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La mécanique du point matériel en théorie de relativité
et en théorie des quanta

par E. C. G. Stueckelberg.
(18. X. 41.)

Résumé. Une légère modification de la mécanique d'EiNSTEiN (remplaçant

l'extrémumde / mds f mA —q^qix dA par celui de J / q^qßdk) permet d'établir
une nouvelle mécanique relativiste. Ses résultats ne diffèrent pas des résultats
obtenus par la forme habituelle, si l'on ne fait intervenir que des champs gravi-
fiques et électromagnétiques. Mais, tout en gardant la covariance de la théorie,
on peut introduire des champs nouveaux qui ont pour conséquence la création
de particules dans la théorie classique.

La quantification de la théorie représente l'extension logique de la théorie
de Schroedinger aux quatre dimensions de l'espace-temps. Un de ses résultats
est la création de particules par des champs électromagnétiques.

Exposé général de la théorie1).

Théorie classique du mouvement d'un point de masse. — Au
cours du temps t, le point matériel décrit une courbe troisdimen-
sionnelle, la trajectoire. Celle-ci est déterminée par les trois fonctions

xi q{(r), qui donnent les valeurs des trois coordonnées
(i 1, 2, 3) xi au temps t r. Si l'on introduit le temps t x*
comme une quatrième coordonnée, et si, en plus, on considère
t — r(X) g4 (A) comme fonction d'un paramètre X quelconque, la
courbe quadridimensionnelle x11 qß (X) (^=1,2,3,4) représente
la ligne d'univers en termes d'un paramètre quelconque X.

La théorie d'EiNSTEiN (§ 1) donne une loi qui permet de
construire ces lignes d'univers, si le champ de gravitation T^v(x)
rv*-ß(x)) et le champ électromagnétique (BßV(x) — Bvil(x)') sont
donnés comme fonctions d'espace-temps (B'"(x)= Bt"(x1, x2, x3, x*)).
Une telle ligne est entièrement déterminée si 1 ° la position ~x=q

q1, q2, q3) et la vitesse î dq1jdr, dq2jdr, dq3jdr) sont données

pour un certain temps initial t q* et si 2° un certain nombre efm
(rapport entre la charge électrique et la masse de repos,} qui caractérise

le point matériel est connu.
Ne sont admises dans la théorie d'Ein stein, que les lignes

d'univers ayant une seule intersection avec un hyperplan t xi
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const (cf. ligne A en fig. 1)*). En effet, ce ne sont que ces lignes
qui correspondent à la conception habituelle de causalité : La seule
intersection x* q{(t const) est l'endroit où l'on trouve la particule

au temps t. D'autres lignes (par ex. la ligne B en fig. 1)
montrent deux intersections pour des plans t x* const <^ 0 et
aucune intersection pour t xi const ^s> 0. Si, au moment de
l'établissement de la théorie d'EiNSTEiN, de telles lignes n'étaient
pas discutées, c'était parce que le phénomène de la création et de
l'annihilation de paires de particules échappait encore aux
expérimentateurs et aux théoriciens. Or la ligne B de la fig. I1) décrit
une telle annihilation mutuelle de deux particules au moment t ~ 0.

Tandis que la mécanique d'Einstein n'admettait donc que
des courbes du type A, la mécanique proposée au § 2 se libère de

cette restriction. Son résultat sera que, en plus des lignes A, des
courbes du type B ou G peuvent apparaître. Les deux partenaires
d'une paire ainsi créée ou anéantie ont des charges électriques
opposées. Pourtant, les phénomènes B et C ne font apparition
que si l'on admet, en plus des champs électromagnétiques et gravi-
fiques, un champ d'un type nouveau K" (x) (§ 3). En l'absence de

ce champ, la mécanique proposée ne présente pas de nouveaux
phénomènes. Il en sera tout autrement dans la nouvelle mécanique
quantifiée.

Théorie quantique du mouvement d'un point de masse. — La
mécanique proposée permet une quantification en quatre dimensions

analogue à celle introduite par Schroedinger pour les trois
dimensions spatiales en théorie non relativiste. Le rapport entre
la mécanique classique et la mécanique quantique (§ 5) est alors
celui entre l'optique géométrique et l'optique ondulatoire dans le
continu quadridimensionnel de l'espace-temps. Pour en donner un
exemple, nous considérons le cas où, au temps t 0, un champ
électrique homogène très fort Ex (parallèle à l'axe x1) apparaît
pendant un intervalle très court ôt. Cet événement peut être
décrit par un potentiel vecteur 0" à une seule composante
01 Exôt pour t < 0, qui disparaît pour t > 0. L'hypersurface
t 0 représente ainsi une surface de discontinuité dans le continu
spatiotemporel. Un rayon au sens de l'optique géométrique est
réfracté sur cette surface (cf. fig. 2). La réfraction n'est pas autre chose

que le changement de vitesse dû à l'accélération subie par la
particule pendant l'intervalle ôt. Va ligne d'univers de la mécanique
classique correspond à ce rayon réfracté. Mais l'optique ondula-

*) Les figures ont été publiés à l'occasion de l'anniversaire de M. A. Hagbn-
bach dans le numéro précédent. Helv. Phys. Acta 14, 588 (1941).
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toire montre qu'à toute réfraction est liée une réflexion d'une
intensité non nulle. Ce rayon réfléchi est du type C (ou B) de la
fig. 1. Notre nouvelle mécanique montre ainsi que, en théorie des

quanta, le champ électromagnétique a la propriété de créer et
d'annihiler des paires de particules.

Remarquons, pour terminer cette introduction, que la mécanique

d'EiNSTEiN ne permettait pas de quantification. L'électron
de Dirac n'est pas la quantification du point matériel d'EiNSTEiN,
mais celle d'un système plus complexe (point de masse avec des

degrés de liberté intérieurs)2). D'autre part, l'équation de
Schroedinger-Gordon n'est pas une quantification du point de masse
non plus, mais la théorie d'un continu scalaire à deux composantes

une composante complexe). La quantification de ce continu, par
Pauli et Weisskope3), montre alors le phénomène de la création
et de l'annihilation de paires de quanta de charges opposées.

La mécanique ici présentée nous semble donc être la seule

mécanique relativiste du point de masse qui permet la quantification
directe.

§ 1. La mécanique d'Einstein.

Soit gliV(x) les composantes covariantes du tenseur fondamental

potentiel gravifique) et dq1* les différences de deux événements

voisins sur la ligne d'univers x1* qß(X) qui est parcourue
par le point matériel. La grandeur (ds)2 -^ gßV(q)dq>ldqv peut
alors être positive, nulle ou négative. Deux événements sont
situés temporellement l'un vis-à-vis de l'autre si (ds)2 > 0. dq* ne
peut jamais devenir zéro sur une ligne où l'on a partout (ds)2 > 0.
Sur une telle ligne, le temps propre est défini par

ds Yz^g^ydqi* dqv suivant que dqi^0 (1,1)

L'équation fondamentale de la mécanique d'EiNSTEiN prend alors la
forme « masse au repos » par « accélération propre » égale à « force
gravifique plus force électromagnétique ». On définit d'abord la quadri-
vitesse normalisée W dqf/ds; w^w1* — 1. La loi, pour une particule

de masse de repos m et de charge électrique e s'écrit sous forme

dw1*
m —— — mT^ w* wß + eB"» wv (1,3)

Cette loi dérive d'un principe de variation ô I 0, où 1 se compose

de deux parties I Jmat + 7int

q" q"

Jmat =m Jds ; Jint e fdqv&^ (q) (1,4)
a' </
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Sont à varier les lignes d'univers qf q1*(X) reliant l'événement
q' à q" (q' (qv, q2', q3', q*')). B/IV et F£ß sont les dérivées des

potentiels 0ft(x) et gßAx)

"v dx" dx" ' aß 2y \ dxY dx« dx* j y ' '

évaluées pour x" q".

§ 2. La mécanique nouvelle.

Nous désignons les dérivées de q" par rapport au paramètre
fjq/x

X par qt1 —=-t- Alors les équations fondamentales sont :

-Jï (L» - r^ q« qK+eBfq, (2,1)

et, pour qu= gßr q"

Elles dérivent d'un principe de variation analogue à celui du du § 1.

-Zjnt a la forme identique à (1,4), mais

î." t."

Jmat fd?.lrqßq» JdX Lmat (q", q") (2,3)

;/ ;.'

On vérifie d'abord que la quantité

m2=-q.lÀ" (2>4)

est une constante d'intégration associée à la ligne d'univers. Donc,
pour autant que cette constante est choisie positive (m2 > 0),
la ligne est une succession de points situés temporellement les uns
relativement aux autres. A une augmentation dX correspond alors
une variation dqi-A0 suivant que g4 ^ 0. Introduisant le d s de
la définition (1,1), on trouve (m + s/m2)

ds Yz m dX suivant que ç4 < 0 (2,5)

La substitution de (2,5) en (2,1) donne l'équation identique à celle
d'EiNSTEiN (1,3), mais avec les deux possibilités du signe de e, soit
les équations d'EiNSTEiN pour la particule (m,e) et pour
l'antiparticule (m, — e). Notre théorie contient donc les deux charges
d'une façon absolument symétrique.
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Nous étudions alors les équations décrivant la réaction de la
particule sur les champs.

Ce sont les équations de gravitation Gß„= xT/tv et les équations

de Maxwell. Pour que les premières soient possibles, il
faut démontrer l'existence d'un tenseur d'énergie impulsion T/IV
satisfaisant à

dT"v
HUT ° (2'6)

en vertu de l'équation de mouvement (2,1) et des équations de

Maxwell

~ L 4 n [JA ; f— ° (2>7
dx" L ' dx* v '

[F] \/ — || g I F est la densité tensorielle associée à un tenseur F.
\\ g \\ est le déterminant des g La première équation (2,7)
dérive d'un principe de variation invariant

ôffff(dxA[£] 0 (2,8)

avec

^ ^"él ~~ ^maxw ' -Mut

2maxw - -^ B„ B»' ; H"' -8n -££- (2,9)

Ant J" *„
Les fonctions &Ax) sont à varier. Pour définir J1* nous

introduisons la fonction singulière de Dirac [g (a;)]1) ayant la propriété

JfjJ (dxY[Q(x)] f(x) /(0) ou 0 (2,10)
a

suivant que le point x" 0 est contenu en Q ou non. Si nous
ajoutons à £él un £mat défini par

+ 00

[Cmatl= ifäXgßr(x)q"q'[Q(x- g (A))] (2,11)
— OD

et, si nous définissons en [£int] le courant [J**] par
+ 00

[J":(*)] «/dAg"[e(a;-3(A))] (2,12)

*) [q] a en effet les propriétés d'une « densité tensorielle » scalaire, (dx)*
dx1 dx2 dxs dx*.
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les équations de la mécanique (2,1) et (2,2) partent du même
principe (2,8) avec

£ £maxw + £mat + £nt (*A*>)

En plus, des fonctions &ß(x), les fonctions qt'(X) sont à varier.
La grandeur

2 / d ["£1 \T"" —=== -~AA /2,14)
V — |! g I \dgi,J&M,qi*= const

satisfait alors à (2,6). Tftv est, en vertu de l'indépendance de £int
des gßV, la somme_ Tm^xw + T^t. Tmaxw a la forme habituelle
du tenseur d'énergie-impulsion électromagnétique. La densité d'énergie

correspondante Tmlaxw est donc positive. Il en est de même

pour
+ 00

[TZt] fdXq» qv [Q(x-q(X,)] (2,15)

pour autant que q4 4? 0. La grandeur

W(t) JJJ (dx)3[Tii(x1, x2, x3, x* t)] ± q* mw4 (2,16)

m
suivant que g4 < 0

+ Vi — |î> (t) |2

est en effet toujours positive. Elle représente l'énergie totale portée
par la matière. L'intégrale est à prendre sur un volume spatial V
entourant la ligne d'univers à l'instant t.

Va charge totale de la particule vaut, à ce même instant:

e(t) Jff (dx)»[J«(a!1, x2, x3, xi=t)]=±e (2,17)
r

suivant que g4 < 0

Remarquons ici une différence fondamentale entre la mécanique

habituelle et la nôtre: la particule habituelle est caractérisée

par deux constantes m et e. Pour prédire la ligne d'univers,
il suffit de mesurer, à un certain moment t g4, les trois
coordonnées q* et les trois composantes de sa vitesse v{ ôqijôqi.
Dans notre modèle, la particule est caractérisée par une seule constante

e. Nous mesurons d'abord, comme dans la théorie habituelle,
à un certain moment t g4, les trois coordonnées g* et, à un
moment plus tard g4 + <5g4(<5g4 > 0), la position g* + ôq\ Ensuite,
dans une expérience de deflection, nous observons son efm; e étant
donné, m2 — oqßoqß | ÔX |~2 déterminera la valeur absolue de
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ôX. Le signe de ÔX est déterminé par le signe de efm. De cette manière
les q" et les g f sont déterminés pour une valeur initiale de X (par
ex. X 0) et la ligne d'univers peut être prédite sous sa forme
xß ql*(X) en résolvant l'équation différentielle (2,1).

§ 3. La production de paires de particules par des champs non
électromagnétiques en mécanique classique.

Si l'on ajoute aux seconds membres de (2,1) un terme Kß(q)
dû à un champ K"(x), la valeur de m2 —g^g'' ne reste plus
constante*). Ce nouveau champ a donc pour effet de changer
« la masse de repos » de la particule. Si, en particulier, on a Kß

d U/d x", la grandeur

B=-im2+U=iqflq"+U(q) (3,1)

jouera le rôle de constante d'intégration. Va fig. 1 illustre l'exemple
où seule la composante K* diffère de zéro dans l'intervalle t2 — tx

avec U(t > t2) 0 et TJ (t < tx) const + 0.

La courbe A montre un changement de la masse de repos
de la particule, accompagné d'une accélération. Si le champ K4
est plus fort, la ligne se déforme en la forme B. Si le champ est
de signe opposé, nous trouverons des lignes du type C. Dans les

régions où le champ iv"4 disparaît et où U reste constant, les lignes
B et C représentent, en vertu de (3.1), des paires de particules
de même masse m, mais, comme le démontre (2.17), de charges
opposées. Un champ K'' d'ordre plus général, créera des particules
de charges opposées mais de masses différentes. La théorie,
complétée par ce nouveau champ E>, garde naturellement son
invariance relativiste. Mais elle montre des phénomènes qui semblent
être contraires à nos conceptions de causalité. Pour démontrer ceci,
considérons la ligne B de la fig. 1 : Une mesure de gM et q f pour
X — 0 a été faite, suivant les indications à la fin du § 2. Cette
mesure est marquée comme l'événement (1) dans la fig. 1.
Ensuite, je produis, au moment tx, le champ K* pendant l'intervalle
t2 — tx. La ligne d'univers, que je peux prédire en me basant sur les
résultats de la mesure (1) et sur ma connaissance de l'intensité
du champ produit, est du type A ou B. Si elle est du type B,
je sais que, pour t < tx, il y a toujours existé une antiparticule
telle qu'elle rencontrera, à l'instant t ~ 0, la particule observée

pour s'annihiler avec elle. Ces prévisions me semblent être
contraires à nos notions de causalité. Remarquons enfin que les parti-

Voir l'éq. (2) de I.
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cules peuvent atteindre des vitesses supérieures à celle de la
lumière. Par une transformation de Lorentz, on vérifie que ce
dernier phénomène n'est qu'une description alternative de cette
même série d'événements.

Ces considérations d'ordre causal nous semblent ainsi interdire

l'existence de tels champs.

§ 4. Forme canonique.

L'équation de mouvement sans le champ K1* (2,1) dérive d'un

principe d'Hamilton ô fdXL 0 avec

Nous introduisons les variables conjuguées pß dL/àq" qM + e0ß
et définissons l'hamiltonienne par

R(p,q) -L + pßq» \nß7i»
avec (4,2)

^(p, g) Vu. — e®M
Va définition habituelle des parenthèses de Poisson {F, G}
(dF/dpli)(dGldq") — (dFfdq")(dGldplt) fournit les relations

{7iß,7tv} -eBltv(q); K-/(g)}=ö//ög" (4,3)

La loi de mouvement

F~{R,F) (4,4)

permet d'écrire (2,1) sous forme canonique

q" {R, g} n"
dg*ß (4,5)

kß {R,nß} -\-j—nanß + eBßVn"

L'hamiltonienne elle-même est une constante d'intégration et
définit la masse : 2 R — m2. Le signe de n* g4 détermine le signe
de la charge.

§ 5. La quantification formelle.

En analogie parfaite avec la théorie de Schroedinger, nous
introduisons une amplitude de probabilité scalaire et complexe

V(q\q2,q3,q*,X)= W(q,X) (5,1)
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satisfaisant à l'équation
h dtp

R(p,q)y>=—j--Jx=hÌV (5>2)

pM —jhd/dq1* est l'opérateur de differentiation. D'un opérateur
hermitéique F(jp, q) opérant sur rp et défini par une série de
puissances en pß et q1*, on forme l'espérance mathématique

F(X) (f,Frp)=ffff(dq)*rp*(q,X,) (Frp(q,X)). (5,3)

ip est normalisé à (tp, tp) 1.

On vérifie que F dF(X)jdX est l'espérance mathématique F
d'un opérateur F défini par le commutateur ([A, B] AB — BA):

F -^[R,F] {R,F} (5,4)

La dernière égalité suit des lois de commutation de pß et qf. Elle
assure la correspondance entre la mécanique classique et quantique
(cf. éq. (4.4)).

Nous nous limitons au cas où les gß „ sont des constantes avec
— 11 g 11 1. La différence entre [F] et F disparaît. La fonction
singulière q(x — g), définie par la limite d'une série de puissances
en q", permet alors de définir les opérateurs

ß

s"ix) ç, (/t"Qix — q) + e(x — q)tt") (5,5)
et

A"v(x) K71" Q(x — q)nv+nvQ (x —g) n")
— io"" (na q(x — q) 7t* — Rg(x-q) — g(x-q)R) (5,6)

Leurs espérances mathématiques S**(x; X) et Al*v(x,X) formées

par des intégrations (5,3) dépendent de X. On en forme les
espérances mathématiques indépendantes de X :

J"(x) dXS»(x,X)
— OO

(5J)

+ 00

T&(x)= fdXÄß'(x,X) (5,8)
— 00

qui satisfont aux équations:

dJ"(x) _
dx1*

(5,9)

<!IßW =i'Bß>JAx) + Jv(x)B»*) (5,10)
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Les définitions (5,7) et (5,8), ainsi que les lois (5,9) et (5,10) montrent
leur correspondance avec les grandeurs classiques (2,12) (densité
du courant électrique) et (2,15) (tenseur d'énergie-impulsion)*).

Remarquons enfin que l'espérance mathématique de la densité

de charge

J*(x)=J*(x,t)^pxfr^rp(x,t,X)-rp*^^
— 00

J

+ 0C

-e2<Z>4(î,i) fdX\ rp(x,t,X) |2 (5,11)
— 00

peut être positive ou négative. Elle est partout positive si rp (g r, X) —

u(q, X)e~'ar avec co > 0 et si 1'« énergie totale» h m est partout
plus grande que 1'«énergie potentielle» e<£4.

L'espérance mathématique de la densité d'énergie matérielle
peut être exprimée par

+ 00 +œ

r£t(M \JdX^\7i«tPCx,t,X)\2-Jßdß\(pß(x,t)\2 (5,12)
—ce —co

9^/s(#) tPßCq.' 34) es^ Ie coefficient de Fourier dans la série

V(q,t)= T^ [dß<pß(q)e-iß>-
y — x

*) La relation classique d Tp v/d xv — 0 implique en effet que

àT^ldx'=-dT^xJdx^=B^Jv(X).
Les relations (5,9) et (5,10) se démontrent de la manière suivant. On a d'abord (a) :

dSf
"3—ir - e q (a)d xf e v '

Si l'espérance mathématique de g disparaît pour X + co (ce qui est le cas pour
tout événement fini) (5,9) suit immédiatement. Pour démontrer (5,6) on décompose
A!>v en deux termes

A"" A$" + A?" (b)
avec

e A% ' J- (n" 8V + S" n")

La divergence d AC" / d xv 0 disparaît identiquement, tandisque en vertu de (a)

^f_- _ H^ • + è ^d x

L'intégration partielle des espéarnces mathématiques fournit (5,10), si on se sert
de la relation

Ä* i«(B„,»' +n" Bßv).
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Pour autant que le paquet d'ondes rp est composé essentiellement

d'ondes correspondant à des valeurs propres de R ß ~- < 0,

c'est-à-dire à des « masses réelles », l'espérance mathématique de
la densité d'énergie est partout positive.

Nous avons ainsi démontré que la théorie quantifiée permet
d'évaluer les espérances mathématiques de grandeurs physiques
associées à la particule par ex. leur charge et leur énergie. On
ne trouvera que des particules à énergie positive, mais, en général,
des deux charges Az e. Au paragraphe suivant, nous étudierons un
cas particulier, qui permettra une interprétation probabiliste des
résultats formels de ce paragraphe.

§ 6. Production de paires de particules (m, e) et (m, —e)
par un champ électrique en mécanique quantique.

Nous voulons démontrer qu'un phénomène, très analogue au
phénomène classique de production de paires, étudié au § 3,
apparaîtra en théorie quantique, sans qu'on introduise un nouveau
champ. Pour pouvoir interpréter les résultats du § 5, nous devons
d'abord préciser ce que nous appelions une mesure en théorie
quantique; la mesure classique a été exposée au § 2.

Dans une région d'espace-temps, où il n'y a pas de champ
électromagnétique, les mesures de q1* et de q1* n1* peuvent être
faites avec la seule limite de précision

AqfAq» > h. (6,1)

Le résultat de la mesure correspond, comme dans le cas classique,
au résultat trouvé pour X 0. Il est représenté par un paquet
d'ondes

+ 00

rp(q,0)=ip(q ,r ,0)=(2n)-2fff (dk)3 f dœe'&'-^tpfjc, co) (6,2)
— 00

avec

fjjjidqY | V |2 ///(dkyfdco | cp |2 1. (6,3)
— 00

rp ne diffère de zéro que dans un petit volume quadridimensionnel
entourant le point g£ (c'est le paquet (rpx) en fig. 2). De même,
<p(k, co) ne diffère de zéro que dans un petit volume de l'espace

impulsion-énergie autour de k kQ et co co0 (co0 < 0 en fig. 2).
Ceci correspond en effet à un paquet rp donnant des espérances

mathématiques q" ~ go"; g* (q, q4') --h(k0, ai0) avec des incertitudes

correspondant à (6,1), qui représente un électron négatif si
a>n < 0.
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La fonction rp (g, 0) étant ainsi trouvée par une première
observation, la fonction rp(q,X) peut être déterminée pour tout X

en résolvant l'équation de Schroedinger (5,2) (l'évolution
spatiotemporelle des champs 0ß(x) étant connue). Ensuite, les

espérances mathématiques des grandeurs physiques (par ex. J4(#,i))
peuvent être prédites.

' Regardons de plus près l'exemple illustré par la fig. 2. C'est

un champ électrique E homogène à composantes Ex Bxi
— d 0x(t)/àt, E2= E3 0, qui n'existe que pendant l'instant ôt.

Dans la limite ôt 0 ce champ peut être décrit par le potentiel
discontinu: 02= 03= 0A 0; 0X= hy/e pour t < 0, 0X 0 pour
t > 0. Les fonctions

1 e^{h'q-<or-ßX) + JLe}Tk^+<or-ßX) p0Ur T= O4 > 0
w%m(q,X) \ _ v (6,4)

| Be^k"~vr-ß?' ...pour T=g4<0

m ± ]/]fc |2 + 2 h~~ß ; v= ± yOA^y)2+(k2)2+(ks)2+2 h~^ß (6,5)

» w — v » 2 cj co

A(k,co) ; B fc, w ;— >0 (6,6)^ ' ' m + v
v ' co + v v

y '

satisfont à (5,2). La somme
+ 00

rp(q,X) (2 n)-2JJJ (dk)3 j dm w%m(q, X) cp(k, co)

— CO

rpi Y- rpA + rpB (6,7)

est la solution de (5,2) avec les conditions initiales correspondant
à la mesure rp(q, 0) ^.(6,7) représente un paquet d'ondes qui
suit (à une certaine dispersion près) le rayon spatiotemporel en
fig. 2. Au « moment » X Ax, une partie du paquet (rpA) est
réfléchi. Son intensité vaut (pour X ^> Ax)

IIII{dq)i I ^ |2 W* T* ~A$*> W°)2 (6'8 A)

Une autre partie suit le rayon réfracté avec l'intensité (pour X ^> Ax)

ffffidq)* \Vb\*TWb=B2^-~ B(k0, co0)2-^~ (6,8 B)

dco/dv vfco et (6,6) montrent que

WA + WB 1; WA,WB>0 (6,9)

Passons à l'évaluation de l'espérance mathématique de la
charge électrique contenue dans un volume spatial entourant les
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rayons (les lignes d'univers de fig. 2) et d'une dimension grande
par rapport à la dimension spatiale des paquets rpx, y>A et rpB,
mais petite par rapport aux distances entre les rayons rpx et rpA.
On trouvera les valeurs suivantes:

ex, l'espérance mathématique de la charge électrique qui suit
la ligne d'univers rpx vaut (pour tout t^> 0) ex= — e.

e B, l'espérance mathématique de la charge totale qui suit la ligne
d'univers rpB, vaut (pour tout t <^ 0) eB= —eWB.

eA, l'espérance mathématique de la charge totale qui suit la
ligne d'univers rpA, vaut (pour tout t^>0) eA= + eWA.

Naturellement, l'espérance mathématique de la charge totale
pour t < 0 est égale à celle pour t > 0. L'identité (6,9) n'est pas
autre chose que

~ëi + ~êA — e + e WA — e WB eB (6,10)

L'interprétation physique semble être la suivante:
1° | rp |2(dg)4 dW est la probabilité que la particule se

trouve, au «moment X», dans le volume spatiotemporel (dg)4. Il en
est de même pour | cp \2(dk)3dm dans l'espace d'impulsion-énergie.

2° Notre première mesure est exécutée pour une valeur
déterminée de X (X 0). Toute autre mesure, que nous proposons de
faire ultérieurement, ne peut évidemment pas être associée à une
valeur bien définie de X. C'est là une différence essentielle entre
la théorie classique et la théorie quantifiée.

3° Des mesures de grandeurs physiques (par ex. densité de
courant Jß(x, t), densité d'énergie T^v(x, t)) faites à un endroit x
au temps t ne dépendent pas de X en théorie classique. Les
espérances mathématiques Jf et T""(x, t) du § 5 expriment donc les

espérances mathématiques correspondant à des mesures de ces

grandeurs physiques.
Ceci montre que dans notre problème, il y a une probabilité

WA de trouver un électron positif sur n'importe quel point (ou
plutôt n'importe quelle région) de la ligne d'univers rpA et une
probabilité WB de trouver un électron négatif- sur la ligne rpB.
Autrement dit, notre théorie fournit une probabilité WA que l'électron

négatif actuellement observé pour X 0 (rpx) soit le partenaire
d'une paire (rpx et rpA) créée à l'instant t 0 par le champ E
et une probabilité WB =1 — WA que l'électron négatif observé ait
déjà existé au passé (t < 0) et ait été accéléré par le champ E
a l'instant t 0.

Cette interprétation n'est pas opposée à nos notions de
causalité. WA n'est autre chose que la probabilité que le champ
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considéré ait produite une paire de particules qui suivent les trajectoires

rpx et rpA. Ve résultat numérique correspond à celui de Pauli
et Weisskopf 3)6). L'exemple contraire «j'observe un électron positif

à un instant t < 0 » est déjà un peu plus délicat. (Pour son
illustration, on a qu'à changer le signe de l'axe t en fig. 2). Il y a
alors une probabilité WA que l'électron positif observé pour t < 0

s'anéantisse sous l'influence du champ E à l'instant t 0, avec
un partenaire rpA et la probabilité WB =1 — WA que l'électron
observé continue d'exister pour t > 0 et poursuive un mouvement
accéléré à l'instant t 0 par ce champ E. Ce second exemple
rappelle un peu l'exemple du § 3, où l'observation d'une particule

(1) (ligne B en fig. 1) et l'existence d'un champ K1* à une
période future à l'observation (1) nécessitait l'existence d'une
antiparticule, qui poursuit un chemin bien défini pour tout t < 0.
En effet, l'exemple quantique ci-dessus implique une probabilité
bien définie (espérance mathématique ~êA — e WA) qu'une
antiparticule existait au temps t < 0. Cet effet n'est autre chose que la
fluctuation de la densité de charge dans la théorie du champ
quantifié.

§ 7. Conclusions.

Il est possible d'établir une mécanique classique covariante
par rapport aux transformations de la théorie de relativité générale,

qui ne fait pas intervenir la racine carrée ds y — g^g" dX.
Ses résultats sont identiques à ceux de la mécanique habituelle,
pour autant que l'on ne fait pas intervenir de nouveau champs
(§ 3). La quantification de la théorie introduit une densité de
probabilité quadridimensionnelle et invariante | rp \2 normalisée à

JJJj \f\2^dq)i 1. Une interprétation physique est possible
(§ 6) et fait prévoir la production de paires de particules. La
difficulté de la théorie de Dirac (énergies négatives) ne se présente pas,
la racine carrée étant éliminée.

La réaction des particules sur le champ a été étudiée, elle
aussi, et fera l'objet d'une publication ultérieure. Elle n'est
possible en théorie quantifiée qu'en suivant les méthodes de Wentzel4)
et de Dirac5). Une difficulté d'interprétation physique apparaît
alors: Si le champ produit par la particule (m, e) est le champ
retardé habituel d'une charge e, celui de l'antiparticule (m, — e) est
le champ avancé d'une charge — (— e) e. Les deux champs ont
pourtant le même effet de freinage.

Institut de Physique de l'Université de Genève.
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