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Zur Paartheorie der Kernkrifte
von Gregor Wentzel.
(12. I. 1942.)

Ein vereinfachtes Verfahren zur exakten Losung der Eigenwertprobleme der
Paartheorien wird angegeben. In der skalaren Paartheorie wird das Verfahren an-
gewendet zur Berechnung der Selbstenergie eines Protons, der Krafte zwischen
zwei Protonen, und der Volumenergie eines Protonen-Kristallgitters. Die Ergeb-
nisse entsprechen qualitativ den Anforderungen der phinomenologischen Kern-
theorie, wenn man die in den Kopplungsansatz der Feldtheorie eingehende Ab-
schneideldnge grossenordnungsmaéssig mit der Kraftreichweite der phianomenolo-
gischen Theorie (~ 10~1% cm) identifiziert, wahrend die Comptonwellenlinge der
Feldteilchen auch grésser angenommen werden kann.

In den Paartheorien!) bestimmen sich die Eigenwerte der
Energie von Kernpartikeln und Feld bekanntlich durch die Eigen-
werte einer quadratischen Form, und daher lassen sich solche Pro-
bleme in exakter Weise — d.h. ohne Verwendung der Stérungs-
methode — lésen. WieNER, CriTcHFIELD und TELLER?), denen
man diese Bemerkung verdankt, berechneten bereits die Selbst-
energie, die ein ruhendes (unendlich schweres) Proton oder Neutron
vermoge seiner Wechselwirkung mit dem Paarfelde besitzt, ferner
die Selbstenergie von mehreren Protonen am gleichen Ort, woraus
sich ein Hinweis auf den Sattigungscharakter der betreffenden
Kernkrifte ergab. Betrachtet man mehrere ruhende Protonen an
verschiedenen Orten, so héangt die Selbstenergie von den Protonen-
koordinaten ab, d.h. man erhélt die potentielle Energie der stati-
schen Kernkrifte als Ortsfunktion®). In einer fritheren Arbeit des
Verfassers?) (im folgenden als I zitiert) wurde gezeigt, wie man
die Abstandsabhiangigkeit der Zweikorperkréfte berechnen kann,
ein Problem, das z.B.im Hinblick auf die Proton-Proton-Streuung
von Interesse ist. In der vorliegenden Arbeit wird das Rechenver-

1) Wir denken in erster Linie an die ,,Elektronpaar-Theorie‘, die zuerst von
Gamow und TeLLER (Phys. Rev. 51, 289, 1937) und gleichzeitig vom Verfasser
(Helv. Phys. Acta 10, 107, 1937) vorgeschlagen wurde, sodann an die ,,Mesonpaar-
Theorie“ von MarsHAK und WEIsskopF (Phys. Rev. 57, 1101, 1940 und 59, 130,
1941).

) Phys. Rev. 56, 530, 1939.

3) CrrrcHFIELD und Lame, Phys. Rev. 58, 46, 1940.

%) ZS.{i. Phys. 118, 277, 1941. Vgl. auch JavcH, Helv. Phys. Acta 15, 175,
1942.
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fahren vereinfacht und verallgemeinert. Um auch tiber die Energie
eines Kerns von hohem Atomgewicht Auskunft zu erhalten, wird
ferner das Problem sehr vieler Protonen in Kristallgitter-Anord-
nung behandelt.

Ob der Spin der Feldpartikeln ganz- oder halbzahlig gewihlt
wird, ist weder fiir den Gang der Rechnung noch fiir das quali-
tative Ergebnis entscheidend. Hat man ganzzahligen Spin und
Bose-Einstein-Statistik, so betrachtet man die Energie der Null-
punktsschwingungen des Feldes und ihre Beeinflussung durch die
anwesenden Kernpartikeln. Bei halbzahligem Spin und Quanti-
sierung nach dem Pauli-Prinzip andererseits ist die Nullpunkts-
energie durch die Energiewerte der besetzten Einzelzustinde nega-
tiver Energie gegeben, und diese werden wieder durch die an-
wesenden Protonen beeinflusst. In Anbetracht dieser Analogie
haben wir uns in der fritheren Arbeit (I) damit begntigt, das Rechen-
verfahren am Beispiel des skalaren Feldes (Spin 0) zu erlautern,
das natiirlich den einfachsten Fall darstellt. Inzwischen hat Javcn
(1.c.) das Vertahren auf die Elektronpaartheorie (Spin 1) ange-
wendet und bestétigt, dass die Situation, abgesehen von den Kom-
plikationen, die durch die grossere Zahl der Freiheitsgrade bedingt
sind, die gleiche ist (bei Wahl eines Wechselwirkungsansatzes, der
den Protonspin nicht enthélt). Wir beschrianken uns daher auch
hier einfachheitshalber wieder auf das Beispiel der skalaren Paar-
theorie.

Wir fithren also ein Pauli-Weisskopf’sches skalares komplexes
Feld!) » ein mit der Vakuum-Hamiltonfunktion

HO“de{JI*?E+Tp (u2 — A)y};

7, 7* bedeuten die zu v, y* kanonisch konjugierten Wellenfunk-
tionen, und die Konstante g bestimmt die Ruhmasse der Feld-
teilchen (die Lichtgeschwindigkeit ist = 1 gesetzt). Das Feld sei
raumlich periodisch, und zwar sei der Periodizitétsbereich ein Kubus
vom Volumen V = L3, Demgemaéss setzen wir
— 1 ifx 1 —zfx
T/—; qe€ ’ ’\/V S‘ Pre

der f-Raum ist ein kubisches Gitter mit der Gitterkonstante 2 7/L.
Bekanntlich wird dann

HO:;{P:PFFQ’;ZQ:%}, wo w§ = 2+]f|2

1) Pavrr und WEeisskorF, Helv. Phys. Acta 7, 709, 1934.
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Die Protonen, mit denen das y-Feld gekoppelt werden soll,
betrachten wir als unendlich schwer und ruhend ; ihre Ortsvektoren
seten ¥, (s=1,2,...,Z). Emn der Paartheorie entsprechender
Wechselwirkungsansatz Iautet:

A
AEW (xs) v (x,) 7 QEQf’Ze%(E_f

denn dieser Hamilton-Term beschrelbt, wenn er a‘ls kleine Stérung
betrachtet wird, Paar-Erzeugungs und -Vernichtungsprozesse so-
wie Streuprozesse, wie die Formeln der Pauli-Weisskopf’schen
Theorie unmittelbar erkennen lassen. A ist ein Kopplungspara-
meter von der Dimension einer Lénge; wir wihlen

A >0,

damit der positiv-definite Charakter der Hamiltonfunktion garan-
tiert 1stl). Wir miissen aber den obigen Wechselwirkungsansatz,
der der Nahewirkungsvorstellung entspricht, noch ab#éndern im
Sinne einer ,,Abschneidung*‘ des | £ |-Spektrums, um endliche Kr-
gebnisse zu erhalten. Dabei wihlen wir dasselbe Abschneidever-
fahren wie WieNER, CrircaFIELD und TeELrer: iIn H werde v (&)

durch einen Mittelwert f dXf(|x|)w(x -+ x5 ersetzt. Die -Raum-
Darstellung von H' ist-dann von der Form

A v o oy
— t—1
_V;!gfgf’QfQE’Ze“ i,

s=1

2

o 17 21 gque@f*s
wo fir die Gewichtsfunktion g gilt:

B (1 fur |84
gf“g(m)”{o fir |8]> 4
(A= Abschneldela,nge)

In der Hamiltonfunktion H = H® + H’ fu_hren wir Normal-
koordinaten ein:

4= fE Gy Qp, Pr= ; ayy Py,
Za’:f’ e = Z“?'t Opry = Oppr
- AR Pf+92Qf0f}

Qf, P, sind natiirlich Lanombche Variable mit den bekannten Ver-
tauschungsrelationen. Die Transformationskoeffizienten azy be-

1) Vgl. I, Fussnote 1, S. 284.
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stimmen sich in bekannter Weise durch die Liésungen des linearen
Gleichungssystems:

y <
(22 — 0?) q 7a 9?;95'%' Z ¢t=0% = 0
4 s=1

die zugehorige Sakulargleichung lautet:

Z
A(0% = Det | (92— 0f) by — - g* g 3 @D | = 0. (1)
V 9z gf 21

s=1

Wir denken uns die Wurzeln 2?% dieser Gleiéhung bestimmt (als
Funktionen der r;) und numerieren sie wieder mit einem Index ¢

(etwa so, dass hm o ¢ = o). Mit den £ kennt man sogleich die
Eigenwerte der Energle H:

;hgf (Nf + N7 + 1)
(Nf, Nf = Anzahlen der positiven bzw. negativen Feldteilchen in

den KEinzelzustinden f), und damit insbesondere die hier inter-
essierende Nullpunktsenergie % >, £;. Ihren Uberschuss tber die
;

Nullpunktsenergie des Vakuumfeldes nennen wir E:
E=h; (Qf—ﬂ)f).

Die Energie E, die von den Protonenkoordinaten x, abhéngt, ent-
halt ausser der gesuchten Energie der Kernkriifte noch die Selbst-
energie der Z Protonen. Sei FE (oo) der Wert von E bel paarweise
unendlichen Abstinden der Protonen, so gibt

U=FE —E(w)

das Potential der statischen Krifte, welche die Protonen durch
Vermittlung des y-Feldes aufeinander ausiiben.

Die Berechnung der einzelnen Eigenwerte £¢ kann man auf
folgende Weise umgehen: Indem wir

2=
setzen, schreiben wir die Determinante (1) in der Form:
A0 = (@ — ).
Im Limes 4 = 0 (Vakuumfeld) geht A(¢) iiber in
20(0) = T (¢ — ).
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Wir bilden nun die rational-gebrochene Funktion

P =50 @)

deren Nullstellen und Pole in der komplexen (-Ebene alle auf die
positiv-reelle {-Achse fallen. Ferner sei f(Z) eine IPunktion, die
sich in der Umgebung dieser positiv-reellen Achse regulir verhélt.
Dann gilt offenbar:

2AF28) —f(of)} ”P‘” 1) Z(c-—-lrzf_zjwe)
Z%E_ng;-f(C)d]Oi;p@,

wo der Integrationsweg im positiven Sinne um alle Nullstellen
und Pole von ¢({) herumfiihrt (vgl. die Figur)?). Bei einem Um-

A
(-Ebene
w? ]
S e
o? @2
>~
o

lauf um diese Kurve kehrt log ¢ (£) zum Ausgangswert zurtick, da
gleich viele Nullstellen (£2¢) wie Pole (w?) im Innern liegen; daher
kommt durch partielle Integration:

Z{f (08) — f(of)} = —gor b L ['(D) Tog 9(2).
Mit f(¢) =/¢ wird also
B

+

L d¢

i P g v ©- )
(Bei einer Verschiebung des Integrationsweges ist natiirlich auf
den Verzweigungspunkt { = 0 zu achten.) Fir die Berechnung der
Energie E und des Potentials U ist also die Kenntnis der £2;%)
nicht erforderlich. Die Formel (3) erméglicht auch unmittelbar
den Grenziibergang zum kontinuierlichen f-Raum (V — oo), wie
die folgenden Beispiele zeigen werden.

) Wenn g, oberhalb eines gewissen | t |-Wertes nullgesetzt wird, so liegen

alle Nullstellen und Pole von ¢ im Endlichen.
%) Thre Bestimmung machte den Hauptinhalt der friiheren Arbeiten aus.
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1. Ein einziges Proton.

Fir Z = 1 lautet die Sikulardeterminante (1), wenn man den
Koordinatenursprung einfachheitshalber an den Ort des Protons legt
(r;=0):

A
A(L) = Det | ( — wf) dep — — 0 9

V
- Y | 9v
| —IEY(C 8 ‘ ZC—“’E'}
Fir ¢(¢) erhdlt man also in diesem Falle die Funktion
2
e — | ) I 4
n() =15 7% @
T Limes ¥V - oo geht die £-Summe in ein #-Raum-Integral tiber:
lim k2 |g(k)|?
=1—12- -4 dk .
V— oo ¢1(8) = ”f F— (u2+k?)

Die Nullstellen und Pole von 991(C) fallen alle auf die reell-positive
C-Achse, und zwar auf den Abschnitt ¢ = u? (denn fiir reelles
¢ < p? st ¢, > 0); wir setzen daher
f=pr+ &+

und fithren das Integral (3) in der &#-Ebene in einer Schleife um
die positive &-Achse herum, wobei wir die Schleife dieser Achse
unbegrenzt annédhern (£ =0, n—> 4 0). Dann erhédlt man fir E
den Wert:

h , F i_é:____ log 7+ () ,
4375?/0 }r/,uz-{-ff p_(&)

1:

WO
lim
P (8) =, _ 4 o PP+ E+i7). (5)
¢
Im Limes V = oo bilden wir zunichst:
g. (&) +o-(5 _— kzlg(k )2
g =wll) - Wfdk 6)
(Hauptwert)
Dann findet man (wir setzen & = x%2):
_ A
P20t = Bet) 8 x| g(9 ]2 )
also
2 2
logM—Q@arct _,M
- (%%) S dag(xy
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Somit erhalten wir fiir die Selbstenergie eines Protons den Wert:

w . ' 2 |
By = jif———d% *_ arc tg Aulgld I* . (8)
7 _
0

Dieses Ergebnis stimmt iiberein mit demjenigen, das man auf
Grund des Rechenverfahrens von Wriener, CrircHFIELD und
TerLer (l.c.) erhilt (Ersetzung des kontinuierlichen | |-Spek-

trums durch eine Folge dquidistanter Punkte und Berechnung
der Q).

2. Zwei Protonen.

Im Falle Z = 2 erhilt man durch Ausrechnung der Determi-
nante (1) fur dle Funktion ¢({) (2): &

22 | g¢ |2 |
¥V & £ — if
+_(jL)2 | g% g¢ |2 (1 —cos (8 —PF) (x1— 1))
V7] (§— o) — wf)
d.h. bei Verwendung der durch (4) definierten Funktion ¢(¢):

7a(8) = [P (0) (1}/) ;lgflz;ggte; )(f(gj_f’zg)l—w.

Gehen wir sogleich zur Grenze V = oo iiber, so kénnen wir in den
f- und ¥'-Raum-Integralen die Richtungsintegrationen unmittelbar
ausfithren und erhalten:

®2(0) = [@1(O) 2 —[x(r, O)]%

Wz(@j =1—

2

WO
A 7o k2| g(k)|? sinkr
; €)= dk
z(r:0) 2n20f . — o kr
g k| g(k)|? et
; 9
| 412 fdk k2— (& —p®’ >

hier bedeutet 7==|r;—1,| den Abstand der beiden Protonen.
Lésst man diesen Abstand gegen co gehen, so wird offenbar y = 0,
also @, = @2, und man erhilt nach (3) den Energiewert:

Ey(o0) = 2 Ky,

d.h. die Energie zweier Protonen in unendlichem Abstand ist das
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doppelte der Selbstenergie des einzelnen Protons. Fiir das Poten-
tial U der Zweikorperkraft kommt hiermit:

0s(r)= Ba(r) — Buer) = — 7= f Ctogft —[ LI 1o

Fir die weitere Rechnung wollen wir die Gewichtsfunktion
| ¢ |2 speziell wihlen:

o 1.
| g(k) | 1_}_%- (11)

Dann ldsst sich y (9) durch Verschiebung des k-Integrationsweges
in die positiv-imaginire Halbebene leicht berechnen. Man findet,

mit { = u? + x2%: ‘
etixr __ p—Ar

dpt by =— gy T )

dabei gilt in e***” das obere oder untere Vorzeichen, je nachdem
ob » einen positiven oder negativen Imaginérteil hat. Fihren wir
in (10) » als Integrationsvariable ein, so kénnen wir den Integra-
tionsweg beiderseits der positiv-reellen x-Achse entlang fiihren;
unter Verwendung der durch (5) definierten Funktionen ¢, ¢_
kénnen wir dann schreiben:

% _[Alg [ 1 (rixr _ ,—ar ]2

U, (1) :27?, ' dx-xn logl [45: Py (x%) T (e e~ 47) (18)
- 7T 24 52 _[Alg(=)? L e A |2
5 Ve 1 [4arq9_(x2) - (e e )]

Fir ¢, , ¢_ erhdlt man bei Verwendung der Gewichtsfunktion (11)
und auf Grund von (6) und (7) (oder auch direkt durch komplexe
Integration?)):

P2 () =1+ | g.6) 2 (4 £ i), (14

Bei der Diskussion der Formel (13) beschrinken wir uns auf
grosse r-Werte: der Protonen-Abstand r sei gross gegen die Ab-
schneidelange 4-'. Dann sind die Terme ~ e~47 vernachldssigbhar.
Da ferner nach (14)

4| gy ()| >2[g (%) |*- 4
1st das Argument des Logarithmus im Integranden in (13) nahezu

) Bsgilt: g, () = 1— 5 (r, w2 + 2).
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= 1, namlich bis auf Terme der Ordnung (4r)~; man kann also
den Logarithmus entwickeln:

Uz("’)=_(4nT) n%f]/z%+%y2 () |4

Q2inr o—2i%r )
iy + e v .
([% ) [o- (=9
Zu diesem Fourier-Integral kann fiir » > 4-1 nur der Integrations-

bereich % <€ 4 einen wesentlichen Beitrag liefern; in diesem Be-
reich ist aber | g(x) |21 und nach (14)

@ (xz)glnLL'A.
4n

Somit wird

b 1 1 Fdx-%sin2ur

o
1 1

S T H® 2iu7).
DL hopdn 2 ,,.21%[(11 (20 p
(5 +4)

Die hier auftretende Hankel’sche Funktion hat folgendes asympto-
tische Verhalten:

Uy (1) = — (1—--")

t (15)

l* Lot et
HY 2ipr)=

=20

l — ! I i 0 >> M—l
V7 p =X

U, (r) entspricht einer anziehenden Kraft, die eine ,,Reichweite®

der Grossenordnung p—?! besitzt. Die Formel (15) stimmt tiberein

mit der Formel (30) der fritheren Arbeit (I)!). Im Grenzfalle

,,schwacher Kopplung*‘, d.h. fir A€4x 4-1, wird

UZ(T)Q;tz.,h_“.i HO 2ip0),

32x72 2

1) Zu beachten ist die etwas andere Bedeutung von A und A: Der Parameter
A der gegenwirtigen Arbeit wurde in I mit A’ bezeichnet und gleich 4+(2 7)2 gesetzt.
Ferner wurde in I das Impulsspektrum ,,scharf“ abgeschnitten:
g = {1 fir [£|< 4,
E 0 fir |f]| > 4,
wahrend hier die Abschneidevorschrift (11) verwendet wurde. — Die in I, S. 290
und im Anhang erwidhnten schwachen Krifte grosser Reichweite sind offenbar

durch die scharfe Abschneidung bedingt. Fiir den Hauptterm (15) dagegen ist
die Wahl der Gewichtsfunktion ¢ ohne Bedeutung.



120 Gregor Wentzel.

in Ubereinstimmung mit der stérungstheoretischen Rechnung
(zweite Naherung; vgl. I, Anhang). Bei stiarkerer Kopplung
(A 47 A-1) liefert die exakte Rechnung die gleiche r-Abhéngig-
keit des Potentials wie die Stérungsmethode (fiir » > 4-1), aber
fir den konstanten Faktor ergibt sich ein kleinerer Wert. Liisst
man den Abschneide-Impuls 4 gegen oo gehen, so verschwindet
das Potential U (fiir r+ 0)%).

Fiir Protonabstiande r ~ A-1 lidsst sich die Formel (13) kaum
vereinfachen. Im Grenzfalle r <€ A-1 dagegen ist das Ergebms
wieder einfach, da in H’

i =D (1—%) o ]

gesetzt werden kann. In dieser Ndherung erhélt man dasselbe
Eigenwertproblem wie bei Anwesenheit nur eines Protons, wobei
lediglich 4 durch 2 4 ersetzt ist. Es ist also

Ey(r,2)  E;(22) fir r<&£ 47
folglich
Uy,(r) @ E,(24) —2E,(4) fiir r<£ 41,

3. Protonen-Gitter.

Der Periodizitatskubus V = L2 enthalte Z = N?® Protonen in
kubischer Gitteranordnung, d.h. die Protonenkoordinaten ., seien
ganze Vielfache der Gitterkonstanten a = L/N. Die in der Siku-
lardeterminante (1) auftretende Summe

Z
2 ot /=B x5
s=1

1st dann nur von Null verschieden, wenn ¥ —#t ein Vektor des
reziproken Gitters 1st.  Bezeichnen wir dlese Vektoren mit

b, (bh,, ... hz) , so wird also

1 Z . a3 wenn ¥ —t=20
L P8 x5 _ ’ & 16
V Z ¢ {0 sonst. (16)

In jeder Zelle des reziproken Gitters (Volumen (27/a)3) liegen
(L/a)® = Z Punkte des t-Gitters; die Wechselwirkung H’ koppelt .
nur solche f-Punkte miteinander, die in verschiedenen Zellen des
reziproken Gitters an #dquivalenten Stellen liegen. Infolgedessen

1) Wie in I, § 9 bemerkt wurde, verschwindet im Limes 4 —» oo auch
die Streuung der Feldpartikeln an einem Proton (auf Grund des gleichen Wechsel-
wirkungsansatzes H’).
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zerfallt die Sakulardetermmante (1) in ein Produkt von Z Deter-
minanten der Form :

A
Ay=Det | (22— Wfyp, ) Opnr — PE} gf—l—bh 9f+bh,

ED wird also

log 4 = >\ log 4,
- [f]
wo die Summe nur iiber die f-Punkte innerhalb einer Zelle des
reziproken Gitters zu erstrecken ist. Jede einzelne Determinante
Ay 15t von derselben Struktur wie die oben behandelte Determi-
nante 4 beim Problem eines einzelnen Protons; daher erhdlt man

fir die Funktion ¢ () (2) (vgl. (4)):
. log ¢(Z) = EIOg ¢ (2)

2
wo g () = Z Cl _g_f+£’;+b
R

(17)

Nach (16) kann man hierfiir auch schrelben

Pra (C =1— Z e—zfxsz 8'r,f ¥, IV I 9y
t

(dabei lauft die ¢ -S_umme wieder iiber den ganzen ¢-Raum). In
der Summe iiber die Gitterpunkte s spalten wir den Term ,,s = 1
ab, der dem Proton im Koordinatenursprung entspricht (x; = 0);
durch Vergleich mit (4) folgt

, 2
om(8) = 1(C Ee—ﬁxszerﬁ e, |9v]® I

(in dieser S-Summél fehlt also der Term s=1). Wir schreiben
hierfiir abkiirzend: |

i Z . . /
o (8) = @1(8) — D) €% 1 (x5, 0), (18)
_ §=2 ’
wo x die folgende Bedeutung hat:
| =L 10 - a9)
Im Limes V = oo (d.h. Z = o0) wird y(xr, ) mit der durch (9)

definierten Funktlon 2(| x|, ) identisch. Setzt man (18) m (17)
und (3) e, 50 kommt fir E: -

= — o 7 ZIOg{% O = 3 et r 0 @)

[t]
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E, gibt fiir das unendliche Kristallgitter den Energieinhalt des
Bereichs V an, d.h. E,/V ist die Dichte der Volumenergie des
Kiristalls.

Wir wollen untersuchen, wie £, von der Gitterkonstanten a
abhéngt. Dabel wollen wir das Periodizitédtsvolumen V propor-
tional zu a® variieren lassen, so dass Z, die Anzahl der Protonen
in V, konstant bleibt. Im Limes a—=> oo (| x| > oo fiir s+ 1) ver-
schwindet y (s, {) (und zwar quasi-exponentiell fiir nicht-reelle ¢,
vgl. (12)); nach (20) wird also (da die Summe tber die f-Punkte
in einer Zelle des reziproken Gitters Z Terme enthilt):

B, (c0) = Z - E.

Mit zunehmender Gitterkonstante strebt also die Volumenergie
gegen die Summe der Selbstenerglen der einzelnen Protonen. Fir
endliches a wird

Uz (a) = Eg (@) — (OO):
i & ity X (s §)
L 1 Vhky Lo WORE O | 21
A [;] og{ ,;:'ge 991(5)-} 21

U, stellt die potentielle Energle der Kernkrafte pro Volumen V dar.

Sel @ zunéchst so gross, dass der Logarithmus in (21) nach
Potenzen von y/¢,; entwickelt werden kann. Der lineare Term
dieser Entwicklung gibt keinen Beitrag zu U,, da

Deitt =0  fir x,40 (s=2 bis Z).
(tl
Im quadratischen Term steht der Faktor

Z fir x,+ 1., = 0 (mod L)Y,

e~ Tt (s + x5) =
0 sonst.

[f]
Der grosste Term der Entwicklung lautet also:

_ dg 5 (s Ox(—1s 0
Uz =5 Z e 95 [ OF

Lassen wir nun Z und damit V = Za® gegen oo gehen, so geht
% (Xs, £), wie oben bemerkt wurde, in die durch (9) definierte Funk-
tion x(| xs|, &) tiber, und damit wird

__Sw h 95 dg [X(lxslyé)}z
=1 4ni VC ¢1(£)
1) ,,x = 0 (mod L) soll heissen: die Komponenteh von x sind ganze Viel-
fache von L = V'/s,
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Andererseits erhielten wir aber fiir das Potential der Zweikdrper-
krafte in der gleichen Ndherung (r >>A4-!; vgl. (10) mit ent-
wickeltem Logarithmus):

Uy) = h S/‘dc[ x(r, C)r,

]/C @1(8)
d.h. es gilt asymptotisch fiir grosse Z:
Uz = 9 2 Us(|xs]) -
s>1

In dieser Naherung ist also Uy gleich der potentiellen Energie
der Zweikérperkrifte aller Paare pro Volumen V.

Bei weiterer Entwicklung des Logarithmus in (21) treten
Terme hoéherer Ordnung in yx/@, auf, die Mehrkérperkriften ent-
sprechen. Beispielsweise enthalt U, die folgenden Terme dritter
Ordnung:

2 ﬁ dé ya 1’«;, X()fs';é')%(l‘s", C)
3 47’5 L4 (91 (C )J3 ,
wo die Summe iiber alle mcht-verschwindenden Gittervektoren
Xs, Xer» Xor Z erstrecken ist, fiir die
Xs ¥ ) 9% g % Xy = 0 (mOd L) 1)

ist. Analog ist der Bau der Terme hoherer Ordnung. Die so er-
haltene Entwicklung von Uy nach n-Koérperkriften hat also fol-
gendes Aussehen:

Upm 230 A 3 3 ) Sy Un G B Ba) |

8$1>1 8.1 Sp>1

* (22)
1, wenn x, +x,, + "+, = 0 (mod L)),

0 sonst.

WO O, o ... gn:{

Ist die Gitterkonstante a gross gegen die Abschneidelinge A-1,
so kann man die n-Kérperpotentiale U, ebenso abschatzen, wie
dies oben speziell fiir U, geschah (vgl. die Formeln (11) bis (15)).
Man findet:

1
I]n(xslsrsgs"': xsn);(—‘ 1)“ L hu i o
(7-+4)
1 . (23)
Tl P Gl I+ r DT
(fiir @ A-1, Z > o).
1) Vgl. die letzte Fussnote.
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Ein Term U,(x,, -+, ¥;,) 1st mindestens um emen KFaktor der
Ordnung (4 a)~! kleiner als U,_,(x,, ", x,,_,); andererseits ist
aber die Anzahl der n-Korper-Terme in der Summe (22) grosser
als diejenige der (n —1)-Korper-Terme. Falls @ nicht nur gross
gegen A-1, sondern auch gross gegen

.. 4:7'5 _]/3
e (T + A)

1st, so konvergiert die n-Summe (22) rasch, d. h. die Zweikorper-
kréafte tberwiegen stark.

Fiir den anderen Grenzfall, @ - 0, behaupten wir, dass E,(0)
verschwindet, d.h. dass fir sehr kleine a-Werte gilt:

Uy(a)~ —E,(o0) = —ZE, (tir a>0,Z>o00). (24)

Bei der Bindung der Protonen in einem dicht gepackten Kristall
wird also gerade deren Selbstenergie frei.

Zum Beweise gehen wir auf die Formel (17) zuriick. Um zu
einer einfachen Abschétzung von E; zu gelangen wéhlen wir die
Gewichtsfunktion :

1, wenn [t| < B,
e = 0, wenn |f| > B (25)

(B ~ A), d.h. wir schneiden das Impulsspektrum scharf ab. (Man
iiberlegt sich leicht, dass das Ergebnis von der Art der Abschnei-
dung nicht wesentlich abhéngt.) Es sei daran erinnert, dass in
(17) nur die g-Punkte innerhalb einer Zelle des reziproken Gitters
gemeint sind; fir diese Zelle, die bisher beliebig wihlbar war,
nehmen wir jetzt speziell die den Ursprung enthaltende Zelle:

Jt 7T
“—“"<_—:/EZ'<—".
a a

Nun se1 B < z/a angenommen (also a < 4-1); dann sind i (17)
nach (25) alle geyy, = 0 tiir b, 40, d.h. es bleibt in der Z nur (hoch-
stens) ewn Summenterm stehen :

A |g]?

a® [ — wf ’

oyl =1~

Diese Funktion von { hat (beil festem t) nur ewme Nullstelle:

|9f|2

C:wt—f— e

Q2.

Iil
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Die Energie E wird hiermit nach (8) und (17):

| ha?® [ A
E, (a) = h% (2 — ) =7 'Wé/dk . kz{]/wf‘“ + ag ﬁ'wf}_ (26)
Fir a € 4's (u? + B?) " wird hieraus:

By (a)~Z -~ h B /4d®, ()

6 n?

und dies geht mit abnehmendem a gegen \Tull wie behauptet
wurde. Wahlt man etwa A ~ B~ A~lund p = A so wird nach
(27) FZ( )L Z hA fir a < A~ 1, wahrend nach (8) Iy ~hA ist;
also: : | R ‘
Ey(0) LZE,, Ug(a)=—ZE, fir a <€ 4-1,

Die obigen Rechnungen lassen sich natiirlich ebenso leicht fiir
den nicht-kubischen Kristall ausfithren. Auch die Ubertragung in
die Elektronpaartheorie (Feldteilehen mit, Spin %) dﬁrfte keirie
Schwierigkeiten machen.

Es erhebt sich nun die Frage, wie welt man hoffen darf eine
solche Paartheorie zur Erklirung der wirklichen Kernkrifte heran-
ziehen zu konnen. Nach den oblgen Ergebnissen fir die skalare
Paartheorie zu urteilen, scheint diese Moglichkeit zu bestehen,
wenn man die Linge, die man gewdhnlich als die Reichweite der
Kernkrdifte interpretiert und die fiir den Abstand benachbarter Kern-
tetlchen massgebend ist, als im wesentlichen durch die Abschneide-
linge A= bestimmt betrachtet. Denn diese trennt ja die a-Gebiete
voneinander, in denen nach der Theorie die Volumenergie quali-
tativ durch (22), (28) bzw. durch (24) gegeben ist; im ersteren
Falle (a > 4-1) handelt es sich um Zwei- und Mehrkorperkriifte
ohne Sattigungscharakter, die mit wachsendem a stark abnehmen,
wihrend andererseits fiir kleine a-Werte nach (24) eine Abs#tti-
gung eintritt, wobei die Bindungsenergie pro Kernteilchen den
Maximalwert E, erreicht. Nimmt man an, dass in einem realen
Kern die Abhiéngigkeit der potentiellen Energie von a eine &hn-
liche ist, wenn unter a der mittlere Abstand benachbarter Kern-
partikeln verstanden wird, und dass die kinetische Energie wie
iiblich aus einem Fermi-Dirac-Gas-Modell abgeschiitzt werden
darfl), so ist zu erwarten, dass sich im Grundzustand des Kerns
ein Wert von a einstellt, der grossenordnungsméssig von 4A~1 nicht

1) Vgl. etwa BETHE und BAcHER, Rev. of Mod. Ph}rs. 8, 82, 1936, § 25.
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sehr verschieden sein kann, so dass wir mit Riicksicht auf die Er-
fahrung 4-! ~10-1% cm anzusetzen haben. Dabei hat die poten-
tielle Energie pro Kernteilchen die Gréssenordnung — E;; wéahlt
man etwa A ~ A-1(< p~1), so wird nach (8) E; ~h 4, also £; ~100
MeV, in Ubereinstimmung mit den iiblichen Ansitzen fiir das sta-
tistische Kernmodell.

Im Gegensatz zum Abschneideimpuls wiirde der Masse hu
der Feldteilchen in einer solchen Theorie nur eine sekunddre Be-
deutung zukommen. Beispielsweise konnte man hu sehr klein,
etwa von der Grossenordnung der Elektronenmasse annehmen,
ohne dass dies die Theorie der schweren Kerne qualitativ wesentlich
andern wiirde. Zwar ist die ,,Reichweite’" der Zwel- und Mehr-
korperkréafte nach Obigem durch p~! bestimmt, insofern als z. B.
U,(r) tir » <€ p~! wie r—2 variiert, wihrend fiir r < p~1 ein expo-
nentieller Abfall einsetzt, und dies ist natiirlich fiir Probleme wie die
Proton-Proton-Streuung von Wichtigkeit; aber nichtsdestoweniger
wiirde sich in schweren Kernen der Abstand benachbarter Teilchen
auf den ungefahren Wert 4-1 (<u~1) einstellen. Im Gegensatz zur
Yukawa’schen Mesontheorie besteht also in der Paartheorie keine
Beziehung zwischen den Kernradien und der Masse der Feldteilchen;
jedenfalls ergibt sich eine solche Beziehung nicht zwangslaufig oder
auch nur in zwangloser Weise, und man hat also von diesem Stand-
punkt aus keinen Grund, einer ,,Mesonpaartheorie’ vor einer
. Elektronpaartheorie* den Vorzug zu geben. Zwischen diesen
Varianten der Paartheorie wird man also nur auf Grund ander-
weitiger Daten — z. B. aus Streuversuchen — entscheiden kénnen.

Ziirich, Physikalisches Institut der Universitit.
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