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Zur Paartheorie der Kernkräfte
von Gregor Wentzel.

(12. I. 1942.)

Ein vereinfachtes Verfahren zur exakten Lösung der Eigenwertprobleme der
Paartheorien wird angegeben. In der skalaren Paartheorie wird das Verfahren
angewendet zur Berechnung der Selbstenergie eines Protons, der Kräfte zwischen
zwei Protonen, und der Volumenergie eines Protonen-Kristallgitters. Die Ergebnisse

entsprechen qualitativ den Anforderungen der phänomenologischen
Kerntheorie, wenn man die in den Kopplungsansatz der Feldtheorie eingehende
Abschneidelänge grössenordnungsmässig mit der Kraftreichweite der phänomenologischen

Theorie (~10-13cm) identifiziert, während die Comptonwellenlänge der
Feldteilchen auch grösser angenommen werden kann.

In den Paartheorien1) bestimmen sich die Eigenwerte der
Energie von Kernpartikeln und Feld bekanntlich durch die Eigenwerte

einer quadratischen Form, und daher lassen sich solche
Probleme in exakter Weise — d.h. ohne Verwendung der Störungs-
methode — lösen. Wigner, Cbitchfield und Teller2), denen
man diese Bemerkung verdankt, berechneten bereits die
Selbstenergie, die ein ruhendes (unendlich schweres) Proton oder Neutron
vermöge seiner Wechselwirkung mit dem Paarfelde besitzt, ferner
die Selbstenergie von mehreren Protonen am gleichen Ort, woraus
sich ein Hinweis auf den Sättigungscharakter der betreffenden
Kernkräfte ergab. Betrachtet man mehrere ruhende Protonen an
verschiedenen Orten, so hängt die Selbstenergie von den
Protonenkoordinaten ab, d.h. man erhält die potentielle Energie der
statischen Kernkräfte als Ortsfunktion3). In einer früheren Arbeit des

Verfassers4) (im folgenden als I zitiert) wurde gezeigt, wie man
die Abstandsabhängigkeit der Zweikörperkräfte berechnen kann,
ein Problem, das z.B. im Hinblick auf die Proton-Proton-Streuung
von Interesse ist. In der vorliegenden Arbeit wird das Rechenver-

*¦) Wir denken in erster Linie an die „Elektronpaar-Theorie", die zuerst von
Gamow und Teller (Phys. Rev. 51, 289, 1937) und gleichzeitig vom Verfasser
(Helv. Phys. Acta 10, 107, 1937) vorgeschlagen wurde, sodann an die „Mesonpaar-
Theorie" von Mabshak und Weisskope (Phys. Rev. 57, 1101, 1940 und 59, 130,
1941).

2) Phys. Rev. 56, 530, 1939.
3) Cbitchfield und Lamb, Phys. Rev. 58, 46, 1940.
4) ZS. f. Phys. 118, 277, 1941. Vgl. auch Jauch, Helv. Phys. Acta 15, 175,

1942.
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fahren vereinfacht und verallgemeinert. Um auch über die Energie
eines Kerns von hohem Atomgewicht Auskunft zu erhalten, wird
ferner das Problem sehr vieler Protonen in Kristallgitter-Anordnung

behandelt.
Ob der Spin der Feldpartikeln ganz- oder halbzahlig gewählt

wird, ist weder für den Gang der Rechnung noch für das
qualitative Ergebnis entscheidend. Hat man ganzzahligen Spin und
Bose-Einstein-Statistik, so betrachtet man die Energie der
Nullpunktsschwingungen des Feldes und ihre Beeinflussung durch die
anwesenden Kernpartikeln. Bei halbzahligem Spin und Quantisierung

nach dem Pauli-Prinzip andererseits ist die Nullpunktsenergie

durch die Energiewerte der besetzten Einzelzustände negativer

Energie gegeben, und diese werden wieder durch die
anwesenden Protonen beeinflusst. In Anbetracht dieser Analogie
haben wir uns in der früheren Arbeit (I) damit begnügt, das
Rechenverfahren am Beispiel des skalaren Feldes (Spin 0) zu erläutern,
das natürlich den einfachsten Fall darstellt. Inzwischen hat Jauch
(I.e.) das Verfahren auf die Elektronpaartheorie (Spin |)
angewendet und bestätigt, dass die Situation, abgesehen von den
Komplikationen, die durch die grössere Zahl der Freiheitsgrade bedingt
sind, die gleiche ist (bei Wahl eines Wechselwirkungsansatzes, der
den Protonspin nicht enthält). Wir beschränken uns daher auch
hier einfachheitshalber wieder auf das Beispiel der skalaren Paar-
theorie.

Wir führen also ein Pauli-Weisskopf'sches skalares komplexes
Feld1) rp ein mit der Vakuum-Hamiltonfunktion

H°= JdX {n*n + y,* [fx2 - A) rp};

ti, ti* bedeuten die zu rp, rp* kanonisch konjugierten Wellenfunktionen,

und die Konstante /li bestimmt die Ruhmasse der Feld-
teilchen (die Lichtgeschwindigkeit ist 1 gesetzt). Das Feld sei
räumlich periodisch, und zwar sei der Periodizitätsbereich ein Kubus
vom Volumen V IA. Demgemäss setzen wir

rp —=Y (7,eilï, ti =—TT=y p,e-it% ;
Vi7 t W Y

der f-Raum ist ein kubisches Gitter mit der Gitterkonstante 2 njL.
Bekanntlich wird dann

#°= E {PiViA "UUi) i wo w\= f + \l \2.

Pauli und Weisskope, Helv. Phys. Acta 7, 709, 1934.
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Die Protonen, mit denen das y-Feld gekoppelt werden soll,
betrachten wir als unendlich schwer und ruhend ; ihre Ortsvektoren
seien Xs (s 1,2, Z). Ein der Paartheorie entsprechender
Wechselwirkungsansatz lautet :

H'=X±rp^h)rp(js)^^qUrt«ÌÌV-ì)Xs>
S l » 1,1' 8 1

denn dieser Hamilton-Term beschreibt, wenn er als kleine Störung
betrachtet wird, Paar-Erzeugungs- und -Vernichtungsprozesse
sowie Streuprozesse, wie die Formeln der Pauli-Weisskopf'sehen
Theorie unmittelbar erkennen lassen. X ist ein Kopplungsparameter

von der Dimension einer Länge; wir wählen ¦ •

X > 0,

damit der positiv-definite Charakter der Hamiltonfunktion garantiert

ist1). Wir müssen aber den obigen Wechselwirkungsansatz,
der der Nahewirkungsvorstellung entspricht, noch abändern im
Sinne einer „Abschneidung" des | l |-Spektrums, um endliche
Ergebnisse zu erhalten. Dabei wählen wir dasselbe Absehneideverfahren

wie Wigner, Critchfield und Teller : in H' werde rp (rs)

durch einen Mittelwert f dXf(\ X \)v>(X + Xs) ersetzt. Die t-Raum-
Darstellung von H' ist dann von der Form

_X_

~v ftH'-4-S Saa«"3* -f-^gUi'iUt^^'-^,
x

p7 ïZii
wo für die Gewichtsfunktion g gilt:

1 für [ t I < A,
9ï »m* i/ i0 für \t\>A

(A-1 Abschneidelänge).

In der Hamiltonfunktion H H° + H' führen wir
Normalkoordinaten ein:

1ï S ai r Qv i Pt S aïv Pv '
v v

2-1 atï' aïi" Zj at't at"t ~ "vv i
ï t

H= 2( pt PtY- Q\Q*Qt}.
t

Qt, P( sind natürlich kanonische Variable mit den bekannten
Vertauschungsrelationen. Die Transformationskoeffizienten atîr be-

Vgl. I, Fussnote 1, S. 284.
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stimmen sich in bekannter Weise durch die Lösungen des linearen
Gleichungssystems :

(Q2 - co,2) qt -A gf £ gv qv 2 é «'"l> '• 0 ;
1 (' s=l

die zugehörige Säkulargleichung lautet:

A (Q2) s Det (Qr-af) dtr—^g^g^^-^'r
s=l

0. (1)

Wir denken uns die Wurzeln Q2 dieser Gleichung bestimmt
Funktionen der Xs) und numerieren sie wieder mit einem Index f
(etwa so, dass ,_„ Qt cot). Mit den üt kennt man sogleich die

Eigenwerte der Energie H:

^\hQt (Nt + N- + 1)
i

(Nt, JVjT Anzahlen der positiven bzw. negativen Feldteilchen in
den Einzelzuständen l), und damit insbesondere die hier
interessierende Nullpunktsenergie h 2 &i- Ihren Überschuss über die

t
Nullpunktsenergie des Vakuumfeldes nennen wir E:

E=h% (üt-cot).
t

Die Energie E, die von den Protonenkoordinaten Xs abhängt,
enthält ausser der gesuchten Energie der Kernkräfte noch die
Selbstenergie der Z Protonen. Sei E (co) der Wert von E bei paarweise
unendlichen Abständen der Protonen, so gibt

U E-E{œ)
das Potential der statischen Kräfte, welche die Protonen durch
Vermittlung des ^-Feldes aufeinander ausüben.

Die Berechnung der einzelnen Eigenwerte Q2 kann man auf
folgende Weise umgehen: Indem wir

Q2= C

setzen, schreiben wir die Determinante (1) in der Form:

A(c) n(c-~üt2).

Im Limes X 0 (Vakuumfeld) geht A (£) über in

A0(C) n(Ç-a>ï).
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Wir bilden nun die rational-gebrochene Funktion

Yi(0
<KQ

MO
(2)

deren Nullstellen und Pole in der komplexen f-Ebene alle auf die
positiv-reelle f-Achse fallen. Ferner sei /(f) eine Funktion, die
sich in der Umgebung dieser positiv-reellen Achse regulär verhält.
Dann gilt offenbar:

1 1 x,. ,,« ^ / 1 1

t
•f(c

K6ä,A(0d-^^i,71% J de2Tii Y ' x" dt,

wo der Integrationsweg im positiven Sinne um alle Nullstellen
und Pole von q>(t) herumführt (vgl. die Figur)1). Bei einem üm-

/r-
Ç-Ebene

a

>

lauf um diese Kurve kehrt log cp J) zum Ausgangswert zurück, da
gleich viele Nullstellen (ü2) wie Pole (cot2) im Innern liegen; daher
kommt durch partielle Integration:

V{/ (Q2)-f(co?)} --A é df -/'(f) log ç,(C).
j Zi 7t% J

Mit /(C) j/£ wird also

E --rK(ß-^log<p(0. (3)

(Bei einer Verschiebung des Integrationsweges ist natürlich auf
den Verzweigungspunkt £ 0 zu achten.) Für die Berechnung der
Energie E und des Potentials 77 ist also die Kenntnis der üt2)
nicht erforderlich. Die Formel (3) ermöglicht auch unmittelbar
den Grenzübergang zum kontinuierlichen Î-Raum (F-> co), wie
die folgenden Beispiele zeigen werden.

*) Wenn g^ oberhalb eines gewissen | 11-Wertes nullgesetzt wird, so liegen
alle Nullstellen und Pole von <p im Endlichen.

2) Ihre Bestimmung machte den Hauptinhalt der früheren Arbeiten aus.
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1. Ein einziges Proton.

Für Z 1 lautet die Säkulardeterminante (1), wenn man den
Koordinatenursprung einfachheitshalber an den Ort des Protons legt
(*i=0):

A (C) Det
X

(L--a>t)òn,-~gtgv

Für ç>(£) erhält man also in diesem Falle die Funktion

?»«-»-T?^- <4>

Im Limes V-> oo geht die t-Summe in ein Î-Raum-Integral über:

Die Nullstellen und Pole von <px(Ç) fallen alle auf die reell-positive
f-Achse, und zwar auf den Abschnitt £ 2g p,2 (denn für reelles
£ < /*2 ist cpx > 0); wir setzen daher

£ /^2 + I + i»7

und führen das Integral (3) in der £^-Ebene in einer Schleife um
die positive I-Achse herum, wobei wir die Schleife dieser Achse
unbegrenzt annähern (| S: 0, n -> ± 0). Dann erhält man für E
den Wert:

E1
4 ai J Vp*+£

ë
9>-(l) '

o +
wo

9>± (f)
lim „

^ _l. o ^1 ^ + f+ ^)-
#

Im Liines 7 CO bild en wir zunächst:

<?>-.-(*) + <p-

2
-(f)

0
(Hauptwert)

a(fc)|2

-1

(5)

(6)

Dann findet man (wir setzen | x2) :

also

<?±(^)=^(^2)±i-A-^|gW|2, (7)
4 71

l0gZ44 2iarctgiAiMi:
99_(« 4 TT 0> (tt2)
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Somit erhalten wir für die Selbstenergie eines Protons den Wert:

dx • x X x I q(x) I2
; arc tg '_, „'

V>2 + *2 Ancp(x2)
„ lb n UiX • X A X U Kl ._,Ei -^,.^-r—. arc tg ^rilT^- • (8)

Dieses Ergebnis stimmt überein mit demjenigen, das man auf
Grund des Rechenverfahrens von Wigner, Critchfield und
Teller (1. c.) erhält (Ersetzung des kontinuierlichen | 11-Spektrums

durch eine Folge äquidistanter Punkte und Berechnung
der Qt).

2. Zwei Protonen.

Im Falle Z 2 erhält man durch Ausrechnung der Determinante

(1) für die Funktion ç>(£) (2):

f»W y 2jc_C02

A\2 v \9t\*\9r\*0--co*(l-t')(Ti-tJ)
Vie (?-«*)(£-«*)

d.h. bei Verwendung der durch (4) definierten Funktion ç>i(£):

M2^ \9t\2\9v\2^.s(l~î')(x1-X2)<?2(C) L>i(C)]2-(^) 2" (£-^)(C-«l
Gehen wir sogleich zur Grenze V — oo über, so können wir in den
l- und t'-Raum-Integralen die Richtungsintegrationen unmittelbar
ausführen und erhalten:

wo
M0 L>i(f)]2 -[x(r,0T,

_k2\g{k)\2 sin fcrx(f,0 ö—i /*dfe
2jï2y t — co? kr

o l

- U +fdk h gWl'6"' • (9)

hier bedeutet r= | £x— JC2 | den Abstand der beiden Protonen.
Lässt man diesen Abstand gegen co gehen, so wird offenbar % =-- 0,
also cp2= cp2, und man erhält nach (3) den Energiewert:

E2(co) 2E1,

d.h. die Energie zweier Protonen in unendlichem Abstand ist das
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doppelte der Selbstenergie des einzelnen Protons. Für das Potential

U der Zweikörperkraft kommt hiermit:

U2 (r) E2(r) - E2 (oo) - JL 0 ^| log jl « (r, 0
?i(C)

(10)

Für die weitere Rechnung wollen wir die Gewichtsfunktion
g j2 speziell wählen :

|a(fc)l2 TJn^. (11)
1

42

Dann lässt sich % (9) durch Verschiebung des /c-Integrationsweges
in die positiv-imaginäre Halbebene leicht berechnen. Man findet,
mit £ n— i#2

X(r, /A + x2) —
4:71

9 (*) 2
oUT

(12)

dabei gilt in e±ixr das obere oder untere Vorzeichen, je nachdem
ob x einen positiven oder negativen Imaginärteil hat. Führen wir
in (10) x als Integrationsvariable ein, so können wir den
Integrationsweg beiderseits der positiv-reellen ^-Achse entlang führen;
unter Verwendung der durch (5) definierten Funktionen cp+, cp_

können wir dann schreiben:

V2(r)

00

h f dx•x
2niJ AiA + x-

log-
1

^|g(*)l2 .1
4jiip+(x2) r

-Ar\

4ji ç>_(ji:2) r
p—Ar\

(13)

Für <p+) cp_ erhält man bei Verwendung der Gewichtsfunktion (11)
und auf Grund von (6) und (7) (oder auch direkt durch komplexe
Integration1)) :

<p±(x2)
An g(x) \2(A ±ix). (14)

Bei der Diskussion der Formel (13) beschränken wir uns auf
grosse r-Werte: der Protonen-Abstand r sei gross gegen die
Abschneidelänge A~x. Dann sind die Terme ~ e~Är vernachlässigbar.
Da ferner nach (14)

An | <p± (x2) | >X | g(x) |2 • A,

ist das Argument des Logarithmus im Integranden in (13) nahezu

i) Es gilt: v± (*») 1 - f™Q x (r, p* + *•).
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1, nämlich bis auf Terme der Ordnung (Ar)-1; man kann also
den Logarithmus entwickeln:

TT I \ { ^ Y h T" &X • X
U2(r) -l- -—r / \g(x) «

\Anrj 2n%J yn2 + xl
o

2ixr

,[?+(*2)]2 [?-(*2)]2
Zu diesem Fourier-Integral kann für r ^> ^4_1 nur der Integrationsbereich

fc <^ A einen wesentlichen Beitrag liefern; in diesem
Bereich ist aber | g(x) \ eg 1 und nach (14)

X
cp± (x2) m ¦A.

Somit wird

U2 (r) —
n

l
(t+4

1 rd
r2 J

0

x • x sin 2 x r
(1

y p2 + x2

<S2 l
2 h AA+4 >;> (2 i fi r).

(15)

Die hier auftretende Hankel'sche Funktion hat folgendes asymptotische

Verhalten:

• • für r <A^ u'1.

HC) (2ijur)
n /j, r
e—2/xr

für r^> n'1.

U2(r) entspricht einer anziehenden Kraft, die eine „Reichweite"
der Grössenordnung n"1 besitzt. Die Formel (15) stimmt überein
mit der Formel (30) der früheren Arbeit (I)1). Im Grenzfalle
„schwacher Kopplung", d.h. für X<^An A-1, wird

U2(r)&X2--Yy^.±B»(2inr),
62n2 r*

x) Zu beachten ist die etwas andere Bedeutung von X und A : Der Parameter
X der gegenwärtigen Arbeit wurde in I mit X' bezeichnet und gleich X -(2 n)a gesetzt.
Ferner wurde in I das Impulsspektrum „scharf" abgeschnitten:

für |!|< A,
für | | > A,

während hier die Abschneidevorschrift (11) verwendet wurde. — Die in I, S. 290
und im Anhang erwähnten schwachen Kräfte grosser Reichweite sind offenbar
durch die scharfe Abschneidung bedingt. Für den Hauptterm (15) dagegen ist
die Wahl der Gewichtsfunktion g ohne Bedeutung.

a - I 1 füI
9t - { 0 iw
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in Übereinstimmung mit der störungstheoretischen Rechnung
(zweite Näherung; vgl. I, Anhang). Bei stärkerer Kopplung
(X > 4 n A-1) liefert die exakte Rechnung die gleiche r-Abhängigkeit

des Potentials wie die Störungsmethode (für r ^> A~x), aber
für den konstanten Faktor ergibt sich ein kleinerer Wert. Lässt
man den Abschneide-Impuls A gegen oo gehen, so verschwindet
das Potential 77 (für r^O)1).

Für Protonabstände r ~ A~x lässt sich die Formel (13) kaum
vereinfachen. Im Grenzfalle r^A'1 dagegen ist das Ergebnis
wieder einfach, da in fl'

ei (t'-t) (*,-*,) <^2 l
gesetzt werden kann. In dieser Näherung erhält man dasselbe
Eigenwertproblem wie bei Anwesenheit nur eines Protons, wobei
lediglich X durch 2 X ersetzt ist. Es ist also

E2(r,X)mHx(2X) für r-^A~x;
folglich

U2(r)^E1(2X)-2E1{X) für r^A'1.

3. Protonen-Gitter.

Der Periodizitätskubus V L3 enthalte Z N3 Protonen in
kubischer Gitteranordnung, d.h. die Protonenkoordinaten jcS!- seien

ganze Vielfache der Gitterkonstanten a L/N. Die in der
Säkulardeterminante (1) auftretende Summe

z

s=l

ist dann nur von Null verschieden, wenn t — î ein Vektor des

reziproken Gitters ist. Bezeichnen wir diese Vektoren mit
bn (bhi —-r " hi) so wird also

J_ y j (v-i) *s _ { «-3> wenn t' - t bn

V £xe "JO sonst.
{ '

In jeder Zelle des reziproken Gitters (Volumen (2n/a)3) liegen
(L/a)3 Z Punkte des f-Gitters; die Wechselwirkung fl' koppelt
nur solche f-Punkte, miteinander, die in verschiedenen Zellen des

reziproken Gitters an äquivalenten Stellen liegen. Infolgedessen

1) Wie in I, § 9 bemerkt wurde, verschwindet im Limes A —>- oo auch
die Streuung der Feldpartikeln an einem Proton (auf Grund des gleichen
Wechselwirkungsansatzes H').
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zerfällt die Säkulardeterminante (1) in ein Produkt von Z
Determinanten der Form

Ax V>et

Es wird also

(Ü2 - coi+bh) òhh, - — gt+bh gt+bh

log A 2 log At,
[îi

wo die Summe nur über die Î-Punkte innerhalb einer Zelle des

reziproken Gitters zu erstrecken ist. Jede einzelne Determinante
At ist von derselben Struktur wie die oben behandelte Determinante

A beim Problem eines einzelnen Protons; daher erhält man
für die Funktion cp(Ç) (2) (vgl. (4)):

log ?>(£) 2 hg Pm (C),
ra

wo cpm(C)
«3VC

9t+bh

Jf+h

(17)

Nach (16) kann man hierfür auch schreiben:

9'ra(C)=l-fS«-il3£sS^'ïif^2
y s=x j' <* <%

(dabei läuft die t'-Summe wieder über den ganzen f'-Raum). In
der Summe über die Gitterpunkte s spalten wir den Term „s =1"
ab, der dem Proton im Koordinatenursprung entspricht (Xi= 0);
durch Vergleich mit (4) folgt

9>ra(C) <M£)-4-i>-ilïs
V s 2

spjt'zsAMAÒe r —£

(in dieser s-Summe fehlt also der Term s 1). Wir schreiben
hierfür abkürzend:

s=2

wo % die folgende Bedeutung hat:

*(?,£) „ill 9t

V
(19)

£-»t2
Im Limes V= oo(d.h. Z= oo) wird #(£,£) mit der durch (9)
definierten Funktion #(| £ |, £) identisch. Setzt man (18) in (17)
und (3) ein, so kommt für E:

h /*-d£ ^, ,__(__ ,^ Tr^iiM..;/* ^1.(20)Er,.
Anii4> at s lQg U & - s e_m s * fr» «

1 ¦* y^ ra
' s=2 i
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Ez gibt für das unendliche Kristallgitter den Energieinhalt des
Bereichs V an, d.h. EzfV ist die Dichte der Volumenergie des
Kristalls.

Wir wollen untersuchen, wie Ez von der Gitterkonstanten a
abhängt. Dabei wollen wir das Periodizitätsvolumen V proportional

zu a3 variieren lassen, so dass Z, die Anzahl der Protonen
in V, konstant bleibt. Im Limes a-> oo (| x$ | -> oo für sizl)
verschwindet %(xs, £) (und zwar quasi-exponentiell für nicht-reelle £,

vgl. (12)); nach (20) wird also (da die Summe über die f-Punkte
in einer Zelle des reziproken Gitters Z Terme enthält) :

Ez (oo) Z-Ex.
Mit zunehmender Gitterkonstante strebt also die Volumenergie
gegen die Summe der Selbstenergien der einzelnen Protonen. Für
endliches a wird

Uz(a) Ez(a)-Ez(œ)

_ ^^ j£ y togli-f «-«..* fr» fl|. (21)

Uz stellt die potentielle Energie der Kernkräfte pro Volumen V dar.
Sei a zunächst so gross, dass der Logarithmus in (21) nach

Potenzen von %f<px entwickelt werden kann. Der lineare Term
dieser Entwicklung gibt keinen Beitrag zu Uz, da

2e-it3£*=0 für je,* 0 (s=2bisZ).
ra

Im quadratischen Term steht der Faktor

5>
ra

«fe+ *./> p für *, + T« 0 (mod L)1),
0 sonst.

Der grösste Term der Entwicklung lautet also:

u __ A v _A_ A. K x(Xs,C)x(-Xs,A
z /li Ani r l/C [?i(£)]2

Lassen wir nun Z und damit F Za3 gegen oo gehen, so geht
x(Xs> £)j wie oben bemerkt wurde, in die durch (9) definierte Funktion

x(\ïs\,Ç) über, und damit wird

z ^ ^ jr d£ r%(|y.l.O
9>r(C)

tu h r
Uz=Y^xJni9 il

x) „y 0 (mod L)" soll heissen: die Komponenten von x sind ganze
Vielfache von L V'l'.
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Andererseits erhielten wir aber für das Potential der Zweikörperkräfte

in der gleichen Näherung (r^-A^1; vgl. (10) mit
entwickeltem Logarithmus) :

UAr) —^ <£
2W Am J |/£

*_£ dA

ini T |/£

d.h. es gilt asymptotisch für grosse Z:

Z
2

x(r,X)
n(0

u*=f 2 v*(\r.\.
«>i

In dieser Näherung ist also Uz gleich der potentiellen Energie
der Zweikörperkräfte aller Paare pro Volumen V.

Bei weiterer Entwicklung des Logarithmus in (21) treten
Terme höherer Ordnung in xl<Pi auI> die Mehrkörperkräften
entsprechen. Beispielsweise enthält Uz die folgenden Terme dritter
Ordnung :

Ji v Ja_ r d^ x(Ts,0x(Xs',0 x(Xs"A)
3 & Ani Y yc [fiiOf

wo die Summe über alle nicht-verschwindenden Gittervektoren
Xs ' Ts' > Xs" zu erstrecken ist, für die

Xs + Xs'Y-Xs"=Q (mod L)1)

ist. Analog ist der Bau der Terme höherer Ordnung. Die so
erhaltene Entwicklung von Uz nach «-Körperkräften hat also
folgendes Aussehen:

n=2 " *st>l s,>l sn>l

11, wenn xSl +XSl + •• • +X*n ¦= 0 (mod L)1)
* *-«" 0 sonst.

(22)

Ist die Gitterkonstante a gross gegen die Abschneidelänge A~1,
so kann man die n-Körperpotentiale Un ebenso abschätzen, wie
dies oben speziell für U2 geschah (vgl. die Formeln (11) bis (15)).
Man findet:

tfnfrfc, XSä, • • -, JC.J (- 1)" • è fc/«

ï r • • • r

(für a> J.-1, Z^ oo).

/4jt ,\»

fi^MI^I + l^l + '-v+l^l» (23)

x) Vgl. die letzte Fussnote.
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Ein Term Un (xh, • ¦ -, xSn) At mindestens um einen Faktor der
Ordnung (Aa)~x kleiner als Un^1(xSl, • • •,XSn_1); andererseits ist
aber die Anzahl der «-Körper-Terme in der Summe (22) grösser
als diejenige der (n — 1)-Körper-Terme. Falls a nicht nur gross
gegen A~x, sondern auch gross gegen

u- ¦• (-j- + A

ist, so konvergiert die «-Summe (22) rasch, d.h. die Zweikörperkräfte

überwiegen stark.
Für den anderen Grenzfall, a -> 0, behaupten wir, dass Ez (0)

verschwindet, d.h. dass für sehr kleine a-Werte gilt:

Uz(a)~—Ez(oo)~—ZE1 (für a->0,Z^oo). (24)

Bei der Bindung der Protonen in einem dicht gepackten Kristall
wird also gerade deren Selbstenergie frei.

Zum Beweise gehen wir auf die Formel (17) zurück. Um zu
einer einfachen Abschätzung von Ez zu gelangen, wählen wir die
Gewichtsfunktion :

fl, wenn |!|<B,
m \ 0, wenn \t\ > B [ '

(B ~ A), d.h. wir schneiden das Impulsspektrum scharf ab. (Man
überlegt sich leicht, dass das Ergebnis von der Art der Abschneidung

nicht wesentlich abhängt.) Es sei daran erinnert, dass in
(17) nur die f-Punkte innerhalb einer Zelle des reziproken Gitters
gemeint sind; für diese Zelle, die bisher beliebig wählbar war,
nehmen wir jetzt speziell die den Ursprung enthaltende Zelle:

n n
— — ^ti<—a a

Nun sei B < nfa angenommen (also a < A~x); dann sind in (17)
nach (25) alle gt+bh 0 für fcA* 0, d.h. es bleibt in der 2 ni-ir (höchstens)

ein Summenterm stehen : *

<Pm (0
Iftl2

a3 £ — col

Diese Funktion von £ hat (bei festem t) nur eine Nullstelle:

f m? + -^- s Q? ¦
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Die Energie E wird hiermit nach (3) und (17):

Ez (a) fe2 (Qt ~ eo,) Z ~ f dh ¦ h2\]/m? + ™ - «,,} (26)
ra 0

i i

Für a < l'/s (^2 + B2) -v3 wir(j hieraus :

Ez(a)^Z-~hB3yia^, (27)

und dies geht mit abnehmendem a gegen Null, wie behauptet
wurde. Wählt man etwa X ~ B~x ~ A~x und u YL A, so wird nach
(27) Ez(a) < Z ¦ h A für a < A~x, während nach (8) Ex~hA ist;
also :

Ez (a) <ZEx, Uz (o) ^ — ZEX für a < A~x.

Die obigen Rechnungen lassen sich natürlich ebenso leicht für
den nicht-kubischen Kristall ausführen. Auch die Übertragung in
die Elektronpaartheorie (Feldteilchen mit Spin §) dürfte keine
Schwierigkeiten machen.

Es erhebt sich nun die Frage, wie weit man hoffen darf, eine
solche Paartheorie zur Erklärung der wirklichen Kernkräfte heranziehen

zu können. Nach den obigen Ergebnissen für die skalare
Paartheorie zu urteilen, scheint diese Möglichkeit zu bestehen,
wenn man die Länge, die man gewöhnlich als die Reichweite der
Kernhräfte interpretiert und die für den Abstand benachbarter
Kernteilchen massgebend ist, als im wesentlichen durch die Abschneidelänge

A~x bestimmt betrachtet. Denn diese trennt ja die a-Gebiete
voneinander, in denen nach der Theorie die Volumenergie qualitativ

durch (22), (23) bzw. durch (24) gegeben ist; im ersteren
Falle (a ;> A~x) handelt es sich um Zwei- und Mehrkörperkräfte
ohne Sättigungscharakter, die mit wachsendem a stark abnehmen,
während andererseits für kleine a-Werte nach (24) eine Absättigung

eintritt, wobei die Bindungsenergie pro Kernteilchen den
Maximalwert Ex erreicht. Nimmt man an, dass in einem realen
Kern die Abhängigkeit der potentiellen Energie von a eine
ähnliche ist, wenn unter a der mittlere Abstand benachbarter Kern-
partikeln verstanden wird, und dass die kinetische Energie wie
üblich aus einem Fermi-Dirac-Gas-Modell abgeschätzt werden
darf1), so ist zu erwarten, dass sich im Grundzustand des Kerns
ein Wert von a einstellt, der grössenordnungsmässig von A~x nicht

l) Vgl. etwa Bethe und Bacheb, Rev. of Mod. Phys. 8, 82, 1936, § 25.
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sehr verschieden sein kann, so dass wir mit Rücksicht auf die
Erfahrung A~x ~ IO-13 cm anzusetzen haben. Dabei hat die potentielle

Energie pro Kernteilchen die Grössenordnung — Ex ; wählt
man etwa X ~ A~x (< /u,-1), so wird nach (8) Ex ~ h A, also Ex ~ 100
MeV, in Übereinstimmung mit den üblichen Ansätzen für das
statistische Kernmodell.

Im Gegensatz zum Abschneideimpuls würde der Masse h/x,
der Feldteilchen in einer solchen Theorie nur eine sekundäre
Bedeutung zukommen. Beispielsweise könnte man hfi sehr klein,
etwa von der Grössenordnung der Elektronenmasse annehmen,
ohne dass dies die Theorie der schweren Kerne qualitativ wesentlich
ändern würde. Zwar ist die „Reichweite" der Zwei- und
Mehrkörperkräfte nach Obigem durch u*1 bestimmt, insofern als z.B.
U2(r) für r <A, /j,"1 wie r-3 variiert, während für r > /jt1 ein expo-
nentieller Abfall einsetzt, und dies ist natürlich für Probleme wie die

Proton-Proton-Streuung von Wichtigkeit; aber nichtsdestoweniger
würde sich in schweren Kernen der Abstand benachbarter Teilchen
auf den ungefähren Wert ^4-1 (-A^ar1) einstellen. Im Gegensatz zur
Yukawa'schen Mesontheorie besteht also in der Paartheorie keine
Beziehung zwischen den Kernradien und der Masse der Feldteilchen;
jedenfalls ergibt sich eine solche Beziehung nicht zwangsläufig oder
auch nur in zwangloser Weise, und man hat also von diesem Standpunkt

aus keinen Grund, einer „Mesonpaartheorie" vor einer
„Elektronpaartheorie" den Vorzug zu geben. Zwischen diesen
Varianten der Paartheorie wird man also nur auf Grund
anderweitiger Daten — z.B. aus Streuversuchen — entscheiden können.

Zürich, Physikalisches Institut der Universität.
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