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über den Begriff des Atoms.
von Willy Seherrer.

(2. XII. 1941.)

Einleitung.

In dieser Arbeit soll eine Reihe von Vorschlägen zur
Atomtheorie, die ich seit 1933 mit Unterbrechungen einzeln publiziert
habe, zu einem einheitlichen Ganzen gestaltet werden.

Jeder einzelne dieser Vorschläge hat seinerzeit nicht zu dem
gewünschten Ziele geführt, und zwar — wie ich jetzt vermute —
vor allem deshalb, weil die Ansätze für die Wechselwirkung
ungeeignet waren. Ich kann daher dem Leser nicht zumuten, sich
an Hand meiner früheren Publikationen zu informieren. Hingegen
werde ich mir gestatten, jeweils diejenige Publikation zu zitieren,
in der ein jetzt verwerteter Gesichtspunkt zum erstenmal
ausgesprochen wurde.

Die Grundidee, nämlich die Forderung eines relativistisch
invarianten vierdimensionalen Weltatoms, ist sich immer gleich
geblieben.

Über die Dringlichkeit der Erforschung der wellenmechanischen

Atomtheorie brauche ich weiter kein Wort zu verlieren1).
Der vorliegende I. Teil enthält die Grundlagen der

vorzuschlagenden Theorie. In weiteren Fortsetzungen sollen die sich
ergebenden Einzelprobleme in Angriff genommen werden.

§ 1. Grundsätzliches.

Die Grundannahme der speziellen Relativitätstheorie besteht
darin, dass die Zeit t kein Parameter, sondern eine Koordinate
sei, die mit den Raumkoordinaten xx, x2, x3 durch den
pseudoeuklidischen ,Pythagoras ' '

r2 c2t2 — x2 — a;2 — x2 (1)

zu einem vierdimensionalen Kontinuum verschmolzen werden
müsse. Es muss daher als eine erstaunliche Tatsache bezeichnet

J) Vgl. v. Weizsäcker: „Die Physik der Gegenwart und das physikalische
Weltbild". Naturw. 29, S. 185 (1941).
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werden, dass die Fundamentalinvariante (1) in der Relativitätstheorie

immer im Hintergrund geblieben ist1).
Ein dauernd existierender Partikel muss in der relativistischen

Geometrie als Weltlinie interpretiert werden und entspricht somit
auf keinen Fall dem logischen Begriff des Atoms — des Unteilbaren.

Das Unteilbare der relativistischen Welt ist der Weltpunkt2).
Eine vierdimensionale physikalische Metrik, die nicht den
materiellen Weltpunkt als notwendiges Korrelat zur totalen Welt
besitz, ist eine Scheinmetrik.

Wir erheben daher die Forderung, die Relativitätstheorie
müsse auf Biegen oder Brechen beansprucht werden, damit sie
der Grundrelation zwischen totalem Zeitraum und Weltpunkt
gerecht werde.

Ich beginne mit einigen allgemeinen Bemerkungen über den
Begriff des Atoms. Das Atom — das Unteilbare — ist eine Grenze,
die der Geist sich selber setzen muss, wenn er nicht den Halt
verlieren will. Das Atom in der Geometrie ist der Punkt. In der
Geometrie hat man an diesem Begriff nie ernstlich Anstoss
genommen, wohl vor allem deshalb, weil man ihn als rein geistige
Setzung ansah, zu deren Vollzug wir wohl die nötige Freiheit
besitzen.

Ganz anders scheinen die Dinge in der Wirklichkeit zu liegen.
Etwas in uns sträubt sich dagegen, einem punktförmigen Gebilde
Realität zuzubilligen. Es liegt aber keine Notwendigkeit dafür
vor, einen materiellen Punkt als ein Nichts anzusehen. Rein
logisch betrachtet, ergibt sich einfach, dass alle eventuell neben
der Ortsbestimmtheit vorhandenen weiteren Eigenschaften nicht
durch den Begriff der Ausdehnung erfasst werden können.
Hingegen ist es sehr wohl denkbar, dass diese weiteren Eigenschaften
noch durch den Begriff der Zahl als Intensität erfassbar sind.

Faktisch ist die Physik nie anders verfahren! Am deutlichsten

ist dies bei der klassischen Kontinuumsphysik zu erkennen.
Sie verfügt über den leeren Raum und füllt ihn aus mit Materie
als Intensität. Undurchsichtiger werden die Verhältnisse in der
kinetischen Theorie der Materie. Da diese Theorie zweifellos in
der historischen Entwicklung einen Fortschritt darstellt, liegt hier
ein Paradoxon vor. Bei näherem Zusehen erkennt man aber,
dass auch hier der Begriff der Intensität zu finden ist. Man muss
ja unterscheiden zwischen unbesetzten (leeren) und besetzten

x) „Relativistische Übertragung des Coulomb'schen Gesetzes". Mitteilungen
der Naturi. Gesellschaft Bern, S. IN, 1933.

2) „Versuch einer relativistischen Fassung des Kausalitätsprinzips" I. Helv.
Phys. Acta, X, 2, S. 157, 1937.



Über den Begriff des Atoms. I. 55

Stellen. Die klassische Atomistik verfügt also über die rudimentären

Intensitäten 0 und 1.
Eine neue Phase erreicht das Atomproblem in der allgemeinen

Relativitätstheorie mit der Forderung, die Metrik als physikalisches

Agens zu interpretieren. Es entstand das Bedürfnis, den
leeren Raum auszuschalten. Im Sinne unserer Erläuterung könnte
man also sagen, die geometrischen Feldtheorien seien Versuche,
mit der Intensität 1 auszukommen. Im folgenden werden wir
sehen, dass die hier zu machenden Vorschläge darauf hinauslaufen
werden, innerhalb der Metrik der speziellen Relativitätstheorie die
Intensitäten 0, 1, 2, n, zu verwenden.

Man kann schliesslich die Frage aufwerfen, ob es im Sinne
der allgemeinen Relativitätstheorie möglich sei — eventuell unter
geeigneter Modifikation der gruppentheoretischen Ansätze, von
Helmholtz und Lie, — die Intensität 0 auszuschalten.

Der Scharfsinn, mit dem schon die alten Philosophen das Problem

erfasst haben, verdient hervorgehoben zu werden. Sie erkannten
klar, dass dem letzten Element keine Ausdehnung zugeschrieben
werden darf. Wäre es ausgedehnt, so könnte man es wieder teilen.
Im Gegensatz dazu behaupten namhafte Forscher aus neuerer Zeit,
das Problem des Elektrons bestehe darin, die Kräfte herauszufinden,

welche ein Auseinanderstieben seiner gleichgeladenen Teile
verhindern Dagegen ist zu sagen : entweder stellt sich der Autor
das Elektron als ein Kontinuum vor und hat damit dieselbe Problematik

wie im Makroskopischen oder er denkt an noch kleinere
Partikel und dann beginnt eine Stufe tiefer dasselbe Spiel von neuem.

Eine letzte Bemerkung: Einen höchst differenzierten
Atombegriff schuf Leibniz mit der Idee der Monade. Die folgenden
Ausführungen werden zeigen, dass in gewissem Sinne in der
Relativitätstheorie ein Zwang besteht, der uns einer ähnlichen Begriffsbildung

zutreibt.
Es wird sich herausstellen, dass die hier vorgeschlagenen

Ansätze formal mathematisch sich fast noch enger an die klassische

Dynamik anschliessen lassen als die jetzt üblichen. Inhaltlich
bedeuten sie dagegen eine einschneidende Modifikation der
gewohnten Vorstellungen. Fast alles muss umgedeutet und neu
berechnet werden. Über die mathematischen Ergebnisse dieser

umfangreichen Arbeit, die wohl die Kräfte eines Einzelnen
übersteigt, habe ich daher noch keinen Überblick. Meine Vorschläge
sind also auch jetzt noch notgedrungen provisorisch. Hingegen
glaube ich jetzt schon versichern zu dürfen, dass sich aus ihnen
ein geometrisch durchsichtiges und daher wohl auch methodisch
brauchbares Bild ergibt.
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§ 2. Definitionen und Postulate.

Wir legen jetzt also den der Metrik (1) gehorchenden
Zeitraum der speziellen Relativitätstheorie zugrunde. In Fällen, wo
keine Zweideutigkeit zu befürchten ist, werden wir ihn kurz auch
Raum nennen und entsprechend von „räumlichen" Eigenschaften
reden.

Bei jeder Modifikation der Wellenmechanik stellt sich von
neuem die Frage, ob der skalare Standpunkt ausreichend sei. Es
lassen sich gute Gründe für ihn geltend machen1). Wir werden
also so lange skalare Wellenfunktionen benützen, als sich auf dem
Boden der neuen Theorie keine zwingenden Gegengründe ergeben.
Doch glaube ich, die Begriffe so gefasst zu haben, dass im Prinzip
eine Ausdehnung auf mehrere Komponenten möglich sein sollte.

Nun wollen wir bei der Numerierung der aufzuzählenden
Definitionen und Postulate folgende Unterscheidung treffen. Die
„Grundhypothesen", von denen ich hoffe, dass sie wenigstens im
Rahmen dieser Theorie keiner Abänderung mehr bedürfen, sollen

nur durch Zahlen bezeichnet werden. Die „Arbeitshypothesen",
deren Auswahl vor allem dem Zwecke der grösstmöglichen
Einfachheit dienen soll, seien durch Zahlen mit angehängten
Buchstaben bezeichnet.

Was die Terminologie betrifft, so wollen wir uns möglichst
eng an die in der Wellenmechanik gebräuchliche anschliessen. Da
nun der von uns postulierte Atombegriff sich im wesentlichen mit
dem Begriff des Lichtquants deckt, wollen wir auch die Bezeichnung

beibehalten und also von Quanten sprechen. Der Name
Elektron dagegen soll verwendet werden für die jedem Quant auf
Grund eines Trägheitspostulates zuzuordnende Weltlinie.

Definition 1). Ein Quant ist die einfachste materielle Wirkung,
welche räumlich durch Angabe eines einzigen Weltpunktes festgelegt
werden kann.

Eventuelle weitere Attribute (Quantenzahlen) sollen also
später in einem besonderen Postulat zum Ausdruck kommen.

Nun wollen wir erläutern, wie man zu einem Trägheitspostulat
gelangen kann. Wir wählen irgend einen Weltpunkt als Ursprung o

eines Koordinatensystems und zerlegen den ganzen zugehörigen
Zukunftskegel in lauter Zellen vom Volumen

A t A (et) A xxA x2A x3 (2)

1) „Versuch einer relativistischen Fassung des Kausalitätsprinzips" II. Helv.
Phys. Acta, X, 5, S. 388, 1937.
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Die Zerlegung könnte in zentralsymmetrischer und drehinvarianter
Weise in den Kegel eingepasst werden, doch wollen wir uns

dabei nicht aufhalten.
Die erhaltenen Zellen unterwerfen wir jetzt einer bestimmten

Numerierung
Zx, Z2, • ¦ • Zn, ¦ ¦¦ (3)

und denken uns eine nicht abbrechende Folge von virtuellen
Experimenten, deren ites Element folgendermassen definiert sei:

Im Nullpunkt befinde sich ein Quantum Q0. Dann wissen
wir aus Erfahrung, dass es sicher Zellen (3) gibt, in denen wieder
Quanten auftreten, die direkt oder indirekt Folgen von Q0 sind.
Diese und nur diese zählen wir. Wir machen damit natürlich die
Annahme, dass in einer Zelle nur endlich viele Quanten auftreten.
Ihre Anzahl in der nten Zelle sei Nin. Wir erhalten so eine nicht -

abbrechende Folge von nichtnegativen ganzen Besetzungszahlen.

Nix,Ni2,---Nin,-- (4)

In concreto stellt also die Serie (4) die Lebensgeschichte des
Lichtquants Q0 von der Gegenwart bis in alle Zukunft dar.

Das Experiment kann daher de facto nicht wiederholt werden.
Sofern aber über die von der Experimentalphysik bearbeiteten
Weltgebiete genügende Homogenität besteht, kann man über viele
verschiedene derartige Experimente Mittelwerte bilden und in
diesem Sinne soll also die oben eingeführte Experimentserie
interpretiert werden. Eine Gesetzmässigkeit existiert, falls die Grenzwerte

hm AA =u2(ct,xx,x2,x3) (5)
l —>- 00 2^ 1,

existieren.
Die rechte Seite von (5) ist eine relative Wahrscheinlichkeitsdichte,

und die genaue Durchführung des Grenzübergangs denken
wir uns so :

Wir wählen im Zukunftskegel einen Beobachtungspunkt
(ct, xx, x2, x3) und einen Vergleichspunkt (1,0,0,0). Dann wählen
wir die Zellgrösse Ar und hierauf die Numerierung (3). Nun sind
die Serien (4) bestimmt. Sofern man aber zu einer scharfen
Ortsfunktion vordringen will, muss man sich überdies noch den
Grenzübergang A x -> 0 hinzu denken. Bei jeder Änderung von A x muss
aber die Numerierung (3) neu gewählt, resp. ergänzt werden. Daher

ist es nötig, auf der linken Seite von (5) A x den Indices anzu-
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hängen. nàx und läx bedeuten die jeweiligen Nummern derjenigen
A T-Zellen, in denen Beobachtungspunkt und Vergleichspunkt liegen.

Nun formulieren wir
Postulat 1). Befindet sich im Ursprung ein Quant Q0, so existiert
im Zukunftskegel eine eindeutige Wahrscheinlichekitsamplitude
u(ct,xx,x2, x3), die einer de Broglie'sehen Wellengleichung

,_,
1 d2u d2u d2u d2u imc\2n u — — u (6)
c2 dt2 dx\ dx\ dx\ \ h 1

genügt.
Ist © ein Teilgebiet des Zukunftskegels, so liefert das Integral

I u2d(ct) dxxdx2dx3= f u2dx (7)
© ©

die relative Wahrscheinlichkeit dafür, dass in © ein Quant Q als
Wirkung von Q0 anzutreffen ist.

Nach diesem Postulat erhält also das Quant als weiteres

Attribut eine Masse m oder präziser eine universelle Länge —

zugeordnet, deren räumliche Auswirkung wohl vorhanden, aber
unbestimmt ist.

Da das Postulat 1) das dauernde Auftreten von „Wirkungsquanten"

(Quanten als Wirkungen) verbürgen soll und wie die
Lösung von (6) zeigt, auch tatsächlich verbürgt, besteht für das

Integral (7) keine totale Normierbarkeit über den Zukunftskegel.
Als Quantenbedingung verlangen wir daher neben der

Eindeutigkeit nur das

Postulat 2). Das Integral (7)

u>®= fu2 dx (7)
©

soll für jeden endlichen Teilbereich des Zukunftskegels existieren.
Die Parameter der durch diese Forderung ausgewählten

Lösungen von (6) sind also weitere Attribute (Quantenzahlen) mit
räumlich unbestimmter Auswirkung.

Wir kehren nun wieder zu den Erläuterungen zurück, die
uns zum Postulat 1) geführt haben. Wir stellen uns also vor,
dass das zukünftige Geschehen, das durch ein Quant Q0 in o

verursacht wird, geometrisch in einer unendlichen Menge von
Weltpunkten zum Ausdruck kommt, die im Endlichen keine
Häufungsstelle besitzt. Trotzdem kann man daraus nicht schliessen,
dass es in dieser Menge einen o am nächsten gelegenen Weltpunkt
gibt, denn die Menge der durch 0 < r2 < e definierten Punkte
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zieht sich wegen (1) bis ins Unendliche. Nun haben wir aber schon
von direkten und indirekten Wirkungen gesprochen. Diese
Ausdrucksweise ist also nur legitim, wenn wir weiter einführen das

Postulat la). Unter allen durch Q0 erzeugten Wirkungen existiert
genau eine Q0 am nächsten gelegene Qx, die wir als „direkte Wirkung"
von Q0 bezeichnen.

Die indirekten Wirkungen definieren wir nun durch Iteration
und erhalten damit das

Postulat 1 b). Die Gesamtheit aller durch Q0 verursachten Wirkungen
entsteht aus Q0 durch Iteration des Prozesses der direkten Wirkung.

Genau so, wie wir nach den „Wirkungen" von Q0 in der
Zukunft fragen, können wir auch nach seinen „Ursachen" in der
Vergangenheit fragen. Selbstverständlich lassen wir unsere Postulate

auch in dieser Richtung gelten. Dann ergibt sich in leicht
verständlicher Abkürzung die

Folgerung 1). Die Gesamtheit aller Ursachen und Wirkungen eines
Quantums Q0 bildet eine beidseitig unbegrenzte Kette von Weltpunkten,
von denen je zwei aufeinanderfolgende durch einen zeitartigen Vektor
verbunden werden können.

Es ist nicht schwer, auf Grund geometrischer Überlegungen
(Ineinanderschachtelungen von Null-Kegeln) zu erkennen, dass die

gewonnene Numerierung invarianten Charakter besitzt.
Auch für die Frage nach dem Auftreten der direkten Wirkung

lässt sich eine Statistik ausdenken, die sogar wesentlich einfacher
ist als die oben verwendete. Wiederum verschafft man sich eine
nichtabbrechende Folge von „Lebensläufen" und braucht jeweils
nur diejenige Zelle zu notieren, wo die direkte Wirkung auftritt.
An Stelle der Serie (4) tritt eine Serie, die nur an einem Platz
eine 1 und sonst lauter Nullen besitzt. Der Index der 1-Stelle ist
also eine eindeutige Funktion des Index der Serie

p p(i)
Für die Zelle Zn erhält man so nach i Experimenten eine absolute
Wahrscheinlichkeit

wobei offenbar gilt

1 ;
Wi,n —y,NÀn

* Ari

11 1 v A=l

Bei einem (5) entsprechenden Grenzübergang muss also eine
normierbare Wahrscheinlichkeitsdichte resultieren. Ich weiss aber
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nicht, ob schon zu (6) Lösungen existieren, die diese Interpretation
wirklich zulassen.

Wir definieren daher mit Vorbehalt:
Definition la). Ein Elektron ist die Gesamtheit aller Ursachen und
Wirkungen eines Quantums.

Zur vorläufigen Erläuterung dieser vielleicht seltsam anmutenden

Definition bemerke ich, dass sich unter den vierdimensional
zentralsymmetrischen Lösungen von (6) sowohl Ruhlösungen mit
der richtigen de BROGLiE-Frequenz als auch gegen die
Lichtgeschwindigkeit strebende Lösungen mit gegen Null abklingender
Frequenz (Neutrino's?) finden.

Durch die vorausgegangenen Definitionen und Postulate haben
wir den Begriff des Quantums und des Elektrons so weit geschildert,

als es vorderhand für die Zwecke unserer Theorie nötig scheint.
Das Einzelelektron erscheint als eine Einheit aus einer unendlichen,
aber diskreten Serie von Lichtquanten1).

Wir kommen damit zum Mehrelektronenproblem im kräftefreien

Falle und legen für diesen Zweck zu Grunde das

Postulat 3). Jedes Einzelelektron ist ein Individuum und muss
daher durch eine individuelle Wellenfunktion beschrieben werden.

Als Ergänzung fügen wir hinzu
Postulat 3a). Alle Elektronen sind gleich, d.h. sie genügen
derselben Wellengleichung (6).

Wie man leicht sieht, ergibt sich die

Folgerung 2): Zwei Elektronen Ex und E2 sind nicht identisch,
wenn in der Vereinigungsmenge ihrer Quanten mindestens ein
raumartiger Verbindungsvektor existiert2).

Es wird sich herausstellen, dass das Postulat 3) den stärksten
Eingriff in die von der heutigen Physik verwendeten Prinzipien
bedeutet. Zur Erläuterung diene folgende Überlegung. Sind Qx
und Q2 zwei Quanten mit raumartiger Distanz, so geben sie Anlass
zu zwei verschiedenen Elektronen Ex und E2. Sind Kx und K2
die zu Qx und Q2 gehörigen Zukunftskegel, so ergibt sich eine
endliche Wahrscheinlichkeit dafür, dass sich zwei den verschiedenen

Elektronen angehörende Quanten in demselben Volumenelement

A x des Durchschnitts der beiden Kegel befinden. Dann
aber wird die im Wesen des Atombegriffs liegende Antinomie wieder
wirksam. Wir erinnern zu dem Zweck an die statistische Erläu-

J) „Versuche einer relativistischen Fassung des Kausalitätsprinzips" III.
Helv. Phys. Acta X, 6, S. 475, 1937.

2) Die Frage, ob es im andern Falle zweckmässig oder nötig ist, sie als identisch

anzusehen, lassen wir noch offen.
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terung vor der Aufstellung von Postulat 1). Wir machten dort
die Annahme, dass innerhalb eines vorgegebenen Volumens nur
endlich viele Quanten liegen sollen. Jetzt müssen wir uns weiter
entscheiden, ob wir zulassen wollen, dass die in einem vorgegebenen
Volumen A x vorhandene Quantenzahl in dem Sinne unbeschränkt
wachsen kann, dass immer neue Quanten neben die schon
vorhandenen zu liegen kommen oder nicht. Im ersteren Falle wäre
wiederum ein Abgleiten in eine Kontinuumstheorie wohl
unvermeidlich. Wenn wir also unserer Grundforderung nach einem
Wirkungsatom in ungekünstelter Weise gerecht werden wollen,
so haben wir das Postulat 3) zu ergänzen durch das

Postulat 4). In einem endlichen Volumen des vierdimensionalen
Zeitraums können nur endlich viele Wirkungsquanten nebeneinanderliegen.

Treten in diesem Volumen weitere Quanten auf, so müssen
sie mit schon vorhandenen koinzidieren.

Durch dieses Postulat wird natürlich die Frage nach der
Existenz eines kleinsten von genau einem Quant auszufüllenden
Volumens nahegelegt. Wir wollen aber keinen Versuch zu ihrer
näheren Präzisierung unternehmen, bevor dazu ein zwingender
Anlass vorliegt.

Der einschneidende Charakter des Postulats 4) dürfte ohne
weiteres einleuchten. Seine Durchführbarkeit hängt in erster Linie
von dem Ansatz für die Wechselwirkung ab. Dieser muss so
gewählt werden, dass die sogenannte Kernkatastrophe von vorneherein

ausgeschaltet wird1). Ein hierzu geeigneter Vorschlag soll
im nächsten Paragraphen gemacht werden.

Zum Schluss noch zwei besondere Hinweise.

1. Durch das Postulat 4) wird die in § 1 zu einfach formulierte

Forderung nach einem punktförmigen Quantum korrigiert,
denn was für die zu erwartenden Quanten gelten soll, muss natürlich

schon dem Ausgangsquantum Q0 zugebilligt werden. Auf
Schritt und Tritt zeigt uns also das Wirkungsquantum, dass wir
in ihm die Leistungsgrenze des physikalischen Raumes erreicht
haben. Man könnte also versuchen, hier von vornherein durch
eine Neufundierung der Geometrie im Kleinen saubere Verhältnisse

zu schaffen. Wir wollen aber diesen Weg nicht beschreiten,
denn nur die Wechselwirkungsgleichungen können uns beim
Vergleich ihrer Lösungen mit der Erfahrung die richtigen Fingerzeige
geben.

x) „Ein Ansatz für die Wechselwirkung von Elementarteilchen". Helv.
Phys. Acta, XIV, I, S. 82, 1941.
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2. Das Quadrat in Gleichung (7) soll wörtlich interpretiert
werden. Wir werden also so lange an der Forderung reeller
Wellenfunktionen festhalten, als keine untragbaren Folgerungen
auftreten. Vorderhand hab ich keine Schwierigkeit bemerkt, falls
man sich des im nächsten Paragraphen vorzuschlagenden
Wechselwirkungsansatzes bedient.

§ 3. Wechselwirkungsgleichungen.

Als Ausgangspunkt wählen wir die klassische Schrödinger-
gleichung im zeitfreien Falle. Dieselbe ergibt sich sehr
befriedigend, wenn man in der Hamilton'sehen Energiefunktion

«(*£) <8>

die Substitution
S h Lg rp (9)

ausführt und dann verlangt, dass das Integral

"-fH{*-Ti%),f'dx (10)

unter der Nebenbedingung

konst. J ip2dx (11)

ein Extremum liefere.
Wenn man dieses Verfahren auf die relativistische Hamilton-

Funktion
A, t dS

H Ifâ-T*)
des Elektrons anwendet, so tritt scheinbar ein vollkommenes
Versagen ein, denn das Coulombpotential wird gleichsam eliminiert.
Die Rechnung ergibt, falls wir in diesem Falle wie üblich die
Wellenfunktion mit u statt mit rp bezeichnen

Uu-lA + ^0^ +^Lfk(p\u o (18)
V hc dxk h2c2 1

wo A einen Lagrange'sehen Multiplikator darstellt, der für das
Elektron und unter Beachtung der von uns bevorzugten
zeitartigen Schreibweise aller Operatoren den Wert

A=-m^- (14)
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erhalten muss. Hinzu tritt noch die Lorentzkonyention

àcpk

dxk
0. (15)

Aber auch ohne sie ist in (13) nach der üblichen Abspaltung eines
reinen Zeitfaktors das Coulombpotential schon verschwunden.

Die geschilderte Schwierigkeit wird im Falle des
Einelektronenproblems durch direkte Operatorenumwandlung auf eine im
Grunde genommen wenig befriedigende Weise zum grössten Teil
behoben. Wir setzen das Resulat in einer für den Vergleich mit
(13) geeigneten Form ebenfalls her.

/ 2V^Te dVgu e2 \ _ ,ifl.\Ju—(A + —^- eph
&

+—-T(pk<pk )tt=0. 16
V he dxk h2c2 I

Für das Mehrelektronenproblem versagt auch die Operatorenmethode.

Beim Versuch, sich durch Analogieen aus der relativistischen

Punktdynamik leiten zu lassen, machen sich die Teilchenabstände

in fatalster Weise geltend. Dasselbe gilt — trotz
interessanter Symptome1) — für einen Ansatz mit einem mehrdimensionalen

Konfigurationsraum.
Schliesslich noch ein Wort zum retardierten Potential. Es

erzeugt vermöge seiner Asymmetrie ganz neue Schwierigkeiten2).
Abgesehen davon habe ich den Eindruck, es besitze keine
selbständige physikalische Bedeutung. Geometrisch betrachtet,
bestreicht es nämlich nur drei Dimensionen, und physikalisch
betrachtet, muss ja die Energiebilanz zwischen Sender und Lichtquant
geregelt sein, bevor das Lichtquant den Empfänger erreicht hat.

Das sind in aller Kürze die Gründe, die mich nun
veranlassen, auf die explizite Einführung irgendwelcher retardierter oder
unretardierter Abstände vollständig zu verzichten.

Einen Fingerzeig, wie man unter diesen Umständen vorzugehen

hat, erhält man durch die in der Wellenmechanik übliche
Berechnung der Ausstrahlung Da werden ja die Potentiale aus
retardierten Integralen über die Wellenfunktion des störenden
Teilchens gewonnen. Nun ist aber diese Wellenfunktion ja ohnehin

schon virtuell über den ganzen Raum verbreitet!
Bei unserer vierdimensionalen Auffassung werden diese

Verhältnisse geometrisch vollkommen durchsichtig. Liegt das gestörte

*) „Ein dynamisches Modell für schwere Teilchen". Helv. Phys. Acta XII, 5,
S. 249, 1939.

2) „Über retardierte Wechselwirkung". Verhandlungen der Schweiz. Naturi.
Gesellschaft, S. 13, 1939.
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Teilchen nicht im Zukunftskegel des störenden Teilchens, so wird
es überhaupt nicht erfasst. Liegt es aber in diesem Kegel, so ist
an seiner Weltstelle schon eine wohlbestimmte Wahrscheinlichkeitsdichte

des störenden Teilchens gegeben. Hier noch eine
Überlagerung einer Feldkraftwelle vorzunehmen, ist wohl sinnlos.
Vielmehr bietet sich ganz von selbst der Gedanke, die auf das gestörte
Teilchen wirkende Kraft direkt aus der Wahrscheinlichkeitsdichte
des störenden Teilchens an der Stelle des gestörten Teilchens
abzuleiten.

Bezeichnen wir also die Wellenfunktion des störenden
Teilchens mit v, so haben wir in (13) an Stelle von cpk einen Vektor
zu setzen, der aus v abgeleitet ist. Da aber v2 nach Postulat 1)
eine relative Wahrscheinlichkeitsdichte darstellt, so muss dieser
Vektor invariant sein gegenüber Multiplikation von v mit einer
Konstanten.

Die naheliegendste Bildung dieser Art ist

d Lg v ,_, _.
cPi ke —-M— 17

dxi

wo k einen reinen Zahlenfaktor darstellt. Aus der so aus (13)
abgeleiteten Gleichung für u ergibt sich nach Postulat 3 a) durch
Vertauschung von u und v die entsprechende Gleichung für v.

Bezeichnen wir also mit e das fe-fache der Feinstrukturkon-
e 2

stanten so erhalten wir folgendes Gleichungssystem1) für die
hc

Wechselwirkung zweier Elektronen u und v:

e k • — (18)
hc

\Z\u—[A + e\YYVgv + e2(grad Vgv)2]u 0

v — [A + e Lg u + e2 (grad Lg u)2] v= 0
(19)

Die naheliegendste Ausdehnung dieses Systems auf den Fall
von n Elektronen mit den Wellenfunktionen

1} 2 î n
ist wohl folgende:

Wir legen die erste der Gleichungen (19) zugrunde und setzen
darin

u Ui

x) „Bemerkungen zu meiner Arbeit usw.", Helv. Phys. Acta XIV, 2, S. 130,
1941.
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und im Sinne der Wahrscheinlichkeit des sowohl als auch

n

V £ [ Uk
k l

Der eingeklammerte Index i soll also andeuten, dass der Faktor u(
ausgelassen wird. Im selben Sinne werden wir das Zeichen Z®
für Summen verwenden. Wir erhalten also

(20)

als vollständiges System von Gleichungen für die Wechselwirkung
von n Elektronen.

Zu diesen Gleichungen sind nun verschiedene Bemerkungen
am Platze.

1) In formalmathematischer Beziehung empfiehlt es sich, die
durch das System (20) gegebenen Probleme aufsteigend vom
Speziellen zum Allgemeinen in drei Kategorien zu ordnen:

a) Spezielles Koinzidenzproblem (Einkörperprobleme):
Die n Elektronen koinzidieren in einem Weltpunkt und

befinden sich überdies im selben Zustand, d. h. es gilt

ux u2 ¦ ¦ ¦ un

b) Allgemeines Koinzidenzproblem (spezielle Mehrkörperprobleme)

:
Die n Elektronen koinzidieren in einem Weltpunkt, befinden

sich aber nicht alle im selben Zustand.

c) Allgemeines Mehrelektronenproblem:
Die Ausgangskonfiguration der n Elektronen umfasst mehr

als einen Weltpunkt, von denen je zwei eine raumartige Distanz
besitzen.

Die damit formulierten Mehrelektronenprobleme sind bedeutend

einfacher als die entsprechenden Schrödinger'sehen Probleme.
Zum Beispiel gilt folgende Aussage : Sämtliche Probleme a) und b)
sind in vierdimensionalen Polarkoordinaten vollständig separierbar.

2) In physikalischer Beziehung ist durch die Einführung von
ebensoviel Wellenfunktionen wie Teilchen die Gefahr der
Kernkatastrophe — wie schon im vorigen Paragraphen betont wurde —
auf radikale Weise beseitigt worden.
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Ganz allgemein scheint eben für die methodische Behandlung
des w-Teilchenproblems folgende Alternative zu bestehen:
Entweder eine Wellenfunktion und n Orte oder n Wellenfunktionen
und höchstens n Orte. Im ersten Falle sind — wie mir scheint —
letzten Endes explizite in die Gleichung eingehende variable
Abstände unvermeidlich, im zweiten Falle dagegen die n-fachen
Koinzidenzen.

3) Bei oberflächlicher Betrachtung könnte vielleicht der
Eindruck entstehen, dass durch die Einführung eines Gradienten gemäss
(17) die ganze Maxwell'scAie Theorie preisgegeben werde.
Möglicherweise ist gerade das Gegenteil der Fall! Wie wir zu Beginn
dieses Paragraphen schon bemerkt haben, bewirkt ja die orthodoxe

Einführung des Vektorpotentials in die Gleichung (13)
paradoxerweise die Annullierung des Coulombpotentials. Dagegen
liefert die Durchrechnung des speziellen Koinzidenzproblems a)
folgendes interessante Resultat: Das Coulombpotential wird
restituiert, aber erst, wenn die Zahl n der koinzidierenden Teilchen
die Relation

n > 1 + — (21)
e

erfüllt. Diese Grenze hängt nach (18) vom Zahlenfaktor k ab,
für dessen Bewertung wir aber noch keine Handhabe besitzen.
Vermutlich wird ja die Zahl e klein sein. Setzt man probeweise
k 1, so ergibt sich

n > 138.

Eine Theorie aber, die ein Coulombfeld liefert und im übrigen
relativistisch invariant ist, enthält schon einen sehr wesentlichen
Zug der Maxwell'schen Theorie. Im Atomaren mehr zu fordern,
kann sehr wohl einen Abweg bedeuten.

4) Ganz speziell sei noch einmal auf das Postulat 3a)
hingewiesen, demzufolge also alle Elektronen gleich sein sollen. In
den Gleichungen (19) und (20) wurde dementsprechend überall
derselbe „Massenfaktor"

A=-^YAt (14)
hl

verwendet. Die durch die Ungleichung (21) ausgedrückte
Bedingung hat ihrerseits nur einen Sinn, wenn man den Faktor k
in (18) positiv annimmt. Wir interpretieren dies dahin, dass alle
Elektronen gleich geladen seien.

Damit entsteht die Aufgabe, zu untersuchen, ob aus diesen
vollkommen symmetrischen Annahmen ein Verständnis für die bei
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kleinen Teilchen beobachtete Asymmetrie in bezug auf Ladung
und Masse gewonnen werden könne. Im nächsten Paragraphen
werden wir Anzeichen dafür finden, dass unsere Erwartungen
wenigstens hinsichtlich der Masse vielleicht gerechtfertigt sind.
Hinsichtlich der Ladung muss ich die Frage noch ganz offen lassen.
Darum wurde Postulat 3 a) unter die provisorischen gerechnet.

Im übrigen ist der ganze Formalismus so gefasst, dass
ungleiche Massen und ungleiche Ladungen nötigenfalls ohne weiteres
in die Prämissen aufgenommen werden könnten.

¦ ¦

§ 4. Entstehung schwerer Teilchen.

Wir ziehen nun aus den Gleichungen (20) für den Fall des

„speziellen Koinzidenzproblems", also unter der Voraussetzung

ux u2= ¦ ¦ • un= u (22)

einige vom gewählten Koordinatensystem ganz unabhängige
Schlüsse. An Stelle der n Gleichungen (20) tritt eine Gleichung
für die Funktion ra:

D^= {A+(n — l)e nVgu+(n — l)2e2(gvadVgu)2}u (23)

oder wegen

D Lg ra -öiL - (grad Lg u)2, (24)
u

Ou- - — — (ra — l)fi(gradLgtt)2
11 —(n —l)e J

(25)

Die Funktion u genügt also einer Gleichung mit einem
modifizierten Massenfaktor

A =Z=-(^LV. (26)
1 —(n —l)e V h

Für die (scheinbare Masse eines einzelnen der n koinzidierenden
Teilchen ergibt sich also

m •,—_— (27)
Vi —(ra —1)£

Die Gesamtmasse aller n Teilchen erhält demnach den Wert*)

(28)M= n'm
V-l — (ra —1)6

*) Unter der stillschweigenden Voraussetzung, dass „Strahlbildungen"
existieren, bei denen die n Teilchen beieinander bleiben.
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An diesem Resultat ist vor allem die qualitative Feststellung wichtig,

dass der Massenfaktor in (26) für positives £ nach endlich
vielen Schritten sein Zeichen wechselt. Unsere Theorie führt also
unmittelbar zum Schluss, dass mit wachsender Koinzidenzzahl ra

die Masse beständig wächst, um dann bei Überschreitung einer
gewissen Grenze in einen ganz neuen Zustand überzugehen.

Wie man leicht erkennt, ist dieser Effekt ein allgemeiner Zug
des vorgeschlagenen Systems, der nicht wesentlich von sekundären

Modifikationen abhängt.
Die quantitativen Folgerungen aus (28) sind natürlich an den

Vorbehalt gebunden, dass das Störungsglied in (25), das ja mit ra

wächst, den Masseneffekt nicht in unerwünschter Weise
beeinflusst. Dieses Glied ist übrigens dadurch entstanden, dass man
genau die elektrodynamische Hamiltonfunktion (12) des Elektrons
übernommen hat und hängt ursprünglich vom Quadrat der
Feinstrukturkonstanten ab. Hier ist also am ehesten die Stelle, wo
ein Abänderung des Kraftansatzes in Frage kommen könnte. Doch
wollen wir ohne triftigen Grund vorderhand keine Änderung der
durch Variation entstandenen Gleichungen (20) diskutieren.

Unter diesen Vorbehalten bestimmen wir nun die obere Grenze
der durch (2) gegebenen Massen.

Es sei also £ eine kleine positive Zahl. Dann können wir
setzen

N < — < N + 1 (29)

(30)

(31)

(32)

Die mit reellen Massen verträglichen Koinzidenzzahlen haben nun
nach (28) die Ungleichung

(n —l)e<l (33)

zu erfüllen, d. h. nach den eben eingeführten Bezeichnungen die
Relation

n< N + 1 + co. (34)

wo N eine natürliche Zahl ist, oder also:

1

£
N + m

das heisst

S -
1

N + co

mit
0 < co <,!
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Nach (32) ist also die grösste zulässige Koinzidenzzahl gegeben
durch

n0= N + 1 (35)

und daraus ergibt sich nach (28) die Masse

M,0=(N+ 1)1/^+1
r w

• m (36)

Das Resultat hängt also ganz wesentlich von der Dezimalen co

der Konstanten — ab Ist — eine ganze Zahl, so herrscht eine voll-
£ £

kommene Zweideutigkeit. Dieselbe wird also am ehesten vermieden,

wenn man setzt
co 1 (37)

woraus dann folgt
M0= (N + 1) y2 N + 1 ¦ m. (38)

Setzen wir nun wieder in (18) probeweise k 1, so folgt vorerst
einmal

1 hc
e e2

Also haben wir im Sinne von (37) zu setzen — 137,5, d. h.
£

N 137 (39)

und daraus ergibt sich das Massenverhältnis° •

—- 138 t/275 690 i/ïï
oder

^YL _ 2280
m

Man kann also sagen, dass der einfachste Fall einer an sich ja
sehr variationsfähigen Auswahl wenigstens in der Grössenordnung
das Massenverhältnis von Proton zu Elektron trifft.

Der kleinste Massenwert ergäbe sich für co 1 zu

—-= 138 t/138 ~ 1620
m '

und der grösste für co -> 0 natürlich zu

M2—- oo
m
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Wie man sieht, kann wegen des starken Einflusses von co in
vielen Einheitsintervallen, also für alle nicht zu grossen N ein
derartiger Massenwert ermittelt werden.

Es ist auch denkbar, dass man umgekehrt einmal Anlass zu
einer Bestimmung der Dezimalen co unter Vorgabe von MAm und
N erhält.

Eine endgültige Abklärung ist aber erst zu erwarten, wenn es

gelungen ist, in der vorgeschlagenen Theorie das Wasserstoffspektrum
darzustellen.

§ 5. Gibt es eine korrespondierende Punktdynamik?

Ist ein konservatives dynamisches System durch die generalisierten

Koordinaten
xx, xn

und die zugehörige Hamilton'sche partielle Differenzialsgleichung

h(xx,--- xn; *ß-,...J£L\ E (40)
V dxx dxn 1

definiert, so erhält man die zugehörigen Lagrange'sehen
Gleichungen bekanntlich durch folgendes Verfahren:

Durch die Substitution

4^ - V. (41)
dXi

führt man die Impulskoordinaten ein und erhält die Hamiltonfunktion

TT TT,H =H(xx, ¦ ¦ ¦ xn; Pi,---Pn)- (42)

Hierauf führt man durch den Ansatz

dH
à Pi

(43)

wo der Punkt die Ableitung nach der Zeit bedeutet, die
Geschwindigkeitskomponenten ein. Dann löst man (43) nach den pt auf und
setzt die erhaltenen Funktionen von xt und xt in den Ausdruck

L=px^--H (44)
àpx

ein. Die so ermittelte Funktion der xt und xt ist die Lagrangefunktion

L s L(xx, ¦ ¦ • xn; xx, ¦ ¦ • xn) (45)

des betrachteten Problems.
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Wendet man dieses Verfahren auf die partielle Differenzial-
gleichung (12) an, nachdem man sie aus dimensionellen Gründen

mit -=— multipliziert hat, so ergibt sich die Lagrangefunktion

L — xk xk + — cpk xk (46)
2 c

Als Lagrange'sehe Gleichungen

d fdL\ dL_=0 (47)
dt \dxjj d

resultieren die Gleichungen

»5,--!(4*l_4»!lW. (48)

Falls man nun den Ansatz (17) für das Feld macht, resultiert
überhaupt keine Kraftwirkung, entsprechend der wohlbekannten
Vorschrift, dass an Stelle des Vektorpotentials kein Gradient
gesetzt werden dürfe. Wir haben hier gewissermassen die Kehrseite

des bei der Einführung von (13) geschilderten Versagens.
Hält man also in unserer formal durch (17) gekennzeichneten

Theorie an dem genauen Ausdruck (12) fest, so resultiert keine
korrespondierende Punktdynamik.

Nun haben wir schon im vorausgehenden Paragraphen
festgestellt, dass unsere Schlüsse betreffend schwere Teilchen wenigstens

qualitativ vom Glied mit £2 in (20) unabhängig sind. Es ist
also möglich, sich eine punktdynamische Illustration der beschriebenen

Masseneffekte zu verschaffen, wenn man statt (12) den
Ausdruck

1 dS dS e dSH= -— <P*ir- (49)
2 m dXf. dxk mc dxk

zugrunde legt.
Die zugehörige Lagrangefunktion lautet:

L=-~lxk + <pA[xk+ -<pk) (50)
2 \ mc j \ mc J

und als Bewegungsgleichungen ergeben sich

m x

oder nach (17)̂
--{^-^A^A^ (51)

c \dxi dxk I mc2 dxt

e4 d
mxi=k2- - - [(grad Lg v)2]

2 mc2 dx.
(52)
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Der Parameter in (52) hat die Dimension einer Zeit und möge x
heissen. Wir ersetzen ihn durch die Länge

s cx (53)

Bezeichnen wir die Ableitungen nach s mit einem Strich, so
erhalten wir an Stelle von (52)

Xi
k2

AT mc' dx,
[(grad Lg v)2] (54)

Dem anschaulichen Sinn unserer Theorie entspricht es aber besser,
als Parameter eine reine Zahl zu verwenden, gewissermassen die
Zahl der Wirkungselemente längs der Weltlinie des Teilchens1).
Wir setzen also

h

mc

und erhalten dann unter Berücksichtigung von (18) :

da2 mc dx,
[(grad Lg v)2]

(55)

(56)

Die punktdynamische Behandlung erfordert also einen gemischten
Standpunkt: Das Potential wird ermittelt aus der Wellenfunktion
v des störenden Teilchens. In dem erhaltenen „Feld" bewegt sich
das gestörte Elektron als Punkt nach dem Gesetz (56).

Die Gleichungen (56) resp. (54) beschreiben also die korrespondierende

Dynamik für den Fall, dass in (19) und (20) die Glieder
mit £2 unterdrückt werden, d. h. also für die Wechselwirkungsgleichungen

(19*)
u (A + £ Lg v) u

D» (A+e Vgu)v

îen u nd

dUi /l + £D(ifLg%) U{ (20*)

für ra Teilchen.
Diese letzten Gleichungen können übrigens für grosse ra keinesfalls

als erste Näherungen der Gleichungen (20) angesehen werden.

x) 1. c. 5), S. 476.
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Schliesslich sei noch betont, dass eine direkte Analogie
zwischen den hier betrachteten atomaren Kräften und den, makroskopischen

Feldern entsprechenden, Ladungen gar nicht zu erwarten
ist. Schon die Wahrscheinlichkeitsvorausetzungen sind in beiden
Fällen total verschieden. So können makroskopische Felder ja
nur bestehen, wenn eine dauernde maschinelle Energiezufuhr in
gewisse materielle Systeme stattfindet, während im Atomaren
Systeme beschrieben werden müssen, die in freier Wechselwirkung
stehen.

Schlussbemerkung.

Zum Schluss möchte ich noch einmal auf die prinzipielle
Bedeutung von Postulat 3) zurückkommen. Es verlangt, dass ebenso
viele Wellenfunktionen wie Elektronen eingeführt werden und nur
auf dieser Basis sehe ich eine Möglichkeit, die expliziten Abstände
— oder, anders ausgedrückt, die Überlichtgeschwindigkeiten —
auszuschalten. Als unausweichliche Folgerung ergibt sich die
Möglichkeit beliebig naher Koinzidenzen und diese wiederum führen —
konsequent atomistisch gedacht — auf genaue Koinzidenzen gemäss
Postulat 4).

Ob diese schwerwiegende Konsequenz bedingungslos
eingehalten werden darf, kann erst der weitere Ausbau lehren.

Anders stehen die Dinge mit dem Postulat 3 a). Wir haben
hier eben vorderhand nur den einfachsten Fall lauter „gleichgeladener"

Teilchen gleicher Masse betrachtet. Rein logisch genommen,

wäre diese einfache Grundlage natürlich sehr befriedigend.
Die vorgeschlagene Methode liesse es aber durchaus zu, von
vornherein verschiedene Teilchen anzunehmen. Eine formale Möglichkeit

bestünde darin, unseren einfachen Faktor £ zu einer
Matrix auszubauen, die gerade dazu dienen könnte, beliebig hohe
einförmige Koinzidenzen auszuschliessen, falls es sich als
notwendig erwiese, das Ausschlussprinzip explizite zur Geltung zu
bringen. Angesichts der dabei zu erwartenden Komplikationen
ziehe ich es aber vorderhand vor, die näheren Details der
vorgeschlagenen Ansätze zu ermitteln.

Mathematisches Institut der Universität Bern.
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