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Bemerkungen zum Streuproblem in der Elektronenpaartheorie
von J. M. Jaueh.
(28. 1. 1942.)

Die Schwierigkeiten, welche eine exakte Behandlung der spinabhingigen
Kopplungstypen in der Elektronenpaartheorie der Kernkriafte verunmoéglichen,
werden an Hand der Streuung von Elektronen an schweren Teilchen diskutiert.
Es zeigt sich, dass das Auftreten von unelastischen Streuungen mit Paarerzeu-
gung die Ursache dieser Schwierigkeiten ist. Der Wirkungsquerschnitt fiir solche
Streuprozesse wird durch eine stérungstheoretische Rechnung zweiter Ordnung
abgeschitzt. Er ist exakt gleich Null fiir die spinunabhéngigen Kopplungsansétze.

§ 1. Einleitung.

Die Elektronenpaartheorie der Kernkrifte hat vor der Yuka-
wa’schen Mesontheorie den Vorzug, dass einer Identifikation der
(schweren) Elektronen mit den durchdringenden Ho6henstrahlen
nichts im Wege stiinde!). Bei spinunabhéngiger Kopplung hat sie
ausserdem den praktischen Vorteil, dass sich die Kernkréfte ohne
Storungstheorie berechnen lassen, durch die Hauptachsentransfor-
formation einer quadratischen Form?). Der Energieunterschied
zwischen Singlett- und Triplettzustand des Deuterons fordert aber
einen betréchtlichen Anteil spinabhingiger Krifte, und um Uber-
einstimmung mit der Erfahrung zu erreichen, miissen auch spin-
abhéngige Kopplungstypen eingefiihrt werden. Die Methode der
Hauptachsentransformation ergibt aber fiir solche Wechselwir-
kungen keine exakten Lésungen mehr.

Die Schwierigkeiten, welche in diesen Féllen einer exakten
Behandlung im Wege stehen, seien in dieser Arbeit am einfacheren
Problem der Streuung von Elektronen an schweren Teilchen er-
lautert. Im § 2 wird zuerst die strenge Methode auf die zwei ein-
fachsten spinunabhingigen Wechselwirkungsansitze angewendet.
Im § 3 wird dann auf die Schwierigkeiten hingewiesen, welche eine
analoge Behandlung des Streuproblems bei spinabhéngigen Kriften
verhindern, nédmlich das Auftreten von Prozessen mit Paarerzeu-
gung. Im §4 soll der Wirkungsquerschnitt fiir die unelastische
Streuung unter gleichzeitiger Emission eines Paares wenigstens
storungsméssig berechnet werden. Dieser Prozess tritt nicht auf
bei spinunabhiingigen Wechsel wirkungen.

1) CErisTY und Kusaka, Phys. Rev. 59, 405, 414 (1941).
%) JaucH, Helv. Phys. Acta 15, 175 (1942).
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§ 2. Exakte Losung des Streuproblems fiir die spinunabhiingigen
Kopplungstypen.

Ein im Koordinatenursprung ruhendes schweres Teilchen ver-
ursacht durch seine Wechselwirkung mit dem Elektronenfeld einen
Zusatzterm in der Hamiltonfunktion dieses Feldes.

H = fqp* (x) ’Lb*(iU)deOf p(xHu(x)dV, (2.1)

p,p* sind die nach dem Ausschliessungsprinzip quantisierten
Wellenfunktionen des Elektronenfeldes. «(z) stellt eine Quellen-
funktion des schweren Teilchens dar, die man einfithren muss, um
die Konvergenz der auftretenden Integrale zu erzwingen. Wir
wihlen 1im folgenden eine spezielle Funktion, welche die Rechnung
etwas vereinfacht, namlich '

u(z) = (%)3/2 Jyp (K1) = (2 n)"m_[ et®2 dV,  (r=|xz|) (2.2)

k<K’

Diese Wahl entspricht einem scharfen Abschneiden im Impuls-
raum mit dem Abschneideradius K. Es ist dann

hm u(x) = (2 7)*? 6 (x)
K—
Der Operator O ist fiir die spinunabhéngigen Kopplungstypen einer

der beiden Operatoren f oder 1. % ist der Kopplungsparameter
von der Dimension einer Fliche.

Im Impulsraum lautet die gesamte Hamiltonfunktion

H=H,+ H
= [¢* () { (=, k)+yﬂ}<p(k)de+7zifc§* (k’)de]gflga(k)dV,c (2.8)

mit
pk) = 2m)— [p(x)ei®adV,

w 1st die Masse der Elektronen in Einheiten cm—2.

Die Normalkoordinaten, welche diese (kontinuierliche) quadra-
tische Form auf Hauptachsen transformieren, stellen dann die
Losungen des Streuproblems dar. Sie sind erst eindeutig bestimmt,
wenn wir noch die ,,Randbedingung‘‘ hinzunehmen, dass sie asymp-
totisch von der Form einer ebenen plus auslaufenden Kugelwelle

sind. Die Gleichung fiir diese Normalkoordinaten ergibt sich aus
(2.3)

{(o, k) + up— Q}p(k) + 10 [@(k)dVy =0 (2.4)
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Der Eigenwert £ ist gleich der Energie + (u? + ky%)'* des ein-
fallenden Elektrons mit dem Impuls k,. Durch Multiplikation mit
dem Operator

(«, k) + pp+ 2
k? — Iog?

wird aus (2.4):

o (k) + ““‘”Q 00 [ o) AVy= @)% (k—k) po(8) (2.5)

k# ~ | |<K

Der Term rechter Hand ist so bestimmt, dass die Amplitude der
ebenen Welle im z-Raum gleich 1 ist (vgl. (2.9)). ¢, (k) sind die
auf 1 normierten Komponenten der ebenen Welle

{(a,k) + uf— 2 }po(k) =0 7 po = 1

Die lineare Integralgleichung (2.5) fiir ¢ (k) lasst sich sehr ein-
fach losen, weil ihr Kern ausgeartet ist. Wir brauchen nur die
ganze Gleichung tiber alle |k] < K zu integrieren und erhalten

dann fir A = f @ (k)dV; die Gleichung

|k |<K

. {1+ 7(pf+ QOD}A= 22 gy(k) (2.6)
mit

K l{'z
= ——— dk :
D-4z [ p— (2.7)
0
Das Integral D divergiert an der Stelle k = k&, und um ihm einen
Sinn zu geben, werden wir den Integrationsweg so ins Komplexe

deformieren, dass die v (z) nur auslaufende Kugelwellen enthalten
(s.u. (2.13)). Aus (2.6) ergibt sich

A= 2a)P{1+ n(up+ Q)OD} g (k) (2.8)
und wenn wir diesen Ausdruck fir 4 in (2.5) einfithren
(k) = (27)°F 6 (k — ko) @o (o)

e BB LLPLL 01 1 n(up+ 0)OD} a0

— (27)

Wenn wir in den z-Raum zuriicktransformieren, wird daraus
#(@) = go (k)i

, k)+ +.Q
——T]{f( k?‘z 'L;f2 18D AV 0 {140 (uf+2) 0D} @o(ky) (2.9)

| k|< K
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Der erste Term ist die einfallende ebene Welle und der zweite
Term die gestreute Kugelwelle. Nach Ausfithrung der Richtungs-
integration wird das Integral

K 5
LR E {(yﬁ+9)[ksmk’”dk

e -
: K, .
v ksin kr —Ek2r coskr
+ e [ s dk} (2.10)
worin wir = | ¢ | gesetzt haben. Damit die Gleichung (2.9) einen

Sinn hat, muss man in diesen Integralen fiir &k denselben Integra-
tionsweg wahlen wie in D. Da wir uns nur fiir das asymptotische
Verhalten der Kugelwelle interessieren, kionnen wir k, r > 1 setzen.
Das erlaubt verschiedene Vereinfachungen. Zunéchst kénnen wir den
Term mit k sin kr neben dem mit k?r cos kr im zweiten Integral
vernachléssigen. Es bleiben dann noch die beiden Integrale

k2 cos k?" k sin kT
- f - [
Wegen 1= Kénnen wir uns auf die Berechnung von II be-
schrénken.
B ketkr
B 21, f k2 — Fy?2
—K+iw K+ie
~ +kp +K
—K —ko bl oS
Fig. 1.

Integrationsweg in der komplexen k-Ebene.

Wir addieren zum Integrationsweg noch zwel Stiicke, ndmlich von
+ 1 00 bis — K und von + K bis + ¢ co. Dem Pol bei k = —k,
weichen wir nach links aus und dem Pol k = + k, entsprechend
nach rechts (Fig. 1). Wegen der Exponentialfunktion ist der Bei-
trag zum Integral auf diesen beiden Sticken um eine Grossen-
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ordnung kg r> 1 kleiner, als auf dem Haupttell des Weges. Das
Integral kann man nun mittelst des Residuensatzes ausrechnen:

47 . PP
R N A S

Das ergibt In (2.10) eingesetzt

. 2
f(oc,;:l_ﬂ-ulfj-Q it gV, — QTn{(a,n) kg+p B+ Q) étor  (2.11)

n ist der Einheitsvektor in der Streurichtung: n = z/r. Ferner er-
gibt sich nun fiir D auf demselben Integrationsweg

K
o2 . — Tk
D=4xn Osz—koz dk — 4 nK+2 72 iky+2 7 ko In e (2.12)

Der Ausdrack fiir die Streuwelle lautet also (vgl. (2.9))

ei kaT

2720 L f(a,m) kg + pB+RQ}O{1L + (B + Q0D } gy (ko)

ei kyr

I’ @y (ko) (2.13)

Der Strom dieser Streuwelle 1st
n @, L™ L'pg

wahrend der Strom der ebenen Welle = ky/£2 ist. Der differen-
_tielle Streuquerschnitt fiir die Streuung in den Winkelbereich
do = sin 9d%d¢e ist somit, wenn wir noch iiber die Spinzu-
stinde mitteln

o=4%sp VI*I
mit
I'=2a%p{(x,n)ky + uf + 2}0{1 + n(up + Q)OD}‘l

ko) +
V(ko)—:—é‘ 1+(0C, 60)!2 Juﬁ

15
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Die Ausrechnung der Spuren bietet keine Schwierigkeit und ergibt
16 7t 52
A+ nu0)*—n2 Q22D |

g —=

{.(22+k02 cos 2% (—1— 5 u(D+ D¥) + 2 kozDD*}

fir O =
R AT

| 1+ n2D)2—5202D2|
{,uz + Ty cos 2% (1 4+ nQ2(D + D*) + n?ky? DD*}
tirO =1

Man entnimmt aus diesen Formeln, dass im Limes K > oo
die Streuung verschwindet. Bei punktférmigen schweren Teilchen
gibt es also keine Streuung. Im Grenzfall K25 <€ 1 dagegen gehen
diese beiden Streuquerschnitte in die stérungsmissig berechneten
iber?). Die erste dieser Formeln ist schon von WEINBERG mit etwas
anderer Bezeichnung angegeben worden?).

Wir haben in einer fritheren Arbeit3) die Eigenfunktionen be-
rechnet mit einer andern Art der Abschneidung, indem wir dort
statt (2.11) geschrieben haben

| H = [ A@)yp*(@)0yp(2)dV, (2.15)
WOrin

8 2 fir r < 7

A(r)y={ 47 r}
0 far r > 1,

bedeutet. Es 1st dann lim A (r) = 6(r) und in dieser Grenze ist H'

r,—0
mit der relativistisch invarianten Grenzfunktion identisch. Wir
haben aber dort fiir den Fall O = 1 ein anderes Resultat erhalten,
als mit der hier verwendeten Abschneidemethode. Das zu (2.4)
entsprechende Eigenwertproblem war namlich dquivalent mit dem
Problem eines einzelnen Elektrons, das sich in einem 4-Potential

1) Das siecht man am leichtesten, wenn man in dem Ausdruck fiir /" nur
die niedersten Potenzen in % beibehilt.

ro2mg{(a, )+pp+2}0= 42292V (k)0
2
c=43ispVI*I"w (2 n)‘lnz% sp V(k,) OV (k)O,

was mit dem stérungsméssig berechneten iibereinstimmt.
2) WEINBERG, Phys. Rev. 59, 776 (1941).
3) JaucH, Helv. Phys. Acta 14, 465 (1941).
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bewegt. Bekanntlich hat in der Dirac’schen Theorie ein é-Potential
wegen des Klein’schen Paradoxons keinen Sinn, da die Grenzfunk-
tionen nicht existieren. Es ist auch anschaulich verstiandlich, dass
die beiden Methoden zu verschiedenen Ergebnissen fiihren miissen,
denn im einen Fall (2.15) mittelt man das Quadrat der Wellen-
funktion tiber den A-Bereich, wihrend man im andern (2.1) die
Wellenfunktionen zuerst mittelt und dann das Produkt bildet.
Wenn die Wellenfunktionen im Innern oszillatorisch verlaufen, ist
das Resultat dieser beiden Mittelungen natiirlich verschieden. Wir
miissen also schliessen, dass das Resultat noch von der Art des
Grenziiberganges zur é-Funktion abhingt. Diese Tatsache erhellt
in drastischer Weise die Fragwiirdigkeit solcher Abschneideme-
thoden.

§ 3. Spinabhiingige Kopplung.

Man konnte nun versucht sein, das Verfahren des vorigen Para-
graphen auf die spinabhéingigen Kopplungstypen auszudehnen. Doch
ergibt das nicht mehr exakte Losungen, weil sich das quantisierte
Problem nicht mehr durch eine Hauptachsentransformation auf emn
Einkorperproblem reduzieren ldsst. Entwickeln wir v mn H nach
ebenen Wellen y = %'an Yo, so wird H = H® + H*

—_— -7 *
H°=>E,a;a, H =D\ aya, Opp
n m, n

worin wir die Zustéinde k, 2 durch eine einzige Quantenzahl n nume-
riert denken. O,,, ist ein Operator beziiglich der Spinindizes ¢ des
schweren Teilchens, von denen das Schrodingerfunktional abhéngt:

F=F,(Nf,N§, -3 Ny, Ny, --9)

Nt, Nf,--- sind die Besetzungszahlen (0 oder 1) der Zustinde
mit positiver Energie, und N7, N3, - - - sind die Besetzungszahlen
der Zustdnde mit negativer Energie. a,, a; sind die bekannten
Operatoren, die die Besetzungszahlen um - 1 #ndern, mit den
Vertauschungsrelationen

[ama a’:]+ - 6mn

Beim Streuproblem werden wir nun von einem Anfangszu-
stand ausgehen, bei dem F nur dann von Null verschieden ist,
wenn ein Zustand (n) 1m positiven Energiebereich und alle Zu-
stinde im negativen Energiebereich besetzt und alle iibrigen Zu-
stinde unbesetzt sind:

n

F, 0,0, 7,0,--+51,1,---,1) =1
wihrend alle tibrigen Komponenten gleich 0 sind.
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Die Kopplung H' bewirkt dann einerseits Uberginge n > m
des Elektrons positiver Energie, d. h. das Auftreten von F-Kom-
ponenten vom Typus

m
FQ(O,---,O, 1,0, 1,],...)
andererseits treten aber auch F-Komponenten vom Typus
. m n l
F 0, 1,0, 7,0, 1,1,54,1,7,1,+)

auf, die der Erzeugung von Paaren entsprechen.

Wenn wir Uberginge vom letzteren Typus weglassen (also die
betreffenden I-Komponenten Null setzen), dann ist das Problem
ein Einkorperproblem und kann nach derselben Methode behandelt
werden, nach der im vorigen Paragraphen die spinunabhéngigen
Typen behandelt worden sind. Wir brauchen dann einfach

™m
Fg(o,o,---, 0,1,0, - -0; ].,1,---):(p9(m);¢pg(l,k)
(vel. §4)

zu setzen. Dieses Problem ist, wenn man wieder in den Ortsraum
transformiert und die Abschneidung mittels: der A (r)-Funktion
wiahlt, 1dentisch mit dem vom Verfasser in der oben erwdhnten
Arbeit behandelten Problem. Die mit dieser Rechenmethode er-
haltenen Losungen sind zwar nicht exakt, stellen aber dann eine
gute Niherung dar, wenn.das Auftreten von Paaren z. B. aus
energetischen Griinden ausgeschlossen oder unbedeutend ist. Die
Situation diirfte ahnlich sein wie in der bekannten ,,exakten‘‘ Theo-
rie der Elektronenstreuung in Atomfeldern (Faxun-HoLTsMARK),
wo die der unelastischen Streuung entsprechenden Anteile der
Schrodingerfunktion vernachléissigt werden; von derselben Art
werden die Fehler sein, die wir in unserm Problem begehen, wenn
wir die unelastische Streuung mit Paarerzeugung vernachlissigen.
Eine stérungsmaissige Berechnung dieser Paarerzeugung durch spin-
abhéngige Kopplung soll im n#chsten Paragraphen gegeben werden.

Im Falle O =1 oder O = f gelingt es, durch eine unitdre
Transformation der y,, O diagonal zu machen: O, = 0,0,,. Die
v, sind dann aber keine ebenen Wellen mehr, sondern enthalten
eine Streuwelle. Das ist die Methode des Paragraphen 2. H' wird dann

H = 20,050, und HF = F X (0, +E,)N,.;
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daraus erkennt man sofort, dass in diesen Fillen keine Paarer-
zeugung auftreten kann. Dieses Resultat wird im n#chsten Para-
graphen auch durch die stérungstheoretische Rechnung bestétigt.

Diese Komplikation durch Paarerzeugung diirfte eine exakte,
auch fiir starke Kopplung giiltige Berechnung der spinabhéngigen
Kernkrifte in dieser Theorie verunmoglichen. Dieser Umstand
scheint von CRITCHFIELD in seiner Berechnung spinabhingiger
Kernkréfte iibersehen worden zu seinl).

§ 4. Storungsmiissige Berechnung der unelastischen Streuung fiir
spinabhiingige Kopplungstypen.

Wir transformieren den Stérungsoperator in den Impulsraum,
mdem wir setzen

p(2) = (2 n)“3/2f2a(l,k)q9(i,k)e’”"’:m)de @

die @ (4, k) sind die auf 1 normierten Komponenten der Losungen
von

{0, B)+up— (k) =0 Q= L (u+k2  (3.2)

/ numeriert die vier Zustéinde der beiden Spinorientierungen und
der beiden Vorzeichen der Energie. Die a(4, k) sind die Operatoren
mit den Vertauschungsrelationen

[a¥ (2, k), a(A'K)] = 0, 0 (ks — k) (3.3)

2 - nfg a* (1, k)0 oAk ; oK) a(l, k) dV, dV

A

0(oik; ok k) = ¢* (3, k) Ogop (X' K') (3.4)

bezeichnen die Matrixelemente des Wechselwirkungsoperators. ¢, o
beziehen sich auf den Spin des schweren Teilchens. Fiir die beiden
in § 2 betrachteten Wechselwirkungstypen ist O(eAk; oik”) von
der Form 8,50 (k% ; A’ k’). Die Tensor- und Pseudovektorkopplung
dagegen sind von der Form O = (¥, P) mit P= & bzw. P=&
fir die beiden Fille. (Der Pseudoskalar verschwindet in der Néhe-
rung des ruhenden schweren Teilchens.)

Die unelastischen Prozesse mit Paarerzeugung treten erst in
der Storungstheorie zweiter Ordnung auf. Im Ausgangszustand (4)

1) CrrrcHFIELD, Phys. Rev. 56, 540 (1939). Ausserdem ist bei der Trans-
formation der w auf die Singlett- und Triplettzustinde des Operators 1+A4(o, ok)
nicht beriicksichtigt worden, dass diese Transformation mit g¢(o, ¢p) nicht ver-
tauschbar ist. Die Zuriickfiihrung des Problems: auf zwei spinunabhingige mit
den Kopplungskonstanten n(1+2) und % (1 -3 1) ist deshalb nicht méglich.
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sind alle negativen Zustinde besetzt und ausserdem ein Elektron
mit dem Impuls &, im Spinzustand 4, mit der positiven Energie
+ (,u2 + ko*)'? anwesend. Das streuende schwere Teilchen befinde
sich 1m Spinzustand g. Als ZWlschenzustande (Z) kénnen die fol-
genden auftreten:

I. Das Elektron ky4, bleibt unverdndert. Aber es entsteht
ein Paar, indem ein Elektron aus dem Zustand Iy’ im negativen
Kontinuum in den Zustand k’A" im positiven Kontinuum gehoben
wird. Der Spin des schweren Teilchens geht dabei iiber in .

II. Das Elektron und der Kernspin gehen in den Zustand k, 4
bzw. o. Aber es ist noch kein Paar anwesend.

Beide Zwischenzustéinde fiihren zum Endzustand (B): ke
fir das gestreute Elektron, bzw. Kernspin und k'A" bzw. ' p" fur
das Elektron-Positronpaar.

Zwel weltere Zwischenzustéinde I’ und II' ergeben sich, wenn
man 1n den Zustéinden I und II die Rollen von kA und k'A" ver-
tauscht. Sie fithren zu demselben Endzustand B, da durch die
Messung nicht festgestellt werden kann, welches der beiden Elek-
- tronen das gestreute und welches das Paarelektron i1st. Jeder der
vier Zustiande I, I1, I', I1I' wird noch verdoppelt durch die beiden
Spinzustdnde des schweren Teilchens. Es gibt also im ganzen 16
Zwischenzustande Z. Wegen der Energieerhaltung muss

(% + B = (2 + RO o (2 o+ B2 o 2+ U (3.5

sein. Fir die Zwischenzustiinde gilt keine Energieerhaltung, son-
dern es 1ist

By~ By = — (48 + KO — (i 4 PR = ¢
By — = (p® + k)" — (p? + k)2 = —

E, — EI’ = — (MZ o k2)1!2 o ((uz kP l'2)1[2 sy ol (3.6)
EA H—EI p— (M2 + k02)1,f2 _ (Mz + kl2)1/2 _ —8’
Das Matrixelement fiir die Ubergéinge 4 - B ist dann
H,,H 1
Han =2, # =—2 {HAIHIB“"HAIIHHB}
(z) ~Ha — Mz & %
—H, ;p Hypp} (3.7

Das negative Vorzeichen im zweiten Term riihrt von den Vertau-
schungsrelationen (3.3) her. Es sorgt daftr, dass fir k, A = k', V'
das Matrixelement verschwindet, wie es nach dem Ausschliessungs-
prinzip sein muss.
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Der Streuquerschnitt fiir die unelastische Streuung ist

=8 CEo

OB ] H,p lz (3-8)

Der Strich bedeutet die Mittelung iiber alle Zustdnde der Spins
der drei leichten und des schweren Teilchens. gp 1st die Dichte
der Endzustéinde mit der Energie Ey = (u? + ky)'*. Da wegen
der Anwesenheit des festgehaltenen schweren Teilchens keine Im-
pulserhaltung gilt, ist g5 das Produkt der drei Dichten der Teil-
chen k, k', 1. ',

op = kEX E,,VE, dE,,dE, do. doy,do,, (8.9

do sind die Raumwinkeldifferentiale der drei Teilchen. Bei spin-

abhiingiger Kopplung wird vermoge der speziellen Form (&, P)
von O fir H, 5 '

1 _
Hyp=— 2 PO U X)) PO Ak ; AR) { Dors 215 — Dave 200e )

1 < T
— 3L PO (' 15 1) PO (ol s RS 0 S~ SR

Durch Benutzung der Vertauschungsrelationen der X® kommt

-

'i _ >

&

(8.10)

2 = - -

o (ZQOQ P (' Uy AK) X P Ak ; Z’Ic')])J
Das Nichtverschwinden dieses Matrixelementes liegt wesentlich an
der Nichtvertauschbarkeit der Operatoren fiir den Kernspin. Bei
spinabhédngiger Kopplung O = § oder O =1 verschwindet H,p.
Die Mittelung von | H,, |* tiber alle Spinzustdnde, einschliesslich
des Kernspins, kann man in bekannter Weise mittels der Vernich-
tungsoperatoren durch Spurenbildung ersetzen.

Der Wirkungsquerschnitt fiir die unelastische Streuung in den
Winkelbereich do, unter gleichzeitiger Emission eines Elektron-
Positronpaares in die Winkel- und Energiebereiche doy, do, bzw.
dE,, dE, ist dann
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Die dret Funktionen F,F,F; sind von der Gréssenordnung 1 und
héngen in komplizierter Weise von den vier Energien und allen
Winkeln zwischen den Impulsen der ausgesandten Teilchen ab.

Die unelastischen Streuungen mit Paarerzeugung treten also
erst in zweiter Naherung auf und konnen fiir alle Energien neben
den elastischen vernachlassigt werden, falls K25 <€1 1st. Fir
solche Werte des Parameters #» ist dann auch die Stérungstheorie
giiltig. Wenn dagegen K25 = 1 ist, dann kénnen durch Prozesse
hoherer Ordnung auch mehrere Paare gleichzeitig durch das ein-
fallende Teilchen erzeugt werden, sofern die Energie dazu aus-
reicht. Der unelastische Streuquerschnitt wird dann fiir hohe Ener-
gien von derselben Grossenordnung sein, wie der elastische. Doch
lasst sich mit der Storungstheorie nichts Quantitatives dariiber
aussagen.

Herrn Prof. WenTzEL méchte ich hier danken fiir viele an-
regende Diskassionen tber die Elektronenpaartheorie.

Zirich, Physikalisches Institut der E.T.H.
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