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Uber den Begriff des Atoms II
von Willy Seherrer.
(18. V. 1942.)

Vorbemerkungen.

In Teil T') wurden Grundsitze entwickelt, denen man im ein-
fachsten Falle — lauter gleiche Massen und Ladungen — folgende
Form geben kann:

1. Alle Materie besteht aus einzelnen Elektronen.

2. Jedes einzelne Elektron muss durch eine individuelleWellen-
funktion beschrieben werden.

3. Das auf ein Elektron wirkende Feld ist identisch mit der
Gesamtheit der Materiewellen aller tibrigen Elektronen.

4. Das Operationsgebiet ist der vierdimensionale Zeitraum der
speziellen Relativitatstheorie.

Als Ansatz fir die Wechselwirkung zwischen % Elektronen
mit den Wellenfunktionen

Ups Ugy o oo Uy

habe ich in Anlehnung an bekannte Methoden der Wellenmechanik
folgendes System vorgeschlagen:

n (k) n (k) 2
D‘uk={A+8DZ Lguﬁ—gz (gradZ Iigul)]uk. (1)
=1 =1

Schon im Teil I wurde darauf hingewiesen, dass in diesen Glei-
chungen am ehesten das in & quadratische Glied als problematisch
angesehen werden muss. In der Tat hat nun die ndhere Unter-
suchung gezeigt, dass vor allem dieses Glied einen plausiblen Aus-
druck fir die Erhaltung des einzelnen Teilchens erschwert.

1) Helv. Phys. Acta XV, I, 53 (1942).
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Die weitere Untersuchung hat dann ergeben, dass folgender
tiberaus einfacher Ansatz die wesentlichsten Vorteile von (1) besitzt,
seine Nachteile aber vermeidet:

7 (k)

D= Adug+e 0> wg | @)
=1

Er hat ausserdem den Vorteil, dass er ohne weiteres in Dirac’schen
Operatoren geschrieben werden kann. Es wire also moglich, die
Erhaltungssétze in der engsten Form zum Ausdruck zu bringen,
falls sich das als notwendig erweisen sollte.

Schliesslich soll noch ein dritter Vorteil des Systems (2) her-
vorgehoben werden. Schon im Teil I wurde darauf hingewiesen,
dass das System (1) im Koinzidenzfalle — alle Teilchen gehen
vom selben Weltpunkt aus — vollstandig separierbar ist. Das
gilt selbstverstdndlich auch fir (2). Hier gilt aber noch mehr, ndm-
lich: fiir das System (2) ist das Zweikdrperproblem in jedem Falle
vollstéindig separierbar, wenn man geeignete ,,Lamé’sche* Koordi-
naten verwendet. Damit ist also ein methodischer Ansatz fiir ein
relativistisches wellenmechanisches Zweikorperproblem?) gewonnen,
dessen vollstindige mathematische Durchfithrung vielleicht im
Bereich des Moglichen liegt.

Bei der Behandlung von (2) zeigt sich nun, dass die Wellen-
gleichung von pE BrocLie

Ou= Au (3)

fiir irerschiedene Massenfaktoren A eine ganz zentrale Stellung
einnimmt. Setzt man ndmlich
uﬁiﬁl4‘u2+".‘+‘%l'n (4)
und | '
Uy = Up — Uy, (5)
so folgt aus (2) entweder durch Addition aller Gleichungen oder
durch Subtraktion irgend zweier

A

L= =1y, (©)
resp. |
A

[y = mum- : (7)

Es ist also notwendig, sich iiber die physikalisch sinnvollen
Losungen der Gleichung (3) zu orientieren und dieser Aufgabe
soll der vorliegende Teil II meiner Untersuchung gewidmet sein.

1) Vgl. SoMMERFELD: Atombau und Spektrallinien II, 2. Aufl. (1939), S. 209.
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Es 1st wvielleicht nicht tberfliissig, darauf hinzuweisen, dass
nach dem oben Gesagten in dem vorliegenden Teil II @berhaupt
keine neue formale Hypothese diskutiert wird. Es handelt sich
ausschliesslich um die altbewahrte Gleichung (3). IHingegen soll
diese Gleichung von dem im Teil I erlauterten Standpunkt einer
Weltpunktdynamik im vierdimensionalen Zeitraum aus beurteilt
werden. Das Elektron erweist sich in dieser Auffassung, die grund-

sitzlich von der tblichen abweicht, als ein recht vielgestaltiges
Gebilde.

§ 1. Koordinatenwahl und Separation.

Wir setzen

2 o2 |
A= - m;; - —a? (8)
und schreiben (3) aus:
2 2 2 2
1 0%uw  0%u 0% 0u=—a2u. (9)

e 02 Odz? 0y X

Diese Gleichung haben wir nun im Sinne von I, Postulat 1) zu
losen. Wir setzen also voraus, dass sich im Ursprung

(Cf,’ &y, ¢2: {173) = 0,0,0,0) (10)

ein Quant @, befinde und fragen nach der Wahrscheinlichkeits-
amplitude
u = u(ct, z;, &y, Zy), 11)

deren Quadrat die relative Haufigkeit des Auftretens eines Quants
@ an der Weltstelle
(et, xy, Ty, ) (12)

als Wirkung von @, anzeigen soll. Dabel setzen wir ausdriicklich
voraus, dass die betrachteten Stellen (12) in dem zum Ursprung
gehorigen Zukunftskegel, dem sog. Vorkegel, liegen sollen.

Um die dem Vorkegel innewohnende Symmetrie voll auszu-
niitzen, verwenden wir vierdimensionale Polarkoordinaten r, @,
?, @, die man am bequemsten definiert durch die Transformations-
formeln

ct=rCof O

x, = r Sin O cos & (18)
xy = r Gin O sin ¢ cos ¢

xg =1 Qin @ sin ¥ sin ¢
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in Verbindung mit den Definitionsbereichen

0==r <w
06 < w
0% =
0=¢p =2=x.

(14)

r 1st die vom Ursprung nach der betrachteten Stelle hinfiihrende
Weltdistanz. @ bedeutet den hyperbolischen Winkel zwischen
Ruhachse und Ortsvektor. Interpretiert man also den Ubergang
vom Ursprung zum betrachteten Weltpunkt (12) als eine Geschwin-
digkeit v, so gilt

ng@:%. (15)

Bezeichnet man weiter mit ¢ den rdumlichen Abstand zwischen
dem Ursprung und der Weltstelle, so gilt

0=rSino. (16)

Die Gréssen p, ¢ und ¢ sind dann die gewdhnlichen rdum-
lichen Polarkoordinaten.

Das der getroffenen Koordinatenwahl entsprechende Linien-
element ist gegeben durch

ds?=dr? — r2 [dO? + Gin? O (dJ* + sin?dde?)]. (17)
Daraus ergibt sich das vierdimensionale Volumelement
d(ct)day dxy dxg= r3dr - Sin2 OdO - sin #dd - d e, (18)

sowle der Wellenoperator

- 1 0 (5 0u
[ = = ("5
1 0 pus g O
_ 7 Pl
2 emi o 00 (6‘" 0@) o
1 0 . 0u (
- : : sin ¢ ——
r2Gin2 @sin % 09 ( 019’)
1 0% u
~ r2Gin2@sin? & 0¢?

Nun vollziehen wir die Separation auf Grund des Produkt-

ansatzes uw=R(1)G(O)P(%)D(¢). (20)
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Es resultieren die Gleichungen

i; L m2d— 0, (®)
sirll & dd_ﬁ (Sin &%) T [l (b+1) = sizfﬁ] Fesitly ikF)
A 55 (gmwg”g“) i [E - %lir%}g: 0. &)
.5; ;i (wa%;f).+ (a2+-%§).R::O. (R)

Die beiden ersten Gleichungen werden in bekannter Weise
durch trigonometrische resp. durch Kugelfunktionen geldst, und
wir haben deshalb von vorneherein ihre Eigenwerte als Funktionen

der Quantenzahlen m und ! eingesetzt.
Neue Momente ergeben die ,,Radialgleichung* (E) und

yor

allem die ,,Geschwindigkeitsgleichung® (G), da sie ein kontinuier-
liches Spektrum von Eigenwerten I aufweist. Diesem ,,Geschwin-

digkeitsspektrum* wollen wir uns jetzt zuwenden.

§ 2. Das Geschwindigkeitsspektrum.

Wir setzen
E=1- p?

und erhalten damit an Stelle von (G):

1 d (@in2@ﬁ)m[p2 _ 1+l—(l"’1)](}; 0

&in2 e de de Sin2 @

Durch die Transformation

Cof O =z
geht (22) iber in
d* @G aaG L(I+1)
2 _ L3y |p2— L |G=0.
(2 — 1) dZZ—ISz P [p 14 22_1}

Durch die Substitution
!

z
G=Gla=(EF-DTHL)=(-1)°H
geht weiter (24) tber in

d* H

e 1
(= ) dz?

+(2l+3)z%—[p2—1~l(l+2)]H=0.

(21)

(22)

(23)

(24)

(25)

(26)
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Aus (26) schliesst man leicht, dass man aus jeder Funktion
H(l — 1, 2) eine Funktion H (!, z) erhilt durch einfache Ableitung:

Iﬂhﬁié%HU—lmy (27)

In Verbindung mit (25) folgt daraus, dass man Lésungen von (24)
auf Grund der Formel

L odn
G(LA=- 17 () K6 (28)
erhilt, wo K (2) = G(0, 2) eine Losung der Differentialgleichung
d? K dK .
2-1 82— —(p2—-1)K=0 29
-0 8 - - 1) 29)

ist. Um ein Hauptsystem dieser Differentialgleichung in méglichst
bequemer Gestalt zu erhalten, empfiehlt es sich, wiederum geméss
(23) auf die urspriingliche Variable @ zuriickzugreifen.

Die Gleichung (29) geht dann iber in

1 dK
Gin2@ do de

(@mu) )—@r—nKzo. (30)

Nun bestatigt man leicht, dass ein Hauptsystem von (30)
gegeben wird durch

K(0)= 27 K@) =27
{9 = Gme * M9 gme -
An Stelle von (28) tritt nun der

Satz: Aus jeder Losung K (0) von (30) erhilt man eine Losung
von (22) vermattelst der Formel

(31)

1 d
Gin6 de

Gwpqem@% )K@) (32)

Gestiitzt auf das Hauptsystem (81) von (30) erhélt man also ein
Hauptsystem von (22).

Um nun die im Sinne der Wahrscheinlichkeitsinterpretation
brauchbaren Loésungen auszuscheiden, wollen wir einige Unter-
scheidungen treffen.

Es liege allgemein die selbstadjungierte Eigenwertdifferential-

gleichung
(P(2)y) - Q@)y + E(@D(z)y =0 (38)

31



482 Willy Scherrer.

mit dem Definitionsbereich @ < # < b vor, deren Eigenwert E
also eine bekannte Funktion eines Zustandsparameters q sei. Sei
weiter N (q) der zur Eigenlosung #(q, x) gehorige Normierungs-
faktor. Nun wollen wir folgende Ausdrucksweisen einfiihren:

1. Die Eigenlésung heisse ,,im engeren Sinne normierbar’, falls
eine Normierung

[ N@*y(q, 9 pD@de—1 (84)
moglich 1st. ’ '

2. Die Elgenlosung heisse ,,im weiteren Sinne normwrbar“
falls eine Normierung

b—p
fim [ N(@)N (4 0y(x, 2) 05 @ Dy 1 (55
= F(q)_E(){ @ |vta 5o~y 0" a1 )

743 a+o

im Sinne der Theorie der kontinuierlichen Spektren!) mioglich ist,
wo also der festgehaltene Parameterwert » dem Intervall (qq, qo)
angehort.

Im 1. Falle kann man von einer absoluten Wahrscheinlichkeit
sprechen dafiir, das betrachtete Objekt im Koordinatenintervall
(x, x + dx) anzutreffen:

dw = N([y(q, ©)]*D(z) de. o (36)

Im 2. Falle stellt (836) nur eine relative Wahrscheinlichkeit dar.
Trotzdem 1st die Normierung von Bedeutung, denn nur sie ge-
stattet die relativen Wahrscheinlichkeiten fir verschiedene Zu-
stinde — d. h. fiir verschiedene ¢ — miteinander zu vergleichen.

Um die Existenz von Integralen (85), (86) bei unseren Lo-
~sungen (32) beurteilen zu kénnen, bendtigt man das asymptotische
Verhalten dieser Losungen in den Randpunkten @ = 0 und & = co.
Durch Reihenentwicklung nach @ an der Stelle ® = 0 und nach
e=® an der Stelle ® = oo findet man

09~ (a9 ) 5@ o
und '
s9~ () xO-

1) Siehe E. Fues, Ann. d. Phys. 81, 295ff. (1926).
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Zwecks Berechnung der Integrale bringt man nun (22) ver-
mittels Multiplikation mit Gin? @ auf die (33) entsprechende
Gestalt .
i(@iﬁ@d—G—) I+ )G+ (1-p)Gint@-G=0, (39)
d6 a0 ’

wo also B =1 — p? Eigenwert und p Zustandsparameter ist.
Die Ergebnisse der rechnerischen Analyse sind — soweit wir
sie brauchen — folgende.

L. ' - < kB <1,

p also reell. Wir nehmen p positiv an, also

~|y1-E|.

Die einzigen normierbaren Lésungen ergeben sich fiir I = 0 zu

0) = N (p) =2~ 40
mit dem Normierungsfaktor
Np)=1y2p. Gy

Diese Losungen sind im engeren Sinne normierbar und an der
Stelle @ = 0 mit einem Pol erster Ordnung behaftet.

IL. 1<E<w
also p rein imagindr. Wir setzen | ot «
p = 1q. 49

Die normierbaren Lﬁsungén sind gegeben durch _‘
: 1 vErsing @ :

l; @) = N Oy .- S

mit dem Normierungsfaktor

Nig=T1= - (44
T g

Sie sind nur im weiteren Sinne normierbar, hingegen mit Ein-
schluss der Rénder stetig. Die Stelle ® = 0 ist eine Nullstelle der

Ordnung !, wie man sofort feststellt, wenn man beachtet, dass
——ﬁ—sggg) eine gerade Funktion von @ ist. Diese Losungen ver-
dienen insofern besondere Beachtung, als sie ein kontinuierliches
Spektrum darstellen, das genau den Schriodinger’schen Stetigkeits-
forderungen entspricht, wihrend das bei I nicht der Fall ist.

Die mutmassliche Deutung kann natiirlich erst erlautert wer-
den, wenn man auch die Radiallésung kennt.
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§ 3. Die Radialgleichung.

Es handelt sich um die Gleichung (R) in § 1 mit der Welt-
distanz r als unabhéngiger Variablen. Gemiss (21) setzen wir

E=1-p?
so dass (R) iibergeht in
1 d [ ,dR o ;| 1—pt _
s dr (T dr>+(a+ r2 )R_O' (48)
Mit
s
=— 46
r=- (46)
und
rR-L (47)
$
geht (45) iber in
a2J 1 dJ p*
st T s ds "(1 L) -0, (48)

also eine Bessel’sche Differentialgleichung mit dem Parameter p.

Nun treffen wir wieder die im vorigen Paragraphen vorge-
nommene Fallunterscheidung

I. p reell :
Fiir (45) ergibt sich die Losung

R=M(p) - 2= O (49)

wo M (p) einen Normierungsfaktor bedeutet, dem wir den Wert

a
V2
erteilen wollen. Die Motivierung dieser Wahl — von einer Begriin-

dung kann vorderhand noch nicht gesprochen werden — soll nach-
her fiir die Fialle I und II gleichzeitig vorgebracht werden.

M(p) =

(50)
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Wir unterlassen es auch, Losungen fiir negativen Index zu
notieren, da dieselben — wenn iiberhaupt — wegen der erforder-
lichen Konvergenz des Wahrscheinlichkeitsintegrals an der Stelle
t = 0 nur in sehr beschrinktem Umfang zulédssig sind.

I1. P rein lmaginir :
Wir setzen also wieder gemiiss (42)
p=1q
und erhalten fiir (45) die Losung

J;, (ar)

BR=M(q) - —%2—, 51
(9) R (51)
wobel fiir den Normierungsfaktor die Wahl
a
V(0 P — (52)
( V2 Cof (7 q)

getroffen werden soll. Entsprechend unserer Beschréankung auf
reelle Amplituden miisste in (51) rechts entweder der Realteil
oder der Imaginirteil genommen werden. Diese beiden Kompo-
nenten sind nicht wesentlich voneinander verschieden. Sie unter-
scheiden sich fiir grosse Argumente nur in asymptotisch konstanten
Amplituden und einer asymptotisch konstanten Phasenverschie-
bung. Wir haben deshalb in (52) kurz eine mittlere Normierung
in bezug auf die Dichte R R* vorgenommen.

Nun zur Motivierung der vorgenommenen Normierung. Da-
bel gentigt es, den formal einfacheren Fall I zu betrachten.

Die Wahrscheinlichkeitsdichte, das Quantum in der Distanz
r anzutreffen, ist gegeben durch

R2— M2- (ﬂ%@)é

Die Haufigkeit der auf das Intervall (r;, 7;) entfallenden Quanten
1st also gegeben durch

jszﬁdfr = M= /’H[Jg,(afr)j2 rdr _ (53)

L
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Far grosse ar gilt aber asymptotisch

B CETSTT
2

Wéahlt man also fir r; und r, zwel aufeinanderfolgende Minima
der Amplitude, d.h. erstreckt man das Integral (58) iiber eine
Schwingung, so folgt asymptotisch fiir grosse ar

2 M?

a2

[szr?'dfr ~ , (55)

d. h.: Fir grosse ar ist die Zahl der auf eine Schwingung entfallen-
den Wirkungen asymptotisch konstant. Nun entspricht nach un-
serer Auffassung das ganze Wellenfeld den mutmasslichen Wir-
kungen des einen im Ursprung angenommenen Ausgangsquantums
Qg. Es ist deshalb das Einfachste, jeder einzelnen Schwingung
ein einmaliges Auftreten einer Wirkung zuzuordnen. Man setzt
also in (55) die rechte Seite gleich 1, womit die Normierung (50)
gewonnen ist. Die Relation (55) sagt dann aus, dass jede Wirkung
asymplotisch fiir ,,grosse’ Weltdistanzen erhalten blewbt (praktisch
handelt es sich um Distanzen, die gross sind gegeniiber der Comp-
ton-Wellenldnge 1/a).

Genau dieselbe Uberlegung und eine fast ebenso leichte Rech-
nung fiihrt auf die Normierung (52).

Zum Schluss wollen wir uns noch vergegenwirtigen, wie sich
die Radiallésungen den Schridinger’schen Stetigkeitsforderungen
unterordnen. Diejenigen Losungen, wo diese Forderungen erfiillt
sind, kommen offenbar nur beim Falle I vor. Die Verhiltnisse liegen
also gerade umgekehrt wie beim Geschwindigkeitsspektrum. Es gibt
also iiberhaupt keine partikulire Losung der Gleichung (3), die in
allen Variablen den Schriodinger’schen Forderungen geniigt. Wir
haben uns also zu entscheiden, fiir welche Variable wir diese For-
derungen preisgeben wollen. Da scheint es mir nun natiirlich,
diese Preisgabe bei der Weltdistanz r zuzulassen, denn r = 0 bedeutet
den Rand des Vorkegels, withrend die Stellen @ = 0 im Innern
liegen. Bei dieser Auffassung wire also auf jeden Fall der Fall II
zuzulassen.



Uber den Begriff des Atoms II. 487

§ 4. Die Interpretation.

- Wir beginnen mit dem reichhaltigeren und im Vorkegel aus-
nahmslos stetigen Fall II, wo also p = 1q ist. Die Faktoren der
partikuliren Losung (20) sind zu entnehmen aus folgender Tafel:

1

Q’) 6zmcp

\Von

P= V 2 bl l—m}‘ P (cos 9)

G — ]/2 4G (Gof O)

Jy(ar)
2 \/(Soiqn r

(56)

Hier sind in Zeile 2 und 4 die bekannten Symbole fiir Kugel-
und Bessel’sche Funktionen verwendet, in Zeile 8 aber steht in
angepasster Bezeichnung unser friiheres, durch (43) und (44) defi-
niertes g(q, !, @). Es gilt also

; c . d !/ sin q@

G (Cof 0) = (Sin ©) (@in@d@ )(@n@ ) (57)

Um dem Leser ein anschauliches Bild dessen zu vermitteln,

was ich mir vorgestellt habe, entnehmen wir aus (56) nur reelle

Losungen und definieren demgemiiss die Wahrscheinlichkeitsdichte

fir das Auftreten einer durch ), verursachten Wirkung ) an der

Stelle (r, @, #, ¢) des Vorkegels durch das ausnahmslos positive
Quadrat

w=u?= R*G2 P22, - (58)

Die dadurch bedingte Anderung des Normierungsfaktors von R
wollen wir aber ausser Betracht lassen, da vorderhand die Phasen
keine Rolle spielen.

Analysiert man nun den Verlauf der Dichte w, so konstatiert
man, dass der Vorkegel in lauter Zellen zerfillt, von denen jede
emzelne ein Dichtemaximum aufweist, withrend auf ithrem Rande
die Dichte 0 herrscht. Das ganze Wellenfeld erhilt also eine kor-
nige Struktur, welche die von uns im Teil I angenommene These
von intermittierendem Auttreten der Wirkungen veranschaulicht.
Selbstversténdlich muss es vorderhand eine offene Frage bleiben,
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ob sich die Dinge wirklich so abspielen. Gerade in dem jetzt zu
betrachtenden Falle IT bietet die Definition

w= uu¥* = BR*G2 PP P* (59)

zum mindesten rechnerische Vorteile, und die Normierung in (56)
wurde daher ihr. angepasst

Die fiir die vorgeschlagene Losung charakteristischen Ziige
sind fast vollstindig enthalten in den Faktoren G(@) und E(r).
Es soll deshalb das, was man den Formeln entnehmen kann, noch
kurz fiir die Variabeln » und @ in Worten geschildert werden.

In bezug auf r zerfdllt der Kegel in eine unendliche Serie
von hyperbolischen Schalen, die gegen Unendlich asymptotisch
dquidistant verlaufen und gegen Null eine Héufung aufweisen
(singuldre Oscillation).

In bezug auf @ weisen die Meridialebenen (r, @) eine facher-
artige Struktur auf, die nach den Geraden @ = konst. orientiert
i1st, und deren einzelne Glieder von @ = 0 an mit abnehmender
Breite einer H#ufungsstelle ber @ = oo zustreben (Geschwindig-
keitsverteilung). Allgemein wird die Gliederung mit wachsendem
q feiner. Fiir I = 0 liegt das Maximum der Maxima auf der Ruh-
achse. Fiir I > 0 verschiebt es sich nach Massgabe von ! in der
Richtung wachsender @. Gleichzeitig iiberlagert sich dieser Fein-
gliederung eine zweite Gliederung, bestehend aus endlich vielen
Oszillationen, deren Anzahl mit | wichst.

Durch Integration von w nach ¢ und & erhalten wir die Wahr-
scheinlichkeitsdichte

wh(6,r) — RR*G? (60)

fiir das Auftreten einer zum Zustand (I, q) gehorigen Wirkung mit
den Koordinaten (@, r). Dies bedeutet anschaulich das Auftreten

einer Wirkung zur Zeit t= %— r €of O auf einer Kugel vom Radius
o= 1rSin O,

Die Wahrscheinlichkeitsdichte, zur Zeit ¢ innerhalb einer Kugel
vom Radius ¢y = ¢t€g 6, um den ridumlichen Nullpunkt eine
Wirkung zu erfahren, ist daher gegeben durch

0, -
Wiiet, Og) = [ | R(r) [2G(0)2¢*de, (61)
0
wobel also zu setzen ist
ct
_ 2
"= Gof o L64)

=ctSg O . (63)
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Statistisch ist also durch (61) die relative Anzahl der ,,Teilchen‘
gegeben, deren ,,Geschwindigkeit zur Zeit ¢ zwischen 0 und
vy = ¢ &g O, liegt. Mit Teilchen und Geschwindigkeit ist natiirlich
nur die Konfiguration, bestehend aus dem urspriinglichen Quant
o und dem an der beobachteten Stelle auftretenden Quant ¢
gemeint. Die Geschwindigkeit, die zur Beobachtung gelangt, wére
also ein mittlerer Differenzenquotient.

Aus Gleichung (61) ergibt sich nun eine wichtige Folgerung,
wenn man den Grenziibergang ¢t oo vollzieht. Setzt man némlich

lim Wi(ct, @) = WL(O,), (64)

ct—>

so ergibt sich die Rechnung auf Grund von (56) und (54)

2a P ; , ©in2 0
NeE——— de,
o Of [GL(Cof O)] ol O d (65)

Wé (@0) =

Wir haben damit das Resultat:

Die Wahrscheinlichketisdichte dafiir, dass das Teilchen zu einer
bestimmten Zeit t mit einer Geschwindigkeit ewntrifft, die zwischen
0 und v, = cZg O, legt, nihert sich mit wachsendem t einem be-
stimmten Grenzwert W (6,).

Das Integral (65) konvergiert aber auch noch, wenn man
6, > oo gehen lasst. Setzen wir also

lim WH(@,) = W1, (66)
Gy— 0
so haben wir
24 F | Gin2 @ '
e L (S g DU o
Wi~ gy | 61 OF g (67)

Es gilt also:

Die Wahrschewnlichkeutsdichte dafiir, dass das Teilchen zu einer
bestimmten Zeit t iiberhaupt auftritt, ndhert sich mit wachsendem i
evnem bestimmien Grenzwert W,

Es besteht also auch in den phdnomenologischen Koordinaten
(¢t, z1, ©3, ) ein Erhaltungssatz. Das Integral (67) bezieht sich
nun auf einen genauen Querschnitt, um die wirkliche Wahrschein-
lichkeit zu erhalten, muss man also noch iiber ein Intervall A4(ct)
integrieren. Wir konnen nun 4¢ so wihlen, dass die Wahrschein-
lichkeit 1 wird und haben damit die Folgerung:
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Nach Ablauf einer geniigend grossen Zeit lisst sich ein Zeit-
ntervall ; _
A =

¢ I
cWl

angeben mit der Eigenschaft, dass innerhalb dieses Zeitintervalls die
Wairkung wm Maittel genau evnmal auftritt.

Geben wir statt dessen eine Zeitdifferenz At beliebig vor, so
konnen wir auch sagen:

Nach Ablauf einer geniigend grossen Zeit ist die mittlere Anzahl
Z der von unserem Teilchen innerhalb eines vorgegebenen Zeitinter-
valls At ausgeiibten Wirkungen gegeben durch

Z=cWi-At. (69)

(68)

Die Grosse hcW! spielt offenbar die Rolle einer Energie, und
die Existenz des Grenzwerts (67) kann als die asymptotische Er-
haltung der mittleren Energie des Teilchens gedeutet werden. Den
wahren FErhaltungssatz hat man im Postulat 1) von Teil T zu
erblicken, aus dem ja alles tibrige — mit Ausnahme der Normie-
rungen (50) und (52) des vorigen Paragraphen — abgeleitet wurde.

Die vorgeschlagene Interpretation ermoglicht vielleicht ein
besseres Verstiindnis fir die Vorginge beim kontinuierlichen
B-Spektrum, denn sie liefert ja schon fir die Trégheitsbewegung
des Elektrons ein kontinuierliches und fir [ > 0 mit Selektion
versehenes Geschwindigkeitsspektrum.

Wir gehen nun iiber zu Fall I, wo also p reell ist und I =0
sein muss. An Stelle der Tafel (56) tritt

1
D

vV2n

1
P: [y

V2 . (70)
B = i

P gineo

a J, (ar)
R = = ¥ »

V2 r

Die Berechnungen verlaufen wie oben. An Stelle von (65)
erhalten wir, indem wir den Index [ = 0 weglassen,’

de
2P GCpj O ’

@,

W,(8) = 2 [

7T

(71)
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und an Stelle von (67)
. ap e | | |
W, = - . 792
- Of 270 Cpf O (72)

Im tbrigen gelten natiirlich vollkommen analoge Aussagen,
wie sie eben fiir den Fall II formuliert wurden.

Nun stehen wir also wieder vor der Frage, ob man diesen
Fall ausschliessen muss, einfach deshalb, weil er einen Pol auf-
weist. Da aber die Losung sogar absolut normierbar ist, wire ein
solcher Ausschluss vom wahrscheinlichkeitstheoretischen Aus-
schluss aus nicht zu verstehen. Ich muss gestehen, dass mich die
Argumente, die fiir den Ausschluss geltend gemacht werden, nicht
zu iiberzeugen vermogen. Die Unbrauchbarkeit des I= 0 ent-
sprechenden singuléiren Zustandes kénnte ja auch darauf beruhen
dass fur diesen Fall die Ausstrahlungsregeln versagen.

Liesse sich nun der Fall IT in die Theorie einordnen, so koénnte
die von uns durchdiskutierte Losung eventuell gedeutet werden
als ein Teilchen, das zweier Serien von Zustdnden féhig ist. Die
eine Serie — die p-Serie — wiirde der Materie, die andere — die
g-Serie — dem Licht entsprechen. Bezeichnet man ndmlich mit
w (ct, O) resp. wl(ct, @) die Wahrscheinlichkeitsdichte dafiir, dass
das Teilchen zur Zeit t auf der Peripherie einer Kugel um 0 vom
Radius ¢ = ¢tZg @ zu treffen, so gelten fiir grosse ¢ teils asymp-
totisch, meist aber genau, die Relationen: '

wp(ct, 00) o wi(ct, o) ' _
2> — ~0; ~ 00 , (73)
w) (¢t, 0) w! (ct, 0) '

Trotzdem gibt es, wie unsere frithere Statistik zeigt, beim Ein-
korperproblem, kein ,,genaues’ Licht.

Nun wollen wir noch in den Fillen [ = 0 die Totalenergie des
Teilchens fiir grosse t betrachten. Nach dem oben Gesagten erhfilt
man sie, wenn man (72) resp. (67) mit hc¢ multipliziert. Unter
Beachtung von (8) folgt also :

Fdo
UpﬁhCWp:meoCzpfmw (74)
. ) 0
4mge? 7 sin2(q0)
B = O .
Uy =he Wy =——2— | cor6 (75)
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Durchlaufen nun p und g alle Werte von 0 bis Unendlich, so gehen
die zugehorigen Energiewerte kontinuierlich in zwel Grenzwerte
tiber, die leicht zu bestimmen sind. Man findet:

Upeoo = My0?;  Ull o = myc?, (76)

D

also in beiden Féllen die Ruheenergie des Elektrons.

Es sei noch darauf hingewiesen, dass die Verteilungsfunk-

tion (71)
- fe“’@@v (1)

fiir p—> oo genau in eine d-Funktion iibergeht, womit im Grenz-
fall ein rein korpuskularer Zustand charakterisiert ist.

Im iibrigen sei ausdriicklich hervorgehoben, dass die vor-
liegende Behandlung des ,,ruhenden‘’ und ,kriaftefreien’ Elektrons
gegentliber der tblichen Behandlung folgende neue Momente ge-
bracht hat:

1. Das ,,ruhende® Elektron ist verschiedener Zustidnde fahig,
welche durch einen neu einzufithrenden Parameter E =1 — p?
(21) charakterisiert werden.

2. Die Energie ist nur asymptotisch fir grosse Zeiten als Mittel-
wert definierbar.

3. Jedem Zustand ist eindeutig eine Energie zugeordnet.

4. Die sog. Ruhenergie ergibt sich nur in zwei Grenzféllen.

Wichtig ist vor allem die sich ergebende asymptotische Kon-
stanz der Energie. Die hier vorgenommene Bewertung hangt natiir-
lich von der auf (55) gestiitzten Normierung ab und muss vorder-
hand als provisorisch angesehen werden. Es konnte sich ja als
notwendig herausstellen, die Normierung tiber Querschnitte t =
konstans vorzunehmen.

Im Gegensatz zur Energie hat in unserer Losung die Kon-
stante K fiir jeden Punkt des Vorkegels eine exakte Bedeutung,
und es soll deshalb noch kurz die kinematische Deutung von E
gegeben werden. Setzt man

(¢t, 1my, 129, 123) = (Yo, Y1, Y2, Ys) (77)
und fiihrt man ausserdem

0 .y 0
0y, "0y

Yr = Fi (78)
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als dimensionslosen Operator ein, so findet man, dass fiir unsere
zentralsymmetrischen Losungen (20) genau gilt

JZ‘FMFM’U,:E%._ (79)

E stellt also das ,,Quadrat des Sechservektors (78) dar.
Dem Operator F; korrespondiert punktdynamisch — abge-
sehen von der Dimension — der Rotor

Mo (YrY1— Yiyu) = Pis (80)

wo der Punkt die Ableitung nach einem Parameter von der Di-
mension einer Zeit bedeuten moge. In den Polarkoordinaten (13)
gilt dann

} PoPyy= — m2ri [0? + Gin? O(92 + sin? 92¢2)].  (81)

Wir setzen also

% PklPkl = S JZ (82)
wo J?2 eine positive Konstante ist. Nach der Operatorregel
: h 0 |
o 83
folgt dann gemiss (78)
J2 .
%szszu="?“L‘2“u (84)
und daher
J2
T -

Korrespondenzmasmg erhilt man also alle E > 0, d. h. die ganze
g-Serie und ein Stiick der p-Serie.

Schlusshemerkungen.

Mancher Leser wird sich vielleicht sagen, das Vorgebrachte
sel wohl eine mathematisch ganz interessante Behandlung der
kréaftefreien Wellengleichung (8), es sei aber nicht einzusehen, wie
auf dieser Grundlage die sog. klassische Wellenmechanik als Grenz-
fall in dem Umfange hergeleitet werden kénne, wie sie sich be-
wihrt habe. Es kommt nun ganz darauf an, in welcher Form und
in welchem Umfang diese Forderung geltend gemacht wird.

Es bieten sich im wesentlichen zwei Moglichkeiten, die ge-
nannte  Forderung zu prézisieren:

1. Man verlangt, dass die zugrundegelegten Differentialglei-
chungen (1) oder (2) durch einen geeigneten Grenziibergang in die
iiblichen Differentialgleichungen der Wellenmechanik tibergehen.
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Eine derart formulierte Forderung kommt hochstens fiir den
kriaftefreien Fall in Frage. Fiir die Wechselwirkungsgleichungen
halte ich sie fiir vollkommen falsch und schon darum undurch-
fihrbar, weil vorurteilslos betrachtet tiberhaupt keine brauchbaren
relativistischen Wechselwirkungsgleichungen existieren. Die jetzt
mit Erfolg verwendeten Wellengleichungen enthalten die Poten-
tiale explicite. Das formal Wesentliche unserer Ansdtze beruht
aber darauf, dass Wellenfunktionen und Potentiale gleichzeitig
durch Integration — sagen wir deutlicher, durch Summation —
entstehen. Wiirde also ein Grenziibergang explicite Potentiale
liefern, so kidme die Sache gerade verkehrt heraus, da dann die
Potentiale bel der Integratlon gewlssermassen nochmals summlert
wiirden.

2. Man verlangt, dass die Integrale der zugrundegelegten
Differentialgleichungen dasjenige numerisch richtig wiedergeben,
was sich in der klassischen Wellenmechanik bew#hrt hat.

In dieser Form ist die Forderung eine Selbstverstandlichkeit,
und ihre Erfillung wird natiirlich zur endgiiltigen Bewahrung der
vorgeschlagenen Ansitze unerldsslich sein. Doch i1st bei der Nen-
nung der zuerst zu behandelnden Aufgaben grésste Vorsicht am
Platze. Unser Ausgangspunkt ist das Elektron, und schon das
Proton stellt méglicherweise ein sehr komplexes Problem dar. Man
darf also nicht verlangen, das Wasserstoffsystem miisse den ersten
Priifstein der Theorie bilden. Die in erster Linie zu behandelnde
Aufgabe wird die Wechselwirkung zweier Elementarteilchen sein,
vermutlich also der Comptonprozess im weitesten Sinne des Wortes,
wozu meines Erachtens auch die Paarerzeugung gehoren sollte.

Ich zweifle also sehr daran, dass es moglich sein wird, die
Aussichten der vorgeschlagenen Ansidtze durch einige Rechnung
rasch nachzukontrollieren.

Fir eine rasche Orientierung kommt, wie eben unter 1. er-
wahnt wurde, hochstens der kréftefreie -Fall in Betracht. Hierzu
einige kurze Bemerkungen. ‘

Hauptfrage: Warum behandelt man das gebundene Elektron
kugelsymmetrisch, das freie Elektron aber als ebene Welle? Ich
empfehle jedem Leser, die Gleichung (9) vermittelst des stationéren

Ansatzes - _ :
w = e2mivt G(Q)P(ﬂ)@(@) (85)

zu behandeln und die Lisung sowohl mathematisch als auch wahr-
scheinlichkeitstheoretisch konsequent durchzudiskutieren. Dazu
gehoren vor allem zwei Dinge:
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1. Die Frequenz » muss wirklich als frei wahlbarer Parameter
behandelt werden, so wie sie in (85) auftritt.

2. Die Wahrscheinlichkeiten miissen ausnahmslos interpre-
tiert werden. Wenn also das Quadratintegral dlverglert 15t auch
kein Teilchen zu finden.

Die Rechnungen verlaufen adhnlich wie in den §§ 1—3 und
die Funktionen @(¢) und P(&#) bleiben natiirlich dieselben. In
der Funktion G(p) dagegen werden gewisse Ziige der. fritheren
Losungen G (@) und E(r) verschmolzen, andere gehen verloren.

Instruktiv ist die Interpretation in Analogie zu § 4. Wieder
erhilt man Losungen I und II, aber als Ausartungen. I stellt

einen vollig bewegungslosen Korpuskel dar, der sich im Grenzfall

m‘;zcd = v, tiber den ganzen Raum verbreitet. Fiir » > v, tritt

IT ein mit der Wahrscheinlichkeit 0. Das Teilchen ist nach Un-
endlich abgewandert. Die in vollkommener Analogie zu § 4 durch-
gefiihrte Energieberechnung fiithrt — nach vorheriger Normierung

Yy =

tiber eine Zeitperiode — 1m. Falle I auf

U=hv» (86)
im Grenzfall » = v, also auf

U = mo Cz. (87)

Diese Losung — numerisch der ebenen Welle unterlegen, weil
sie die Bewegung vermissen lasst — scheint dennoch auf ein sinn-
volles Ganzes hinzudeuten. Formal relativistisch invariant, ent-
hiillt. sie doch deutlich die Schwéche der mit dem ,,Zerspaltungs-
ansatz’‘ (85) arbeitenden Wellenmechanik: Sie verstisst gegen das
Verbot der Uberlichtgeschwindigkeit.

Im tibrigen konnen natiirlich Ansétze des von uns vorge-
schlagenen Typus (2) ohne weiteres mit dem Zerspaltungsansatz
behandelt werden. Es ist sehr wohl moglich, dass sich dabei
gewisse Zige stabiler Systeme ergeben, welche dynamisch erst
auf Grund der vollstandigen Lésung des Mehrteilchenproblems er-
haltlich sind.

Ich will deshalb zum Schluss noch kurz angeben, wie sich
nach der Zerspaltungsmethode unter ziemlich allgemeinen Voraus-
setzungen ein differentieller Erhaltungssatz formulieren ldsst.

Betrachten wir das System

(Jur = Apyey + &gy Uy, (k=1,2,"'n) (88)




496 Willy Scherrer.

wo iiber ! zu summieren ist und die ,,Massenmatrix‘‘ 4;; sowie die
,, Kriaftematrix‘ e,; Hermite’sch sein sollen:

A=Ay &= g5y (89)
Fiihrt man nun den totalen Teilchenstrom
h 0 Uz ouf
Siz (g _ k ) 89
2 1 (uk 0331 “r OIE;_ ( )
sowie den totalen Strom der Wechselwirkungsenergie
h 0u 0uy
. " « O E ) 90
2’:28“(u 0 x; = 0zx; a0
ein, so gilt der differentielle Erhaltungssatz
A A
O(S—?—T):O. . 91)
0x;

Bern, Mathematisches Institut der Universitit.
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