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Théorie de l'influence des vibrations thermiques
sur la réflexion des rayons X par les cristaux

par Konrad Bleuler et Jean Weigle.
(6. VI. 1942.)

1. Introduction.

Dans un travail précédent1), nous avons donné une théorie,
basée sur le réseau de Fourier, de l'influence des mouvements
thermiques sur la diffraction des rayons X par les cristaux. Nous
nous étions attachés alors à l'explication des maxima diffus dont
l'expérience avait montré l'existence en dehors de l'angle de Bragg
et nous avions négligé, dans cette première approximation, l'effet
d'interaction des très nombreuses ondes thermiques. Dans un
second travail2), nous avons pu montrer que les perturbations
apportées au réseau de Fourier d'un cristal parcouru simultanément

par deux ondes ne sont pas simplement données par la
superposition des perturbations dues séparément aux deux ondes.
L'introduction de cet effet dans la théorie des ondes thermiques
constitue le sujet de cet article. Il donne la théorie complète
de l'influence des mouvements thermiques sur la diffraction des

rayons X. Cette théorie a déjà été donnée par différents auteurs
et leurs résultats les plus importants peuvent se résumer ainsi:

Debye3), le premier, donne une théorie basée sur les vibrations

des atomes analogue à la théorie d'Einstein sur les chaleurs
spécifiques. Les atomes vibrent indépendamment les uns des

autres; l'augmentation de température produit alors un fond
continu dont l'intensité augmente régulièrement avec l'angle de
diffraction, mais ne montre aucune discontinuité ou même aucun
maximum dans les directions de réflexion sur les plans réticu-
laires. Nous donnerons à ces directions ou à ces réflexions le nom
de Laue, car l'intensité des rayons X diffractés se sépare nettement

en deux parties: le fond continu et les réflexions de Laue.
Avec l'augmentation de température ces réflexions de Laue voient,

Weigle, Helv. Phys. Acta 15, 162, 1942.
2) Weigle et Bleuler, Helv. Phys. Acta 15, 445, 1942.
3) Debye, Verh. d. Deutsch. Phys. Ges. 15, 678, 1913.
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elles, leurs intensités diminuer, mais leurs largeurs restent
constantes; il n'y a aucun étalement des réflexions. Debye1) corrige
ensuite cette première théorie en introduisant à la place des mouvements

indépendants des atomes les ondes thermiques, au moyen
desquelles il avait expliqué les chaleurs spécifiques des cristaux.
Toutefois, Debye remarque lui-même que, dans ses nouveaux
calculs, il introduit une moyenne qui revient à admettre que les
atomes se meuvent d'une façon indépendante. Il n'est pas étonnant

alors que sa seconde théorie donne les mêmes résultats que
la théorie élémentaire. Faxen2), dans un travail fondamental,
évite cette erreur et montre en première approximation, comment
l'introduction du couplage des vibrations atomiques produit, dans
le fond continu, des maxima étalés dans les directions de Laue.
Les réflexions de Laue diminuent d'intensité avec l'augmentation
de température comme dans la théorie de Debye; mais, si l'on
tient compte des maxima du fond continu, on trouve qu'il est
possible que la largeur des réflexions augmente avec l'augmentation

de température et que, à hautes températures, les réflexions
de Laue se fondent dans le fond continu. Faxen interprète cette
théorie dans le réseau réciproque et indique qu'on doit pouvoir
obtenir, en dehors de l'angle de Bragg, des réflexions diffuses près
des réflexions de Laue, réflexions diffuses qui proviennent des
maxima étalés du fond continu. C'est l'observation expérimentale,
par Laval3), Raman4), Preston5), Zachariasen6), Londsdale7),
de ces maxima diffus qui a remis la question à l'ordre du jour.
Zachariasen8), puis Smith9) et l'un de nous ont donné des calculs
de première approximation qui, par des méthodes différentes,
arrivent exactement aux résultats déjà anciens de Faxen. C'est
Waller10) le premier qui, se basant sur les travaux de Faxen,
a traité le problème entièrement. Il retrouve la première approximation

de Faxen, mais donne, en plus, les approximations
supérieures. Il corrige en outre une autre erreur de Debye concernant
le nombre des vibrations du cristal. Enfin, Laue11), partant de

J) Debye, Ann. der Phys. 43, 49, 1914.
2) Faxen, Ann. der Phys. 54, 614, 1918 et Z. f. Phys. 17, 266, 1923.
3) Laval, Bull. Soc. Min. de France. 62, 137, 1939.
4) Raman, Ind. Acad. Sc. II, 379, 1940.
5) Preston, Proc. Roy. Soc. 179, 69, 1941.
e) Zachariasen, Phys. Rev. 57, 597, 1940 et 59, 860, 1941.

') Londsdale, Proc. Roy. Soc. 179, 8, 1941.
8) Zachariasen, loc. cit.
9) Weigle et Smith, Phys. Rev. 61, 23, 1942.

10) Waller, Diss. Uppsala, 1925.

") Laue, Ann. der Phys. 81, 877, 1926.
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l'idée que les rayons X subissent un effet Doppler en se réfléchissant
sur les ondes thermiques, reprend de ce point de vue toute la
théorie pour aboutir exactement aux résultats de Waller.

La théorie qu'on trouvera ici retrouve en principe les mêmes
résultats. Les formules de Waller étaient d'une complication
extrême et il nous semble que les nôtres sont plus simples et, en
tous cas, sont d'une interprétation facile dans le réseau réciproque
(réseau de Fourier), car, en effet, c'est celui-ci qui sert de base à
toutes nos considérations.

2. Réseau de Fourier d'un cristal perturbé par plusieurs ondes.

Pour obtenir les facteurs de structure et la structure du réseau
de Fourier, il est nécessaire d'étendre la densité électronique F (a)
du cristal en intégrale de Fourier. On a tout d'abord:

F(a) ^f(a-al-r]l) (1)
i

où /(a) est la densité électronique d'un atome. Les points alilsl a{
sont occupés par les atomes (tous semblables) en l'absence d'ondes.
Les ondes déplacent l'atome l de sa position d'équilibre al d'une
distance r)t. Supposons / (a) donné; sa transformée de Fourier est
alors connue, car on a:

/ (a) =J(p(b)e2"^'"''>dvi cp (b) j'f (a) e-2«<6-<"> dva (2)

On trouve alors, pour l'intégrale de Fourier de F (a):

F(q)= f 0(b)e2"i«>-a>dvb

0(b) fZfia-a,- V.) «-2»f<»«»d»,= 2?(ft)e-!"»(«i+i) (3)
J i i

Ecrivons maintenant que r]l est dû à un certain nombre M d'ondes
de vecteurs k, et de fréquences v- :

M

rh 2 %i sin 2 tc (k} a, - Vj t) (A)
} x

En tenant compte de la formule

eix°,my= 2 Jn(x)ein*
h=—oo
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Jn étant la fonction de Bessel de première espèce d'ordre n, on
trouve, pour le facteur contenant rji

+00
e-2nUbf,t) // 2 J«,(2 n (b^)) e-2»ini<i<i«i-*n,

j nj= —co

2 e2*is.n^k>ai> e2"iZn-v<1 II Jn. (2n(b f,))
n„ n*... nj... j

En introduisant cette expression dans (3), on trouve

2 fZe~2"^b'^H(b')dvb
i2...nj— J l

F(a)

avec

H (b') cp (b' - 2 n, fe,) e*--*W // jn.(2 n (b' - ^ n, fe,) f,)
> j i

et
b' b + 2 n, fe,

y

Par un raisonnement semblable à celui que nous avons déjà
employé1), on transforme l'intégration en une somme et l'on a

F (a) 2 2 ^ (b» - rn>- *') e2"fB,'"'f

77" J«, (2 w (5» - Z n, fe,) f,)) e2 » * <** " f "ik» " (5)
j

avec
bh h1b1 + h2b2 + h3b3 (h entiers)

les 6,- étant les vecteurs réciproques des at et vb (b^b^g]).
Cette expression a la forme d'une série de Fourier et l'on

voit donc que le réseau de Fourier est formé de points définis

par les vecteurs

6,-2 n, fe, (6)
i

Pour bien comprendre la structure de ce réseau, il est nécessaire
de spécifier quels sont les vecteurs fe, des ondes thermiques
permises par la structure du cristal.

Helv. Phys. Acta 15, 445, 1942, Appendice.
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3. Ondes thermiques.

Nous admettrons les conditions aux limites de Born Karman,
qui supposent que le système des ondes contenues dans un bloc
du cristal de dimensions A^cq, N2a2, N3a3 se répète semblable à
lui-même dans les autres blocs. On sait alors que les seules ondes
permises sont celles dont les vecteurs fe, sont donnés par

fe, ~- 6X + -^- b2 + -^- 63 (ji entiers) (7)

En plus, on sait que les ondes de vecteurs bh + fe, donnent des

déplacements des atomes exactement équivalents à ceux donnés

par les ondes fe,. Il suffit donc, pour avoir tous les vecteurs d'onde
N-

impossibles, de choisir les jt entre A et H—s1 Lorsqu'on trace,
dans le réseau de Fourier, les points auxquels aboutissent tous les
fe, permis, on obtient donc des points répartis d'une façon
uniforme. Nous appellerons maille fondamentale l'espace rempli par
ces points et nous conserverons l'indice j pour les vecteurs fe,

contenus dans celle-ci. Il faut remarquer qu'à chaque vecteur fe,

plusieurs ondes correspondent, dont les fréquences sont différentes.
Il y a tout d'abord les trois ondes acoustiques, l'une «longitudinale»

et les deux autres «transversales». Puis, si la maille
élémentaire du cristal contient plusieurs atomes, il y a les ondes

optiques, dont les fréquences sont en général beaucoup plus
grandes que celles des ondes acoustiques. On retrouve ainsi
3 n N-L N2N3= 3 N ondes différentes correspondant aux 3 N
degrés de liberté des N atomes (n est le nombre des atomes
contenus dans la maille du cristal). L'expression (6) définit la
structure du réseau de Fourier perturbé par les ondes. Elle fait
intervenir autour de chaque point bh tout d'abord tous les points
de la maille fondamentale centrée cette fois sur bh et non plus sur
l'origine du réseau. En plus, il y a tous les points en dehors de
cette maille fondamentale, qui sont atteints par une combinaison
quelconque des fe, ou des multiples de ceux-ci. Ainsi, à partir d'un
point bh, il s'étend sur tout le réseau non perturbé un voile plus

h h h
fin, dont la maille est faite de -A-, -A- et -A- de la formule (7). Et
cela est vrai pour chaque point bh ; mais, comme on le voit, ces
réseaux fins se recouvrent exactement et le nouveau réseau de
Fourier est simplement recouvert d'une façon homogène de

points nouveaux.



558 Konrad Bleuler et Jean Weigle.

Il faut chercher maintenant quel est le facteur de structure
d'un point quelconque de ce nouveau réseau de Fourier. On
voit qu'un nombre infini de combinaisons des h et des w, laisse
bu — 2 ni ^3 invarianf• Ces combinaisons sont faites de tous les

J'
chemins qui mènent de l'origine du réseau de Fourier au point
considéré, en passant par les points du réseau. A chacun de ces

chemins, c'est-à-dire à chacune de ces combinaisons des h et des

n,- correspond un terme dans l'expression (6). Mais ces termes
ont en général des fréquences 2 ni vs différentes. Cela veut dire

i
que lorsque les rayons X seront diffractés dans la direction du
point considéré dans le réseau de Fourier, ils seront modulés par
ces fréquences (effet Doppler). Ces différentes ondes de rayons X
diffractés dans la même direction ne pourront pas interférer
puisqu'elles auront ainsi des fréquences différentes et, par conséquent,
pour obtenir le facteur de structure du point, il faudra non pas
additionner simplement les contributions des différentes combinaisons

mais additionner les carrés de ces contributions. Il sera donc
plus simple de calculer directement le carré du facteur de structure.

Pour simplifier les calculs, nous supposerons qu'une seule onde
thermique est attachée à chaque vecteur fe,, mais nous donnerons
plus loin les résultats complets faisant intervenir toutes les ondes.
Ensuite, nous ordonnerons les différentes contributions apportées
par les différents chemins de la façon suivante:

Nous prendrons tout d'abord celles qui sont associées à un
bh donné; nous poserons alors

y i ni Rj **¦&
j

Kv étant le vecteur dont on s'est déplacé à partir de bh. Il aboutit
au point P pour lequel on désire calculer le facteur de structure.
Parmi les contributions associées à un bh, nous choisirons ensuite
celles qui satisfont à

Il y en a deux seulement, qui sont celles apportées par | np | 1

et qui donnent donc Kv kv (les symboles fe étant, comme nous
l'avons dit, réservés aux ondes thermiques permises, c'est-à-dire
aux vecteurs ne sortant pas de la maille fondamentale alors que,
d'une façon générale, K peut en sortir).

Ensuite, nous prendrons les combinaisons

2 K- I =2
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Ces combinaisons sont celles qui, par deux pas, dont les grandeurs
ne dépassent pas les dimensions de la maille fondamentale, mènent
de bh à P. On peut choisir ces pas de différentes façons, chacune
apportant sa contribution au facteur de structure.

Il y aura ensuite les chemins de trois pas, de quatre pas, etc.,
pour lesquels la somme des | n,- | vaudra 3, 4, etc. On trouve
ainsi, à partir de (5), pour le carré du facteur de structure du

point P provenant d'un point bh, que nous dénotons par

en posant

ll(bh + Kv) l\

2n(bh+ K,)

K
2n

K

h
K K

J\ (Kg,) IJJ0 (K|,) + J2_, (K|,) TT{JlKif)
7 1 1

j Ari

N

+ _L 2 U (K SA Jf (Kg,) II Jl (K |,)
2! r X j=\

kr+l-s=Kv jJpr' y=t=s'

+ J2_, (Kir) J\ (Kg,) fl Jl (Kg,)
3=1

j=¥r j4=s

+ J2J2_1TrJ2 + Jl1J2_JTJt]+ Jl (KgATI Jl(Kgj)
i 2Tci=Kv j+-i'

Ji2 (Kg,) H J2 (Kg,)
)n=i

2 { Jl (Kg,) Jl (Kg,) Jl (Kgt,) TfJl (Kg,) +
r, s

'
y =t= s'3!

kr+ks+h=Kv
¦j + r1

J\ J\ II J2 + • • • (8)

I/ signifie l'amplitude de l'onde attachée au vecteur — fe,-.

Pour Kj, 0, le premier terme doit être remplacé par

lIJl(2nbhg1) (9)
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Les arguments qui figurent dans les fonctions de Bessel sont
toujours extrêmement petits à cause de la présence des g qui sont
de l'ordre de l/]/A comme nous le verrons. Ainsi, on peut
développer ces fonctions en puissance de l'argument et l'on a

Je (x) 1 - -g- +

Jl (x) Jl, (x)

Pour aller plus loin, il faut exprimer les amplitudes des ondes en
fonction de la température et des constantes du cristal. Dans ce
qui suit, nous supposerons que les calculs sur la dynamique du
cristal ont donné la loi de dispersion des ondes, c'est-à-dire leurs
vitesses v,- en fonction de leurs longueurs d'onde

v, (fe,) -f- (11)

En plus, nous supposerons que ces mêmes calculs ont fourni la
direction de vibration gf |, / 11, |. Dans ces conditions, la loi de

répartition de l'énergie donne

g - A -TTT-, 1 ,0- l-ÏA- + ^\ («9
N 2n2 m vf kf YYL

1

% étant la constante de Boltzmann, T la température absolue, et
m la masse des atomes. Si la température est suffisamment haute,
cette expression dégénère en équipartition

N
*? 4r V—- "T— (13)

Pour ne pas alourdir nos formules, c'est cette dernière expression
que nous introduirons et nous indiquerons plus loin les formules
exactes obtenues avec (12). Il intervient dans (10) des termes de
la forme

XA s ((K+ KA gf)2 riT
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que nous écrirons sous forme d'une fonction

((bh + KP)g?yxT0
f(bh "¦y, »*j-

2 m vf kf
f(bh + K^k?

561

(14)

T0 est une température constante caractéristique que nous choisirons

égale à peu près à m v2. Nous introduirons alors une température

relative t= TjT0.
Si km est un vecteur qui dépasse la maille fondamentale, il

faut prendre
f(bh + K„,km) ^0

et, dans (8), les sommes et les produits peuvent maintenant être
formellement étendus à tous les points du réseau de Fourier. On
trouve alors, en introduisant ces simplifications dans (8) :

U vb2 | <P K) -2

t

If /(bÄ+K,fe,;

~W

f(bh + K,kt A^

ira
i + i'

77(1
i ^

ì+i

N f(bh + K,k3)

N f(bh+K,kf)

t2

^~nA

t2

If2'

t2

f(K

2! N2

K, K

2
r

f(bh+ K,kr)

1^ II
i

i+r

¦)2 +

(15)

Pour pouvoir effectuer ces opérations, nous supposerons que
les points du réseau de Fourier sont si rapprochés les uns des
autres qu'ils forment une distribution continue. Cela revient à

supposer le cristal infiniment grand et donc à passer à la limite
iV-> 00. Nous séparerons alors le problème en deux parties
distinctes: l'une, dans laquelle nous étudierons l'effet de la température

sur le facteur de structure d'un point de Laue bh(Kp= 0),
puis une seconde, dans laquelle nous considérerons le fond continu.

36
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4. Effet de la temperature sur un point de Laue.

Si l'on pose Kv 0, on trouve, pour le premier terme de (15),
selon (9)

Al vi\cp (bh) \2 TT (i - ± f (K, fe,-) + ™ ^

d'où l'on tire

l0g
vb |

cl lbh)
| - S log (l - ^ /(&», *,) + •

En développant le logarithme, on a

Pour passer à la limite N ¦*- co, nous introduirons la fonction
continue

/ (bft + K, K) Zm~^ü)KT2
Ô (K)

avec

„ 0 si K' sort de la maille fondamentale

(1 si K' est continu dans la maille fondamentale.

Nous remplacerons alors la somme de (16) par une intégrale en
posant

1 d vK,

N vb

où dvKr est l'élément de volume dans l'espace de Fourier et vb le
volume de la maille fondamentale. Il vient alors

x A (fc») fr,. r,,x dvKr t2 r

L'intégrale est formellement étendue à tout l'espace de Fourier
grâce à l'introduction de la fonction ô ci-dessus. Comme N -> co

tous les termes supérieurs disparaissent à la limite et l'on trouve
alors

r dvj^r

Il (K) vl\cp (bh) \2 e-2tJHb*>k)^r (17)
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On peut démontrer que tous les autres termes de (15) disparaissent
aussi à la limite N-> oo et par conséquent l'expression (17) donne
la valeur complète du facteur de structure (nous avons donc écrit
,Ih Ih). Pour f-> 0, on retrouve bien le facteur de structure du
cristal non perturbé. On sait, d'autre part, que le facteur
exponentiel a reçu le nom de facteur de Debye et qu'on le distingue
par la lettre M.

M=tff(bh,K)^- (18)

Cette expression donne la valeur exacte de M. On peut calculer
celui-ci en introduisant différentes suppositions pour comparer
notre résultat avec celui de Debye ou de Waller. Comme nous
l'avons indiqué dans l'introduction, Debye obtient par erreur un
facteur e~M marquant l'effet de la température, tandis que Waller
donne e~2M, qui est exact. L'erreur de Debye vient du fait qu'il
a compté comme une seule onde l'onde stationnaire avec laquelle il
représente le mouvement des atomes. Toutefois, dans son premier
travail, dans lequel il décrit les mouvements thermiques par des
oscillations indépendantes (de fréquence v0) des atomes, cette
erreur n'apparaît pas. Nous allons montrer que notre expression
(18) contient comme cas particuliers les vibrations indépendantes
ou les ondes. On peut donner le résultat du premier travail de
Debye sous la forme

e * h
(19)

où / est la constante élastique des oscillateurs atomiques (mû
— fu) dont la fréquence est

L
2n V m

Y-

Pour exprimer cela dans notre théorie, il faut tout d'abord
admettre qu'à chaque vecteur d'onde fe, correspondent trois ondes
dont les directions de vibration sont mutuellement perpendiculaires

('P "g°) K (p, g =1,2,3) (20)

En plus, la loi de dispersion (exprimant que la fréquence est
constante) devient

1 (fe) i



564 Konrad Bleuler et Jean Weigle.

Nous trouvons alors

rx C dvKr r xT «r-, dvk

''6 u

rs w ; *
: 2" fc|

^T4ti2

car, en vertu de (20), on a
/

2(&,^°(fe))2 öl

fcl

J)

Cela est bien le résultat cité ci-dessus.
Si l'on veut, par contre, introduire le résultat du second travail

de Debye, on doit, comme lui, trouver

M
3 6? "T I hv hv

2 m 1110>A. r.
Y-.I b*^r + "2- ¦" (21>

où vmax est définie par la condition que le cristal contienne en
tout 3 N ondes thermiques.

Notre formule (18) devient, dans le cas quantique,

M_ /~V (b*^0(fe))2 / Kv h'v\ dv,
J £ 2mt>v2(k)k2 \ehP"lxT-l

'

2 vb
K '

Nous supposerons1) que la vitesse est constante et indépendante
de *g°.

La fréquence correspondant au vecteur d'onde fe devient alors

*v(k) kv v(k)

Si l'on suppose, en plus, un milieu isotrope, on a

CS° *l°) KQ

Il faut maintenant, pour suivre Debye, intégrer non pas sur la
maille fondamentale, mais sur une sphère de même volume, dont
le rayon

k„

1) Debye en réalité suppose des vitesses différentes pour les ondes
transversales et longitudinales respectivement, mais pour ne pas allonger cette
comparaison, nous prendrons une seule vitesse.
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est déterminé par
4n

~lj-(fcmax)3= %

d'où l'on tire

Ainsi (22) devient
¦*/-£

2 7tb2 VJX/ hv hv
m vb v3 J \ ehvlxT - 1

'

2

8 b2 Vmr I hv hvf ^--
2 m v* J \ eh""tT -1 2

0

dv

C'est bien là l'expression (21) de Debye si notre vmax correspond
à celui qu'il a choisi. Il prend en effet (F étant le volume du
cristal)

v V "nix -,7 3 N */Svbt7 3 N lß
}/4}7T v]/-<

car V/N est le volume de la maille fondamentale et l'on a,vh NjV.
Remarquons, pour terminer, que notre facteur est toutefois

e~2M et non pas e~M comme pour Debye.

5. Fond continu.

Pour calculer le facteur de structure des points du réseau de
Fourier en dehors des points de Laue, il faut revenir à la formule
(15). Si JV-> co, le nombre des points contenus dans la maille
fondamentale augmente indéfiniment, mais l'amplitude de chaque
onde diminue de façon à laisser la densité d'énergie constante.
Il sera commode d'introduire alors la densité du carré du facteur
de structure

i2(bh^k)=~Il(bh + K)

Pour A->- co, la formule (17) nous donne des termes finis, car

chacun d'entre eux possède un facteur -=- ou -p-, etc. On voit
aussi que les produits sont égaux, car ils ne diffèrent entre eux
que d'un nombre fini de facteurs J2 qui tendent vers l'unité lors-
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que N -> oo. On peut donc les calculer comme au paragraphe

précédent et, en posant encore une fois -^- ——, on trouve

-2t[f(b i K K') ^Vr'

t2(bh + k) vb\cp(bh + K)\2e
^ " ' "• \2tf(bh + K,K)

^-22 ff (bh + K, K)f(bh + K,K- K) ^-
K'

^-23 f ff(bh + K,K')f(bh + K,K")
dVKr dVKrr

f(bh + K,K-K'-K") K K

(23)

On peut mettre ce résultat sous une forme plus condensée en
définissant les fonctions itérées suivantes

f1(bh + K,K) f(bh + K,K)
dvh

et, par substitution, on voit que (23) prend alors la forme

U (bh + K, K) ffn_, (bh + K, K")f(bh + K,K- K") ^ (24)j ob

-2tff(bh + K,K')
i2(bh+K) vb\cP(bh4-K)\2e

2~2«/„(bA + K,K) (25)
Ä=l n\

La somme infinie apparaissant dans cette expression est convergente.

En effet, quoique la fonction / ait une singularité en „,, a

au point K 0, elle est intégrable, autrement dit la grandeur

C(K)= jf(bh + K,K')^-
vb

est finie. Pour nA 4, on trouve alors les inégalités

/„ (bh + K, K) < c (K) fn^x (bh - K, K'max)
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où K'max est la valeur de K, qui donne à la fonction /„_, sa valeur
la plus grande. On peut donc écrire

oo £n oo £n

S ~r2" fn < 2 at 2n W)" < e2c(K)t

ce qui montre bien la convergence de la somme infinie.

Remarquons encore qu'on peut montrer que /2 et /3 ont des

singularités au point K 0 en 1/ \K\ et log \K'\ respectivement.
Mais, comme /, ces fonctions sont intégrables. Nous trouvons donc
finalement que le fond continu est constitué par différents termes,
qui ont tous un maximum dans le point de Laue. Mais ces maxima
sont de plus en plus petits, les fonctions sont de plus en plus plates
à mesure que l'ordre des termes s'élève. Enfin, pour avoir une
représentation complète du phénomène, il faudrait connaître la
valeur de chacun de ces termes relativement au terme d'ordre
zéro, c'est-à-dire relativement à la valeur du facteur de structure
au point de Laue.

Pour cela on pourrait introduire le facteur de Lorentz ou
plus simplement encore supposer que le cristal est fini. Pour
obtenir l'ordre de grandeur des différents termes, c'est ainsi que
nous procéderons en supposant que le cristal est un cube de côté Z

contenant N atomes, la constante réticulaire valant a INA. Il
faut alors introduire la fonction de Laue qui, comme on le sait,

2
a un fort maximum l3 (largeur ~y)> entouré de chaque côté par
des maxima beaucoup plus petits. Pour faciliter nos calculs
approximatifs nous supposerons plutôt que chaque point du réseau

de Fourier est étalé sur une sphère de rayon -r; à l'intérieur de la

sphère il faut multiplier le facteur de structure carré par lp, à
l'extérieur par 0. Calculons ainsi la valeur intégrée de tous les points
du réseau de Fourier, donnant une contribution en bn pour le
premier terme du fond continu. Nous écrirons approximativement

((bh + kAg)2xT0 jg_

£ m*v2k2 k2 Ao m

La valeur intégrée en fe 0 devient

y ¥tl* j ¦£*¦ 4 n k2 d k 4 n t b2hl2 4 ti t (bh a)2 N*'>

o 2
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Pour le deuxième terme du fond continu (singularité en -= pour
fe 0) on a par un calcul semblable approximativement

~2Ttt2(bhay K1'

et l'on peut alors comparer les contributions à l'endroit du point
de Laue des différents termes:

réflexion de Laue vb cp2 e~2M N
1er terme du fond continu ~ 4nt vb cp2 e~2M (bh a)2 N'13

2ème terme du fond continu ~ 2 n t2 vb q>2 e~2M (bh a)4 N'1' 26)

Remarquons tout d'abord que (bha)2 h2x + 7i| -f h2s pour un
réseau cubique; (bh • a) est donc en quelque sorte l'ordre de la
réflexion.

On voit que l'effet du fond continu est d'autant plus marqué
que l'ordre est élevé. En plus le facteur e~2M produit une
diminution de l'intensité de réflexion lorsque la temperature augmente;
mais les termes du fond continu étant multipliés par t, t2, etc.,
cette diminution due au facteur e~2M est en partie compensée.
On peut donc concevoir que, dans un certain intervalle de
température, le fond varie très peu d'intensité. Raman1) a remarqué
que les réflexions diffuses en dehors de l'angle de Bragg qu'il
observait ne changeaient que très peu avec la température. Il a
cru pouvoir en déduire que ces réflexions ne pouvaient pas être
dues aux ondes thermiques. Nos résultats montrent que cet argument

n'a pas de valeur.
Si on compare entre eux les différents termes (26), on voit

que leurs valeurs diminuent par un facteur N1'3. Cela n'est vrai
évidemment qu'au point de Laue; il est possible que si l'on est
assez loin de celui-ci, le deuxième terme devienne du même ordre
de grandeur que le premier. Toutefois, dans le voisinage immédiat
du point de Laue et pour des températures et des ordres pas trop
élevés seul le premier terme est important. Cela justifie les
calculs de Faxen, Zachariasen et Weigle et Smith dans les
travaux que nous avons cité plus haut. Cela revient à admettre que
dans le voisinage du point de Laue seules les ondes thermiques
de grandes longueurs d'onde et de petites fréquences déterminent
les facteurs de structure et donc l'intensité de la diffraction des

rayons X. On peut donc calculer celle-ci à partir des constantes
élastiques macroscopiques du cristal.

J) Raman, loc. cit.
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Remarquons enfin que pour le fond continu on n'obtient pas
une intensité intégrée indépendante de la largeur du faisceau
employé comme le donne le facteur de Lorentz pour un point de
Laue.

Nous reviendrons sur ces questions dans un article suivant.

6. Généralisations et conclusions.

Jusqu'ici, nous avons admis, pour ne pas alourdir nos
formules, qu'à chaque vecteur d'onde fe, une seule onde était associée
et qu'en plus l'énergie était distribuée parmi ces ondes d'après la
loi de l'équipartition. Il nous faut maintenant nous libérer de ces
deux suppositions.

Il y a, dans le cristal simple que nous avons considéré, trois
ondes attachées à chaque vecteur d'onde et leurs amplitude sont
données par (12). Ainsi il est nécessaire de définir une nouvelle
fonction G qui remplacera (14)

G(bh + K,K',T)
((bh+K)*g«(K))2 l Kv

|

Kv
„„¦ts,8i 2m*v*(K) \K'\2 [ ] \ e"p^T-1 '

2

Les calculs se poursuivent alors exactement comme précédemment
et l'on obtient

a) Pour le facteur de Debye

-2i¥ -2/G
dVE'

e e vt vi

c'est du reste ce que nous avons calculé au § 3.

6) Pour le fond continu
oo 92

i2h (bh + K) v2\cp(bh + K)\2 e-2« 2 -YT G» (b* + K> K> T)

et, finalement, pour le fond continu total

i2 (b) 2 il (K + K)
h

Il est intéressant de montrer que la moyenne du facteur de structure

pour chaque maille fondamentale a la valeur trouvée par
Debye. On a en effet

^) J2 [iî(b)dvbm± fi2(b)dvb
maille infini
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et l'on peut poser, en vertu de (25)

i2 (bh) m 1 cp (bh) \2 e-«*2-AV 2* / h (fc», K) —*-
1 H. J Vb

infini

car il est permis de remplacer b par sa valeur moyenne bh sauf
dans le dernier facteur.

On obtient alors, pour l'intégrale, en utilisant (24)

dvK

et, donc finalement,

i2 (bh) m vb e-™ { e2«- 1 } | cp (bh) \2{1- e-2* } vb (27)

ce qui est le résultat de Debye.
Les singularités de f\,f2,f3 font qu'au voisinage d'un point

de Laue, la valeur de if diffère grandement de sa valeur moyenne.
Cet effet provient donc du couplage entre les atomes dont nous
avons tenu compte en représentant les vibrations de ceux-ci comme
des ondes. Debye, pour obtenir le résultat (27) non pas sous
forme d'une moyenne, mais comme valeur du facteur de structure

du fond continu, avait supposé les vibrations des atomes,
soit indépendantes, soit données par des ondes de différentes
phases dont il prenait la valeur moyenne. Ces singularités autour
de bh sont surtout dues aux ondes de grandes longueurs d'ondes
(petits fe) qui déplacent rigidement en quelque sorte de petites
parties du cristal; ces déplacements sans déformation n'ont donc

que peu d'influence sur la diffraction de Laue.
La formule (27) nous permet en outre de montrer qu'il y a

conservation de l'intensité totale diffractée car, en effet, en ajoutant

(17) et (26), il vient

I2 (bh)+fi2 (b) dvb vl{e-2**+ 1 - e-2»'} | cp (bh) \2 vl\<p (bh) \2

Dans un travail suivant, nous montrerons comment on peut
calculer explicitement la diffusion des rayons X par la température
pour les cristaux dont on connaît le spectre de vibration comme
NaCl ou KCl.

Laboratoire de Physique de l'Université.
Genève, Mai 1942.
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