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Kernkräfte in der Elektronenpaartheorie
von J. M. Jaueh.

(13. XII. 1941.)

Es werden die Kernkräfte gerechnet in der Elektronenpaartheorie unter
Zugrundelegung des skalaren Kopplungstyps. Es gelingt, exakte (nicht störungs-
mässige) Lösungen zu finden im Falle sehr schwacher und sehr starker Kopplung
(Kät]<^.l und rj^-r2, wobei Kmc der Abschneideimpuls ist). Im ersten Palle
stimmt der Ausdruck für das Kräftepotential im Bereich Kr^>\ mit dem
störungstheoretischen überein. Im zweiten Falle lässt sich die Störungstheorie nicht
mehr anwenden. In diesem Zusammenhang ist auch das Verhältnis der beiden
Rechnungsarten für das zugehörige Streuproblem diskutiert. Die Bedingung für
die Gültigkeit der Störungstheorie ist dort ebenfalls K2t]<^.1.

§ 1. Einleitung.

Unter den Feldtheorien, welche bis jetzt zur Beschreibung
der Kernkräfte herangezogen worden sind, zeichnet sich die
sogenannte Elektronenpaartheorie dadurch aus, dass sie eine exakte,
d.h. nicht störungsmässige Behandlung gestattet. Das liegt an
der Tatsache, dass in den Paartheorien die Wechselwirkungsenergie
quadratisch in den Wellenfunktionen der Paarteilchen ist. Ganz
abgesehen von der physikalischen Bedeutung, welche einer solchen
Theorie zukommen mag, ist es von Interesse, das Verhältnis der
exakten zur störungsmässigen Lösung zu diskutieren. Die
mathematische Methode der exakten Behandlung läuft im wesentlichen
auf die Bestimmung der Eigenwerte einer linearen Integralgleichung
hinaus, und ist von Wigner, Criciifield und Teller1) zur
Berechnung der Selbstenergie eines einzelnen schweren Teilchens
verwendet worden. Die Anwendung dieser Methode zur Berechnung
der Kernkräfte durch Critchfield und Lamb2) führte jedoch zu
so verwickelten Rechnungen, dass von den Autoren kein expliziter

Ausdruck für das Potential angegeben worden ist. Eine etwas
modifizierte Methode, die von Wentzel3) am Beispiel der skalaren
Paartheorie entwickelt worden ist, ergab dort eine gute Näherung
für das Potential, welche für alle Werte des Kopplungsparameters
rj gültig bleibt. Sie stimmt für sehr kleine Werte von rj mit dem

1) Wigner Cbitchfield und Teller, Phys. Rev. 56, 531 (1939).
2) Cbitchfield und Lamb, Phys. Rev. 58, 46 (1940).
3) Wentzel, Zs. f. Phys. 118, 277 (1941).
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Ausdruck für das Kräftepotential überein, das man mittelst der
Störungstheorie erhält. Die Anwendung dieser Methode auf die
Elektronenpaartheorie gestattet, wenigstens für sehr schwache und
sehr starke Kopplung, Näherungslösungen zu berechnen. Für
schwache Kopplung erhalten wir wiederum Übereinstimmung mit
dem Resultat aus der Störungstheorie1).

Die physikalischen Vorstellungen, welche man mit den beiden
Rechnungsmethoden verknüpfen kann, sind grundsätzlich voneinander

verschieden. Bei der störungsmässigen Rechnung erzeugt
der Wechselwirkungsterm Übergänge des Systems : schweres Teilchen

plus Elektronenfeld. Die Übergänge, welche zu einem Potential

Anlass geben, sind dann die folgenden beiden Prozesse:
1. Das eine schwere Teilchen (N) emittiert ein Elektron-Positron-

paar.
2. Dieses Paar wird vom andern Teilchen (P) absorbiert.

N+P^N + e+ + e-+P^N+P
Bei der strengen Rechnung dagegen stellt man sich alle negativen

Zustände besetzt und die positiven leer vor. Durch die
Wechselwirkung mit einem schweren Teilchen erfahren nun alle
Energieeigenwerte eine Verschiebung. Die Energie der Elektronen
in den negativen Zuständen enthält also vermöge dieser Wechselwirkung

einen Zusatzterm, den man als eine Selbstenergie des
schweren Teilchens interpretieren kann.

Bei Anwesenheit zweier Teilchen ist nun diese Verschiebung
nicht einfach das Doppelte der Verschiebung bei einem Teilchen,
weil die Eigenfunktionen der Elektronen am Orte des einen
Teilchens durch die Anwesenheit des andern gestört sind. Die
Verschiebung und damit die Energie des Gesamtsystems hängt also
vom Abstand ab, und das gibt zu einer Kraft zwischen den schweren
Teilchen Anlass.

Wir beschränken uns im Folgenden auf den skalaren
Kopplungstyp, der sich durch grösste Einfachheit auszeichnet.
Obwohl mit einem solchen Typ allein keine Übereinstimmung mit der
Erfahrung erreicht werden könnte, da er nur spinunabhängige
Kräfte liefert, haben wir ihn hier gewählt, da er sich zu einem
Studium der mathematischen Methoden besonders gut eignet.

Die Paragraphen 2 bis 7 sind der Behandlung der Kernkräfte
gewidmet, welche bei einer solchen Wechselwirkung auftreten.
Paragraph 8 enthält eine kurze Diskussion des dazugehörigen Streuproblems.

Alle Einheiten sind in h, m und c gemessen.

Marshak, Phys. Rev. 57, 1101 (1940).
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§ 2. Allgemeine Ansätze.

Wir betrachten zwei ruhende schwere Teilchen an den Orten £

und — £ (2 11 | r)]). Die Hamiltonfunktion für das Elektronen-
feld lautet dann

H H° + H1
mit

H0=fy>*{(x,p) + ß}WdVx

H^ ^-{to*(-£)ßy,(-£) + y,*(£)ßy,(£)} (2.1)

rj ist der Kopplungsparameter. Der Faktor % ist aus
Bequemlichkeitsgründen beigefügt. Es ist bekannt und wird sich auch
im Laufe der Rechnung ergeben, dass ein solcher Term, welcher
einer Nahewirkung entspricht, zu Divergenzschwierigkeiten Anlass

gibt. Um das zu vermeiden, haben Wigner et al.2) unter
Verzicht auf die relativistische Invarianz der Theorie, den Term
(2.1) ersetzt durch

H1 -|- f d Vxy* (x) u* (x - £ ß f d Vx,, ip (x')u(x' - £)

+ -| / d Vx w* (x) u* (x + £) ß f d Vx„ xp (x') u (x' + £)

worin u(x) eine Funktion von | x | allein ist, welche nur innerhalb
eines sehr kleinen Bereiches wesentlich von Null verschieden sein
soll. Wir wählen in der folgenden Rechnung für diese Funktion

u(x) (™V/2 J% (Kx) (2n)-'ufe-i^xH Vk
\ x 1 '"

\lc\<K

worin K eine Konstante ist, welche in dieser Theorie die Rolle
eines Abschneideimpulses spielt. K betrachten wir als einen neuen
Parameter der Theorie. Es ist dann

lim u (x) (2 n) '2 ô (x)
K—ycc,

Die Verwendung dieser speziellen Funktion vereinfacht nun die

1) Wir lassen im Folgenden den Pfeil zur Bezeichnung der Vektoren weg.
Den Betrag eines Vektors werden wir, wo es nötig ist, durch Absolutstriche
bezeichnen.

2) loc. cit.
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Behandlung des Hamiltonoperators im Impulsraum ganz wesentlich.

Wir transformieren in den Impulsraum mittelst

f (x) (2 n)-h f cp (fe) ei <*> *H Vk
Dann wird J

H=fcp*(k){(*,k) + ß}cp(k)dVk

+ nJI cos (fe - fe', £) cp* (fe) ß cp (fe') dVkd Vr
\k\<K
\rY\KK

H stellt, wenn die Integrale durch Summen ersetzt werden, eine
quadratische Form dar. Um sie auf Hauptachsen zu transformieren,

bestimmt man die Normalkoordinaten aus dem Gleichungssystem

{ (a.fr) + ß — Q}cp(k) +TJCOS (k,£)ß /eos (k',£)cp(k') dVk,
\k'\<K

+ rj sin (fe, £)ß f sin(fe', £)cp(k')dVk, 0 (2.2)
\k'\<K

Wir interessieren uns nicht für die Normalkoordinaten selbst,
sondern nur für die dazugehörigen Eigenwerte Q(w), welche von den

Vakuumeigenwerten Q (0) co (1 + fe2)
a verschieden sein können.

Multiplizieren wir die Gleichung (2.2) einmal mit

cos (fe, £)
co- — j<?-

und einmal mit
(r, h\ J- ft J_ O

sin (k,£)
coò — iJi

und integrieren wir jedesmal über das Innere einer Kugel | fe [ < K,
so erhalten wir ein lineares Gleichungssystem für die Grössen

X J cos (fe, £) cp (fe) d Vk und fi j sin (fe, £) cp (fe) d Vk

(1 + rjA)X + rjBpL 0

rjBX + (1 + riC)!a= 0

Die A, B und C sind vierreihige Matrizen, welche auf die vier-
komponentigen Grössen X und fi operieren:

A f{(«,k) + ß + Q}ß ZI-qI dV»

„ r, cos (fc, £) sin (fc, £) „B=J{(,,k) + ß +Q}ß^^ri^dVk
C J{(,,k) + ß+Q}ß^^^ dVk

(«.,k)+ß+Q
m2-Q2

(oc,,k) + ß + Q
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Alle Integrale sind auf das Innere der Kugel | fc | < K zu erstrecken.
Durch Ausführung der Richtungsintegration in A, B und C erhält
man, wenn die Verbindungslinie der beiden schweren Teilchen die
«g-Richtung ist

A=(l+ßQ)D B=a3ßE C=(l+ßü)F
K

D —
2n f k2r2 + kr sin kr Ji
r2 J m2-Q2

0

F - 2 tt r sin kr — kr cos kr
r2 J co2—Q2

0

F —
2n ç k2r2 — fer sin fer

J7
r2 J co2-ü2

d

0

Das Verschwinden der Determinante A des Gleichungssystems für
X, ji ergibt uns die Säkulargleichung für Q.

A {l+rj(l+ Q)D+rj(l - Q)F+r,2(l - ü2)DF+rj2E2}2
+ {l+ rj(l-ü)D+rj(l + Q)F+rj2(l-Q2)DF+r,2E2}2 (2.3)

Nach dem Vorgehen von Wigner et al. ersetzen wir das
kontinuierliche Spektrum im fe-Raum durch ein diskontinuierliches.

fc nx n—0,l,...,N w2=l+n2x2
K=Nx JV> 1 Q2=l + v2x2

Die Integrale D, E und F gehen dann in Summen über.

^ c. -Ä A2 L sinnxrlD=2nx^ — 1+
~0 n2 — v2 | nxr J

„ 2nx JL. n2 f sinner 1

fnE V — cos nxr (2.4)
r ^0 n£— v2 [ nxr j

-m A-, n2 (_ sinnxrF 2 n x V̂
A0 n2 — v* nxr

Wir setzen v n + e„. Die Bestimmungsgleichung für e„ist A 0;
zu jedem n gibt es acht Lösungen ens(s 1,2, 8) dieser
Gleichung. In den langsam veränderlichen Termen in A können wir
Q durch w ersetzen, da die Abweichung von den Vakuumeigen-
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werten nur infinitesimal ist1). Aus dem gleichen Grunde können
wir für die Gesamtenergie des Systems schreiben

N nü(r,rj,K) -x2^ lx - „ 2V/ 2e-„^i (1 + x2n2) '• ^
Das Minuszeichen steht hier, weil es sich um die Verschiebung der
negativen Energieniveaux handelt. Der Nullpunkt der Energie ist
gleich der Energie des Vakuums gewählt. In der Grenze x •> 0
kann man diese Summe über n durch ein Integral ersetzen

k
U(r,rj,K) ~ J——^(2e„s(fc)jdfc (2.5)

o
^ '

§ 3. Auswertung der Summen.

Die Summen, die in (2.4) auftreten, lassen sich mit Hilfe der
folgenden Fourier'sehen Reihe auswerten2). Sei cp (o) cos v (n — q)
für 0 :£ q Ss 2 n und sonst periodisch, mit der Periode 2 n, dann
gilt für <p(q) die Fourier'sehe Reihe

v f 1 iL cos n q 1

cp(ç>) cos v (n — o) — sm vjt — — 2 V — \n {vi £^x n* — v*

Daraus gewinnt man für q 0 die bekannte Formel

f. 1 J *_
£ax w2 — r» 2 v2 2v

Ferner erhält man für die Ableitung

cotg vn

r ¦ 2 v J5, n sin n p
cp (q) v sm v (n — q) sm vn y —

n AY, n2 — v2

daraus folgt

^nsinng n sin v (n — q)V — 1- — ^ -Hi- fur 0 < g < 2 Tr

^Tj n-5 — v' 2 sm vtt

x) Dies gilt allerdings nicht für die äussersten Eigenwerte (n 0 und w N),
die sich bei wachsender Kopplungsstärke r/ vom kontinuierlichen Spektrum
ablösen können. In § 7 wird aber gezeigt, dass diese diskreten Eigenwerte in den
hier interessierenden Grenzfällen keinen Beitrag zu den Kernkräften liefern.

2) Wentzel, loc. cit.
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Wir setzen also

JL n sin nxr n sin v(n — xr) _V — — ^ L — R(v)
~x n2 — v* 2 sm vn
iL n2 cos nxr vn cosv(n — xr) „.S 2 Y~ ö • ~ T W
~! «•* — v^ 2 sm vn
A* 1 In COtg VTT — S (v)
~[ n2 — v2 2v2 2 v
¦Ef 7% JX, VV N + | cotg vn — v2S(v)

£Yxn2-v2
2

2 ë W

Die Reste schätzen wir durch Integrale ab

P, ^, nsinnxv r sin nxr dn cosKr
R (V 2j t)2_a,2 — / n

~ W YY~T. »?\ + "

K=^+i n v J n l--yr Ü^l-^-J
„, d _, sin KrT (»>) —-—- R (v) m — ¦

*W "K1"-^)
"

In T(v) und E(v) sind nur die ersten Terme einer Entwicklung
nach fallenden Potenzen von Kr angeschrieben. Weitere Terme
erhält man durch partielle Integration. Wir werden im Folgenden
Terme von der relativen Grössenordnung (Kr)-1 vernachlässigen
und beschränken uns damit für r auf den Bereich r^> 1/K. In
dieser Näherung können wir R vernachlässigen. (Ausgenommen
davon ist die Diskussion des Spezialfalles r 0, s.u.). Mit den
so gewonnenen Ausdrücken gehen wir in (2.3) ein und ersetzen
überall, ausser in der trigonometrischen Funktion v durch n.
Dann wird

n2 sin v(n —¦ xr)D Z — n2k cotg vn +
r sin vn

n2 sin^Tii — xr) kn2 eosv(n — xr)E X -\ ; 1 ; (O 1)
r* sm vn r sm vn

n2 sin v(n — xr)F Z — n2k cotg vn —
r sm vn

mit

Z =2n (K-A-\ix
2 n sin Kr

fe K + k^
2-lniTTfc.

Y
1

£2
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§ 4. Diskussion zweier Spezialfälle.

Bevor wir zur Berechnung der Kernkräfte übergehen, wollen
wir zwei Spezialfälle diskutieren.

1. r ~ 0. Bei sehr kleinem Abstand sind die vorstehenden
Formeln nicht gültig, denn wir haben darin Terme von der
relativen Grössenordnung (Kr)~l vernachlässigt. Wir gehen deshalb
von den exakten Formeln (2.4) aus und entwickeln darin nach
Potenzen von xr.

N M2
D= 2nx y — {2 — mn2x2r2+ ...}=2D0

n=xn«— v

3 ^ i.
F ~r2

Die Säkulargleichung (2.3) lautet im Limes r 0 :

{1 + 2 rj(l + co)D0}2{! + 2 rj(l ~ a>)D0}2 --= 0

Es gibt nur zwei e„s-Werte, welche von Null verschieden sind,
abei jeder zählt doppelt.

U(o,r,,K) -2x2^ n -r(enl + en2)
¦*-' (1 + x2n2)i

Man hätte dasselbe Resultat erhalten, wenn man mit einem
einzigen schweren Teilchen gerechnet, aber in der Hamiltonfunktion
rj durch 2 rj ersetzt hätte, wie man unmittelbar aus (2.2) entnimmt.
Bezeichnen wir die Selbstenergie eines schweren Teilchens mit
U(rj,k), so gilt folglich

U(o,n,K) =U(2rj,K)
2. r-> oo. In D und F verschwinden für diesen Grenzfall die

Terme mit dem Sinus, während E überhaupt verschwindet.
D F= DQ,E= 0

A={l + rj(l- co)Doy{l + n(l + co)D,Y (4.1)

Wir erhalten in diesem Fall also wiederum dieselben Wurzeln, wie
für ein einziges Teilchen, aber jede der Wurzeln zählt jetzt vierfach
statt zweifach

U(co,rj,K)=-Ax2%
n

(e„j + en2) 2U(rj,K)^-J (1 + xl nlf
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Zwei Teilchen, die unendlich weit entfernt sind, haben also die
doppelte Selbstenergie eines einzigen Teilchens. Setzen wir gemäss
(3.1) für

N n2
D0 2 n x y £Q Z — n2 fc cotg vn^i n2 — v2

so wird nach (4.1)

1 +*?(1=F a>)D0= 0

cotg vn--!-- 1 ]n±m2, + Z) (4.2)
n2 fc ^ (1 — co2) J

Wir setzen wieder v n + e und unterscheiden die beiden
Lösungen von (4.2) als ex und e2- Dann wird vermöge der Formel

s cotg ex n + cotg e« n
tg (ej + e2)n -~*A ^_^cotg Sj n cotg e2n — 1

tg (ex+e2) n=2rin2k =^——z-^—.; (4.3)ëVl 2J ' 1+2 Zr,-(Z2-k2ni)rì2k2
K '

Für die Gesamtenergie erhalten wir

U (œ,rj,k)= +2U(rj,k)
2 r kdk

'

1 —Zî?fe2
-^/(n^yarctg2"^ï+2z,-(z2-fe^),2fe2(4-4)

Die Formel (4.4) ist identisch mit der Formel (10) in der Arbeit
yon Cbitchfield und Lamb, wenn man in dieser rj durch — rj/2,

f (g) durch — 2 Z und v (p) durch die Funktion v (p) j 0 f Ä
ersetzt. Man sieht, dass die Verschiebung der Energieniveaux und
auch die Selbstenergie für sehr kleine rj proportional zu rj ist. In
der Störungstheorie entspricht diesem Term das Diagonalelement
der Störungsfunktion H.

§ 5. Potential bei schwacher Kopplung.

Zur Berechnung der Energie des Systems, bestehend aus
schweren Teilchen in endlichem Abstand und Elektronenfeld,
gehen wir aus von den Ausdrücken (3.1), welche wir in die Säkular-
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gleichung (2.3) einsetzen. Wenn wir noch mit sin2»» durchmultiplizieren,

lautet die Säkulargleichung

sin2^!! + rj(D+F) ±tjco(D—F) + rj2(l — co2)DF + rj2E2}
sin2 vn + 2 rj sin vn (Z sin vn — n2k cos vn)

n2
A 2 rjco sin vn sin v(n — xr)

r
jri jri /j

— rj2k2(Z sinvn — n2k cos vn)2+rj2—- k2 + rj2 sin 2 v(n — xr)
iy£ .y 3

ni n2
+ rj2 sin2 v (n — xr) + rj2Y2 sin2 vn+2Y rj2 —-~ sin vn sin v(n —xr)

kn2
+ 2 rj2Y sin vn cos v(n — xr) 0 (5.1)

r
Wir haben nur einen der Faktoren von (2.3) angeschrieben. Wir
setzen nun v n + e, dann geht e mit rj nach Null, und entwickeln
alles nach Potenzen von rj bis zur dritten Ordnung in rj. Wenn
wir nur bis zur zweiten Ordnung gingen, erhielten wir ein r-unab-
hängiges Potential, nämlich die Selbstenergie zweier unendlich
weit entfernter Teilchen (Spezialfall 2 in § 4). Wir vernachlässigen
xv gegen 1 und erhalten für (5.1)

e2A2 + eAj + A0= 0

Ä° ^4fc2 [k^i sin2 kr - fAAA
sin 2 kr + /^ - *)

Aj= — 2 v \rj n3k il + co — — rj2
n5k

n3k3 Z H — cos 2 fer

„ -, ^r.» -,
sin fer

sm 2 kr + Y cos kr

A2 n2 + 2 rj n2 Z -\ cos kr
\ r

2 r2 r \ kr
2

Eine Abschätzung der höhern Terme zeigt, dass diese
verschwindend sind, falls K2 v <^1 ist, was wir im folgenden immer
voraussetzen. Die Diskriminante dieser quadratischen Gleichung
ist immer positiv, die Wurzeln sind also reell. Wir benötigen nur
die Summe der beiden Wurzeln —AxfA2. Wegrn Zrj<^l können
wir in A g nach rj entwickeln. In dem so erhaltenen Ausdruck
nehmen wir nur die r-abhängigen Terme und summieren über
alle Lösungen der Säkulargleichung. Ferner können wir die
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Terme mit Y l~—5—) streichen. Sie geben nämlich zu kurz-

periodischen Schwankungen des Potentials Anlass, welche nur von
unserer scharfen Abschneidegrenze herrühren, und denen offenbar
keine physikalische Bedeutung zukommen kann. Wir können sie
durch eine Mitteilung über einen r-Bereich von der Grössenordnung

lfK beseitigen. Das so gemittelte Potential wird schliesslich
mittelst (2.5)

8n3r]2 r kdkV(r)=U(r,rj,K) +AlLAL fr2 J (i(i + fc2)*
0 v '

1 \ fe
1 + fe2 sin 2 kr + — cos 2 kr

2 r2 l r
Die vorkommenden Integrale lassen sich alle durch Differentiation
nach r aus dem einen ableiten

TT

cos 2kr dk in XT/n ,„HW (2 tr)I
o

(1 + fc2)* 2

wo H<0" die Hankel'sche Zylinderfunktion ist. Aus den bekannten
Differentialbeziehungen der Zylinderfunktionen folgt

V (r) 6 ttV 4r vi HS}) (2 ir) -— fl«1) (2 ir)\

Dieses Resultat stimmt mit dem störungsmässig berechneten
überein1). Die Bedingungen für die Gültigkeit dieser Näherung sind
7?fl2<l und Kr> 1.

§ 6. Potential bei starker Kopplung.

In diesem Paragraphen beschränken wir uns auf den Fall der
starken Kopplung, insbesondere auf den Grenzfall rj -> co. In
diesem Grenzfall können wir uns in der Säkulargleichung (2.3)
auf die Terme beschränken, welche rj2 enthalten. Das Resultat
der Rechnung ist dann das erste Glied einer Entwicklung nach
fallenden Potenzen von rj.

A rj2A\ + b2rj2 + bxrj+
Marshak, Phys. Rev. 57, 1101 (1940), Formel (7) erster Term. Es ist

nur zu beachten, dass rj in unserer Formel durch 2 r\ zu ersetzen ist, um
Übereinstimmung zu erhalten, da wir in Gleichung (2.1) einen Paktor 1/2 explizite
eingeführt haben.
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r2ò2und bx sind von derselben Grössenordnung. Unser erstes Glied
stellt also dann eine gute Näherung dar, wenn rj^> r2 ist.

A0= (1-Q2)DF + E2

{ir 27 4. \2 n* sin2v (n —xr)} _„UZ — n2k cotg vn)2 Aoo (1 — ß2)
[ r* smz vn J

n2 sinv(n — xr) kn2 cos v In — x r)\2
+ y + —i >

+ ^ a o
[ rù sm vn r sm vts J

Wir schreiben diese Gleichung

{Z sin vn — 7i2fc cos vn}2 —— sin2 v(n — xr)

1 f n2 fc n2 l2
+ ~~\Y sin vn + —— sin v(n — xr) ^ cos v in — xr) \= B (r, v)

fc'l r \
(6JL)

Der Term auf der linken Seite ist unabhängig von r, und
lim B(r,v) 0.
r—>-oo

Die Verschiebung des n-ten Eigenwertes bei unendlichem
Abstand der beiden Kerne ist v0= n + en und bestimmt sich aus

n2 fc
Z sin v0 n — n2 fe cos v0 n 0 tg v0 n — (6.2)

Z
Man hätte dasselbe auch aus der Formel (4.2) durch den
Grenzübergang 7?->-co erhalten können. Bei endlichem Abstand der
beiden Kerne betrachten wir B (r, v) als eine Störung und setzen
v v0 + ô. Wir entwickeln dann linke und rechte Seite von (6.1)
nach Potenzen von ô. Die linke Seite wird wegen (6.2) mit einem
quadratischen Term beginnen, wir gehen deshalb auf der rechten
Seite bis zum linearen Term.

(Z sin vn 71:2fe cos vn)2 ¦- Co2

B(r ,v)- So + ôBj +
C n2 (Z 2 + n*k2)

Bo _
n*

sin2 v0(n-- xr) +
1

{
fe2r4'

Bj-
n5

sin :2v0(n-- xr) +
2n

fc2 ri

{r2 Y sin v0n + n2 sin v0 (n — xr)
+ n2 kr cos v0(n—xr)}2 Q.[O.Ó)

rr 2 y sin Vq n+n2 sin vQ(n — x r)
+ n2kr cos v0(n — xr) }

X {r2Y cos v0n + n2 cos v0 (n — xr) —n2 kr sin v0(n — xv)}

ö_ Bx±(Bx2+AB0C)i
2C
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Damit ó <C 1 ist, müssen sowohl BJC als auch B0/C <^ 1 sein.
Für BJC ist das wegen Kr^> 1 für alle fc, welche nicht zu nahe
an K liegen erfüllt, denn für kleine fc ist die quadrierte geschweifte
Klammer rechterhand ~ fe2 und hebt den Faktor 1/fe2 im Limes
fc->0 weg. Das ist jedoch nicht der Fall für BJC. Durch die
Differentiation von B0 werden einige der Sinusfunktionen durch
Kosinusfunktionen ersetzt, so dass jetzt das Produkt der
geschweiften Klammern rechterhand nur noch ~ fc ist. Der
Ausdruck Bj/C ist deshalb nur noch klein, solange fe !> l/i?3r4. Der
Fehler, den wir machen, wenn wir trotzdem mit unserer Näherung
für è bis fe 0 weiterrechnen, ist aber höchstens von der Grössenordnung

1/Ker8 und kann neben dem Hauptterm vernachlässigt
werden. Wir benötigen wiederum nur die Summe der beiden Wurzeln

: ôj+ ö2= BJC.
Wenn wir mit den Ausdrücken (6.3) U(r,rj,K) ausrechnen,

so erhalten wir wieder kurzperiodische Schwankungen, welche von
der scharfen Abschneidegrenze herrühren. Wenn wir sie wieder
durch eine Mitteilung über einen r-Bereich von der Grössenordnung

~ IjK beseitigen, so hat das zur Folge, dass wir im Ausdruck
für ô die in Y linearen Terme streichen können. Ferner können
wir uns auf die kleinen fe-Werte beschränken (fc <^ K). Der Term
mit Y2, der noch stehen bleibt, gibt zu einem Potential langer
Reichweite Anlass. Innerhalb der Reichweite des Potentials der
beiden andern Terme ist er jedoch um eine Grössenordnung Kr
kleiner als dieses. Wir lassen ihn deshalb ebenfalls weg. In den
übrigbleibenden Termen können wir noch v0 durch n ersetzen,
denn die oben erwähnte Mitteilung über einen r-Bereich der Grösse

1/K hat zur Folge, dass nur aus dem Bereich fe <^ K ein wesentlicher

Beitrag zum Potential geliefert wird. Für diesen Bereich
ist aber gemäss (6.2) e„ <^ 1.

Die Summation über alle fe Werte ersetzen wir durch eine

Integration

U=A I dkk Bx

(1 + fc2)* C

Gemäss (6.3) wird daraus mit den oben erwähnten Vereinfachungen

Vif) U(r, rj, k) - -—j (cos 2 kr - -^—j ^-^
2K2rJHW(2ir)+^jH^(2ie)de
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V (r) stellt ein anziehendes Potential von der Reichweite 1 dar.
Der Gültigkeitsbereich der Näherung ist rj^>r2. V (r) strebt im
Limes K->- co nach Null. Wenn r > 1 ist, dann musste der
schwache Zusatzterm langer Reichweite mitberücksichtigt werden,
den wir weggelassen haben. Doch wird ihm kaum eine physikalische

Bedeutung zukommen.

§ 7. Diskussion der diskreten Zustände.

Wenn die Kopplung stark genug ist, dann können sich
diskrete Eigenwerte vom kontinuierlichen Spektrum sowohl am obern
als auch am untern Ende ablösen. Die Verschiebung, welche diese
diskreten Eigenwerte bei einer Abstandsänderung der beiden schweren

Teilchen erfahren, ist dann nicht mehr infinitesimal und kann
deshalb zum Potential einen nicht zu vernachlässigenden Beitrag
geben.

Wie im Folgenden gezeigt werden soll, ist dieser Beitrag für
die beiden von uns betrachteten Grenzfälle gerade Null. Das
braucht aber durchaus nicht für den allgemeinern Fall beliebiger rj
zuzutreffen.

Für das obere Ende (| Û [ < 1) kann man sofort sehen, dass
bei unendlich starker Kopplung keine diskreten Zustände auftreten
können. In der Gleichung (1 — Ü2)DF + E2=Q sind nämlich
beide Summanden positiv und auch für | ü | 1 wird E2 nicht
gleich Null. Es gibt also keine Lösung dieser Gleichung für | Q [ 5Ï 1.

Für endliche Werte des Kopplungsparameters kann man bei
unendlichem Abstand der beiden schweren Teilchen das diskrete
ü leicht berechnen, ü ist dann die Lösung der Gleichung

l+2r]D0+ij2(l-ü2)D0={l+rj(l +Q)DQ}{l + r1(l-Q)D0} 0

die man erhält, indem man in (2.3) r= oo setzt

(1 ±û)D0 - —
n

Diese Gleichung ist bei Gritchfield3) eingehend diskutiert. Sie
hat zwei Lösungen, welche mit wachsendem rj nach Yz 1 streben.
Eine genauere Analyse zeigt, dass bei festgehaltenem rj aber
abnehmendem Abstand der beiden Teilchen die beiden Lösungen
ebenfalls nach ± 1 streben.

Unterhalb des kontinuierlichen Spektrums (Û < — y4 + K2)

x) Critchfield, Phys. Rev. 59, 48 (1941).
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tritt für alle Werte von rj ein vierfach entarteter diskreter Eigenwert

auf, welcher im Grenzfalle r-> oo aus der Gleichung

{i + ,(i - Q)D0y{i + n(i + Q)DQy o

zu berechnen ist.
Q - (1 + L2)* L > K

*-»«/Ä^.(<*--H£§)

Für L^> K verhält sich der Ausdruck rechts wie 1/L. Daraus
folgt, dass für grosse rj L wie rj nach unendlich geht. Wir können
also für endliche rj eine Potenzreihe nach fallenden Potenzen von rj
ansetzen, deren erstes Glied proportional rj ist.

L(rj) axrj + a0 + Glieder mit l/rj
Um nun die r-Abhängigkeit der beiden Koeffizienten ax, a0

zu untersuchen, welche einen Zusatzterm zum Potential ergäbe,
gehen wir mit diesem Ansatz in die Säkulargleichung mit den
r-abhängigen Termen ein. Da wir den Grenzfall rj->- oo
untersuchen wollen, entwickeln wir in den Integralen alles nach fallenden

Potenzen von rj. Der höchste Term von A (2.3) ist dann

unabhängig von rj und ist, wenn wir Kr ^> 1 voraussetzen=1 -

9 al
2 71Daraus folgt, wenn wir ihn gleich Null setzen : ax —— K3.

Der Koeffizient von Ifrj ist proportional zu 1 — K3~-• Daraus

ergibt sich a0 ~-^=l.
Es wird somit für endlichen Abstand r

L in) «* —A. K3 ri + 1 + Glieder mit —

Die beiden Koeffizienten ax und a0 sind also r-unabhängig und
der diskrete Eigenwert unterhalb des Spektrums trägt im Limes
rj -> co(rj^> 1) nichts zum Potential bei.

Im Grenzfall der schwachen Kopplung (K2rj <^ 1) kann am
obern Ende des Spektrums (| ü | < 1) kein diskreter Eigenwert
auftreten, wie schon Critchfield in der oben zitierten Arbeit
gezeigt hat. Am untern Ende tritt zwar ein solcher auf, doch ist
seine Abweichung von K nur infinitesimal, nämlich von der
Grössenordnung e~llK'^, und er trägt deshalb nichts zum Potential
bei.
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§ 8. Berechnung der Streuung für K2 rj <^1.

Für schwache Kopplung lässt sich die Streuung entweder mittels

der Störungstheorie, oder durch strenge Lösung der
Wellengleichung im a:-Raum und nachherige Entwicklung nach Potenzen
von rj berechnen. Beide Methoden ergeben dasselbe Resultat.

In der Störungstheorie ist der Streuquerschnitt proportional
dem Matrixelement der Störungsfunktion.

JW (^)2 \(P\H'\Po)\2

fl' rjß (Es ist jetzt nur ein schweres Teilchen anwesend.)

|(p|H'|Po)|a=i2 \(Xp\H'\X0,p0)\2

p0 ist der Anfangsimpuls und p der Impuls nach der Streuung.
X, X.Q numeriert die beiden Spinzustände

(x, p | fl' | xoPo) o*w (p) ß «w (p0) | p - p01 < k
darin sind a(A) (p) die Amplituden der ebenen Welle mit dem
Impuls p und dem Spin X.

Es ist also

\(p\H'\Po) \2= |(E (o*W (p) ßaW (p0)) (a*W (p0) /Jo» (p))

isp{F(p)/S,(p„)/S}
worin

F=i/l+ («,P) + /»'
2

CO

Die Ausrechnung ist elementar und ergibt direkt

\27V l-^2
worin # den Streuwinkel und /? die Geschwindigkeit darstellt.

Die Streuung ist nach der „exakten" Methode von Weinberg
gerechnet worden1). Sein Resultat lautet in unserer Bezeichnung

_ / y X8 fe2(l-cos 2-|-Wl + fc2(hfcF|2-2»?/)
\2 n j |1 + 2rjF-\r)kF\2\2

mit
K r, 2k + nit rI no2n2 An2

und geht für K2rj <^ 1 in die Formel (7.1) über.

Weinberg, Phys. Rev. 59, 776 (1941).
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Der Gültigkeitsbereich der Störungsrechnung ist somit für
Kernkräfte und Streuung K2rj <^ 1.

Herr Prof. Wentzel hat durch seine unermüdliche Bereitschaft

zu Diskussionen und Ratschlägen diese Arbeit wesentlich
gefördert. Hirn sei an dieser Stelle herzlich gedankt.

Physikalisches Institut der E.T.H., Zürich.
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