein. Für
quantitative Berechnungen ist dieser Einfluss jedoch zu
berücksichtigen.

Zu jeder Damrifdichte, die grösser ist als die Sättigungsdampf-
dichte über der ebenen Oberfläche existiert also eine ganz bestimmte
Tröpfchengrösse, die mit dieser Dampfdichte im Gleichgewicht
steht. Dieses Gleichgewicht ist aber keineswegs stabil, wie man
sich leicht überlegen kann. Denn eine kleine zufällige Verkleinerung

s-s

- Tropfchenradius r

w- 10- io- 10-' 10-

Kg.l.
Dampfdichte in Funktion des Tröpfchenradius.

des Tröpfchens hat, wie ein Blick auf die Fig. 1 lehrt, sofort eine
Erhöhung seines Dampfdruckes zur Folge. Das Tröpfchen hat
deshalb die Tendenz, noch kleiner zu werden. Ebenso ist es im
umgekehrten Fall. Hat sich das Gleichgewichtströpfchen zufällig einmal
ein wenig vergrössert, dann sinkt sein Dampfdruck und damit
steigt, konstante Dampfdichte der Umgebung vorausgesetzt, die
Tendenz zur weiteren Vergrösserung.

Die Gleichgewichtströpfchengrösse stellt somit eine Art
Schwelle dar, gleich einem Potentialberg, der von einer
Flüssigkeitspartikel überschritten werden muss, damit sie sich zu
makroskopischen Dimensionen auswachsen kann. Verfolgen wir das
Wachstum einer solchen Partikel im übersättigtem Dampf von der
Dichte nr0. In dem zunächst völlig molekular-dispers gedachten
Dampfe treten zufällig einige Moleküle zu einem Komplex zusam-
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men mit dem Radius r < r0. Dieser Komplex ist, über längere
Zeit betrachtet, nicht beständig, da seine Gleichgewichtsdampfdichte

ja grösser ist als die Dampfdichte der Umgebung. Die
Schwankungen der kinetischen Energien der Moleküle, oder, was
gleichbedeutend ist, die Schwankungen der Temperatur innerhalb
kleiner Bezirke geben unserem Komplex jedoch die Möglichkeit,
kurze Zeit zu bestehen oder sogar noch weiter zu wachsen. Ist die
Übersättigung genügend gross und damit nach Gleichung (2) der
Radius r0 genügend klein, so wird es vorkommen, dass der Molekülkomplex

die Grösse des Gleichgewichtströpfchens r0 erreicht oder
überschreitet. Damit wird er stabil und wächst bei konstant gehaltener

Übersättigung über alle Grenzen weiter. Wir bezeichnen alle
diejenigen Partikel, die infolge der Schwankungserscheinungen die
Grösse des Gleichgewichtströpfchens erreichen konnten, als Keime,
da sie befähigt sind, als Keime für die später makroskopisch sichtbar

werdenden Flüssigkeitströpfchen zu dienen. Es bleibt uns nun
noch übrig, einen exakten Ausdruck für die Wahrscheinlichkeit
einer solchen Schwankung der thermischen Energie der Moleküle
zu finden, wie sie zur Bildung eines Keimes notwendig ist. Zu
diesem Zweck kehren wir wieder zu unserem kleinen Tröpfchen
vom Radius r zurück und führen damit ein Gedankenexperiment
aus. Durch Anlagerung von Molekülen aus der Dampfphase lassen
wir es auf den Radius r + dr anwachsen, wozu wir einen bestimmten
Arbeitsbetrag — dA aufwenden müssen. Das negative Vorzeichen
bedeutet, dass es sich um einen von uns geleisteten Arbeitsbetrag
handelt. Die damit verbundeneVolumzuname beträgt d V= 4 nr • dr.
Nun verbinden wir das Tröpfcheninnere mittels eines kleinen Röhrchens

mit dem Innern des Gleichgewichtströpfchens und lassen das

Flüssigkeitsvolumen dV hinüberfliessen. Dann gewinnen wir einerseits

wegen der Verkleinerung der Kugeloberfläche um dF
8 nr • dr die positiv zu nehmende Arbeit + a ¦ 8 nr ¦ dr. Anderseits

müssen wir aber wegen der Vergrösserung der Oberfläche des

Gleichgewichtströpfchens, die der Volumenzunahme dV entspricht,
die negativ zu nehmende Arbeit - a • (4 n r2lr0) ¦ dr leisten.
Schliesslich lassen wir die dem Volumen dV entsprechende Zahl
von Molekülen von der Oberfläche des Gleichgewichtströpfchens
wieder verdampfen, wozu keine Arbeitsleistung notwendig ist, da
sich das Tröpfchen mit seiner Umgebung ja im Gleichgewicht
befindet. Damit haben wir einen isothermen Kreisprozess ausgeführt,

für den die algebraische Summe der einzelnen Beiträge
verschwinden muss. Diese Bedingung führt zu der Beziehung

dA a 8 nr • dr,
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worin dA den zur Vergrösserung des Tropfchenradius von r auf
r + dr notwendigen Arbeitsbeitrag darstellt. Die gesamte Arbeit
Ar, die für die Bildung eines Tröpfchens vom Radius r aus der
Dampfphase aufgewendet werden muss, ergibt sich durch Integration

über dA in den Grenzen von 0 bis r:

AT f dA
0

8 nr

4nr2 -

4nr2
r0

4nr3
3-rn

dr —

(3)

Die Gleichung (2) gibt uns die Möglichkeit, an Stelle des
experimentell nicht messbaren Gleichgewichtsradius r0 die zugehörige
Übersättigung einzuführen, für die der Ausdruck

ô In KKJ (4)

ein bequemes Mass darstellt. Damit erhalten wir für die Bildungsarbeit

eines Tröpfchens vom Radius r aus der Dampfphase mit
der Übersättigung ô:

a 2 2nrs R-T ,_.Ar a • 4 n r2 • ¦ p ¦ ò (5)
3 M H W

ò - O.Ol

14 x erg

6-0
- 12

03 8

6 0.02

_ à-0.03
?.0s

Radius

20 x 10-' cm

Fig. 2.

Bildungsarbeit für ein Tröpfchen in Funktion des Radius für verschiedene
Übersättigungsgrade <5 ln (nr/n œ a 10 dyn/cm; M/e 36 cm3; T 300° K.

In Fig. 2 ist die Bildungsarbeit Ar in Funktion von r für
verschiedene Tröpfchengrössen aufgetragen worden. Man ersieht daraus,

wie für eine bestimmte Übersättigung die Bildungsarbeit mit
wachsendem Radius zunächst zunimmt, dann ein Maximum durch-

45
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läuft und schliesslich wieder abfällt. Die Höhe des Maximums
nimmt ab mit steigender Übersättigung und damit wird die Schwelle
niedriger, die eine wachsende Partikel zu überwinden hat, wenn
sie als Keim für ein zu makroskopischen Dimensionen auswachsende

Tröpfchen dienen soll. Der Radius am Orte des Maximums fällt
zusammen mit dem Radius des Tröpfchens, das mit der betreffenden
Dampfdichte im Gleichgewicht steht. Die Bedingung für diesen
Radius ist ja (dAJdr) 0, woraus gerade die Gleichung (2) folgt.
Den Maximalwert der Arbeit, den wir Keimbildungsarbeit nennen
wollen, erhalten wir durch Einsetzen des aus dieser Bedingung
erhaltenen Radius in Gleichung (5). Sie ergibt sich zu

16 7t M2 a3
(6)

3 g2R2- T2 ò2

Diese Gleichung bietet uns nun die Möglichkeit, den Ausdruck
für die Wahrscheinlichkeit der Keimbildung aufzustellen. Wir
benutzen dazu den Boltzmann'schen Ansatz w ~ e-(u,kT\ Allerdings
handelt es sich bei der Keimbildung um einen einseitig verlaufenden
Vorgang, da die Tröpfchen, die die Keimgrösse erreicht haben,
weiterwachsen, wodurch die Voraussetzung konstanter Übersättigung,

die zur Ableitung der Keimarbeit benutzt wurde, hinfällig
wird. Brechen wir jedoch das Experiment in dem Moment ab, in
welchem die ersten makroskopisch sichtbaren Tröpfchen erscheinen,
dann bleibt die Voraussetzung konstanter Übersättigung nahezu
erfüllt. Wir dürfen dann mit genügender Annäherung den
Boltzmann'schen Ansatz benutzen und gelangen so zu dem folgenden
Ausdruck für die Keimbildungs Wahrscheinlichkeit:

18 Ji M'-N tr1 C

(7)

(8)

In Csind ausser Temperatur, Gaskonstanten, Lohschmid'sehen
Zahl und einem Zahlenfaktor die physikalischen Konstanten
g,M,a der betrachteten Flüssigkeit zusammengezogen worden.

In Fig. 3 ist die Funktion e ô' in Abhängigkeit von der

Übersättigung ò für verschiedene Werte von C dargestellt worden. Wir
ersehen daraus, dass für kleine Werte von ô, also für kleine
Übersättigungen die Keimbildungswahrscheinlichkeit äusserst gering ist.
Erst von einer bestimmten Übersättigung ab nimmt die Wahr-

%~e 3 ' Q* ¦ Rs ¦ T* ' <5a
__

<

mit C
16 n

3

M2-N 3

g2- Rs- T3 °
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scheinlichkeit rapid zu, um für grosse Übersättigungen asymptotisch

den Wert 1 zu erreichen. Der Ort, in welchem die Kurve
nach oben abbiegt, hängt ausschliesslich von C ab, also nach
Gleichung (8) von der Temperatur und von den physikalischen
Konstanten der betrachteten Flüssigkeit. Der scharfe Anstieg der
Keimbildungswahrscheinlichkeit oberhalb einer bestimmten Übersättigung

macht es erklärlich, dass experimentell die Unterteilung des
Übersättigungsgebietes in ein metastabiles und ein labiles Gebiet

vorgenommen wurde. Der metastabilen Grenze zwischen den beiden

Gebieten entspricht dabei der scharfe Anstieg der
Keimbildungswahrscheinlichkeit.

1,0

C-0.005
« 0.9

C-0.O2
¦S 0.8

0.7

0.6

0.5

0.3

0.2

0.1

ò (ÜbersättigungJ

0.1 0.2 0.3 0.4 0.5 0,6

Fig. 3.

Keimbildungswahrscheinlichkeit in Funktion der Übersättigung ô.

Wir haben nun noch zu untersuchen, in welcher Weise sich
die in den vorstehenden Ausführungen gefundenen Gesetzmässigkeiten

im Falle der Kristallkeimbildung aus übersättigten Lösungen
modifizieren. Hier treten vor allem zwei Fragen auf:

1. In welcher Weise ändert sich der Ausdruck für die Keim-
bildungswahrscheinlichkeit bei Kristallkeimen, die ja nicht
kugelförmig wie die Flüssigkeitströpfchen, sondern polyedrisch sind?

2. Wie äussert sich der Einfluss des Lösungsmittels auf die
Kristallkeimbildung in Lösungen?
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Die erste Frage lässt sich leicht beantworten. Wir haben
einfach überall da, wo Flächen-, beziehungsweise Volumberechnungen
vorkommen, auf die polyedrische Gestalt der Keime Rücksicht zu
nehmen. Es lässt sich dabei immer eine lineare Grösse a bestimmen,
die die Rolle des Radius im Falle der Kugel übernimmt. Für den
Fall würfelförmiger Kristallkeime, wie z. B. für Ionenkristalle vom
Steinsalztyp, drängt sich die Länge a der Würfelkante als
charakteristische Grösse auf. Die Rechnung, die hier nicht im einzelnen
durchgeführt sei, ergibt für diesen Fall als Ausdruck für die
Keimbildungswahrscheinlichkeit

M'-N a"

% ~ e e " (9)

Dieser Ausdruck unterscheidet sich von dem entsprechenden
bei Flüssigkeitströpfchen (7) nur um einen Zahlenfaktor im
Exponenten, wie zu erwarten war. Der Einfluss der Keimform ist demnach

nur quantitativ. Qualitativ wird dadurch an der Erscheinung
nichts geändert.

Bei der Beantwortung der zweiten Frage haben wir die Kräfte
zu berücksichtigen, die zwischen den Molekülen des Lösungsmittels
und des gelösten Stoffes wirksam sind. Ausserdem ist zu erwarten,
dass durch die Gegenwart des Lösungsmittels die Beweglichkeit der
gelösten Moleküle herabgesetzt wird, so dass sich Konzentrations-
unterschiede nicht so schnell ausgleichen können, wie dies in der
Dampfphase der Fall ist. Ein grosser Teil der in der vorliegenden
Arbeit beschriebenen Untersuchungen hatte die Klärung dieses
Einflusses zum Gegenstand. Dem Ergebnis dieser Versuche soll hier
nicht vorgegriffen werden.

Der Einfluss der Kräfte zwischen Lösungsmittel und gelöster
Substanz lässt sich folgendermassen berechnen : Wir stellen uns ein
im Wachstum begriffenes würfelförmiges Kriställchen mit der
Kantenlänge a innerhalb der Mutterphase vor. Bei der Zunahme von
a auf a + da vergrössert sich die Oberfläche des Kristallchens um
df 12 a • da. Um ebensoviel hat aber auch die Oberfläche des

Lösungsmittels zugenommen, die dem wachsenden Kriställchen ja
Platz machen muss. Sei ax die Oberflächenspannung des Kristalls
und o"n diejenige der gesättigten Lösung, dann ist df(ax+ axl) die
Arbeit, die bei der Vergrösserung der Oberflächen um df geleistet
werden muss. Bei diesem Wachstumsvorgang nimmt aber die
Berührungsfläche zwischen Kristall und Lösung ebenfalls um df zu,
was mit dem Energiegewinn d£In verbunden sein möge. Die Bilanz
ergibt für den ganzen aufzuwendenden Arbeitsbetrag:

dA df(a1 + ffn) - dex n (10)
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Die Grösse des Energiegewinnes dein ergibt sich aus folgender
Betrachtung :

Wir tauchen die frische Spaltfläche eines makroskopischen
Kristalls aus dem betrachteten Stoff in seine gesättigte Lösung
(Fig. 4a). Infolge der Wechselwirkung zwischen Kristall und
Lösung stellt sich in jedem Fall der ganz bestimmte Benetzungswinkel
cp ein, unabhängig von dem Winkel ip zwischen Spaltebene und
Lösungsmitteloberfläche. Zur Klärung der energetischen Verhält-

df • cos ç>

Fig. 4 a u. b.
Bestimmung der wirksamen Oberflächenspannung eines Kriställchens in der

Lösung.

nisse betrachten wir die Figur 4 b, die einen stark vergrösserten
senkrechten Schnitt durch das Grenzgebiet zwischen Kristall und
Lösung darstellt. Durch Heben der Grenzkurve um dx vergrössern
wir die Berührungsfläche um df dx ¦ l, wenn l die Länge der
Grenzkurve bedeutet. Dabei gewinnen wir die Energie deixi. Die
Vergrösserung der Oberfläche der Lösung ist df + df • cos cp, wie
sich aus der Figur 5 b direkt ablesen lässt. Hierzu muss der Arbeitsbetrag

an ¦ df ¦ (1 + cos cp) geleistet werden. Falls Gleichgewicht
vorhanden ist, muss die Summe der infinitesimalen Arbeitsbeiträge
bei diesen virtuellen Oberflächenvergrösserungen verschwinden.
Diese Bedingung führt zur Gleichung

de-i n ffn ¦ df ¦ (1 + cos cp).

Die experimentelle Bestimmung des Winkels cp gibt uns Auf-
schluss über die Grösse des Energiegewinnes deIu. Für einen NaCl-
Kristall in Verbindung mit seiner gesättigten Lösung ergab sich
cp ¥i 0°. Es ist mit Bestimmtheit anzunehmen, dass diese Beziehung
für alle Ionenkristalle vom Steinsalztypus zutrifft, so dass für
diesen Fall gilt:

dex n o-n • df • (1 + cos 0°) 2 • ffn • df.
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Wir setzen diesen Ausdruck in die Gleichung (10) ein und
erhalten

dA df-(al + an-2 an) df ¦ (<rT - an). (11)

(°i ~~ °ii) können wir auffassen als die Oberflächenspannung,
die in der Grenzfläche zwischen unserem Kriställchen und der
Lösung wirksam ist. Diese ist in dem betrachteten Fall also gleich
der Differenz der Oberflächenspannungen von Lösungsmittel und
ausfallendem Kristall. Für die Berechnung der Keimbildungswahrscheinlichkeit

haben wir nun zu setzen:

m*-n <gi-gn)3 __£.

wK~e e>-R»-T>
'

ö> =e & (12)

M2 • Nmit C 32 • ——— (o-T - ffn)3 (13)
g2 • R3 • T3 { l ' V '

ffj Oberflächenspannung der ausfallenden Kristalle.

°ii Oberflächenspannung der gesättigten Lösung.

Diese Gleichung entspricht der Gleichung (7) für den Fall der
Tröpfchenbildung in übersättigten Dämpfen. Sie unterscheidet sich
von jener Formel ausser dem Zahlenfaktor im Exponenten durch
das Hineinspielen der Oberflächenspannung des Lösungsmittels.
Wir werden daher qualitativ bei der Keimbildung in übersättigten
Lösungen dieselben Erscheinungen erwarten, nämlich die Existenz
eines metastabilen und eines labilen Übersättigungsgebietes, die
durch eine scharfe Grenze voneinander getrennt sind (vgl. Fig. 3).
Es liegt nahe, die Lage dieser Grenze mit dem Ort des steilsten
Anstieges der Wahrscheinlichkeitsfunktion in Beziehungen zu

/ C \
bringen. Die Bedingung hierfür ist d2(e~-rr\ /do2 0. Daraus folgt

Frenze V&W Konstante • ^- ¦ ]/ ^ ^ (14)

Bei konstanter Temperatur hängt demnach die Grenze nur

vom Wert des Ausdrucks — • ^(ax — ffn)3 ab. Die Wahl von
Substanzen beziehungsweise Lösungsmitteln mit verschiedenen
Oberflächenspannungen ergibt also eine weitere Möglichkeit, die
Richtigkeit der Gleichung (12) zu prüfen.

Zum Schlüsse dieser Ausführungen seien noch einmal die
wesentlichen Aussagen, die eine experimentelle Prüfung der Theorie
zulassen, zusammengestellt.

1. Lösungen von festen Körpern in Flüssigkeiten lassen sich
bis zu einer bestimmten Grenze übersättigen, ohne dass Keimbil-
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dung eintritt (metastabiles Gebiet). Oberhalb dieser Grenzübersättigung

ist die Lösung labil. Wir erwarten hier spontane
Keimbildung. Die Grenze hat keine absolute Bedeutung. Die Gebiete
oberhalb und unterhalb der Grenze unterscheiden sich nur in der
Grösse der Keimbildungswahrscheinlichkeit. Diese Wahrscheinlichkeit

steigt jedoch innerhalb eines kleinen Gebietes sprunghaft an,
so dass man praktisch von einer scharfen Grenze sprechen kann.

2. Der Wert der Übersättigung an der Grenze ist für Kristalle
vom NaCl-Typus angenähert gegeben durch den Ausdruck:

M -,/(ffT-<7TT)3 -,/_ N_
R3

«Grenze ~ J/ yg J/ SZ

Wir erwarten daher, dass mit steigender Oberflächenspannung
der ausfallenden Kristalle beziehungsweise mit sinkender
Oberflächenspannung der gesättigten Lösung die Grenze sich im Sinne
steigender Übersättigung verschiebt. Es ist jedoch darauf zu achten,
dass infolge der kleinen Dimensionen der Keime (Grössenordnung
IO-7 cm) ihre Oberflächenspannung nicht mit der makroskopischen
übereinstimmt. (Vergleiche die Ausführungen auf Seite 703.)

C. Experimenteller Teil.

1. Allgemeines zu den Messungen.

Die vorliegenden Untersuchungen wurden an Kaliumjodid-,
Kaliumbromid- und Kaliumchlorid in Wasser und an Kaliumchlorid

in einem Gemisch von Wasser und Äthylalkohol (32 Gew. %
Alkohol) vorgenommen. Die Gründe, die zur Wahl dieser
Substanzen führte, waren folgende:

a) Die genannten Stoffe bilden alle Ionenkristalle vom
Steinsalztypus. Sie unterscheiden sich nur in den Oberflächenspannungen,

den Molekulargewichten und Dichten. Dies sind aber gerade
die Grössen, die in die Gleichung (12) für die Keimbildungswahrscheinlichkeit

eingehen. Die erhaltenen Resultate können also
unmittelbar miteinander verglichen werden.

b) Der Bodenkörper der drei Salze zeigt in dem interessanten
Temperaturgebiet von 0 bis 100° C keine Modifikationen.

c) Die Löslichkeit der drei Salze in Wasser ist stark
temperaturabhängig (siehe Tab. 1). Dies ist wichtig, da diese Abhängigkeit
dazu benutzt wird, eine homogene Übersättigung zu erreichen.
Aus diesem Grunde eignet sich z. B. NaCl für derartige Versuche
nicht, weil dort die Abhängigkeit der Löslichkeit von der Tem-
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peratur sehr gering ist. Der Verlauf der Temperatur-Löslichkeits-
kurve liegt auch insofern günstig, als für alle drei Salze die gleiche
Temperaturabsenkung nahezu dieselbe Übersättigung hervorruft.

Tabelle 1.

Abhängigkeit der Löslichkeit von der Temperatur.

Solvat Solvens 10° 20° 30° 40° 50°

KJ Wasser 136 144 152 160 168

KBr Wasser 59,5 65,2 70,6 75,5 80,2

KCl Wasser 31,0 34,0 37,0 40,0 42,6

KCl* Wasser +
32 Gew.%
Aethylalk.

11,9* 14,05* 16,25* 18,4* 20,6*

Die Zahlen bedeuten g Solvat pro 100 g Lösungsmittel.

Diese Werte sind teilweise dem Handbook of Chemistry and
Physics, 22nd Edition entnommen worden. Die mit * bezeichneten

Werte entstammen eigenen Messungen.
d) Der einfache Gitterbau der drei Substanzen erlaubt es, die

Oberflächenspannungen für den absoluten Nullpunkt zu berechnen.
Die erhaltenen Werte können zwar nicht unmittelbar zur Berechnung

der metastabilen Grenze (Gl. (14)) benutzt werden. Denn
erstens sind sie unter der Voraussetzung gewonnen worden, dass
sich die Atome auch an der Oberfläche der Kristalle streng in den
idealen Gitterpunkten befinden. Dies trifft sicher nicht zu, vielmehr
wird die Oberfläche infolge der unsymmetrischen Lage etwas
deformiert, was mit einer Verminderung der Oberflächenspannung einher

geht. Zweitens ist bei den in Frage kommenden kleinen
Kriställchen von der Grössenordnung 10~7 bis IO-6 cm die Oberflächenspannung

kleiner als bei makroskopischen Kristallen (vgl. hierzu
die Ausführungen auf Seite 703). Immerhin kann man der Berech -

Tabelle 2.

Zusammenstellung der physikalischen Daten der untersuchten Stoffe.

Stoff

Oberfläche
Kristall*
berechnet
dyn/cm

nspannung
Schmelze
gemessen
dyn/cm

Oberfl.
Spannung
d. Lösung
dyn/cm

M

g

Dichte

g/cm3

KCl 107,5 95,8 (800° C) 78,8 74,56 1,98

KBr 91,6 85,7 (775° C) — 119,02 2,75

KJ 74,0 75,2 (737° C) — 166,02 3,5

* Diese Berechnungen sind von Madelung14) ausgeführt worden. Die
übrigen Zahlen stammen aus dem Handbook of Chemistry and Physics, 22nd Edit.
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nung entnehmen, dass die Oberflächenspannung von KJ über KBr
nach KCl zunimmt. Dies geht ja auch aus der Verschiedenheit der
Löslichkeit der drei Salze in ein und demselben Lösungsmittel
(Tab. 1) hervor. Als Folge dieser Zunahme der Oberflächenspannung

werden wir erwarten, dass sich die metastabile Grenze in der
gleichen Reihenfolge nach grösseren Übersättigungen verschiebt.
In Tab. 2 sind die physikalischen Daten der drei Salze sowie ihrer
Lösungen eingetragen worden, soweit sie bekannt sind.

2. Beschreibung der Messanordnung.

Fig. 5 zeigt eine schematische Darstellung der Messanordnung.
Diese bestand im wesentlichen aus zwei Teilen, nämlich aus
Thermostat und Messbrücke, die nachstehend beschrieben werden.

c*2

yjrikAiü

Rührer

-Thermoregler

-Kühler

-Heizung

-Thermostat

Sättigungsgefäss

~~Messgefäss

"Vergleichsgefäss

-Messbrücke

_B>

NF-Verstärke

Messdraht

ongenerator

Fig. 5.
Schema der Versuchsanordnung.

a) Thermostat. An den Thermostaten wurden hauptsächlich
zwei Forderungen gestellt. Erstens musste die Temperatur über
einen Bereich von 15° bis 60° C innerhalb einiger Minuten variiert
werden können und zweitens musste die einmal eingestellte
Temperatur für längere Zeit, oft mehrere Tage, auf weniger als a/100 C

konstant gehalten werden können.
Die erste Forderung wurde durch Wahl eines kleinen Thermo-

statengefässes von 25 cm Länge, 20 cm Breite und 18 cm Tiefe
erfüllt. Dieses bestand aus Glas, weil es dadurch möglich wurde, die
Vorgänge im Thermostaten dauernd unter Kontrolle zu behalten.
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Als Badflüssigkeit wurde reines Paraffinöl gewählt. Dieses
verbindet den Vorteil der Durchsichtigkeit mit dem einer kleinen
spezifischen Wärme (ca. 0,5 cal/g Grad), was für schnelle Temperaturänderungen

von Bedeutung ist. Ausserdem besitzt es einen sehr
kleinen Dampfdruck, so dass es praktisch nicht verdunstet.

Ein Messingzylinder von 6 cm Durchmesser und 15 cm Länge
tauchte senkrecht bis über den oberen Rand in die Badflüssigkeit
ein. Im Inneren dieses Zylinders waren Heizwicklung und
Kühlschlange angebracht. In der Achse des Rohres lief die Rührwelle nach
unten. Am untern Ende war ein Flügelrad vom gleichen Durchmesser

wie das Rohr befestigt. Bei etwa 2000 T/Min. wirkte dieses

Flügelrad als kräftige Zentrifugalpumpe, die innerhalb ca. 10
Sekunden die ganze Ölmenge einmal durch das Rohr saugte. Dadurch
wurde eine absolut gleichmässige Temperatur im ganzen Gefäss
erzielt. Durch intensives Heizen oder Kühlen konnte, dank der
kräftigen Bespülung des Heizdrahtes bzw. der Kühlschlange die
Temperatur innerhalb 2 Minuten von 20° auf 50° C und innerhalb
10 Minuten wieder auf 20° gebracht werden. Die Anordnung des
Rühreres am unteren Ende des Rohres hat ausserdem noch den
Vorteil, dass trotz kräftiger Rührung die Badoberfläche ruhig
bleibt.

b) Messbrücke. Es handelte sich bei den Versuchen darum, den

genauen Zeitpunkt festzulegen, in welchem die Kristallisation
eintrat. Die visuelle Beobachtung ist sehr mühsam und ungenau. Es
wurde deshalb die nachstehend beschriebene Methode benutzt.

Das Gefäss, in welchem sich die zu untersuchende Lösung
befand, war als elektrolytische Zelle ausgebildet. Diese wurde in
den einen Zweig einer sehr empfindlichen Messbrücke eingeschaltet.
Im anderen Zweig befand sich ebenfalls ein genau gleich gebautes
Gefäss mit einer Vergleichslösung, die nahzu denselben
Temperaturkoeffizienten der Leitfähigkeit besass. Dadurch konnte der
Temperatureffekt eliminiert werden. Mit temperaturunabhängigem
Vergleichswiderstand betrug die Verschiebung des Minimums auf dem
Messdraht 30 mm pro 1fX(A Temperaturänderung im Messgefäss. Mit
der Vergleichslösung sank die Verschiebung des Minimums für die
gleiche Temperaturänderung auf weniger als 1 mm. Ferner
konnte mit dieser Anordnung auch der störende Polarisations-
effekt eliminiert werden. Der Ort des Minimums zeigte sich
im Intervall von 200—15000 Hz unabhängig von der Frequenz
des Messtromes.

Beim Einsetzen der Kristallisation sinkt die elektrische
Leitfähigkeit der Lösung plötzlich ab. Dies äussert sich durch einen
bequem zu beobachtenden sprunghaften Anstieg des Brücken-
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Stromes. Die Beobachtung kann dadurch erleichtert werden, dass

man den Anstieg des Brückenstromes registriert. Auf diese Weise
können die zeitraubenden Messungen z. B. auch nachts weitergeführt

werden.
Der Bau des Messgefässes und des gleich gebauten Vergleichs-

gefässes sei an Hand der Fig. 6 beschrieben. Die beiden Glasge-

A A r^

Fig. 6.

Messgefäss.

fasse a und b tragen zur Erhöhung des elektrischen Widerstandes
in ihrem mittleren Teile eine Verengerung. Aus dem gleichen Grunde
sind auch die Verbindungsröhrchen c und d eng gehalten, e und /
sind die beiden mit Platinmohr überzogenen Elektroden aus Platinblech.

Sie sind je etwa 4 cm2 gross. Das Rohr b trägt oben einen
kurzen verschliessbaren Rohrstutzen, der zum Einfüllen der Lösung
dient. Der Verschluss des Rohres a wird durch das Rührlager g
gebildet, das mittels eines Ringes aus Bunagummi dicht aufgesetzt
werden kann. Die Welle ist, wie aus der Figur ersichtlich, mit Quecksilber

abgedichtet. Der Rührer h besteht aus gut vernickeltem
Messing. An seinem unteren Ende ist ein Blatt angefräst, das sich
der Form der Rohrwandung angepasst. Bei einer Tourenzahl von
600 T/Min. wirkt das Blatt als Zentrifugalpumpe, die die ganze
Lösungsmenge von etwa 30 cm3 in 8 Sekunden einmal umwälzt.
Damit beim Einfüllen die Luft aus dem oberen Teil des Rohres a
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Fig. 7.

Bild des Thermostaten.
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Fig. 8.

Gesamtansicht der Versuchsanlage.
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entweichen konnte, musste die Rührwelle i hohl gemacht werden.
Nach dem Einfüllen wurde sie durch einen Gummistopfen
verschlossen. Die Lösung wurde bis zur Höhe l eingefüllt. Das ganze
Gefäss befand sich bis zur Höhe k im Ölbad.

Fig. 7 zeigt ein photographisches Bild des Thermostaten und
Fig. 8 eine Gesamtansicht der Versuchsanlage.

3. Beschreibung der Vorversuche.

Die zu untersuchende Lösung wurde bei einer bestimmten
Temperatur gesättigt und darauf in das Messgefäss eingefüllt, das
sich auf derselben Temperatur befand. Anschliessend wurde die
Temperatur mit verschiedenen Geschwindigkeiten abgesenkt und
so eine bestimmte Übersättigung erzeugt, die sich aus der Tempera -

tur-Löslichkeitskurve berechnen lässt. Nun wurde die Zeitdauer
bestimmt, die bis zum Ausfallen des Bodenkörpers verstrich. Diese
Zeitdauer soll im folgenden Wartezeit genannt werden. Es wird
dabei stillschweigend die Annahme gemacht, dass die Wartezeiten
sich umgekehrt proportional zu den Keimbildungswahrscheinlich-

30

Stunden
29 \\\
28

-w-27 \ \
26,

24

23

22

E 21

20 °C

Fig. 9.

Graphische Darstellung der Unterkühlungsversuche an wässerigen KCl-Lösungen.
Lösung bleibt in Ruhe; Lösung wird gerührt.

keiten bei den betreffenden Übersättigungen verhalten. Die
beobachteten Wartezeiten waren völlig regellos und es schien unmöglich,
daraus irgendeine Gesetzmässigkeit ablesen zu können. Eine
Unzahl von Versuchen gestattete aber schliesslich, bestimmte
Abkühlungsbedingungen zu schaffen, bei denen die gemessenen Warte-
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zeiten nur wenig streuten. Es hat natürlich keinen Sinn, sämtliche
ausgeführten Versuche zu beschreiben. Es sollen vielmehr nur einige
charakteristische Resultate mitgeteilt werden, weil diese Aufschluss
geben können über den Einfluss des Lösungsmittels auf die
Keimbildung.

In Fig. 9 sind diese charakteristischen Versuche dargestellt
worden. Für jeden einzelnen Versuch wurden die Lösungen frisch
hergestellt. Die Sättigung wurde immer bei 30° C vorgenommen.
Darauf wurden die Lösungen längs der eingezeichneten Kurven
abgekühlt, bis schliesslich die Bildung des Bodenkörpers
einsetzte. Längs der strichpunktierten Linien waren die Lösungen
gerührt worden.

Versuch Nr. 1. Die Lösung wird ohne Rühren rasch
abgekühlt. Zwischen 19 und 20° C tritt spontane Kristallisation ein.
Es bilden sich wenig Kristalle, die dementsprechend ziemlich gross
werden. (Grobe Struktur des Bodenkörpers.)

Versuch Nr. 2. Bei kleinerer Abkühlungsgeschwindigkeit tritt
die Kristallisation schon bei kleineren Übersättigungen ein. Die
Struktur des Bodenkörpers bleibt dieselbe.

Versuch Nr. 3. Während des Abkühlens wird die Lösung gerührt.
Sie lässt sich trotz längerer Abkühlungsdauer stärker übersättigen als
in Versuch Nr. 2. Der ausfallende Bodenkörper zeigt feine Struktur.

Versuche Nr. 4 und 5. Mit zunehmender Abkühlungszeit und
gleichzeitigem Rühren wird die erreichbare Übersättigung immer
grösser. Die Struktur des Bodenkörpers wird feiner.

Versuche Nr. 6 und 7. Es zeigt sich, dass es im wesentlichen
auf das Rühren in einem Gebiet geringerer Übersättigung (etwa
bei 24°) ankommt. Je länger die Lösung in diesem Gebiet gerührt
wird, um so stärker lässt sie sich nachher übersättigen.

Versuche 8 und 9. Wird nach Kurve 8 abgekühlt, so verhält sich
die Lösung wie die nach 1 und 2 behandelten. Das Rühren scheint
hier keinen Einfluss zu haben. Die nach Kurve 9 abgekühlte Lösung
fällt schon während des Rührens mit ziemlich grober Struktur aus.

Versuch Nr. 10. Eine nach Kurve 10 behandelte Lösung kann
innerhalb einer Versuchsdauer von mehreren Stunden nicht mehr
zur Kristallisation gebracht werden, obwohl die Übersättigung
dieselbe ist wie bei Versuch 9.

Diese Versuche zeigen, dass die Vorgeschichte der Lösung bis
zur schliesslich einsetzenden Kristallisation ausschlaggebend ist.
Die Neigung zur Keimbildung wie auch die Struktur des ausfallenden

Bodenkörpers hängt ab von dem Wege, auf dem die Lösung
auf den entsprechenden Übersättigungsgrad gebracht worden ist.
Besonders das Rühren während des Unterkühlens hat einen grossen
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Einfluss. Im folgenden wird versucht, die Ursache für dieses
Verhalten zu finden. Zu diesem Zwecke betrachten wir die Fig. 3. Wir
haben hier die Bildungsarbeit für ein Tröpfchen in Funktion des
Radius für verschiedene Übersättigungsgrade aufgetragen. Für
ò 0 z. B. wächst diese Bildungsarbeit quadratisch mit dem Radius
an. Im Gleichgewichtszustand werden wir Tröpfchen jeder Grösse

vorfinden, und zwar so, dass die Zahl der Tröpfchen, deren Radius
im Intervall von r bis r + dr liegt, proportional ist zu e~^ArlhT)dr,
wo Ar die entsprechende Bildungsarbeit bedeutet. Beim Übergang
zu schwach übersättigten Lösungen, z. B. für ô 0,01, ändert sich
die Gleichgewichtsverteilung der Tröpfchen etwas, entsprechend
dem geändertenVerlauf der Bildungsarbeit. Die Wahrscheinlichkeit,

dass die Schwelle überschritten werden könnte, was zur Bil-
eines makroskopischen Kristalles führen würde, ist hier noch
verschwindend gering. Erst wenn die Schwelle so niedrig geworden
ist, z. B. für ô 0,04, dass sie gelegentlich von einem Tröpfchen
überschritten werden kann, ändert sich das Bild grundsätzlich.
Denn das nun wachstumsfähige Partikel entzieht dem Dampf
soviel Moleküle, dass die Ausgangskonzentration zu sinken beginnt
sich schliesslich der Sättigungskonzentration nähert.

Lösungen werden prinzipiell dasselbe Verhalten zeigen. Nur
müssen wir hier damit rechnen, dass sich die Zeit, die zur Ausbildung

eines Gleichgewichtszustandes notwendig ist, entsprechend
dem kleineren Diffusionskoeffzienten der Moleküle in der Lösung
um ein Vielfaches verlängert. Es lässt sich leicht angeben, wie
gross der Einfluss der Diffusion ist. Betrachten wir z. B. ein
Kriställchen in einer Lösung mit der Konzentration c0 > cœ (cœ

Sättigungskonzentration). Das Kriställchen charakterisieren wir
durch den Radius a der umschriebenen Kugel und rechnen im
Folgenden so, wie wenn das Kriställchen kugelförmig wäre. Damit
begehen wir einen Fehler, der jedoch für die folgende Betrachtung
unwesentlich ist. Dem Radius a entspricht gemäss Gleichung (2)
(Seite 702) eine ganz bestimmte Konzentration ca. Wir setzen djabei
*V/wœ CrAœ > was wegen der Proportionalität von n und c erlaubt
ist. Unmittelbar an der Oberfläche des Kriställchens ist die Konzentration

im Mittel ca, während sie in der weiteren Umgebung nach
Voraussetzung c0 ist. Je nachdem c0^ caist, bildet sich ein
Diffusionsstrom vom oder zum Kriställchen aus, welches infolge dessen
ab- bzw. zunimmt. Um diesen Strom zu berechnen, gehen wir aus
von der Diffusionsgleichung für das kugelsymmetrische Problem:

&cjn DÌ, d2c 2 de

òr2 r dr
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Darin bedeutet D den Diffusionskoeffizienten. Der Nullpunkt
unseres Bezugssystems fällt mit dem Mittelpunkt des Kriställchens
zusammen. An der Kristalloberfläche werden die herantransportierten

Moleküle angelagert. Dadurch wird im Laufe der Zeit die
Konzentration der Lösung sinken. Wir nehmen jedoch das Lösungsvolumen

so gross, dass die Konzentrationsänderung innerhalb der
Beobachtungszeit nicht ins Gewicht fällt. Damit können wir den
Vorgang angenähert als stationär ansehen und dcfdt 0 setzen.
Wir erhalten dann für c die Lösung:

c Afr + B.
Die Randbedingungen des Problems sind nach den vorstehenden

Bemerkungen
r a > c ca

r oo > c cn

Daraus erhält man

und schliesslich:

A a(ca
B c0

c a{ca - c0)/r + c0 (15)

mit c Konzentration in g/cm3 der gelösten Substanz.
ca Gleichgewichtskonzentration des Tröpfchens vom

Radius a gemäss Gleichung (2).
c0 makroskopisch gemessene Konzentration der Lö¬

sung.
a .Radius des Kriställchens.
r Entfernung des Beobachtungsortes vom Mittelpunkt

des Kriställchens.
Diese Gleichung gibt uns den Konzentrationsverlauf in der

Umgebung des Kriställchens. Die sekundlich in radialer Richtung
durch den Querschnitt 1 cm2 fliessende Menge ist

q - D ¦ dcfdr D- a- (ca - c)fr2

uno: damit die sekundlich an den Kristall gelangende Menge in
Gramm

Q <£ q- df 4nr2 ¦ q 4 na ¦ D ¦ (ca - c0)

Das Volumen dieser Menge ist Qjg, wenn g die Dichte des
Kristalls bedeutet. Somit wird die sekundliche Zunahme des
Kristallvolumens

dV/dt - Qjg - 4na ¦ D ¦ (ca - c0)/g

oder, wenn wir die Zunahme des Radius betrachten:
da/dt (dajdV) ¦ (dV/dt) - D ¦ (ca - c0)/a ¦ g. (16)
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Die Geschwindigkeit, mit welcher der Radius sich ändert, ist
also direkt proportional zum Diffusionskoeffizienten D. Ausserdem
ist sie proportional zur Differenz der Konzentrationen und, aus
geometrischen Gründen, umgekehrt proportional zum Radius der
wachsenden Partikel.

Für Wasserdampf in Luft z. B. ist

D 0,239 cm2/sec

Für KCl in Wasser dagegen nur
D 1,47 ¦ 10-5 cm2/sec '

(Diese Zahlen stammen aus dem Handbook of Chemistry and Phys.)
Die Änderungsgeschwindigkeit des Radius eines kleinen KC1-

Kriställchens in seiner wässerigen Lösung ist also unter sonst
gleichen Umständen grössenordnungsmässig 10Bmal geringer als
diejenige eines Wasserströpfchens in mit Wasserdampf übersättigter
Luft. Entsprechend langsam verläuft auch die Ausbildung des

Gleichgewichtszustandes in der Lösung.
Es ist einleuchtend, dass durch diesen Umstand auch die

Keimbildung behindert wird. Ein Keim muss ja innerhalb einer
statistischen Schwankungsperiode der thermischen Energie entstehen.
Die Dauer einer solchen Periode tritt nun mit der Zeit, die der
Keim zur Ausbildung braucht, und die von der Wachstumsgeschwindigkeit

(Gleichung (16)) abhängt, in Konkurrenz. Ist diese

Geschwindigkeit klein, so wird die Schwankung schon wieder
abgeklungen sein, bevor sich der Keim gebildet hat. Dadurch wird
aber die Keimbildungswahrscheinlichkeit (Gleichung (12))
heruntergedrückt. Eine wesentliche Voraussetzung bei der Ableitung dieser
Gleichung war ja die Annahme, dass sich die wachsenden Partikel
immer in der makroskopisch gegebenen Übersättigung befinden.
Die Ausbildung eines Diffusionshofes nach Gleichung (15) zerstört
diese Voraussetzung und damit auch die Gültigkeit des Ausdrucks
für die Keimbildungswahrscheinlichkeit.

Es ist hier der Ort, auf die Arbeit von U. Dehlinger und
E. Wertz15) näher einzugehen. Diese Autoren haben, wie in der
Einleitung bereits erwähnt, folgendes Verfahren eingeschlagen. Die
bei verschieden hohen Temperaturen gesättigten und keimfrei
gemachten Alaunlösungen wurden in verschlossenen Gläsern auf die
Beobachtungstemperatur abgekühlt. Darauf wurde die Zeit
bestimmt, die bis zum Erscheinen der ersten Kristalle verstrich, die
wir im Vorhergehenden die Wartezeit genannt haben. Diese
Methode vernachlässigt aber gerade die Voraussetzung homogener
Übersättigung bis in die unmittelbare Umgebung der wachsenden

46
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Partikel. Eine Übereinstimmung mit den Aussagen der Gibbs-
Volmer'sehen Keimbildungstheorie ist daher zum vorneherein nicht
zu erwarten. Die hohen Übersättigungsgrade (400%), die für den
Eintritt spontaner Kristallisation notwendig waren, lassen sich
leicht an Hand der Gleichung (16) erklären. Denn mit wachsendem
Übersättigungsgrad ca und dementsprechender Abnahme des Keimradius

a kann die Wachstumsgeschwindigkeit daldt so weit gesteigert

werden, dass die zur Ausbildung eines Keimes notwendige
Zeit mit der Dauer einer thermischen Schwankungsperiode erfolgreich

in Wettbewerb treten kann. Mit diesen Ausführungen ist
nichts gesagt gegen die von den beiden Verfassern vertretenen
Ansicht, dass die Keimbildung durch den von einer bestimmten
Konzentration an negativ werdenden Diffusionskoeffizienten
bedingt sei. Es muss lediglich hervorgehoben werden, dass die
Versuche infolge der erwähnten Umstände die Gibbs-Volmer'sche
Keimbildungstheorie nicht berühren.

Eine Prüfung der Theorie würde die Berücksichtigung der
durch den Diffusionshof verursachten Erscheinungen erfordern.
Obwohl dies grundsätzlich möglich wäre, ist in der vorliegenden
Arbeit ein anderer Weg eingeschlagen worden. Der Grund hierfür
liegt darin, dass diese Methode sehr lange, sich über Jahre
hinziehende Beobachtungen mit allen den damit verbundenen z. T.
unkontrollierbaren Zufälligkeiten erfordern würde. Es scheint
daher viel einfacher, statt der Berücksichtigung des Diffusionshofes
diesen möglichst weitgehend auszuschalten und damit ähnliche
Verhältnisse zu schaffen, wie sie in Dämpfen schon von Natur aus
gegeben sind. Dies wird dadurch erreicht, dass die Lösung während
der Beobachtung intensiv gerührt wird. Die Möglichkeit der
Zerstörung des Diffusionshofes durch Rühren ergibt sich aus der
folgenden Betrachtung.

Wir haben dazu die mittlere Ausdehnung eines solchen
Diffusionshofes zu berechnen. Der Verlauf der Konzentration ist durch
Gleichung (15) gegeben. Der Radius der Kugel, auf welcher die
Konzentration in der Mitte zwischen ca und c0 liegt, ergibt sich
aus der Bedingung:

c c0+ -a^- a(ca- c0)/r + c0

zu r 2 a und nach Gleichung (2) schliesslich zu

r 4 ¦ a ¦ MjR ¦ T ¦ g An (cjcj)
Mit den für KCl in H20 geltenden Zahlen

a ~ 1 dyn/cm (vgl. die Ausführungen im Anschluss an
die Messresultate).
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M= 74,56 g
g 1,98 g/cm3

R 8,31 • IO7 erg/Grad
T 300 Grad K

c» 0,29 g/cm3 Sättigungskonzentration bei 20° C

ca 0,305 g/cm3
ln (ca/Coo) 0,05

wird r 1,2 • IO-7 cm und damit der ungefähre Durchmesser
des Diffusionshofes d 2,4- IO-7 cm.

Beim Rühren entsteht zwischen Wand und Rührblatt ein
Geschwindigkeitsgefälle (vgl. Fig. 6 und die Beschreibung des Mess-
gefässes auf Seite 715). Der Rührer rotiert mit 600 Touren pro
Minute. Die Umfangsgeschwindigkeit ist demnach bei einem
Rührerdurchmesser von 2 cm :

%mfang r • w 63 cm/sec.

Die Geschwindigkeit an der Wand ist

üWand " •

Der Spalt zwischen Rührblatt und Wand ist etwa As 0,05 cm.
Daraus ergibt sich für den Gradienten der Geschwindigkeit

grad v Av/As 1,26 • 103 sec-1.

Bei der oben berechneten mittleren Ausdehnung des
Diffusionshofes von 2,4 • IO-7 cm ergibt dies einen Geschwindigkeitsunterschied

zweier einander gegenüberliegender Randpunkte des
Hofes von Av 2,4 • IO-7 • 1,26 • 103 3 • IO-4 cm/sec. Der Hof
wird also schon in weniger als einer Sekunde völlig zerstört. Auf
Grund dieser Betrachtung dürfen wir annehmen, dass die Voraussetzung

homogener Übersättigung, die zur Prüfung des Ausdrucks
für die Keimbildungswahrscheinlichkeit (Gleichung (12)) wesentlich

ist, weitgehend erfüllt ist. Im Licht der vorstehenden
Überlegungen betrachtet, erhalten auch die am Anfang dieses
Abschnittes beschriebenen Vorversuche ihre Erklärung.

In Versuch 1 wurde die Lösung schnell und ohne Rühren
abgekühlt. Infolge der hemmenden Wirkung des Diffusionshofes
wird der Ausgangszustand der Lösung weitgehend aufrecht
erhalten. Erst bei grosser Konzentration wird es wenigen z. T.
vielleicht schon vorgebildeten Teilchen gelingen, die Keimgrösse zu
überschreiten. Die Struktur des Bodenkörpers muss demnach sehr
grob sein, wie es auch tatsächlich beobachtet wird.

In Versuch 5 bewirkt das Rühren in Verbindung mit der
langsamen Abkühlungsgeschwindigkeit in jedem Punkt der Abküh-



724 J. Amsler.

lungskurve eine weitgehende Annäherung an den jeweiligen
Gleichgewichtszustand. Die zahlreichen Mikrokriställchen von Unter-
keimgrösse bewirken eine Verminderung der Konzentration der
molekulardispersen Phase, so dass dementsprechend die
Keimbildungswahrscheinlichkeit abnimmt. Es kann somit erst bei grossen
Übersättigungen Keimbildung eintreten. Die grosse Zahl der
miteinander in Wettbewerb tretenden Kriställchen bedingt einen sehr
feinkörnigen Bodenkörper, was durch den Versuch bestätigt wird.

Alle anderen Unterkühlungsbedingungen müssen zwischen
diesen beiden Grenzfällen liegen. So muss z. B. in Versuch 3 die
Auskristallisation bei kleineren Übersättigungen erfolgen als in
Versuch 1 und 5, da einerseits die Behinderung durch den Diffusionshof

wegfällt, andererseits aber die Ausbildung des Gleichgewichts
nicht so weit getrieben wird wie in Versuch 5.

Besonders interessant sind die Versuche 6 und 7. Durch längeres
Rühren bei einer Übersättigung, die zur spontanen Keimbildung
noch nicht ausreicht, stellt sich das entsprechende Gleichgewicht
ein. Bei der nachfolgenden Abkühlung bleibt dieser Zustand
weitgehend erhalten, was sich in der höheren Übersättigungsmöglichkeit

und in der Struktur des Bodenkörpers äussert. Wird dabei die
anfängliche Übersättigung zu klein gewählt wie in Versuch 8, so
bilden sich nur wenig Unterkeime aus; die Lösung verhält sich
daher bei der nachfolgenden Abkühlung wie in Versuch 1 oder 2.

Wird die Übersättigung zu gross gewählt wie in Versuch 9, dann
fällt die Lösung schon während des Rührens aus, da in diesem Gebiet
die Keimbildungswahrscheinlichkeit schon genügend gross ist.

Eine bei kleinerer Übersättigung vorbehandelte Lösung (Versuch

10) gibt bei gleicher Unterkühlungstemperatur wie in
Versuch 9 auch nach stundenlangem Rühren keine spontane Kristallisation

mehr. Eine solche Lösung kann, wenn sie stufenweise
abgekühlt wird, wobei auf jeder Stufe ca. 1 Stunde gerührt wird,
leicht bis auf 12° C unterkühlt werden, was einer Übersättigung
von ca. 20% entspricht. Der schliesslich ausfallende Bodenkörper
ist dann so fein, dass die Lösung stundenlang getrübt bleibt.

Schliesslich muss noch bemerkt werden, dass der bei hohen
Übersättigungen (etwa nach Versuch 10) erreichte Gleichgewichtszustand

zähe festgehalten wird. Es gelingt nämlich durch
halbstündiges Erhitzen auf 50° C unter ständigem Rühren nicht mehr,
die Lösung völlig in den ursprünglichen Zustand zurückzuführen.
Dieses „Altern" der Lösung spielt bei den im nächsten Abschnitt
beschriebenen Messungen eine Rolle. Es hat zur Folge, dass ein
und dieselbe Lösung nicht beliebig oft zur Messung gebraucht
werden kann.
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Die Anreicherung der Lösung mit Mikrokristallen von Unter-
keimgrösse, wie sie etwa in Versuch 10 eintritt, muss sich auch
direkt nachweisen lassen, z. B. durch die Veränderung der Tyndall-
Streuung oder des Brechungsindex. Ferner lassen sich aus der
Struktur des Bodenkörpers weitgehende Schlüsse ziehen. Auch
durch Messen der elektrischen Leitfähigkeit muss man die
Veränderung nachweisen können. Durch Versuche in dieser Richtung mit
der vorliegenden Apparatur konnte ein solcher Effekt auch mit
Sicherheit nachgewiesen werden.

4. Die Messungen.

a) Durchführung der Messungen,
Die im letzten Abschnitt angestellten Betrachtungen setzen

uns nun in den Stand, die Prüfung der im theoretischen Teil
abgeleiteten Aussagen zewckmässig durchzuführen. Dabei muss in
erster Linie dem Ausgangszustand der Messlösung Beachtung
geschenkt werden. Wir haben hier drei Forderungen zu erfüllen.

1. Die Reproduzierbarkeit der Messungen erfordert peinlich
saubere Lösungen.

2. Die Ausgangslösung muss in möglichst weitgehend dissozi-
iertem Zustand vorliegen.

3. Es ist darauf zu achten, dass die Lösung bei der
Ausgangstemperatur genau gesättigt ist.

Diese Forderungen werden auf folgende Weise erfüllt. Ein
Glaskolben wird mit der erforderlichen Menge (ca. 100 cm3)
Lösungsmittel gefüllt und auf ca. 80° C erhitzt. Darauf wird soviel
Solvat dazugegeben, wie einer Sättigung bei etwa 50° C entspricht.
Sobald sich alles gelöst hat, wird der Inhalt des Glaskolbens in
das Sättigungsgefäss, das sich in dem auf 45° C gehaltenen Thermostaten

befindet, gegossen. Nachdem die Kristallbildung eingesetzt
hat, wird cfie Temperatur unter ständigem Rühren der Lösung
langsam (innerhalb 3 Stunden) auf die Anfangstemperatur von
30° C gesenkt. Die ausfallenden Kristalle nehmen sämtliche störenden

Verunreinigungen mit sich (Forderung 1). Da bei der
langsamen Abkühlung unter Rühren die Lösung ständig in intensiver
Berührung mit den makroskopischen Kristallen des Bodenkörpers
steht, so können Übersättigungen auch lokaler Natur mit Sicherheit

vermieden werden. Der Antrieb zur Bildung von Unterkeimen
ist also gering (Forderung 2). Beim Sättigen der Lösung von oben
(fallende Temperatur) sind wir sicher, eine bei der betreffenden
Temperatur genau gesättigte Lösung zu erhalten (Forderung 3).
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Die so vorbereitete Lösung wird nun in das Messgefäss
hinübergepumpt (Messlösung). In derselben Weise wird das Vergleichs-
gefäss mit einer bei 15° C gesättigten Vergleichslösung gefüllt.
Durch 30-minutiges Erhitzen auf ca. 40° C werden unter Rühren
alle Keime, die sich beim Hinüberpumpen der Lösung etwa gebildet
haben, zerstört. Die Rührer werden darauf abgestellt und der
Thermostat in ca. 5 Minuten auf die einer bestimmten Übersättigung
der Messlösung entsprechende Messtemperatur Tm gesenkt. Sobald
diese Temperatur erreicht ist, beginnt die eigentliche Messung.
Unter ständigem Rühren wird die Zeit bestimmt, die bis zum
Erscheinen der ersten Kriställchen in der Messlösung vergeht, was
mit Hilfe der in Abschnitt 2 b beschriebenen Messbrücke festgestellt

wird. Wir erhalten so die Wartezeit tT wobei Tm auf die
zugehörige Messtemperatur hinweist.

T\ 30a c
29"

S- T

K

3 4 5 6 8 9 Minuten

Fig. 10.

Schematische Darstellung des Versuchsganges.

In Fig. 10 ist die Durchführung der Versuche schematisch
wiedergegeben. Längs der Strecke AB bleibt der weitgehend
dissoziierte Zustand der Lösung erhalten. Nach dem Einsetzen des
Rührens im Punkte B wird der hemmende Diffusionshof zerstört.
Die Bildung des stationären Gleichgewichts setzt ein. Nach einiger
Zeit (Punkt C) gelingt es einigen Kriställchen, die Keimgrösse zu
erreichen, womit die Kristallisation eingeleitet ist. Nach den
Ausführungen vom letzten Abschnitt bilden sich diese Keime in einer
molekular-dispersen Phase annähernd konstanter Konzentration,
die der makroskopisch bestimmten gleichgesetzt werden kann. Für
diese Keime gilt also die im theoretischen Teil abgeleitete Keim-
bildungswahrscheinlichkeit (Gleichung (12)).
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b) Die Resultate.

727

Es wurden die wässerigen Lösungen von KJ, KBr und KCl
untersucht. Ferner eine Lösung von KCl in Wasser 4- 32 Gew.%
Äthylalkohol. Jede dieser Lösungen wurde etwa sechsmal frisch
angesetzt. Jede der frisch angesetzten Lösungen ergab etwa 4 bis
10 Einzelmessungen, wonach sie infolge der Alterungserscheinung
(vgl. Abschnitt 3, Seite 724) nicht mehr brauchbar war. Zwischen
jeder Einzelmessung wurde die Lösung ca. 30 Minuten auf
50° C gebracht, so dass sich die gebildeten Kriställchen wieder
auflösten. Die Messtemperatur wurde variiert. Die Tabellen 3, 4,
5 und 6 zeigen für jede der untersuchten Lösungen die Resultate
einiger typischen Messreihen.

Tabelle 3.
Solvens: Wasser dest. Solvat: KJ.

Sättigungs- TemperaturÜbers. Wartezeit
Temp. Ts peratur Tm differenz & t

°C °C A T In (CTslCTm) (Minuten)

29,50 22,10 7,40 0,040 1,7
23,30 6,20 0,032 46
21,00 8,50 0,046 0,5

29,50 22,50 7,00 0,037 2
22,90 6,60 0,035 2,9
21,50 8,00 0,045 1,1
19,50 10,00 0,056 0,1
22,95 6,65 0,035 4,3
23,10 6,40 0,034 21,9

Tabelle 4.
Solvens: Wasser dest. Solvat: KBr.

Ts oo T °C A T
0

t (Minuten)

29,90 22,50 7,40 0,069 —
23,50 6,40 0,059 0,5
24,40 5,50 0,050 0,8
25,50 4,40 0,040 1,8
26,00 3,90 0,035 15,4
25,7 4,20 0,038 1,8
25,95 4,05 0,037 5,2
24,80 5,10 0,047 0,8
25,90 4,00 0,036 4,7

29,90 22,50 7,40 0,069 0,3
24,60 5,30 0,049 1,1
25,90 4,00 0,036 2,6
26,10 3,80 0,034 8,2
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Unterkühlung die zugehörige Wartezeit ergibt. In dieser Form
lassen sich die erhaltenen Kurven allerdings nicht gut miteinander
vergleichen. Sie sind deshalb in Fig. 13 in Funktion der Über-

30. Minuten ti h
1 i

20
KBr in Wasser

KJ in Wasser

10

h

5

V^__
!—r—V-T"8"-^—

-^âT
1 2 3 4 5 6 7 8 9 WC

Fig. 11.

Darstellung der gemessenen Wartezeiten t in Funktion der Temperaturdifferenz
Ts—Tm A T für Lösungen von KBr und KJ in Wasser.

30

20

10

Minuten

KCl in Wasser
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Fig. 12.

Darstellung der gemessenen Wartezeiten t in Funktion der Temperaturdifferenz
Ts—Tm AT für Lösungen von KCl in Wasser und in einem Wasser-Alkohol-

Gemisch.

Sättigung ò In (cTJcT dargestellt worden, wobei die Messpunkte
der Übersichtlichkeit halber weggelassen wurden.
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c) Diskussion der Resultate.
Das in Fig. 13 graphisch dargestellte Ergebnis der Messungen

zeigt Folgendes:
1. Jede der untersuchten Lösungen gibt qualitativ dasselbe

Bild. Für hohe Übersättigungen sind die Wartezeiten sehr kurz.
Sie liegen in der Grössenordnung einiger Sekunden. Mit abnehmender

Übersättigung nehmen sie zunächst langsam, dann sehr rasch
zu, so dass sich mit grosser Schärfe eine bestimmte Grenzübersättigung

feststellen lässt, unterhalb welcher auch bei tagelangem

f
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Fig. 13.

Darstellung der gemessenen Wartezeiten von KJ-, KBr und KCl in Wasser sowie
KCl in einem Gemisch von Wasser und Äthylalkohol in Funktion der Über¬

sättigung ö.

Warten keine spontane Keimbildung mehr eintritt. Es ergibt sich
so zwanglos die von der Theorie geforderte Einteilung des
Übersättigungsgebietes in ein metastabiles und ein labiles Gebiet, die
praktisch durch eine scharfe Grenze getrennt sind (vgl. die
Zusammenstellung auf Seite 23). Der zunächst langsame Anstieg der
Wartezeiten deutet darauf hin, dass diese metastabile Grenze keine
absolute Bedeutung besitzt wie etwa der Schmelz- oder
Umwandlungspunkt einer Substanz, sondern dass es sich um die allerdings
sehr rasch erfolgende Änderung der Keimbildungswahrscheinlichkeit

handelt.
2. Die Lage der metastabilen Grenze hängt sowohl vom

gelösten Stoff als auch vom Lösungsmittel ab. Sie steigt innerhalb
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der Reihe der Lösungen von KJ, KBr und KCl in Wasser. Für
KCl in einem Gemisch von Wasser und Alkohol verschiebt sie sich
nochmals in Richtung höherer Übersättigung. Dieses Verhalten
steht im Einglang mit dem von der Theorie geforderten. Denn der
massgebende Faktor (<rT — an) in der Gleichung (14), die die Lage
der metastabilen Grenze bestimmt, nimmt in der genannten Reihenfolge

zu. Cr bedeutet ja die Oberflächenspannung der ausfallenden
Kristalle. Diese wächst von KJ über KBr zu KCl (vgl. die
Ausführungen im experimentellen Teil, Abschnitt 1 und Tab. 2), während

sich o*n; die Oberflächenspannung der Lösung eher etwas
erniedrigt. Bei dem Gemisch von Alkohol und Wasser erniedrigt sich
o"n, so dass hier ebenfalls eine Vergrösserung der Differenz (ax — o*n)

resultiert. Diese Zunahme der Differenz der Oberflächenspannung
spiegelt sich auch in der Löslichkeit wieder, die in derselben Reihenfolge

abnimmt (Tab. 1).

3. Aus der Lage der metastabilen Grenze lässt sich die Differenz

(ax — o-jj) mit Hilfe der Gleichung (14) berechnen. Allerdings
dürfen wir nur ein grössenordnungsmässig richtiges Resultat
erwarten, denn Gleichung (14) ist unter der Voraussetzung abgeleitet

worden, dass die gelösten Moleküle den Gesetzen des idealen
Gases gehorchen, was nur näherungsweise der Fall ist. Die Berechnung

sei für KCl in Wasser durchgeführt.
Aus Fig. 15 ergibt sich für

"Grenze «>05
Ferner ist

MKCI 74,56 g
ökci 1>98 g/cm3

N 6,06 • IO23

R 8,31 • IO7 erg/o
T 297° K

Daraus ergibt sich

mit

wird

(ol-alI)=YW7W7W 1,1 dyn/cm

au 78,8 dyn/cm (siehe Tab. 2)

crT 80 dyn/cm

Der für makroskopische Kristalle theoretisch errechnete Wert ist

o-T 107,5 dyn/cm
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Für die hier in Betracht kommenden würfelförmigen KCl-
Kriställchen mit einer Kantenlänge von 10~7 bis IO-6 cm wird die
Oberflächenspannung jedoch bedeutend kleiner als der oben
angegebene theoretische Wert für makroskopische Kristalle. Unter der
in erster Näherung gültigen Annahme, dass die von den Ionen
ausgeübten Kräfte dem Coulomb'sehen Gesetz gehorchen und unter
der Voraussetzung, dass die Ionen auch noch in der Würfeloberfläche

streng in den Gitterpunkten sitzen, lässt sich die
Oberflächenspannung für kleine Ionenkriställchen theoretisch ermitteln.
Die umfangreichen Berechnungen seien einer späteren Veröffentlichung

vorbehalten. Sie ergeben z. B. für einen aus 1000 Atomen
bestehenden KCl-Kristall (Kantenlänge 3,14 • IO-7 cm) eine
Abweichung von 20% vom makroskopischen Wert.

Infolge der noch bestehenden Unsicherheiten bezüglich der

genauen Werte der in Betracht kommenden Grössen dürfen wir
auf die quantitative Übereinstimmung nicht zu grosses Gewicht
legen. Doch lassen die ausgeführten Messungen den zwingenden
Schluss zu, dass sich die Kristallkeimbildung in übersättigten
Lösungen prinzipiell nach denselben Gesetzen vollzieht, die auch die
Tropfchenbildung in übersättigten Dämpfen beherrschen.

Herrn Prof. Dr. P. Scherrer möchte ich für die Anregung
zu dieser Arbeit, für sein Interesse und seine wertvollen Ratschläge
herzlich danken. Dem Jubiläumsfonds der E.T.H. danke ich für
die Überlassung von Mitteln zu dieser Untersuchung.
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