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Théorie de I’'influence des vibrations thermiques
sur la réflexion des rayons X par les cristaux
par Konrad Bleuler et Jean Weigle.

(6. VI. 1942.) '

1. Introduction.

Dans un travail précédent'), nous avons donné une théorie,
basée sur le réseau de Fourikr, de l'influence des mouvements
thermiques sur la diffraction des rayons X par les cristaux. Nous
nous étions attachés alors a I'explication des maxima diffus dont
Pexpérience avait montré 'existence en dehors de 'angle de Braca
et nous avions négligé, dans cette premiére approximation, I'effet
d’interaction des trés nombreuses ondes thermiques. Dans un
second travail®), nous avons pu montrer que les perturbations
apportées au réseau de Fourier d’un cristal parcouru simultané-
ment par deux ondes ne sont pas simplement données par la
superposition des perturbations dues séparément aux deux ondes.
L’introduction de cet effet dans la théorie des ondes thermiques
constitue le sujet de cet article. Il donne la théorie compléte
de l'influence des mouvements thermiques sur la diffraction des
rayons. X. Cette théorie a déja été donnée par différents auteurs
et leurs résultats les plus importants peuvent se résumer ainsi:

DeBYE?), le premier, donne une théorie basée sur les vibra-
tions des atomes analogue & la théorie d’EINsTEIN sur les chaleurs
spécifiques. Les atomes vibrent indépendamment les uns des
autres; I'augmentation de température produit alors un fond con-
tinu dont l'intensité augmente réguliérement avec l'angle de dif-
fraction, mals ne montre aucune discontinuité ou méme aucun
maximum dans les directions de réflexion sur les plans réticu-
laires. Nous donnerons a ces directions ou & ces réflexions le nom
de LAUE, car 'intensité des rayons X diffractés se sépare nette-
ment en deux parties: le fond continu et les réflexions de Lavz.
Avec I'augmentation de température ces rétlexions de LAUE voient,

1) WererE, Helv. Phys. Acta 15, 162, 1942.
?) WEIGLE et BLEULER, Helv. Phys. Acta 15, 445, 1942, .
%) DEBYE, Verh. d. Deutsch. Phys. Ges. 15, 678, 1913.
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elles, leurs intensités diminuer, mais leurs largeurs restent cons-
tantes; 1l n’y a aucun étalement des réflexions. DEBYE!) corrige
ensuite cette premiére théorie en introduisant & la place des mouve-
ments indépendants des atomes les ondes thermiques, au moyen
desquelles il avait expliqué les chaleurs spécifiques des cristaux.
Toutefois, DEBYE remarque lui-méme que, dans ses nouveaux cal-
culs, il introduit une moyenne qui revient & admettre que les
atomes se meuvent d’une facon indépendante. Il n’est pas éton-
nant alors que sa seconde théorie donne les mémes résultats que
la théorie élémentaire. Faxen?), dans un travail fondamental,
évite cette erreur et montre en premiére approximation, comment
I'introduction du couplage des vibrations atomiques produit, dans
le fond continu, des maxima étalés dans les directions de LAUE.
Les réflexions de LAur diminuent d’intensité avec I'augmentation
de température comme dans la théorie de DEBYE; mais, si 'on
tient compte des maxima du fond continu, on trouve qu’il est
possible que la largeur des réflexions augmente avec 'augmenta-
tion de température et que, & hautes températures, les réflexions
de LAUE se fondent dans le fond continu. FAXEN interpréte cette
théorie dans le réseau réciproque et indique qu’on doit pouvoir
obtenir, en dehors de I'angle de Braca, des réflexions diffuses preés
des réflexions de Laug, réflexions diffuses qui proviennent des
maxima étalés du fond continu. (est 'observation expérimentale,
par Lavar3®), Raman?), PresToN®), ZAcHARIASEN®), LONDSDALEY),
de ces maxima diffus qui a remis la question a l'ordre du jour.
ZACHARIASEN®), puis SMIiTH?) et I'un de nous ont donné des calculs
de premiére approximation qui, par des méthodes différentes,
arrivent exactement aux résultats déja anciens de Faxen. Cest
WaALLERY?) le premier qui, se basant sur les travaux de FAXEN,
a traité le probléme enti¢rement. Il retrouve la premiére approxi-
mation de FAXEN, mais donne, en plus, les approximations supé-
rieures. Il corrige en outre une autre erreur de DEBYE concernant
le nombre des vibrations du cristal. Enfin, Laug!?), partant de

1) DEBYE, Ann. der Phys. 43, 49, 1914.

%) FaxeN, Ann. der Phys. 54, 614, 1918 et Z. f. Phys. 17, 266, 1923.
3) LavaL, Bull. Soc. Min. de France. 62, 137, 1939.

1) RamaN, Ind. Acad. Se. 11, 379, 1940.

) PrESTON, Proc. Roy. Soc. 179, 69, 1941.

6) ZACHARIASEN, Phys. Rev. 57, 597, 1940 et 59, 860, 1941.
7) LoNDSDALE, Proc. Roy. Soc. 179, 8, 1941.

8) ZACHARIASEN, loc. cit.

%) WEIGLE et SmrrH, Phys. Rev. 61, 23, 1942.

10) WALLER, Diss. Uppsala, 1925.

1) LavE, Ann. der Phys. 81, 877, 1926.
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I'idée que lesrayons X subissent un effet DoPPLER en se réfléchissant
sur les ondes thermiques, reprend de ce point de vue toute la
théorie pour aboutir exactement aux résultats de WALLER.

La théorie qu’on trouvera ici retrouve en principe les mémes
résultats. Les formules de WarLer étaient d’une complication
extréme et 1l nous semble que les notres sont plus simples et, en
tous cas, sont d'une interprétation facile dans le réseau réciproque
(résean de FOURIER), car, en effet, c’est celui-ci qui sert de base &
toutes nos considérations.

2. Réseau de Fourier d’un ecristal perturbé par plusieurs ondes.

Pour obtenir les facteurs de structure et la structure du réseau
de FoURIER, 1l est nécessaire d’étendre la densité électronique F'(a)
du cristal en intégrale de Fourigr. On a tout d’abord:

= Z fla—a,—1n) (1)
ou f(a) est la densité electronlque d’un atome. Les points @, ;, = a,
sont occupés par les atomes (tous semblables) en ’absence d’ondes.
Les ondes déplacent I'atome ! de sa position d’équilibre a; d’une

distance #;. Supposons f (a) donné; sa transformée de FoURIER est
alors connue, car on a:

E.[‘P (b) e27i®a gy, (p‘(b) :ff (@) e—27i® @ Jy, (2)

On trouve alors, pour I'intégrale de Fourier de F(a):
F(a) = [ @(b)e2~i¢ dr,

b) = fZ fl@—a, — n;) e 27iCady, — > ¢ (b) e~2nibla+m) ()
L 5 7

Ecrivons mamtenant que #; est dl & un certain nombre M d’ondes
de vecteurs R; et de fréquences »;:

M ' _
N = 2 55 Sin 2 (k:, a; — v; t) (4)
j=1

En tenant compte de la formule

pliesiny — 2 J einy

h=—w
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J, étant la fonction de BEsSEL de premiére espéce d’ordre n, on
trouve, pour le facteur contenant 7,

I
g—2nitbm) — JT 2 Jnj(Qﬂ (bé'?-)) e —2minj(kja;—vjt)

j nj=—w

_ 2 e2ni?‘nj(kjal)eQHif”i”ftjﬁJni (Zﬁ(b 'Ej))

T Ny Ngees 'nj...

En introduisant cette expression dans (3), on trouve

Fl@= 3 [Sewivw @)y,

My Naees n]..

avec
H®)=g¢® — X nky) 25" ] J, (27 b — X n; k) &)
j / !

et

Par un raisonnement semblable & celul que nous avons déja
employé?), on transforme l'intégration en une somme et l'on a
)s g

F(a) = Z Z v ¢ (b — 2, Ry) 32@?"7‘”71

h ny...

(v,Iﬁ Jﬂj(2 - (bh N n, k?) E?)) e2ni(bh-?njk]‘)a (5)
)

avec
b, = h,b; + hyb, + hyb, (h = entiers)

les b, étant les vecteurs réciproques des a; et v, = (b,[b,bg]).

Cette expression a la forme d’une série de Fourier et l'on
voit donc que le réseau de FOURIER est formé de points définis
par les vecteurs

bh == Z n; k:,' (6)

j

Pour bien comprendre la structure de ce réseau, il est nécessaire
de spécifier quels sont les vecteurs R; des ondes thermiques per-
mises par la structure du cristal.

1) Helv. Phys. Acta 15, 445, 1942, Appendice.
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3. Ondes thermiques.

Nous admettrons les conditions aux limites de Bory KARMAN,
qui supposent que le systéme des ondes contenues dans un bloc
du cristal de dimensions N;@,, N,a,, N;a, se répéte semblable &
lui-méme dans les autres blocs. On sait alors que les seules ondes
permises sont celles dont les vecteurs R; sont donnés par

R, — “1?\7— by + 5 b, + ;_% b, (j, = entiers)  (7)

En plus, on sait que les ondes de vecteurs by + R; donnent des
déplacements des atomes exactement équivalents & ceux donnés
par les ondes R;. Il suffit done, pour avoir tous les vecteurs d’onde

: . . : N, N. ,
possibles, de choisir les j; entre — 122 et + 5= . Lorsqu’on trace,

dans le réseau de FouRrIER, les points auxquels aboutissent tous les
k; permis, on obtient donc des points répartis dune fagon uni-
forme. Nous appellerons maille fondamentale 'espace rempli par
ces points et nous conserverons l'indice § pour les vecteurs R;
contenus dans celle-ci. Il faut remarquer qu’a chaque vecteur R;
plusieurs ondes correspondent, dont les fréquences sont différentes.
Il y a tout d’abord les trois ondes acoustiques, I'une «longitu-
dinale» et les deux autres «transversales». Puis, si la maille
élémentaire du cristal contient plusieurs atomes, il y a les ondes
optiques, dont les fréquences sont en général beaucoup plus
grandes que celles des ondes acoustiques. On retrouve ainsi
3n Ny Ny Ny =3 N ondes différentes correspondant aux 3 N
degrés de liberté des N atomes (n est le nombre des atomes
contenus dans la maille du ecristal). L’expression (6) définit la
structure du réseau de Fourier perturbé par les ondes. Elle fait
intervenir autour de chaque point b, tout d’abord tous les points
de la maille fondamentale centrée cette fois sur b, et non plus sur
Iorigine du réseau. En plus, il y a tous les points en dehors de
cette maille fondamentale, qui sont atteints par une combinaison
quelconque des R; ou des multiples de ceux-ci. Ainsi, & partir d'un

point b,, il s’étend sur tout le réseau non perturbé un voile plus

fin, dont la maille est faite de %‘, %3 et —bNi de la formule (7). Et
1 2 3

cela est vrai pour chaque point b, ; mais, comme on le voit, ces
réseaux fins se recouvrent exactement et le nouveau réseau de
Fourier est simplement recouvert d’une fagon homogéne de
points nouveaux,
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Il faut chercher maintenant quel est le facteur de structure
d’un point quelconque de ce nouveau réseau de Fourier. On
volt qu'un nombre infini de combinaisons des h et des n; laisse

b, — >\ n; R; invariant. Ces combinaisons sont faites de tous les

]
chemins qui ménent de l'origine du réseau de Fourier au point

considéré, en passant par les points du réseau. A chacun de ces
chemins, c’est-a-dire & chacune de ces combinaisons des h et des
n; correspond un terme dans l'expression (6). Mais ces termes
ont en général des fréquencesz n; v; différentes. Cela veut dire

que lorsqué les rayons X Serorit diffractés dans la direction du
point considéré dans le réseau de Fourigr, ils seront modulés par
ces fréquences (effet DoppLER). Ces différentes ondes de rayons X
diffractés dans la méme direction ne pourront pas interférer puis-
qu’elles auront ainsi des fréquences différentes et, par conséquent,
pour obtenir le facteur de structure du point, il faudra non pas
additionner simplement les contributions des différentes combinai-
sons mais additionner les carrés de ces contributions. Il sera donc
plus simple de calculer directement le carré du facteur de structure.

Pour simplifier les calculs, nous supposerons qu’une seule onde
thermique est attachée a chaque vecteur R;, mais nous donnerons
plus loin les résultats complets faisant intervenir toutes les ondes.
Ensuite, nous ordonnerons les différentes contributions apportées
par les différents chemins de la facon suivante:

Nous prendrons tout d’abord celles qui sont associées & un
b;, donné; nous poserons alors

Z'ﬂjkj: Kg,
i

K, étant le vecteur dont on s’est déplacé a partir de b,. Il aboutit
au point P pour lequel on désire calculer le facteur de structure.
Parmi les contributions associées & un b,, nous choisirons ensuite
celles qui satisfont &

Il v en a deux seulement, qui sont celles apportées par | n,| =1
et qui donnent donc K, = R, (les symboles k étant, comme nous
Pavons dit, réservés aux ondes thermiques permises, c’est-a-dire
aux vecteurs ne sortant pas de la maille fondamentale alors que,
d’une fagon générale, K peut en sortir).

Ensuite, nous prendrons les combinaisons

Zlna'|=2
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Ces combinaisons sont celles qui, par deux pas, dont les grandeurs
ne dépassent pas les dimensions de la maille fondamentale, ménent
de b, & P. On peut choisir ces pas de différentes facons, chacune
apportant sa contribution au facteur de structure.

Il y aura ensuite les chemins de trois pas, de quatre pas, etc.,
pour lesquels la somme des |n;| vaudra 3, 4, etc. On trouve
alnsi, & partir de (5), pour le carré du facteur de structure du
point P provenant d’un point b,, que nous dénotons par

(b, -~ K,) — I? ( o )

"\ 2x
en posant
27n(b, + K,) = K
K K\ |2
2 —2 s
I” (2%) Y (p(Zn)
N N
=J7 (K&) I J, (KE&) + J%, (K&) IT (J5 K§&)
ki=Kp i=1 j=1
= JaF
s L Z{ﬁmm%mﬂuﬁMH
2! ’L'TH'ZzKp 1=|=r i
2 (KE,) J? (KE,) 11 Js (K&))
7=|=M¢8
LRI TR 52 02 T Jg}+ J: (K&) IT J2(K&)
2ki=Kyp jF
J2y (KE)IT JG (KE)
j==t
1
+ gy 21 It (K& J3 (KE) It (KE) I J? (K§) +
by thotky=Kp e i
- i
SCHCH I HE (8)

&’ signifie 'amplitude de l’onde attachée au vecteur — R;.
Pour K, = 0, le premier terme doit &tre remplacé par
N

I J: (27 b,¢) (9)

i=1
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Les arguments qui figurent dans les fonctions de BESSEL sont tou-
jours extrémement petits & cause de la présence des & qui sont
de 'ordre de 1/ N comme nous le verrons. Ainsi, on peut déve-
lopper ces fonctions en puissance de 'argument et l'on a

2

Jy (z) = 1 — st

7@ =T @ = () +

T3 (2) = (—g—)w (m—l-——)z (10)

[n ]!

Pour aller plus loin, il faut exprimer les amplitudes des ondes en
fonction de la température et des constantes du cristal. Dans ce
qui suit, nous supposerons que les calculs sur la dynamique du
cristal ont donné la loi de dispersion des ondes, c¢’est-a-dire leurs
vitesses v; en fonction de leurs longueurs d’onde

v (k) = = (11)

j

En plus, nous supposerons que ces mémes calculs ont fourni la
direction de vibration &P = &;/|&;|. Dans ces conditions, la loi de
répartition de l'énergie donne

1 1 h, h,
& = (mfw+ 2) (12)

N 2a2m v? kj?

% étant la constante de Borrzmaxw, T la température absolue, et
m la masse des atomes. Sila température est suffisamment haute,
cette expression dégénére en équipartition

3 xT
N 2x%mo} k}

(13)

'fj? =

Pour ne pas alourdir nos formules, c¢’est cette derniére expression
que nous introduirons et nous indiquerons plus loin les formules
exactes obtenues avec (12). Il intervient dans (10) des termes de
la forme |

= \2 (b, + K,) &0)2 =T

el R N2 J
(2) =% ((0s + K,) &) 2N m o} k?




Influence des vibrations thermiques sur la réflexion des rayons X. 561

que nous écrirons sous forme d’une fonction
(b, + K,) £2)2 2T,
2m v} k}

k," = "‘k_,;

f (b + K, k) - by K, Ry (14)

T, est une température constante caractéristique que nous choisi-
rons égale & peu prés a m v2 Nous introduirons alors une tempé-
rature relative ¢t = T/T,.

Si R, est un vecteur qui dépasse la maille fondamentale, 1l

faut prendre
f(bh -+ K;o; km) =0

et, dans (8), les sommes et les produits peuvent maintenant &étre
formellement étendus & tous les points du réseau de Fourier. On
trouve alors, en introduisant ces simplifications dans (8):

Ii vg? | ¢ (by + K) | -2

- J—H [f(bh+K,ki,)+~li7- : ] {7(1 - %f{bh}'x,ki) ~—§7)2
i
o [t Koy | T (1= 100+ K ) )
j

¢

t g | S+ KR

+%.""J1f(bh.—|"K,K—k?‘)+_}N_...:| ]?T()z + }
P = (15)

Pour pouvoir effectuer ces opérations, nous supposerons que
les points du réseau de Fourier sont si rapprochés les uns des
autres qu’ils forment une distribution continue. Cela revient a
supposer le cristal infiniment grand et donc & passer & la limite
N > oo. Nous séparerons alors le probléme en deux parties dis-
tinctes: 1'une, dans laquelle nous étudierons l'effet de la tempéra-
ture sur le facteur de structure dun point de Laue b, (K, = 0),
puis une seconde, dans laquelle nous considérerons le fond continu.

36
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4. Eifet de la température sur un point de Laue.

S1 'on pose K, = 0, on trouve, pour le premier terme de (15),
selon (9)

d’ou 'on tire

‘ 1Ih )
'W?%wwalzgk@@‘7€“%*”+“)

En développant le logarithme, on a

lo

Un t
o SRy 16
2 olon] N 2 Onk) 16)

Pour passer & la limite N - oo, nous introduirons la fonction
continue

% T, (b5 + K) £ (K))?

PO B K = ot (K K2

é (K')
avec

5 (K) — 0 s1 K’ sort de la maille fondamentale
1 si K' est continu dans la maille fondamentale.

Nous remplacerons alors la somme deé (16) par une intégrale en
posant
1 N d vy

N A

ou dvgs est 'élément de volume dans l'espace de Fourier et v, le
volume de la maille fondamentale. Il vient alors

lIfL (bh) d /UKI tz
B S 4 1 .. 6 &
log o~ ) 1O ) v/

L’'intégrale est formellement étendue a tout l'espace de Fourier
grace & l'introduction de la fonction 6 ci-dessus. Comme N - oo
tous les termes supérieurs disparaissent & la limite et I'on trouve
alors

_ , d?)KI
12 (B) = v | ¢ (By) |2 &2/ 1OWR) o (17)
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On peut démontrer que tous les autres termes de (15) disparaissent
aussi a la limite N - oo et par conséquent 1’expression (17) donne
la valeur compléte du facteur de structure (nous avons donc écrit
In = 1;). Pour t— 0, on retrouve bien le facteur de structure du
cristal non perturbé. On sait, d’autre part, que le facteur expo-
nentiel a re¢u le nom de facteur de DEBYE et qu’on le distingue
par la lettre M,

d ’UK/
Uy

M =t [ f(bs, K) ﬁ&

Cette expression donne la valeur exacte de M. On peut calculer
celui-c1 en introduisant différentes suppositions pour comparer
notre résultat avec celui de DEBYE ou de WaLLER. Comme nous
Pavons indiqué dans l'introduction, DEBYE obtient par erreur un
facteur e~ marquant 'effet de la température, tandis que WALLER
donne e~2¥, qui est exact. L’erreur de DeBYE vient du fait qu’il
a compté comme une seule onde I'onde stationnaire avec laquelle 1l
représente le mouvement des atomes. Toutefois, dans son premier
travail, dans lequel il décrit les mouvements thermiques par des
oscillations indépendantes (de fréquence »,) des atomes, cette
erreur n’apparait pas. Nous allons montrer que notre expression
(18) contient comme cas particuliers les vibrations indépendantes
ou les ondes. On peut donner le résultat du premier travail de
DEeBYE sous la forme

dntx T

e 1

by,

(19)

ou f est la constante élastique des oscillateurs atomiques (mi =
— fu) dont la fréquence est

_ . ]/_7_
o= 9, m

Pour exprimer cela dans notre théorie, il faut tout d’abord ad-
mettre qu’a chaque vecteur d’onde R; correspondent trois ondes
dont les directions de vibration sont mutuellement perpendiculaires

(e gy~ 6, (pg=1,2,9) (20)

En plus, la loi de dispersion (exprimant que la fréquence est cons-
tante) devient
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Nous trouvons alors

" d,UKI - d'lz;;
2tff (b, K') : f mvz Z (b, *&° (R)2) o
p
xT xT 4 2
mv2 bi f r

car, en vertu de (20), on a

S (B0 () = B3

Cela est bien le résultat cité ci-dessus.
Si I'on veut, par contre, introduire le résultat du second tra-
vaill de DEBYE, on doit, comme lul, trouver

Umax
3 b7 . hv hy
M = 3 v%ax 0/ ( ehvixT _ 1 +- B ) dv (21)

OU Ve est définie par la condition que le ecristal contienne en
tout 3 N ondes thermiques.
Notre formule (18) devient, dans le cas quantique,

gost _q B

(b, 7&° (R))? ( hov ,hw)d@k 99)

M- [ 3
T 2 g oo (R) K o

Nous supposerons!) que la vitesse est constante et indépendante
de #£°,
La fréquence correspondant au vecteur d’onde k devient alors

vy (k) = kv = v(k)
Si P'on suppose, en plus, un milieu isotrope, on a
(760 78%) = 0y,

Il faut maintenant, pour suivre DEBYE, Intégrer non pas sur la
maille fondamentale, mais sur une sphére de méme volume, dont
le rayon
k‘maK - ’V—max"
: v

1) DEBYE en réalité suppose des vitesses différentes pour les ondes trans-
versales et longitudinales respectivement, mais pour ne pas allonger cette com-
paraison, nous prendrons une seule vitesse.
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est déterminé par
4dn
“é_ (kmax)3 = Uy

d’ou 'on tire

Ains1 (22) devient

27 b2 P b
M:um vy UF ehixT _ 1 2 )dv
0
3 b2 tmax hv hv
PR T—_— + d
2m v f (e’"’/"T~1 2) '

C’est bien la l'expression (21) de DEBYE si notre »,, correspond

a celui qu’il a choisi. Il prend en effet (V étant le volume du
cristal)

3 3 /a9 N 3 /9.
N Jmax o, ]/3N g1/ ot

= P P - N
v3 R 47 V V 4=

car V/N est le volume de la maille fondamentale et 'on a v, = N/V.
Remarquons, pour terminer, que notre facteur est toutefois

e~2M et non pas e comme pour DEBYE.

-

5. Fond econtinu.

Pour calculer le facteur de structure des points du réseau de
Fourier en dehors des points de LLAUE, il faut revenir & la formule
(15). ®1 N-> o, le nombre des points contenus dans la maille
fondamentale augmente indéfiniment, mais 'amplitude de chaque
onde diminue de facon & laisser la densité d’énergie constante.
Il sera commode d’introduire alors la densité du carré du facteur
de structure

N
i (b, + k) = -~ I2 (b, + K)

Pour N -+ o0, la formule (17) nous donne des termes finis, car
) g 1 1 ;
chacun d’entre eux possede un facteur — ou w7, etc. On voit

aussl que les produits sont égaux, car ils ne différent entre eux
que d’un nombre fini de facteurs J2 qui tendent vers I'unité lors-
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que N> co. On peut donc les calculer comme au paragraphe

précédent et, en posant encore une fois 1 = %, on trouve
| 2[5y + K KK
(b +R) =1, | ¢ (b, + K) |2 b {2tf(b,,+K,K)
{2 dvg
+ 57 2° ff(bh+ K K)j (b, + K K- K) ="
. e . b
t3
+gp2s [ [T+ K K)f (b + K K
T kK
AVgr AV
f(b,+ K, K— K — K”) —Kvé—i
b
_— "

On peut mettre ce résultat sous une forme plus condensée en dé-
finissant les fonctions itérées suivantes

f1(bs + K, K) = f (b, K, K)
fulort K, K) = [fuy (b, + K, K") (b, + K, K ~ K') 5" (24

et, par substitution, on voit que (23) prend alors la forme

. —21 [ by + K, K) K
iy (by+ K) = v, | @ (b + K) [P e . "
2 (b, + K, K) (25)

La somme infinie apparaissant dans cette expression est conver-

gente. En effet, quoique la fonction f ait une singularité enﬁ
au point K’ = 0, elle est intégrable, autrement dit la grandeur

_ ff( . K k)L dogs

(2

est finte. Pour n > 4, on trouve alors les inégalités

fn (b K K’) <C (K) fn x| ( K, K,max)
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ou K'| ., est la valeur de K’, qui donne & la fonction f,_, sa valeur
la plus grande. On peut donc écrire

tn

2 Py on fn 2 - O (C(K))n < e2e(B)

ce qul montre bien la convergence de la somme infinie.

Remarquons encore qu’on peut montrer que f, et f; ont des
singularités au point K’ = O en 1/!K'| et log |K'| respectivement.
Mais, comme f, ces fonctions sont intégrables. Nous trouvons donce
finalement que le fond continu est constitué par différents termes,
qui ont tous un maximum dans le point de Laue. Mais ces maxima
sont de plus en plus petits, les fonctions sont de plus en plus plates
a mesure que l’'ordre des termes s’éleve. Enfin, pour avoir une
représentation compléte du phénomeéne, il faudrait connaitre la
valeur de chacun de ces termes relativement au terme d’ordre
zéro, c’est-a-dire relativement 4 la valeur du facteur de structure
au point de Lavug.

Pour cela on pourrait introduire le facteur de LorRENTZ ou
plus simplement encore supposer que le cristal est fini. Pour
obtenir 'ordre de grandeur des différents termes, c’est ainsi que
nous procéderons en supposant que le cristal est un cube de coté !
contenant N atomes, la constante réticulaire valant a = IN-3. 1l
faut alors introduire la fonction de LAUE qui, comme on le sait,

. 2 ® g P
a un fort maximum [* (largeur ~ ), entouré de chaque coté par

des maxima beaucoup plus petits. Pour faciliter nos calculs ap-
proximatifs nous supposerons plutdt que chaque point du réseau

' 4 4 b 1 hl b r 2
de Fourier est étalé sur une sphére de rayon —-; a I'intérieur de la

sphére il faut multiplier le facteur de structure carré par 17, a I'ex-
térieur par 0. Calculons ainsi la valeur intégrée de tous les points
du réseau de Fourier, donnant une contribution en b, pour le
premier terme du fond continu. Nous écrirons approximativement

((by + K)? £)2 2T b —
t; m® v? k2 > %t;—;; (Ty 2 m?v?)

La valeur intégrée en k = 0 devient

11
b
tzsf T aaktdk=dmth2 =47t (b a)? N
0 2 ‘ :

> 10
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g ; 5 iy 1
Pour le deuxiéme terme du fond continu (singularité en - pour
k= 0) on a par un calcul semblable approximativement

~ 27 12 (b, @) N

et 'on peut alors comparer les contributions & l’endroit du point
de Laur des différents termes:

réflexion de LAUE vy @2 e 2 N
ler terme du fond continu ~4 7zt v, p2 e 2M (b, a)2 N

2¢me terme du fond continu ~ 2 7 2 v, @2 e=2M (b, @) N's  26)

Remarquons tout d’abord que (b,@)%= h% + h2 + k% pour un ré-
seau cubique; (b, - @) est donc en quelque sorte 'ordre de la ré-
flexion.

On voit que effet du fond continu est d’autant plus marqué
que lordre est élevé. En plus le facteur e-2¥ produit une dimi-
nution de I'intensité de réflexion lorsque la temperature augmente ;
mails les termes du fond continu étant multipliés par ¢, ¢2, ete.,
cette diminution due au facteur e=2¥ est en partie compensée.
On peut donc concevoir que, dans un certain intervalle de tem-
pérature, le fond varie trés peu d’intensité. Raman!) a remarqué
que les réflexions diffuses en dehors de I'angle de Brace qu’il
observait ne changeaient que trés peu avec la température. Il a
cru pouvoir en déduire que ces réflexions ne pouvaient pas étre
dues aux ondes thermiques. Nos résultats montrent que cet argu-
ment n’a pas de valeur.

Si on compare entre eux les différents termes (26), on voit
que leurs valeurs diminuent par un facteur N>, Cela n’est vrai
évidemment qu’au point de LAUE; il est possible que si l'on est
assez loin de celui-ci, le deuxi¢me terme devienne du méme ordre
de grandeur que le premier. Toutefois, dans le voisinage immédiat
du point de LAUE et pour des températures et des ordres pas trop
¢levés seul le premier terme est important. Cela justifie les cal-
culs de FAXEN, ZAcHARIASEN et WEIGLE et SMmrTa dans les tra-
vaux que nous avons cité plus haut. Cela revient & admettre que
dans le voisinage du point de LAUE seules les ondes thermiques
de grandes longueurs d’onde et de petites fréquences déterminent
les facteurs de structure et donc l'intensité de la diffraction des
rayons X. On peut donc calculer celle-ci & partir des constantes
élastiques macroscopiques du cristal,

1) RaMAN, loc. cit.
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Remarquons enfin que pour le fond continu on n’obtient pas
une intensité intégrée indépendante de la largeur du faisceau em-
ployé comme le donne le facteur de LORENTzZ pour un point de
LauE.

Nous reviendrons sur ces questions dans un article suivant.

6. Généralisations et coneclusions.

Jusqu’ici, nous avons admis, pour ne pas alourdir nos for-
mules, qu’a chaque vecteur d’onde k; une seule onde était associée
et qu’en plus ’énergie était distribuée parmi ces ondes d’aprés la
loi de I'équipartition. Il nous faut maintenant nous libérer de ces
deux suppositions.

Il y a, dans le cristal simple que nous avons considéré, trois
ondes attachées & chaque vecteur d’onde et leurs amplitude sont
données par (12). Ainsi il est nécessaire de définir une nouvelle
fonction G qui remplacera (14)

G (b, + K, K, T)

((bh+ K)Z)EO (K,))z 6 Kf hp'V . h]ﬂ}
2 e EE ) (g )

Les calculs se poursuivent alors exactement comme précédemment
et 'on obtient

a) Pour le facteur de DEBYE

—oM _2fG
e = @ Th

dvr’
Uy

c’est du reste ce que nous avons calculé au § 3.

b) Pour le fond continu
92

%@+M=W¢@+MPrmziﬂMm+KKﬂ

n=1

et, finalement, pour le fond continu total
12 (b) = ;@% (b, + K)

II est intéressant de montrer que la moyenne du facteur de struc-
ture pour chaque maille fondamentale a la valeur trouvée par
DeByE. On a en effet

1 : 1 :
2 (b,) = = ; f@% (b) dv, & . f@% (b) duv,

maille infini
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et I'on peut poser, en vertu de (25)

dvg
Uy

3 219 ) [ e S0 1 6, K

infini
car 1l est permis de remplacer b par sa valeur moyenne b, sauf
dans le dernier facteur.
On obtient alors, pour I'intégrale, en utilisant (24)

o2

et, donc finalement,
12 (b)) L v, e M { e?M_ 1 } = | @ (by) |2{ ] — e 2M }'v,, (27)

ce qui est le résultat de DEBYE.

Les singularités de fq, fo, f3 font qu’au voisinage d’un point
de Laug, la valeur de 2 différe grandement de sa valeur moyenne.
Cet effet provient donc du couplage entre les atomes dont nous
avons tenu compte en représentant les vibrations de ceux-ci comme
des ondes. DeBYE, pour obtenir le résultat (27) non pas sous
forme d’une moyenne, mais comme valeur du facteur de struc-
ture du fond continu, avait supposé les vibrations des atomes,
soit indépendantes, soit données par des ondes de différentes
phases dont il prenait la valeur moyenne. Ces singularités autour
de b, sont surtout dues aux ondes de grandes longueurs d’ondes
(petits R) qui déplacent rigidement en quelque sorte de petites
parties du cristal; ces déplacements sans déformation n’ont donc
que peu d’influence sur la diffraction de LAUE.

La formule (27) nous permet en outre de montrer qu’il y a
conservation de l'intensité totale diffractée car, en effet, en ajou-
tant (17) et (26), 1l vient |

I3 (b,) +f’£% (b) dv, = v2{e2M -1 — e 2M} | g (by) |2= 12| ¢ (by) |2

Dans un travail suivant, nous montrerons comment on peut cal-
culer explicitement la diffusion des rayons X par la température
pour les cristaux dont on connait le spectre de vibration comme

NaCl ou KCI.
Laboratoire de Physique de 1'Université.

Genéve, Ma1 1942,
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