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Diffusion des Rayons X par les ondes thermiques des Cristaux
(Diamant)

(par J. Weigle).

I.

La distribution de la matière dans un cristal peut être
représentée par une série de Fourier à trois dimensions. Si g(r) est
la densité électronique au point r, on a

h k l

Qhki est alors le facteur de structure du plan dont les indices de

Miller sont (hkl) et les vecteurs bhkl= hbx + kb2 + lbs définissent

par leurs extrémités un réseau de points (hkl) qu'on appelle le
réseau réciproque. A chacun des points du réseau réciproque un
poids Qhn est donc attaché.

Si une onde de rayons X tombe sur le cristal, la théorie
élémentaire de la diffraction montre qu'elle sera diffractée si la
relation

ki kd bhki

est vérifiée, lorsque kt et ka (k{= kd= ljX) sont les vecteurs d'onde
des ondes incidente et diffractée respectivement. Cette relation
donne immédiatement lieu à la construction de la sphère de propagation

(fig. 1). D'autre part, on trouve que l'intensité de l'onde
diffractée est proportionnelle au carré du facteur de structure qhkl

du point (hkl) auquel le vecteur d'onde kd aboutit.
Ainsi, la représentation du cristal par la série de Fourier

donne tous les renseignements désirés, définissant d'un côté les

conditions géométriques de la diffraction par les oM! et le réseau
réciproque construit sur ceux-ci et donnant d'autre part l'intensité

de la diffraction par les facteurs qhkl.
Si l'on veut calculer l'effet du mouvement thermique des

atomes sur la diffraction des rayons X, il faudra représenter le
cristal par une nouvelle série de Fourier donnant la distribution

de matière dans le cristal lorsque les atomes sont déplacés
de leurs positions d'équilibre. Car comme le mouvement d'agita-
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tion thermique est fait d'ondes se propageant dans le cristal, la
distribution de matière reste périodique (avec une période égale
à la longueur d'onde de l'onde thermique considérée). Nous avons

pu montrer1) que la présence d'une onde thermique dans une
direction déterminée introduit dans le réseau réciproque deux points
supplémentaires autour de chacun des points du réseau sans onde

thermique. Ces points supplémentaires sont placés dans la direction
de la propagation de l'onde à une distance égale au vecteur d'onde

40)
(00°)

Fig. 1.

Sphère de Propagation.

Dans le réseau réciproque, on a porté le vecteur d'onde incident aboutissant
à l'origine du réseau. Puis, en prenant comme centre l'origine de ce vecteur, on
a tracé la sphère de propagation. Si cette sphère rencontre un point du réseau

réciproque (comme 140), il y aura une onde diffractée dont le vecteur d'onde
aboutit au point du réseau et a son origine au centre de la sphère. En effet, la
différence vectorielle entre les deux vecteurs d'onde incident et diffracté est égale
à un vecteur du réseau réciproque, ce qui est la condition de diffraction imposée

par la théorie des interférences.

(r 1/2). Et ils ont un facteur de structure dépendant de celui
du point (hkl) auquel ils sont associés, de l'amplitude £r de l'onde
et des cosinus directeurs (<nßy) de cette amplitude. On trouve,
pour ces facteurs (en valeur absolue)

71 £r
Qr,hki Qhki —- (hoc + kß + ly) (1)

où Qhkl est le facteur de la structure du point (hkl), et a la
constante de la maille du réseau supposé cubique.

1) Smith and Weigle, Phys. Rev. (sous presse).
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En réalité, nous n'avons dérivé cette expression que dans le
cas d'un réseau cubique dont les atomes, tous semblables, sont
placés à chaque coin du cube. Nous montrerons plus loin qu'elle
s'applique beaucoup plus généralement.

L'amplitude £ des ondes thermiques est extrêmement petite,
de l'ordre de 10~18 cm. à la température ordinaire, pour des ondes
de 10~5 cm. Par conséquent, l'intensité des rayons X diffractés
ou réfléchis sur les plans formés par l'onde thermique est extrêmement

petite et serait tout à fait négligeable si l'onde thermique
considérée était seule. En réalité, le cristal est parcouru dans tous

«XX» ^ --•-^

Fig. 2.

Sphère de Propagation dans le réseau perturbé par les ondes thermiques.

Le nouveau réseau est figuré par les points entourant le point (hkl); ils
s'étendent dans tout le réseau avec une densité constante. La distance r est
l'inverse de la longueur d'onde de l'onde thermique se propageant dans cette direction.

On a tracé les sphères de propagation pour deux directions des rayons X
incidents. L'une de ces directions correspond à l'angle de Bragg ©8 nécessaire

pour obtenir la réflexion sur le plan (hkl), l'autre déplacée de l'angle A par rapport
à la première. Chaque point du nouveau réseau rencontré par la sphère donne une
réflexion et l'on voit que les ondes thermiques donnent un large faisceau diffusé
même lorsque les rayons incidents ne sont pas dans l'angle de Bragg.

les sens par un très grand nombre de ces ondes thermiques (il y en
a 3 N si le cristal contient N atomes). Leurs longueurs d'ondes
s'échelonnent entre les dimensions du cristal pour les grandes ondes
et approximativement la moitié de la distance entre deux atomes

pour les ondes thermiques les plus courtes. On voit donc facilement

que le réseau réciproque devient rempli d'une façon homogène

par un très grand nombre de points supplémentaires.
Aussi, si l'on envoie des rayons X sur le cristal dans une direction

qui n'est plus celle nécessaire pour obtenir la diffraction sur
le plan ({hkl), la sphère de propagation passera par un grand
nombre de points du nouveau réseau réciproque (fig. 2). D'autre
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part, le faisceau des rayons X incidents n'est jamais exactement
monochromatique et parallèle. Il a en tout cas la largeur spectrale

des raies caractéristiques employées et sa divergence, donnée

par les fentes qui délimitent le faisceau, est rarement plus petite
qu'une minute d'arc. En mesurant donc l'intensité des rayons X
diffractés, même dans une direction exactement fixée, on mesure
en réalité la diffraction due à tous les points du réseau réciproque
contenus dans un petit volume déterminé par la divergence du
faisceau incident et par la largeur du domaine spectral (fig. 3).

(000)

" à<è

Fig. 3.

Effet de la divergence du faisceau incident et de sa largeur spectrale.

Par conséquent, si l'on veut calculer cette intensité, il faudra
connaître la densité des facteurs de structure en chaque endroit
du réseau réciproque. La densité de répartition des points dans
l'espace réciproque est constante en chaque endroit et sa valeur
ne dépend que des dimensions du cristal car celles-ci déterminent
les plus grandes longueurs d'ondes et donc les plus petits vecteurs
d'ondes. Or c'est sur ces derniers qu'est construit le nouveau
réseau réciproque du cristal perturbé par les ondes thermiques.
Le nombre des points supplémentaires contenus dans le volume
Vb de la maille du réseau réciproque construit sur les bhkl est égal
au nombre des atomes N formant le cristal. Il n'y en a pas 3 N
car à chaque point (à chaque longueur d'onde) correspondent trois
ondes thermiques: une onde «longitudinale » et deux ondes
«transversales», qui se propagent toutes trois avec des vitesses
différentes. Ainsi la densité n des points dans l'espace réciproque est

N oV
n —

Vb mVb
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où q est la densité, F le volume du cristal et m la masse d'un
atome.

Le facteur de structure de chaque point dépend de la position

de celui-ci, car l'amplitude £r de l'onde thermique qui lui
donne naissance est fonction de la longueur d'onde qui, elle, est
mesurée par l'inverse de la distance r du point considéré au point
associé du réseau non perturbé. On trouve en effet que si chaque
onde porte l'énergie

-£—!ûkT (2)

kT 1

(les fréquences v qui interviendront rendent hv beaucoup plus
petit que kT), l'amplitude est donnée par

2 71* Q V V*

X et v étant la longueur d'onde et la vitesse de l'onde thermique
respectivement. On trouve donc finalement pour la densité du
carré des facteurs de structure dans l'espace réciproque

„2 _ n2 hT ^ / hx{ + kßt + lYi \
Qr.hkl— Qhkl o™ T/ i ~1T2j WM^r ri X V Vf J

L'indice i 1, 2, 3 se réfère aux trois ondes longitudinale et
transversales correspondant à chaque longueur d'onde. Cette expression
est, comme il se doit, indépendante des dimensions du cristal. Cela

provient de ce que la densité d'énergie pour une température
donnée ne dépend pas de la grandeur du cristal. Ainsi, lorsque les
dimensions du cristal augmentent, le nombre des points
supplémentaires du réseau réciproque augmente aussi mais, comme
l'amplitude de chacune des ondes diminue, la densité du carré du
facteur de structure reste constante.

Comme on le voit, cette densité, qui détermine l'intensité
des rayons X diffractés, diminue rapidement à mesure qu'on
s'éloigne du point (hkl) dans l'espace réciproque, c'est-à-dire que
r augmente. Le faisceau diffusé de la fig. 2 aura donc un large
maximum d'intensité dans la région où la sphère de propagation
est la plus rapprochée du point (hkl). Plus la direction des rayons
incidents s'écartera de l'angle de Bragg pour le plan (hkl), plus
le maximum s'étalera et plus il sera faible. Pratiquement on ne
pourra l'observer que dans un domaine angulaire très voisin de

l'angle de Bragg, de l'ordre de grandeur d'un degré.
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Cette condition, nous obligera donc à restreindre nos considérations

à des régions du réseau réciproque immédiatement voisines
des points (hkl) du réseau non perturbé. Elle va nous permettre
d'appliquer ce que nous venons de trouver pour un simple réseau
cubique à d'autres réseaux plus compliqués.

II. Poles de diffusion du diamant.

On sait que si le cristal est composé de plusieurs atomes
différents, on trouve pour une même longueur d'onde élastique, en
plus des trois ondes (ondes acoustiques) dont nous avons parlé,
d'autres ondes de fréquences beaucoup plus élevées (ondes
optiques). Mais ces ondes ont des amplitudes qui, d'après les
expressions (2) et (3) sont beaucoup plus petites que celles que
nous avons considérées. On peut donc les négliger.

D'autre part, comme nous nous restreignons aux grandes
longueurs d'ondes, les lois de propagation sont celles des milieux
continus, pour lesquels il n'y a pas de dispersion. L'amplitude
des ondes donne le déplacement des atomes; car, en effet, on peut
montrer facilement que, dans ces conditions, tous les atomes du
cristal vibrent avec la même amplitude, même si leurs masses
sont très différentes. Si l'on connaît les constantes élastiques du
cristal, on peut calculer en chaque point du réseau réciproque la
valeur de la densité du carré des facteurs de structure. On peut
tracer alors, dans ce réseau, les surfaces d'égale densité, qui donnent
donc les directions d'intensités diffusées égales. Nous avons appelé
ces figures les «poles de diffusion» et ce sont celles-ci que nous
avons calculées pour le diamant.

Ce cristal est formé d'atomes de carbone placés aux points
(nan lin ini nil 111 331 313 1 3 :n A'ur, P11be de(OOO, 22O, f02j 022> 4 4 4 > 4 ¥ 4 > 444) 44 4/ u UI1 ^UUtJ UC

côté a égal à 3,560 10~8 cm. Avec cette disposition, on trouve
que les Qhkl sont nuls si les indices sont mixtes ou si h + k + l 2,
6,10, etc. Si l'on ne considère que les points du réseau

réciproque pour lesquels les qhla sont différents de zéro, on trouve
une maille cubique à face centrée, dont le côté vaut 4/a et dans

laquelle les 8 cubes intérieurs construits sur 2ja ont des points
occupés en leurs centres.

Les constantes élastiques du diamant ont été calculées par
Nath1), qui donne les valeurs C1X 9,8 1012, CX2= 4,5 • 1012 et

Nath, Proc. Ind. Acad. I, 841, 1934.
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Fig. 4.
Vitesses de propagation des ondes élastiques dans le diamant.

Les directions x et y correspondent à celles de deux arêtes de la maille
cubique du cristal. On aurait les mêmes figures pour les plans (yz) et (zx). La
surface extérieure est celle de l'onde « longitudinale » polarisée donc dans le plan
du papier. La direction de vibration n'est dirigée suivant la direction de propagation

que selon les axes x et y et à 45° de ceux-ci. La surface donnant un cercle
est celle de l'onde transversale vibrant perpendiculairement au plan \xy). La
troisième surface correspond à l'autre onde transversale vibrant dans le plan (xy).
Sa vibration est toujours perpendiculaire à celle de l'onde longitudinale.

30 4020

Fig. 5.

Direction de vibration de l'onde longitudinale.
L'angle a est celui que fait la vibration avec la direction de propagation qui,

elle, fait un angle 0 avec l'axe x.
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C44 5,3 • IO12 toutes en dynes/cm2. Pour simplifier les calculs,
nous avons pris Cu=10 • 1012 et C12= C44 Cu/2.

Les équations des ondes donnent, en plus de chaque vitesse
les cosinus directeurs (aßy) de £ qui interviennent dans l'expression
(4). Nous avons donné, dans les figures (4) et (5), les résultats de
ces calculs pour le diamant. On voit que, même dans un plan tel

(400)

plans (xy)
(zx)

(220)

plans (yz)
ft(zx) !arts(jcy)(yz)

Azx)

nm

Fig. 6.

Poles de diffusion des plans (400), (220) et (111)-
Nous avons dessiné les intersections de ces surfaces avec les trois plans (xy),

(yz) et (zx). Ces figures ne sont pas à la même échelle, les plans d'indices élevés
diffusent relativement plus que ceux de petits indices. Cela provient de ce que
le mouvement des atomes brouille beaucoup l'arrangement des plans d'indices
élevés. La symétrie des poles de diffusion se comprend facilement en fonction
de la symétrie du cristal. Ainsi l'on voit que la diffusion autour du plan (400)
n'est pas fonction de l'azimuth des rayons incidents. Il n'en va pas de même

pour les plans (220) et (111).

.<- (000)

(400)

(220)
120

-y

Fig. 7

Vue perspective des poles de diffusion le réseau réciproque du diamant.
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que (x y) les ondes ne sont transversales et longitudinales que dans
certaines directions comme o x, ou o y ou encore à 45° de ces deux
axes. Il y a, dans ce plan, une seule onde vraiment transversale;
c'est celle qui vibre parallèlement à oz et qui a donc la même
vitesse de propagation dans toutes les directions.

Les figures 6 et 7 donnent les poles de diffusion pour les
diffractions associées aux trois plans (400), (220) et (111). Ce sont,
comme nous l'avons dit, les surfaces d'égales densités du carré des
facteurs de structure. On peut, quand on les connaît, trouver pour
chaque direction des rayons X incidents, la distribution de l'inten-

(CM, '2201

Fig. 8.

Poles de diffusion de (220) dans le plan (x y) et distribution de l'intensité du faisceau

diffusé pour deux incidences en dehors de l'angle de Bragg.

L'échelle est très grande et les sphères de propagation A et 2 A sont devenues
des droites. L'angle qu'elles font avec la direction (000) (220) est l'angle de Bragg
pour les rayons K du cuivre. Les courbes marquées 1,2,3 etc. sont les courbes
d'égales densités du carré du facteur de structure.

Suivant l'échelle choisie, il sera nécessaire de tenir compte de la divergence
du faisceau incident et de sa largeur spectrale. Car si l'échelle est si grande que
le volume (fig. 3) est fini, il faudra, pour représenter l'intensité, prendre la moyenne
des densités dans ce volume.

site dans le faisceau diffusé. Dans la figure 8, nous avons tracé
plusieurs intersections des poles de diffusion avec le plan xy. Ces

courbes correspondent aux valeurs successives 1,2,3, etc., en
unités arbitraires de l'intensité de diffusion. Puis, nous avons
indiqué les sphères de propagation pour différentes incidences en
dehors de l'angle de Bragg. Enfin, d'après les poles de diffusion,
nous avons, pour chaque incidence, donné la distribution de
l'intensité dans le faisceau diffusé.
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Les circonstances actuelles ne nous ont malheureusement pas
permis de nous procurer les travaux expérimentaux concernant la
diffusion des rayons X par le diamant, en particulier ceux de

Lonsdale1), pour pouvoir les comparer à nos résultats. Pour
autant que nous pouvons nous en rendre compte, ces travaux
vérifient, au moins qualitativement, les calculs que nous
présentons.

III. Conclusions.

L'effet de la température sur l'intensité du faisceau diffusé
en dehors de l'angle de Bragg est dû principalement au facteur T
intervenant dans l'expression (4). Cependant, comme les
constantes élastiques, qui déterminent la vitesse de propagation des
ondes thermiques, changent aussi, on trouvera que la forme des

poles de diffusion dépend de la température. D'autre part, la
dilatation thermique du cristal fait varier le volume réciproque Vb.
Ces deux derniers effets sont du reste beaucoup plus petits que
le premier, mais ils ne sont pas négligeables.

Il faut remarquer que l'effet de la température sur l'intensité
des rayons X réfléchis suivant l'angle de Bragg est très différent.
Leur intensité est proportionnelle au facteur (1 — e~2M), où e~2U

est le facteur de Debye-Waller2). Cette différence provient du
fait que ce facteur est dû simultanément à toutes les ondes
thermiques qui, séparément, soustraient chacune du facteur de structure

Qhkl une petite quantité. La présence, dans la quantité M,
de la température caractéristique du cristal montre bien que même
les ondes thermiques de petites longueurs d'ondes viennent jouer
un rôle tandis que nous avons pu les négliger dans les calculs de
la diffusion en dehors de l'angle de Bragg.

La présence du facteur ljr2 dans l'expression (4) pourrait faire
penser que, puisque la densité des facteurs de structure thermique
devient infinie pour r 0, l'intensité des rayons X diffusés dans
cette direction devient infinie elle aussi. Cependant, il faut tenir
compte de la divergence du faisceau incident et de sa largeur
spectrale. Si, dans le petit volume déterminé par ces imprécisions
(fig. 3), la densité varie fortement, les rayons X diffusés auront
une intensité donnée par la moyenne de la densité dans le volume
considéré. On voit facilement alors que, même au point r 0,
cette moyenne reste finie. Toutefois, en ce point intervient la
diffraction de Bragg sur le plan (hkl). Ainsi celle-ci va se détacher

L) Lonsdale, Proc. Roy. Soc, août 1941.
2) I. Waller, Ztschr. f. Phys. 17, 398, 1923.
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sur un fond d'intensité beaucoup plus petite dû aux perturbations
thermiques. On retrouvera ainsi le résultat donné il y a longtemps
déjà par Waller1). En effet, toute la théorie de la diffusion
thermique des rayons X avait été donnée par ce dernier et nos
calculs se sont bornés à mettre sous une forme à la fois plus simple
et plus détaillée, et peut-être plus accessible, la théorie de Waller
et celle, semblable, de Zachariasen2).

Je désire, pour terminer, remercier mon collègue M. E. C. G.

Stueckelberg, pour ses précieux conseils.

Institut de Physique de l'Université de Genève.

1) I. Wallée, loc. cit.
2) W. H. Zachariasen, Phys. Rev. 57, 597, 1940 et 59, 207, 1941.
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