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Théorie de l'influence des ondes ultrasonores sur la diffraction
des rayons X par les cristaux

par Jean Weigle et Konr-ad Bleuler.
(16. V. 1942.)

1. Introduction.

Nous avons montré dans un article précédent1) comment le
réseau de Fourier d'un cristal était perturbé par la présence d'ondes
déplaçant les atomes. Nous avions restreint nos considérations à

des ondes de très faibles amplitudes avec le but d'appliquer nos
résultats aux ondes thermiques. Celles-ci, en effet, ont des amplitudes

extrêmement petites à la température ordinaire; on calcule
sans peine que des ondes d'une longueur d'onde aussi grande que
1 cm. donnent des amplitudes, dans un cristal comme NaCl, de
l'ordre de grandeur de 10-13 cm., c'est-à-dire 10~5 fois plus petites
que la distance séparant les atomes. Cependant il est possible de

produire artificiellement, par exemple par des oscillations
piézoélectriques, des ondes dont l'amplitude est beaucoup plus grande
que la distance entre les atomes. Il devient alors intéressant de
calculer comment la diffraction des rayons X est affectée par des
oscillations. En plus, dans la théorie de l'effet thermique, on trouve
qu'il est nécessaire, à cause du grand nombre des ondes présentes
dans le cristal, de tenir compte de termes d'ordre supérieur dans
l'approximation des petites amplitudes. La théorie que nous
donnons ici servira donc à ces deux buts. Au lieu de suivre exactement

la méthode employée dans l'article précédent, nous
procéderons d'une façon un peu plus générale. Dans les fonctions de
densité du cristal dont nous désirons obtenir l'image dans l'espace
de Fourier (les transformées de Fourier), nous avions cherché à

mettre en évidence une partie périodique que nous avions alors
exprimée en série de Fourier. Dans le procédé que nous employons
ici, nous ne faisons aucune supposition quant à la périodicité des

fonctions périodiques modulées; c'est l'analyse de Fourier qui se

charge elle-même de montrer si la fonction est périodique ou
partiellement périodique. Le procédé consiste à prendre l'intégrale de

Fourier de la fonction à analyser. Si elle est purement pério-

x) Weigle, Helv. Phys. Acta 15, 162, 1942.
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dique, l'intégrale dégénère en une série de Fourier, si elle est périodique

et modulée elle devient une série qui permet de trouver la
structure du réseau de Fourier. Nous nous servirons constamment
d'un théorème simple sur ces transformations, que nous démontrons

dans l'appendice et qui s'exprime ainsi:

+Nl + N, +N3SES e-2jli<6tf"»+^+'°0°»/(&)£fo6
co h -N, l2=-Nz h —Ns

lim Ni —¦>- oo

^ESS/^ + ^ + W (i)
h, hi hä

les vecteurs bt étant réciproques des ai((atb}) èi}) et les h^ étant
des nombres entiers. Les sommes sur les h{ s'étendent de — oo à ± oc.

2. Ondes de grandes amplitudes dans un cristal.

Le cristal est construit sur la maille ax, a2, a3 à l'intérieur de

laquelle se trouvent différents atomes m dont la position est donnée

par
Qm alm"l ± a2m'*2 "¦" a3m"3

(m 1,2 ¦ • ¦ p ; p, nombre d'atomes dans la maille)

La position de l'atome m de la maille l est alors donnée par
«m, i (k Y- alm)a! ± (l2 + a2m)a2 ± (l3 + a3m)a3

La densité fm(a) d'un atome est supposée pouvoir être exprimée
en intégrale de Fourier

fm(a)=f<pm(b)e2^>>°)dvb cpm(b) Jfm{a)e~2* »*> dva
GO 00

avec
dva (ax [a2a3]) d^d «2 da.3 vad<x1doi.2doi.3

et l'on a

K • Vi 1

La densité dans le cristal est alors

F(o) 22/»(«-«»,»)
l m

Si, maintenant, les atomes sont déplacés de leurs positions am, l
par une onde1) plane généralisée

im, i f™ sin 2 ti ((ft am, t) - vt)

la densité F (a) qui était périodique, est alors modulée en phase

') Voir par ex. Seitz, Modem theory of solids p. 128.
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Ecrivons les intégrales de Fourier

F(a) J0(b)e2"^b-^dvb et 0(b) fF(a)e-2ni<-baHva
00 00

On a

®(b) /SS/»(fl - °m,i~ Ui)e-2*iiba)dva
co l m

Posons
a - «m,i - £m..i= o!

Ainsi

0(b) 2/2[/»("')e-2**<6<am,; + «m,j»] e-2"*6«'dva
m vo l

et donc

0(b) =22e"2,,Ì(6<%" + l""!l//'»(a>"2,,aa'^«

V^m(6)e-2"l'l"»i + W>

finalement

F («) 2 /2 e"2 * '(6 ("m' '+ s™- «M 9m (b) e2 *iib a) d vb
m co l

Mais on a
+ 00

e-2n i(bSm) sin 27r(kaml-vt)=y^ J^ fi-rr b Ç^ e-2*in(kaml -vt)
n= — ao

Jn étant la fonction de Bessel de première espèce d'ordre n. Il
vient alors

F(a) 2 2/2 J* (23ï5*») e-2"<[(> + n*)-^-6-] ?>„(&) e""«»*d«b,

ou en posant b + nk b' :

F(a) 22/2 J*0 (6' - wfc)!ra)e-2^6'0»»ze2jli<6'-B*>a

çpm(6' - nk) ez"invtdvb

Appliquant alors le théorème (1), on a

F(°) 2 2 2 v* Jn (2» (6» - « ft) U e-2"i6A •»

<pm(bh-nk)e2ni(bh-nV" e2"invt (3)

Dans le réseau de Fourier correspondant à (3), il y a donc tout
d'abord les points bh du réseau non perturbé dont les facteurs de
structure Fh, 0 sont

-^,0=2 v» Jo (27r 6a f«) V« (fc») e"8*"**»
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Si les ondes avaient de petites amplitudes ((èmbh) <z% 1), on aurait
donc

FA,0 2 vb<pm(bh)e-2»ibh«m
m

ce qui est bien le résultat que nous avions obtenu dans l'article
précédent. De plus, il y a dans le réseau de Fourier des points
à distance nk de chaque point bh avec des facteurs de structure
Fh,n proportionnels à J_n(2 7i(bh + wfc)|m). Si de nouveau on
garde uniquement les termes du premier ordre en (bhÇm), on trouve
que seuls les points n — A 1 ont des facteurs non négligeables.

Si, par contre, les amplitudes | sont grandes par rapport à

la dimension de la maille, l'onde donne naissance à un grand
nombre de points nouveaux, dont les facteurs de structure sont

Fh,n 2 % Jn (2tt (bh - nk) f„) <pm (bh - nk) e-2«4*«»
¦m

L'onde produit donc non seulement des stratifications d'épaisseur

--— mais encore des stratifications d'épaisseur deux fois, trois fois,

etc., plus petite. En plus, il y a évidemment des stratifications
d'épaisseur l/|6A±nfej. On peut donc imaginer que, même si fc

est très petit par rapport à b (grandes longueurs d'ondes qui
permettent d'obtenir de grandes amplitudes), les rayons X pourront
se réfléchir sur ces stratifications d'ordre | bh + nk | et donner un
étalement de la .diffraction. Mais ces ondes de grandes amplitudes,
excitées piezoélectriquement par exemple, sont en général des
ondes stationnaires. Or, l'effet de deux ondes superposées dans
le réseau de Fourier n'est pas donné par la superposition des
réseaux de Fourier de chaque onde considérée séparément. U nous
faut donc étudier les ondes stationnaires.

3. Ondes stationnaires.

Supposons qu'on ait deux ondes, se propageant en sens
inverses et de même fréquence

£ sin 2n((kaml) - vt)) et £ sin 2 7t((ftamî) ± vt))

qui déplacent tous les atomes de la même manière, ce qui est
toujours vrai pour des ondes de grandes longueurs d'ondes. On
obtient alors

£—2 n i (b f) [sin 2n(k ami — vt) + sin 2 n {k a mi + vt)]

22J«(27ï6£) 'h (2^6 f) e-*»<K« + rt*Sii+û»-«)'«i



Influence des ondes ultrasonores sur la diffraction des rayons X. 449

et, au lieu de (2), on a

Fla) 222 /2 J« Jv e-2^^ + ^k + b^mie2"iba

(Pm.(p)e-2ni^-Q)tdvi

En posant (q + p)k + b b' et en appliquant le théorème (1) on
trouve

F(a) 2 2 2 2 V» J* (*) Jn-, (x) e-2^2v—>«
h n p m

<pm (bh - nk) e-2"ibh«m e2"i<.bh-nk'* (4)
avec n r iv. u\ f\x~27i((bh -nk) |)
ou, pour le facteur de structure du point bh — nk

FA,_n 2 Jv (X) Jn-v (x) 2 9m (K - nk) e-2"ibh0mvb
p m

La présence, dans (4), du terme contenant le temps, montre l'effet
Doppler et l'on voit que les rayons-X diffractés au point (h, -n)
seront formés d'ondes de différentes fréquences. Car, en effet, toute
la théorie est basée sur le fait qu'une onde de rayons X incidente
de vecteur s0 est diffractée par le point (h, —n) donnant une onde
de vecteur s0 + bh — nk. Et cette règle d'addition joue aussi pour
les fréquences, l'onde diffractée ayant une fréquence a> + v si co

est la fréquence de l'onde incidente et v la fréquence associée au
point (h, —n) du réseau de Fourier. Cela a été démontré
expérimentalement dans la diffraction de la lumière par les ultrasons1)
et l'on a introduit2) à cette occasion la notion du réseau de Fourier
dynamique. Dans le cas qui nous occupe ici, il faudra tenir compte
du fait que les différentes ondes diffractées en un même point
(h, —n) ne peuvent donc pas interférer et, pour calculer l'intensité
totale diffractée, il faudra prendre la somme des carrés des termes
formant le facteur de structure du point et non pas le carré de la
somme. En supposant que les fréquences (2 p — n) v sont toujours
négligeables par rapport à la fréquence co des rayons X et en posant

cpm (bh - nk) m <pm (bh)

on trouve donc

Fl,-n n^Jl(z) «£-„(*)

Ff 2 «» <Pm (biò e-2*ibhem
ou

x) R. Bär, Helv. Phys. Acta 8, 592, 1935.
2) R. Exterman, Helv. Phys. Acta., 10, 185, 1937.

29
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est le facteur de structure du point h dans le reseau non perturbé.
Remarquons qu'en faisant la somme des intensités des ondes associées

au point bh, on trouve

Fl^J2p(x)Jl-p(x) 7?2r h

ce qui montre que l'intensité totale diffractée n'est pas influencée

par la présence des ondes.
Nous avons représenté schématiquement, dans la figure (1),

le réseau de Fourier correspondant à (4) et, dans la table 1, nous
avons donné les valeurs de F\njF\ en fonction de x.

210

200

-T'¬

HO

100

010

000

110

100

210

200

110 010

Fig. 1.
110 210

Réseau de Fourier d'un cristal cubique parcouru par une onde stationnaire

longitudinale ayant la direction (210). Les points du réseau non perturbé
se sont étalés et forment des droites sur lesquelles le facteur de structure est à

peu près constant. (On remarquera que l'étalement est constant dans un plan
perpendiculaire à la direction de vibration pour lequel (if) est constant.) L'étalement

représenté dans la figure est fortement exagéré. En effet, si le cristal avait
une constante réticulaire de 3,33-10-8 cm., et était parcouru par des ondes
élastiques de 0,1 mm. de longueur d'onde, il faudrait que celles-ci aient une amplitude

de 2,57 • 10-4 cm. pour obtenir l'étalement donné. Aucun cristal ne pourrait
mécaniquement supporter les tensions qui résulteraient d'ondes d'amplitude aussi
grande.

Table I.
Valeurs de Fh*nIFh2 en fonction de x 2jt(6A|)

\ h
X \ 0 1 2 3 h x 5 h x= 5

0,1 0,990 0,005 — — 4 0,107 9 0,051

0,2 0,960 0,020 — — 5 0,082 10 0,021

0,5 0,779 0,104 0,006 — 6 0,069 11 0,006
1 0,380 0,236 0,054 — 7 0,090 12 0,001

5 0,059 0,143 0,128 0,094 8 0,084 13 —
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Pour des valeurs de x supérieures à l'unité, on trouve en première
approximation que, pour n > 2 x, les valeurs de F%tnjF\ sont
négligeables et que, pour -2x<n<+2x

F2
1>,n (s)

Fh2 8 TC (bj)

Fig. 2.

Influence de l'étalement des points du réseau de Fourier sur la largeur d'une raie
spectrale.

La courbe a représente la raie dans le réseau non perturbé. Nous lui avons
donné arbitrairement une forme e~x2. La raie b serait celle due à l'étalement
marqué par la ligne horizontale tracée au sommet de la courbe. De même pour
la raie c. Nous avons marqué en plus l'intensité maximum pour deux étalements
plus petits e et d. On remarquera que l'effet n'est pas proportionnel à l'étalement,
mais qu'il augmente plus rapidement que celui-ci. Si la raie représentée avait
une longueur d'onde de 1 • 10-8 cm. et une largeur de 5 • 10-11 cm. et qu'elle soit
réfléchie sur un plan dont la distance réticulaire soit de 2 • 10-8 cm., la courbe b

serait due à des ondes dont f k 4-10-5. C'est-à-dire que, pour des ondes
élastiques de 0,1 mm. de longueur d'onde, il faudrait que l'amplitude f soit de 4 • 10~7 cm.

Par conséquent, les points du réseau de Fourier s'étendent autour
du point non perturbé sur une longueur comprise entre

- 4 n (bh f k et +4 tx (bh |) fc
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et, dans cette région, ils ont une amplitude à peu près constante,
égale à Ff divisé par le nombre des points supplémentaires. On
voit que si deux ondes de même direction mais de différentes
longueurs d'onde fc, et fe2 ont des amplitudes |x et £2 telles que

lifc-t £2fc2 (5)

leur effet sur le réseau de Fourier sera approximativement le même :

l'étalement du point non perturbé aura la même valeur, bien qu'il
soit réalisé dans les deux cas par un nombre de points supplémentaires

différent. Ainsi deux ondes ayant la même énergie, c'est-à-
dire vérifiant la relation (5), donnent le même effet dans le réseau
de Fourier.

APPENDICE

Nous nous proposons de montrer tout d'abord que

(1) +co

/ 2 e~2Tcinx f (x) dx 2 / (m) (TO et n entiers)
_(£ n= —N m — oo

lim N—too

pour toute fonction f(x) développable en intégrale de Fourier et
dont la somme f(m) existe. Pour cela, nous utiliserons la relation
fondamentale2)

S / sin /L T
— J / (x) dx f (0) (pour a > 0)

-a X
lim A -r oo

Prouvons tout d'abord que

(B) mr+i +S
J 2 e-2ninxf(x)dx=f(m)

m-i ?.~-Nlim^—>oo

car, si cela est vrai, (1) est évidemment vérifiée.

Or, on a

(4) x-1
„ sin 2n Nx Nv ' 2 e-27tinx 2 h (x)

2 TT % 3ß

avec h (x) — z~.— et donc h(0)
v / 1 p—2mx x '

3) par ex. Titchmarsh, Theory of Fourier Integrals, Oxford, 1937, p. 25.
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En introduisant (4) dans (3), on a

/ 2 e~27linx f(x + m) dx= / e~2niNx f (x + m) dx

-i+i
f sin 2 ti N x s
/ 2 - h (x) f (x + m) dx

J 2tc x

-JV

-i -it*

La première intégrale est nulle pour N -> oo (elle a en effet la
forme d'un coefficient de Fourier); la seconde intégrale donne,
avec la substitution x' 2 tc x et en employant (2)

+ n

f 1 sin Nx'
J tc

— n

h (-^—) f (-£— + m) dx h(0)f(0 + m) f(m)

C'est bien là ce que nous désirions montrer.
Généralisons maintenant ce résultat pour trois dimensions avec

des axes non orthogonaux. Les trois vecteurs ax, cr2, a3 définissent
les axes en direction et les unités de longueurs sur ceux-ci.

Les vecteurs

at= lxax + l2a2 + l3a3 (lx, l2, l3 entiers)

définissent un réseau de points. A ces vecteurs on peut faire
correspondre des vecteurs réciproques b1,b%, b3 choisis de façon
à satisfaire

(b.a,) ôa

Sur les vecteurs b{ on peut aussi construire un réseau (le réseau
de Fourier) avec

bh h1b1 + h2b2 + h3b3 (h1} h2, h3 entiers).

Nous désirons calculer l'intégrale triple prise sur tout l'espace b

(5)r r r n, jv2 n,I / / / y y 2 e-2iri(6a^ / (6) dvb

oo h -Ni l=-N* h -N,
lim N^ —> oo

En posant
b ßxbx + ß2b2 + ß3b3

on a
dvh (6X [6263]) äßx dß2 dß3 vb dßx dß2 dß3
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et l'on peut écrire

I=v> /'/'/"222 e~2**«'»'+<'"'+<»*•>/(b)dßldß2dßz
JJJ h u h

OD

En intégrant tout d'abord sur ßlt en laissant les paramètres ß2 et
ß3 constants, on peut appliquer (1) et l'on trouve

2 ^/722 e-2"i«*ß> + Wf(h1b1 + ß2b2 + ß3b3) dß2 dß3
Ä, -00 •>aaJ 1, la

et, procédant de même pour ßlt puis pour ß3, la valeur de (5)
devient

i=v> 2 2 2 / (hibi + h*b2 + W ,m
h, h, hs \u)

Cette formule est la généralisation de (1).

Institut de Physique, Université de Genève.
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