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Kernkrifte in der Elektronenpaartheorie
von J. M. Jaueh. .
(13. XII. 1941.)

Es werden die Kernkrifte gerechnet in der Elektronenpaartheorie unter
Zugrundelegung des skalaren Kopplungstyps. Es gelingt, exakte (nicht stérungs-
méssige) Losungen zu finden im Falle sehr schwacher und sehr starker Kopplung
(K2n<€1 und 7> r%, wobei Kmc der Abschneideimpuls ist). Im ersten Falle
stimmt der Ausdruck fiir das Kriftepotential im Bereich K7 > 1 mit dem st6-
rungstheoretischen iiberein. Im zweiten Falle lisst sich die Stérungstheorie nicht
mehr anwenden. In diesem Zusammenhang ist auch das Verhiltnis der beiden
Rechnungsarten fiir das zugehorige Streuproblem diskutiert. Die Bedingung fiir
die Giiltigkeit der Stérungstheorie ist dort ebenfalls K25 << 1.

§ 1. Einleitung.

Unter den Feldtheorien, welche bis jetzt zur Beschreibung
der Kernkriafte herangezogen worden sind, zeichnet sich die soge-
nannte Elektronenpaartheorie dadurch aus, dass sie eine exakte,
d.h. nicht stérungsméssige Behandlung gestattet. Das liegt an
der Tatsache, dass in den Paartheorien die Wechselwirkungsenergie
quadratisch in den Wellenfunktionen der Paarteilchen ist. Ganz
abgesehen von der physikalischen Bedeutung, welche einer solchen
Theorie zukommen mag, ist es von Interesse, das Verhiltnis der
exakten zur storungsmissigen Losung zu diskutieren. Die mathe-
matische Methode der exakten Behandlung lauft im wesentlichen
auf die Bestimmung der Eigenwerte einer linearen Integralgleichung
hinaus, und ist von WieNer, CricuFienp und TELLER!) zur Be-
rechnung der Selbstenergie eines einzelnen schweren Teilchens ver-
wendet worden. Die Anwendung dieser Methode zur Berechnung
der Kernkrifte durch Crrrcuriernp und Lams?) fithrte jedoch zu
so verwickelten Rechnungen, dass von den Autoren kein expli-
ziter Ausdruck fiir das Potential angegeben worden ist. Eine etwas
modifizierte Methode, die von WENTZEL3) am Beispiel der skalaren
Paartheorie entwickelt worden ist, ergab dort eine gute Naherung
fiir das Potential, welche fiir alle Werte des Kopplungsparameters
n giiltig bleibt. Sie stimmt fiir sehr kleine Werte von % mit dem

1) WieNER CrircEHFIELD und TELLER, Phys. Rev. 56, 531 (1939).
%) CrrrcHFIELD und Lams, Phys. Rev. 58, 46 (1940).
8) WenTzEL, Zs.f. Phys. 118, 277 (1941). '
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Ausdruck fir das Kriaftepotential iiberein, das man mittelst der
Storungstheorie erhélt. Die Anwendung dieser Methode auf die
Elektronenpaartheorie gestattet, wenigstens fiir sehr schwache und
sehr starke Kopplung, Néherungslosungen zu berechnen. Fiir
schwache Kopplung erhalten wir wiederum Ubereinstimmung mit
dem Resultat aus der Stérungstheorie?).

Die physikalischen Vorstellungen, welche man mit den beiden
Rechnungsmethoden verkntipfen kann, sind grundsétzlich vonein-
ander verschieden. Bel der stérungsméssigen Rechnung erzeugt
der Wechselwirkungsterm Ubergéinge des Systems: schweres Teil-
chen plus Elektronenfeld. Die Ubergiinge, welche zu einem Poten-
tial Anlass geben, sind dann die folgenden beiden Prozesse:

1. Das eine schwere Teilchen (N) emittiert ein Elektron-Positron-
paar.
2. Dieses Paar wird vom andern Teilchen (P) absorbiert.

N+P>N+et+e+P>N+ P

Bei der strengen Rechnung dagegen stellt man sich alle nega-
tiven Zustdnde besetzt und die positiven leer vor. Durch die
Wechselwirkung mit einem schweren Teilchen erfahren nun alle
Energieeigenwerte eine Verschiebung. Die Energie der Elektronen
in den negativen Zustédnden enthalt also vermoge dieser Wechsel-
wirkung einen Zusatzterm, den man als eine Selbstenergie des
schweren Teilchens interpretieren kann.

Bei Anwesenheit zweier Teilchen ist nun diese Verschiebung
nicht einfach das Doppelte der Verschiebung bei einem Teilchen,
weil die Eigenfunktionen der Elektronen am Orte des einen Teil-
chens durch die Anwesenheit des andern gestort sind. Die Ver-
schiebung und damit die Energie des Gesamtsystems hingt also
vom Abstand ab, und das gibt zu einer Kraft zwischen den schweren
Teilchen Anlass.

Wir beschrinken uns im Folgenden auf den skalaren Kopp-
lungstyp, der sich durch grosste Einfachheit auszeichnet. Ob-
wohl mit einem solchen Typ allein keine Ubereinstimmung mit der
Erfahrung erreicht werden kénnte, da er nur spinunabhingige
Krafte liefert, haben wir ithn hier gewihlt, da er sich zu einem
Studium der mathematischen Methoden besonders gut eignet.

Die Paragraphen 2 bis 7 sind der Behandlung der Kernkrafte
gewldmet, welche bei einer solchen Wechselwirkung auftreten. Para-
graph 8 enthélt eine kurze Diskussion des dazugehorigen Streupro-
blems. Alle Einheiten sind in &, m und ¢ gemessen.

1) MarsHAK, Phys. Rev. 57, 1101 (1940).
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§ 2. Allgemeine Ansiitze.

Wir betrachten zwei ruhende schwere Teilchen an den Orten &
und — & (2 |& | = r)"). Die Hamiltonfunktion fir das Elektronen-
feld lautet dann

H —= H° -+ H!
mit

Hy= [y*{(x,p) + B}y dV.,
H = ”{w HBp(—& +y*@Bv©E} @1

n 15t der Kopplungsparameter. Der Faktor 15 ist aus Bequem-
lichkeitsgriinden beigefiigt. Es ist bekannt und wird sich auch
im Laufe der Rechnung ergeben, dass ein solcher Term, welcher
einer Nahewirkung entspricht, zu Divergenzschwierigkeiten An-
lass gibt. Um das zu vermeiden, haben WienNER et al.?) unter
Verzicht auf die relativistische Invarianz der Theorie, den Term
(2.1) ersetzt durch

H= %f AV p* (@) u*(z—&) B [dVe, p(@)u(s’ — &)
+ 5 [AVav* @@+ &) B [ AVe,p(a)u( +8)

worin % (x) eine I"'unktion von | « | allein ist, welche nur innerhalb
eines sehr kleinen Bereiches wesentlich von Null verschieden sein
soll. Wir wihlen in der folgenden Rechnung fiir diese Funktion

umy=($)/ﬂ@AK¢)_(zﬂ—“jgwwﬂdvk

[k|<K

worin K eine Konstante ist, welche in dieser Theorie die Rolle
eines Abschneideimpulses spielt. K betrachten wir als einen neven
Parameter der Theorie. Es ist dann

lim u(x) = 27) "6 ()

K—w

Die Verwendung dieser speziellen Funktion vereinfacht nun die

1) Wir lassen im Folgenden den Pfeil zur Bezeichnung der Vektoren weg.
Den Betrag eines Vektors werden wir, wo es nétig ist, durch Absolutstriche be-
zeichnen.

2) loe. cit.
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Behandlung des Hamiltonoperators im Impulsraum ganz wesent-
lich. Wir transformieren in den Impulsraum mittelst

_ e 8 i (I, )
Dann wird v(@) =@ azz '/ v (k)e v

H= [¢*(®){ (k) + B}p(k)dV,
+ [ [cos (k—1, &) p* (k) B ¢ (k') AV AV

~ ¥

H stellt, wenn die Integrale durch Summen ersetzt werden, eine
quadratische Form dar. Um sie auf Hauptachsen zu transfor-
mieren, bestimmt man die Normalkoordinaten aus dem Gleichungs-
system

{(@,k) + B— Q} (k) +ncos (k,&)p [cos (K,&pk)dVy

¥ <K
+nsin (k, &) B [ sin (K, &g (k)dV=0 (2.2)
| & | <K
Wir interessieren uns nicht fiir die Normalkoordinaten selbst, son-
dern nur fir die dazugehorigen Eigenwerte £ (7), welche von den
Vakuumeigenwerten 2(0) = w = (1 + k2)”* verschieden sein kon-
nen. Multiplizieren wir die Gleichung (2.2) einmal mit

k) +8+ Q2
( w)z mﬂm cos (k, &)
und einmal mit
k) + B8+ Q
= 0))2 __igz n (k, %)

und integrieren wir jedesmal iiber das Innere einer Kugel |k | < K,
so erhalten wir ein lineares Gleichungssystem fiir die Grossen

A= [cos (k,&)@(k)dV, und p= [sin (&, &ek)dV,
1+ 74)A+nBu=20
nBA+ (1+3C)pu=
Die 4, B und C sind vierreihige Matrizen, welche auf die vier-
komponentigen Gréssen 4 und p operieren:
cos? (k, &)

A= f{a B+B+ Q8 ——— Vs
5 f{“ Bt e Q}ﬁcoq liuzf)m;g(k ;&) av,
sin 2 (k &)

C=[{le. W +B+28 5 G Vs
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Alle Integrale sind auf das Innere der Kugel |k | < K zu erstrecken.
Durch Ausfithrung der Richtungsintegration in 4, B und C erhalt
man, wenn die Verbindungslinie der beiden schweren Teilchen die

xg-Richtung ist ;
4=01+p2)D B=opE (= (1+8Q)F

D= dk

7 [ k2r® 4 krsin kr
P

2
0

kdk

jo %n 7 sinkr— krcos kr
3 f — 0z

”

<

F = dk

2w F k2r2 — Ly sin kr
ac f — 02

0

Das Verschwinden der Determinante A des Glelchungssystems fir
A, p ergibt uns die Siékulargleichung fiir £. :

A={147(14+2)D+n(1 — Q)F+72(1 — QZ)DF+n2Eé}2
+{147(1—2)D+y(1+9) F+72(1— Q2 DF+y2E2}:  (2.3)

Nach dem Vorgehen von WIGNER et al. ersetzen wir das kon-
tinuierliche Spektrum im k-Raum durch ein diskontinuierliches.

k'=nx n=0,1,...,N w?= 1+ n2x?
K=N»x N>1 02 =1 + p2y2

Die Integrale D, E und F gehen dann in Summen iiber.

N 2 1
n sin n %7
D=2mx> 1+ —
=y n?— v nxr
Qax Y n? sin nxr _
E = > — €08 nwl (2.4)
r =yn:—vE| nxr )
N 2 1
n sin nxr
F=2nmx ]——
=y N2 — 2 nxr

Wir setzen » = n + &,. Die Bestimmungsgleichung fiir e, ist 4 = 0;
zu jedem n gibt es acht Losungen e,,(s = 1,2, ..., 8) dieser Glei-
chung. In den langsam verdnderlichen Termen in A kénnen wir
2 durch o ersetzen, da die Abweichung von den Vakuumeigen-
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werten nur infinitesimal ist'). Aus dem gleichen Grunde kénnen
wir fiir die Gesamtenergie des Systems schreiben

N .
U(T,W’K): Z + X n2)/2 287‘33

n=1

Das Minuszeichen steht hier, weil es sich um die Verschiebung der
negativen Energieniveaux handelt. Der Nullpunkt der Energie ist
gleich der Energie des Vakuums gewéhlt. In der Grenze x>0
kann man diese Summe iiber n durch ein Integral ersetzen

K

U(r,n,K):-Of( e e ®) e @.9)

§ 3. Auswertung der Summen.

Die Summen, die in (2.4) auftreten, lassen sich mit Hilfe der
folgenden Fourier’schen Reihe auswerten?). Sei ¢ (o) = cos » (7 — o)
fir 0 = ¢ = 27 und sonst periodisch, mit der Periode 2z, dann
gilt fiir ¢ (o) die Fourier’sche Reihe

. @
‘P(Q)Zcosv(ﬂ—e)ilsinvrc i—HZZM
7 n

= nt—a®
Daraus gewinnt man fiir ¢ = 0 die bekannte Formel

i = . i coto vm
= —v2_2v2 2y .

Ferner erhalt man fiir die Ableitung

__
¥ (@)= vsin vz — @) = sin v 3} "ol
o n=1 n2 — p2

daraus folgt"

%nsinngzi sin » (m — o) fir 0<p<2n

= n?— 2 2 sin »7t

1) Dies gilt allerdings nicht fiir die dussersten Eigenwerte (n = Ound » = N),
die sich bei wachsender Kopplungsstirke » vom kontinuierlichen Spektrum ab-
losen konnen. In §7 wird aber gezeigt, dass diese diskreten Eigenwerte in den
hier interessierenden Grenzfillen keinen Beitrag zu den Kernkriften liefern.

2) WENTZEL, loc. cit.
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Wir setzen also

i nsinnxr 7w Sy (w—xr) _R()
= omr—a2 2 sin v7
i n®cos nxr v cos v(m — xr) T (5)
= n—e2 2 -sin ¥7
- 1 7
- - cotg vow — S (v
,;’lnz—vz 2v2 2w 8 )
¥y n® Ty
=N+4%——cotgvn —»2S(»
nglnz_vz 2 9 g (»)

Die Reste schétzen wir durch Integrale ab

(¢ o]
® msinnxv sin nxr dn cos Kr
R(’V) Z 2 2 gf .n2 = . nz +--
n=N+1 N°—V & — Nz KT(l“*W”z")
d s K7
TW)=——R(()L— - pr R T
d (xr) _ xr(l-— Nﬁ_)

In T'(») und R(») sind nur die ersten Terme einer Entwicklung
nach fallenden Potenzen von Kr angeschrieben. Weitere Terme
erhilt man durch partielle Integration. Wir werden im Folgenden
Terme von der relativen Grossenordnung (Kr)-! vernachldssigen
und beschrinken uns damit fiir » auf den Bereich r> /K. In
dieser Naherung koénnen wir R vernachldssigen. (Ausgenommen
davon ist die Diskussion des Spezialfalles r = 0, s.u.). Mit den
so gewonnenen- Ausdriicken gehen wir in (2.3) ein und ersetzen
iiberall, ausser in der trigonometrischen Funktion » durch =.
Dann erd

n? sin v (w — %7)

D=Z—n*k cotg vw + —
. 7 sin »7

n? sin v (m — »r) 1 kn? cosv(m—xr)

E=Y+

(3.1)

r2 sin Y7 ¥ sin Y7

#% sin v (7w — x'r)

F Z — m2k cotg var —

r sin v
mit, .
k K+ k
z_g%ngmK_”
Y=27z smK:
r2 1__k

Kz
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§ 4. Diskussion zweier Spezialfiille.

Bevor wir zur Berechnung der Kernkrafte ubergehen wollen
wir zwel Spezialfille diskutieren.

1. r ~0. Bel sehr kleinem Abstand sind die vorstehenden
Formeln nicht giiltig, denn wir haben darin Terme von der rela-
tiven Grossenordnung (Kr)~! vernachlassigt. Wir gehen deshalb
von den exakten Formeln (2.4) aus und entwickeln darin nach
Potenzen von xr.

‘ N 2
D=2nz2n2 W2{2—~1/6n2;«:2rz+..'.}:2D0
=1 = p
7T n2r nt
B = 3 an2—-v2+ cee ~T
I~ r2

Die Sakulargleichung (2.8) lautet im Limes r = 0:
{1+271 4+ 0)De}?{1 +275(1 —w)Dy}?=

Es gibt nur zwei ¢,,-Werte, welche von Null verschieden sind,
aber jeder zdhlt doppelt.

n
U(,n,K)=—2 %sz (n1 + €ns)

Man hétte dasselbe Resultat erhalten, wenn man mit emem ein-
zigen schweren Teilchen gerechnet, aber in der Hamiltonfunktion
1 durch 2 # ersetzt hétte, wie man unmittelbar aus (2.2) entnimmt.
Bezeichnen wir die Selbstenergie eines schweren Teilchens mit
U(n, k), so gilt folglich |

U(Os ?Y,K) = U(2 W,K)

2, r> oo. In D und F verschwinden fiir diesen‘ Grenzfall die
Terme mit dem Sinus, wihrend E {iberhaupt verschwindet.

D=F=D,,E=0 |
A={1+ 51l —w)D}{1 + 5(l + w) Dy}t 4.1)

Wir erhalten in diesem Fall also wiederum dieselben Wurzeln, wie
fir ein einziges Teilchen, aber jede der Wurzeln zahlt jetzt vierfach
statt zweifach

n
U(w,n, K) :“_4;{22(1—_}_;% (en1 + €no) = 2U (1, K)
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Zawel Teilchen, die unendlich weit entfernt sind, haben also die

doppelte Selbstenergie eines einzigen Teilchens. Setzen wir geméss
(3.1) fur
,nZ

N ]

n=1

so wird nach (4.1)

1+7n(1F @0)Dy=0

cotg v =

e T

Wir setzen wieder v = n + ¢ und unterscheiden die beiden Lo-
sungen von (4.2) als & und &. Dann wird vermoge der Formel

cotg &y 4 cotg &,

f €1+ &) =
g (e » cotg &y 7 cotg egm—1

i——an2

¢ — 2k
g (rfey) 7 =27 42 2y — (G — )

@.8)

Fir die Gesamtenergie erhalten wir

kdk 1— Zyk?
il tg 2 n2yk 4.4
f(1+k2 aretg 2tk I — @k ek oY)

Die Formel (4.4) ist identisch mit der Formel (10) in der Arbeit
yon CrrrcErIELD und LAamMB, wenn man in dieser # durch — %/2,

f(q) durch — 2 Z und v(p) durch die Funktion v(p) = {(1) iﬁ: gi II‘g |

ersetzt. Man sieht, dass die Verschiebung der Energieniveaux und
auch die Selbstenergie fiir sehr kleine # proportional zu # ist. In
der Storungstheorie entspricht diesem Term das Diagonalelement
der Stérungsfunktion H.

§ 5. Potehtial bei sechwacher Kopplung.

Zur Berechnung der Energie des Systems, bestehend aus
schweren Teilchen in endlichem Abstand und Elektronenfeld,
gehen wir aus von den Ausdriicken (3.1), welche wir in die Sikular-
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gleichung (2.3) einsetzen. Wenn wir noch mit sin?» durchmultipli-
zieren, lautet die Sikulargleichung

sin? v {1+ n(D +F) = o (D —F) + 72(1 — 0?) DF + 72E?)

= sin? vz + 2 9 sin v# (Z sin v — 72k cos v7)
e ;
+ 2 5w — sin vz sin » (w — %7)
r

77
— n2k2(Z sinvwr — 72k cos vaz)2—i-n k2+77 kstv(ﬂ—xr)

4 2
—1—772% Sinzv(nw—xr)+n2stin2vn+2Yn2%Sin vt sin v (T — %7)

kn? .
+2n2YTvancos v(r—=xr)=0 (5.1)

Wir haben nur einen der Faktoren von (2.3) angeschrieben. Wir
setzen nun » = n + ¢, dann geht ¢ mit % nach Null, und entwickeln
alles nach Potenzen von % bis zur dritten Ordnung in 7. Wenn
wir nur bis zur zweiten Ordnung gingen, erhielten wir ein r-unab-
hiéngiges Potential, nimlich die Selbstenergie zweier unendlich
weit entfernter Teilchen (Spezialfall 2 in § 4). Wir vernachléssigen
zv gegen 1 und erhalten fir (5.1)

£2A2+8A1+A0= 0

1 . 1 1
AO:772”%2(WSlnsz*k3T381n2kT+kzrz 1)

. . )
Ay = —217{nn”ﬁ(l—l—wsmkr)—nz[n”'k?'Z—}— ﬂr3k cos 2 kr
r .
B, a3 k sin kr
ot stkr—i—YT(coskfr—— > )]}

2

Azz7r2+217752(Z+—wjt coskr)

Eine Abschétzung der hohern Terme zelgt dass diese ver-
schwindend sind, falls K27 < 1 ist, was wir im folgenden immer
voraussetzen. Die Diskriminante dieser quadratischen Gleichung
1st 1mmer positiv, die Wurzeln sind also reell. Wir bendtigen nur
die Summe der beiden Wurzeln —4,/4,. Wegrn Z#n < 1 konnen
wir in 4, nach 5 entwickeln. In dem so erhaltenen Ausdruck
nehmen wir nur die r-abhéngigen Terme und summieren iiber
alle Losungen der Sakulargleichung. Ferner konnen wir die
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Terme mit Y (~ Smrz T) streichen. Sie geben n&mlich zu kurz-

periodischen Schwankungen des Potentials Anlass, welche nur von
unserer scharfen Abschneidegrenze herriihren, und denen offenbar
keine physikalische Bedeutung zukommen kann. Wir kénnen sie
durch eine Mitteilung iiber einen 7-Bereich von der Grgssenord-
nung 1/K beseitigen. Das so gemittelte Potential wird schliesslich
mittelst (2.5)

V=T, n, K) = 8n317 f(lkdk

+ k%t

(l—l—kz—— 1 )sin.‘lkr—l-—k—costr
| 2 r2 ) r

Die vorkommenden Integrale lassen sich alle durch Differentiation -
nach r aus dem einen ableiten

Kcos2krdk 17T
(1 + k2t 2

HY (21i7)

wo HY) die Hankel’sche Zylinderfunktion ist. Aus den bekannten
Differentialbeziehungen der Zylinderfunktionen folgt

V() = 6t 2-1?{ HY i) —*H‘”(W)}

r2 | r2

Dieses Resultat stimmt mit dem stérungsmissig berechneten tiber-
ein?). Die Bedmgunﬂen fir die Giiltigkeit dieser Niherung sind
nK?*<€1 und Kr> 1.

§ 6. Potential bei starker Kopplung.

In diesem Paragraphen beschrinken wir uns auf den Fall der
starken Kopplung, inshesondere auf den Grenzfall #-> co. In
diesem Grenzfall kénnen wir uns in der Sdkulargleichung (2.3)
auf die Terme beschrinken, welche #%? enthalten. Das Resultat
der Rechnung ist dann das erste Glied einer Entwicklung nach fal-
lenden Potenzen von 7.

A=?72At+--.=b2772+b177+-.

1) MARSHAK, Phys. Rev. 57, 1101 (1940), Formel (7) erster Term. Bs ist
nur zu beachten, dass # in unserer Formel durch. 2 # zu ersetzen ist, um Uber-
einstimmung zu erhalten, da wir in Gleichung (2.1) einen Faktor 1/2 explizite
eingefiihrt haben.
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r2by und b, sind von derselben Gréssenordnung. Unser erstes Glied
stellt also dann eine gute Naherung dar, wenn 7> r? ist.

Ay= (11— Q23 DF + E*
- {(Z — w2k cotg vmr)? — 2SIy )

1 — 0%

r2 sin? vz

5 o . 2 _ 2
+{Y+7t sin v (7 %’I‘)+INI cos » (7 ’”')}:__0

r2 sin v7 r sin v7

Wir schreiben diese Gleichung

4
{Z sin v — 7%k cos v }? = n—zsin2 v(m — xr)
r

) 2 2 2
-{-i Y sin vz + - sin v (m— %T)_'_}Ln_ cos v (m— xr) 1= B (r, )
k2 T? r
(6.1)
Der Term auf der linken Seite ist unabhéngig von 7, und
lim B(r,») = 0.
r—»o
Die Verschiebung des n-ten Eigenwertes bei unendlichem Ab-

stand der beiden Kerne ist vy = n + &, und bestimmt sich aus

ek

Zsin vgmw —m2kcosvgm =0 tg vy = (6.2)
Man hitte dasselbe auch aus der Formel (4.2) durch den Grenz-
ibergang # > oo erhalten kénnen. Bei endlichem Abstand der
beiden Kerne betrachten wir B (r, ») als eine Stérung und setzen
v = v, + 0. Wir entwickeln dann linke und rechte Seite von (6.1)
nach Potenzen von 6. Die linke Seite wird wegen (6.2) mit einem
quadratischen Term beginnen, wir gehen deshalb auf der rechten
Seite bis zum linearen Term.

(Z sin vox — 7%k cos )2 = Co2 + ...
B(r,v)=By+ 6B, + ...
C = n?(Z? 4 n*k?)

: 4 1 . .

B = Tc—zsm2 v (r — zr)—i—k—zz{rz Y sin g + 72 sin vy (7w — x7)
F ! + 72 kr cos vy (m—xr)}?

o (6.8)

L2 pd

n®
By =—5-sin 2 vy (7 — 27)+
r

{r*Y sin vy +m? sin vy (m—x7)
+ n2kr cos vy (m — 27) }
X {r2Y cos vy + 72 cos vy (m — 1) — 72 kv sin vy (m —xv)}
By (B2+ 4 B,0}
B 2C
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Damit 6 €1 ist, miissen sowohl B;/C als auch B,/C €1 sein.
Fir By/C ist das wegen Kr> 1 fiir alle %k, welche nicht zu nahe
an K liegen erfiillt, denn fiir kleine k ist die quadrierte geschweifte
Klammer rechterhand ~ k% und hebt den Faktor 1/k2 im Limes
k-0 weg. Das ist jedoch nicht der Fall fir B;/C. Durch die
Differentiation von B, werden einige der Sinusfunktionen durch
Kosinusfunktionen ersetzt, so dass jetzt das Produkt der ge-
schweiften Klammern rechterhand nur noch ~k ist. Der Aus-
druck B;/C 1st deshalb nur noch klein, solange k> 1/K3r%. Der
Fehler, den wir machen, wenn wir trotzdem mit unserer Néherung
fir 6 bis k = 0 weiterrechnen, ist aber hochstens von der Grossen-
ordnung 1/K¢7% und kann neben dem Hauptterm vernachléssigt
werden. Wir benétigen wiederum nur die Summe der beiden Wur-
zeln: 6; + 0, = B,/C.

Wenn wir mit den Ausdricken (6.3) U(r, 1, K) ausrechnen,
so erhalten wir wieder kurzperiodische Schwankungen, welche von
der scharfen Abschneidegrenze herrithren. Wenn wir sie wieder
durch eine Mitteilung iiber einen r-Bereich von der Grossenord-
nung ~ 1/K beseitigen, so hat das zur Folge, dass wir im Ausdruck
fir ¢ die in Y linearen Terme streichen konnen. Ferner konnen
wir uns auf die kleinen k-Werte beschréinken (k¥ <€ K). Der Term
mit Y2, der noch stehen bleibt, gibt zu einem Potential langer
Reichweite Anlass. Innerhalb der Reichweite des Potentials der
beiden andern Terme ist er jedoch um eine Grossenordnung Kr
klemer als dieses. Wir lassen ihn deshalb ebenfalls weg. In den
tibrigbleibenden Termen koénnen wir noch », durch n ersetzen,
denn die oben erwéhnte Mitteilung iiber einen r-Bereich der Grosse
1/K hat zur Folge, dass nur aus dem Bereich k <€ K ein wesent-
licher Beitrag zum Potential geliefert wird. Fir diesen Bereich
1st aber gemiss (6.2) &, < 1.

Die Summation iiber alle k¥ Werte ersetzen wir durch eine
Integration \ "

K
dkk B1
U= 40f T

Gemiss (6.3) wird daraus mit den oben erwéhnten Vereinfachungen

x o~ sin 2 kr dk
Vi)=Tlr,n, k)= — Kzrgf(coszkr— - )(1+k2)%
0
i 72 . 1 7 e
. (1) 2 [ HO (9
2K27'3 {HO (2 ?/T)—i_ r f 0 ( %Q)d‘(_)}

r
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V(r) stellt ein anziehendes Potential von der Reichweite 1 dar.
Der Giiltigkeitsbereich der Naherung ist #>r2. V(r) strebt im
Limes K-> oo nach Null. Wenn # > 1 ist, dann miisste der
schwache Zusatzterm langer Reichweite mitberticksichtigt werden,
den wir weggelassen haben. Doch wird ihm kaum eine physika-
lische Bedeutung zukommen.

§ 7. Diskussion der diskreten Zustiinde.

Wenn die Kopplung stark genug ist, dann konnen sich dis-
krete Eigenwerte vom kontinuierlichen Spektrum sowohl am obern
als auch am untern Ende ablosen. Die Verschiebung, welche diese
diskreten Eigenwerte bei einer Abstandséanderung der beiden schwe-
ren Teilchen erfahren, ist dann nicht mehr infinitesimal und kann
deshalb zum Potential einen nicht zu vernachlidssigenden Beitrag
geben.

Wie im Folgenden gezeigt werden soll, ist dieser Beitrag fiir
die beiden von uns betrachteten Grenzfille gerade Null. Das
braucht aber durchaus nicht fiir den allgemeinern Fall beliebiger #
zuzutreffen.

Fir das obere Ende (| 2 | < 1) kann man sofort sehen, dass
bei unendlich starker Kopplung keine diskreten Zustinde auftreten
konnen. In der Gleichung (1 — 22 DF + E?= 0 sind nédmlich
beide Summanden positiv und auch fir | 2 |= 1 wird E? nicht
gleich Null. Es gibt also keine Losung dieser Gleichung fiir | 2 | = 1.

Fir endliche Werte des Kopplungsparameters kann man beil
unendlichem Abstand der beiden schweren Teilchen das diskrete
£ leicht berechnen. £ ist dann die Lésung der Gleichung

1429 Dy+72(1— 2% Dy ={ 1491+ 2) Dy }{ 145 (1— 2) D, } =0
die man erhélt, indem man in (2.3) r= oo setzt

1
(1 + Q)Dy= _*;?“

Diese Gleichung ist bei CrircHFIELD?) eingehend diskutiert. Sie
hat zwel Losungen, welche mit wachsendem % nach 4 1 streben.
Eine genauere Analyse zeigt, dass bei festgehaltenem % aber ab-
nehmendem Abstand der beiden Teilchen die beiden Lésungen
ebenfalls nach -+ 1 streben.

Unterhalb des kontinuierlichen Spektrums (2 < —y1 + K?)
1) CrrrcHFIELD, Phys. Rev. 59, 48 (1941).
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tritt fiir alle Werte von # ein vierfach entarteter diskreter Eigen-
wert auf, welcher im Grenzfalle » > co aus der Gleichung |

{1 +n(l — !))DO}4{1 + 1l + Q)DO}4 = ()
zu berechnen 1st. '
Q=—01+L%»% L>K

K ‘ .
K L. L+K
Dy=2n [——" _—9ax(E—21 =
b ”[kz—m “_(( an—K)

1 L. L+K
——=y L)=4+ —
?7 y (L) 27:L(K 2]11 )

Fir L> K verhilt sich der Ausdruck rechts wie 1/L. Daraus
folgt, dass fiir grosse # L wie % nach unendlich geht. Wir kénnen
also fir endliche # eine Potenzreihe nach fallenden Potenzen von 7
ansetzen, deren erstes Glied proportional # ist.

L(n) = ayn + ay + Glieder mit 1/y

Um nun die r-Abhéingigkeit der beiden Koeffizienten a,, a,
zu untersuchen, welche einen Zusatzterm zum Potential ergibe,
gehen wir mit diesem Ansatz in die Sakulargleichung mit den
r-abhéingigen Termen ein. Da wir den Grenzfall > oo unter-
suchen wollen, entwickeln wir in den Integralen alles nach fallen-

den Potenzen von 7. Der hiochste Term von 4 (2.3) ist dann un-
472 K&
9 a2’

Daraus folgt, wenn wir ihn gleich Null setzen: a; = 2T” e ]

Der Koeffizient von 1/ ist proportional zu 1 ——233 K, ~;L°. Daraus
. 1
T 3 &
ergibt sich a,= T 1.

Es wird somit fiir endlichen Abstand #

L(n) ~ 2% K3 7 + 1 + Glieder mit—%

abh#éngig von 7 und ist, wenn wir Kr> 1 voraussetzen=1-

Die beiden Koeffizienten @, und @, sind also r-unabhéngig und
der diskrete Eigenwert unterhalb des Spektrums triagt im Limes
7> oo (n> 1) nichts zum Potential bei. ‘
: Im Grenzfall der schwachen Kopplung (K2#%n < 1) kann am

obern Ende des Spektrums (| £ | < 1) kein diskreter Eigenwert
auftreten, wie schon CrrrcmrFierLp in der oben zitierten Arbeit
gezeigt hat. Am untern Ende tritt zwar ein solcher auf, doch ist
seme Abweichung von K nur infinitesimal, ndmlich von der
Grossenordnung e~Y/®'l7l und er trigt deshalb nichts zum Potential
bei. ‘
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§ 8. Berechnung der Streuung fiir K27 < 1.

Fir schwache Kopplung lisst sich die Streuung entweder mit-
tels der Stérungstheorie, oder durch strenge Losung der Wellen-
gleichung im z-Raum und nachherige Entwicklung nach Potenzen
von 7 berechnen. Beide Methoden ergeben dasselbe Resultat.

In der Stérungstheorie ist der Streuquerschnitt proportional
dem Matrixelement der Stérungsfunktion. -

w

2
10)= (52) 1012 170 1
T
H' = 5nf (Es ist jetzt nur ein schweres Teilchen anwesend.)
[ 1H [po) =% 23 [Gp | H [ 30,70 |
po ist der Anfangsimpuls und p der Impuls nach der Streuung.
A, 2y numeriert die beiden Spinzustédnde

(o p [ H' | 2po) = a*@ (p) Ba™ (po)  [p—po| <K

darin sind a® (p) die Amplituden der ebenen Welle mit dem Im-
puls p und dem Spm A. —

Es 1st also ‘
(@ 1H [p) =1 2 (@D () fa (p) (@ (p) fa® (1))

_ =3sp{V(p)Bv(po) B}
worin |

Vo114 @P) B
- )
Die Ausrechnung ist elementar und ergibt direkt
1(5) — o \21—psin 20 (7.1)
2n 1— B2

worin ¢ den Streuwinkel und g die Geschwindigkeit darstellt.
Die Streuung ist nach der ,,exakten‘’ Methode von WEINBERG
gerechnet worden!). Sein Resultat lautet in unserer Bezeichnung

o, =( 77)2 k2(1—cos 2%)—# 1+ k2 (|nkF |2 —2 nf)

2m |1+ 27F — [gkF[2 ]2
mit
K 2k + wi
f=—gs F=——
2mn 47

und geht fir K29 <1 in die Formel (7.1) iiber.
1) WEINBERG, Phys. Rev. 59, 776 (1941).
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Der Giltigkeitsbereich der Stérungsrechnung ist somit fiir
Kernkrafte und Streuung K29 < 1.

Herr Prof. WenTzEL hat durch seine unermiidliche Bereit-
schaft zu Diskussionen und Ratschligen diese Arbeit wesentlich
gefordert. Thm sei an dieser Stelle herzlich gedankt.

Physikaliséhes Institut der E.T.H., Ziirich.
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