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Remarque à propos de la création de paires de particules
en théorie de relativité
par E. C. G. Stueekelberg.

(18. X. 1941.)

Résumé: La mécanique de la théorie de relativité peut être mise sous une
forme qui permet de comprendre la création de paires de particules de charges
électriques opposées sans faire appel à la théorie des quanta. Le changement
apporté par cette modification à la théorie des quanta est discuté.

La théorie de relativité exprime les lois physiques dans une
forme covariante par rapport à un certain groupe de transformations.

Ce groupe est celui des transformations de Lorentz, pour
autant qu'on néglige l'influence de la gravitation. Le groupe est
déterminé par les équations de Maxwell parce que les
observations électromagnétiques (par ex. l'expérience de Michelson) ne
permettent pas de distinguer entre deux systèmes de coordonnées,
dont l'un décrit un mouvement rectiligne et non accéléré par
rapport à l'autre. Pour tenir compte des effets de gravitation,
Einstein a envisagé un groupe plus général de transformations, qui
laissent invariant le carré de la distance spatio temporelle (ds)2 entre
deux événements.

La mécanique du point matériel soumis aux forces
électromagnétiques et gravifiques peut être exprimée sous une forme
covariante par rapport au groupe de ces transformations générales.
Les traits fondamentaux de cette mécanique d'EiNSTEiN sont les
suivants :

Au cours du temps t, le point matériel suit une trajectoire,
qui est déterminée par les trois fonctions x* q1 (r). Elles indiquent
les valeurs des trois coordonnées d'espace x1 (i 1, 2, 3) à l'instant
t r. La théorie de relativité fait intervenir le temps t sous la
forme d'une quatrième coordonnée t x4. A la courbe troisdimen-
sionnelle de la trajectoire correspond ainsi une courbe quadridimen-
sionnelle xi q' (t) ; x* q4, (t) t, appelée ligne univers. Elle est
exprimée en termes du paramètre r. Pourtant la substitution du
paramètre t au temps) par un paramètre quelconque X reste
possible. Cette substitution r= r(X) effectuée dans les équations
pour x" (p 1, 2, 3, 4) donne à la représentation paramétrique de
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la ligne d'univers une forme plus symétrique par rapport aux
coordonnées de l'espace-temps :

x" g" (X) (1)

Discutons les équations fondamentales de la mécanique. Soit
x x1, x2, x3) le vecteur de l'endroit et q (r) q1, q2, g3) la position

de la particule au temps t= r. Soit r(x,t) le vecteur du

champ de gravitation, E(x,t) le vecteur du champ électrique et

B(x, t) celui du champ magnétique. Le mouvement x q(r) de
la particule (et sa ligne d'univers) est, en théorie non relativiste,
une solution de l'équation fondamentale de Newton-Lorentz :

d"* -mP + eÊ + ^^xB (2)m
(dr)2 c dt

^
a x b est le produit vectoriel de deux vecteurs, r, E et B sont
à évaluer pour les valeurs (q, r), etc. Si F(x,t) =-- P(x, x4')

F(x), etc. est connu pour tout le domaine spatiotemporel x x1,
x2, x3, x4) intéressant, la solution de (2) détermine les trois fonctions

x1 q1 (t) (la trajectoire) et naturellement aussi les quatre
fonctions x* q*(r) ; x4 (^(t) r de la ligne d'univers. En théorie

de relativité, l'équation (2) est un peu modifiée, mais ne
contient pas de changements importants.

Un point fondamental de cette théorie habituelle est le
suivant: La mécanique d'EiNSTEiN s'exprime sous une forme qui
n'admet que des lignes d'univers ayant une seule intersection avec
un hyperplan t(= x4) t0= const (cf. ligne A en fig. 1). Cette
seule intersection, qui se fait au point x* qi(t0), est l'endroit où
se trouve la particule à l'instant t= t0. D'autres lignes, d'une
forme plus générale (par ex. la ligne B en fig. 1), qui montrent
deux intersections pour des plans f x4) t0 < 0 et aucune
intersection pour i(= x4) tQ > 0 ne peuvent pas figurer dans la
mécanique d'EiNSTEiN. Ceci est dû au choix particulier du
paramètre s en x" ql'(s). Il est défini comme la longueur de l'arc,
c.-à-d. comme l'intégrale de la distance spatiotemporelle -[/(ds)2
entre deux événements voisins de la courbe. On l'appelle le temps
propre. Or (ds)2 n'est positif que pour deux événements, dont l'un
est postérieur à l'autre dans tout système de référence. La ligne B
fig. 1 ayant des régions où ce n'est certainement pas le cas, ne
peut donc pas être exprimée en termes de ce paramètre s. Si, au
moment de l'établissement de la théorie d'EiNSTEiN, des lignes de

ce dernier type n'ont pas été discutées, c'est probablement parce
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que le phénomène de la création et de l'annihilation de paires de

particules n'avaient pas été découverts.
Aujourd'hui, vu la découverte de l'électron positif, les lignes

B et C fig. 1 admettent une interprétation bien naturelle: Les
deux intersections pour t(= x4) t0 < 0 de la ligne B représentent

les deux endroits des deux partenaires d'une paire de particules.
Cette paire est composée d'un électron positif et d'un électron
négatif. Leurs lignes d'univers sont d'une forme telle qu'ils se

X oo

1 0t — i

t-0
t-t,

Z— oo

Fig. 1.

Lignes d'univers: A. type habituel (à chaque temps t xi correspond un seul
x1 représentant l'endroit de la particule) ; B. type annihilation (à chaque t x4 <^ 0

correspondent deux valeurs de x1 représentant les endroits d'une paire de particules

qui vont s'annihiler pour t~Q); C. type production de paire (à chaque
t= x1 0 correspondent deux valeurs de x1 etc.).

rencontrent au moment t •—< 0, la ligne B décrit ainsi l'anéantissement

mutuel des deux corpuscules. On comprend alors pourquoi,
pour des temps t > 0, il n'existe plus aucune intersection, parce
qu'il n'existe plus aucune de ces deux particules. La ligne C est
l'illustration spatio-temporelle du phénomène contraire, c.-à-d. de
la création d'une paire à l'instant t ~ 0.

La question se pose de savoir s'il est possible d'établir une
mécanique covariante au sens d'EiNSTEiN, qui permette l'existence
de telles courbes. Nous nous rappelons que les composantes

F.i Bu (i 1, 2, 3) du vecteur E et les composantes (B)x B23 ;

(B)2 B3X et (B)3 BX2 forment les composantes d'un tenseur
covariant et antisymétrique B^v (p,v= 1,2,3,4) en quatre
dimensions. De même, les composantes Ft — P*4 du vecteur P
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du champ de gravitation, forment les composantes d'un tenseur
affine et mixte r*. Supprimant alors les indices de sommation
tensorielle, en ab'"'— Z a^ b'"', l'équation de mouvement qua-

fi
dridimensionnelle pour x>* q" (X) deviendra fondamentale de la
mécanique

d2 q" „ dq" dqf> „,„ dqß TZll lo.— =— r^— 2-+eB'™()„/,-— + K'Â (3)
(dX)2 «ß dX dX y"ß dX

y '

Elle est (au terme Kf près) la généralisation covariante de (2).
(gxß est le tenseur fondamental qui relie les composantes co- et
contra-variantes B/1V= g^g ßBaß). On peut démontrer (vu la

structure de P^1)) que la quantité m2 — gfiv -Jr~~Jrest une

constante d'intégration si JK>= 0. Si m2 >0, les lignes sont du
type A prévu par Einstein. La relation entre le paramètre ds

+ j/ds2 (défini par ds > 0 si dt dq* > 0) et dX est alors,
avec m + Am2:

ds= ± mdX (4)

La substitution de (4) en (3) réduit (toujours si Ä> 0) notre
formule à la formule d'EiNSTEiN, qui prend, à son tour, la forme (2) de
la mécanique non relativiste de Newton-Lorentz pour des vitesses

\ dq/dt \ <Aic. m a donc la signification de la masse au repos.
Mais il y a une différence très remarquable entre la théorie
habituelle et la nôtre. L'ambiguité du signe en (4) a pour conséquence
une ambiguité du signe de la charge électrique e dans l'équation
fondamentale de la mécanique. (Yz a au lieu de e au 2ème membre
de (2)). Notre mécanique (3) a ainsi l'avantage d'être valable à

la fois pour les deux charges Yz e.

Le terme jR> en (3) montre la possibilité de faire intervenir
dans la théorie des forces nouvelles de nature ni électromagnétique

ni gravifique. Si K11 $ 0, la quantité m2 définie plus haut
n'est plus une constante d'intégration. Dans la région d'espace
temps où ces champs apparaissent, la masse de repos de la particule

doit donc varier. La fig. 1 montre l'effet qu'un champ particulier

(E> 0 sauf dans l'intervalle tx < t < t2 où K4 diffère de

zéro) exerce sur la ligne d'univers. Ce champ accélère la particule
(ligne A) pendant l'intervalle t2 — tx en diminuant en même temps
la masse de repos, la particule gardant la direction de sa trajectoire.

Un champ semblable mais plus fort a pour conséquence

x) cf. par ex. W. Pauli, Relativitätstheorie. Teubner, Leipzig-Berlin (1921),
p. 587, Formule (69).
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de déformer la ligne A en la ligne B. Un champ de cette intensité
cause donc l'annihilation d'une paire de particules. On voit également

que les deux partenaires sont de charge électrique opposée
parce que le signe dqi/dX ^ 0 détermine le signe de Yz e. Un champ
semblable et de même intensité mais ayant le signe opposé,
déforme une ligne du type A en des courbes du type C et cause
ainsi la. création d'une paire de particules. Une difficulté se
présente parce que les particules parcourent une partie de leur
existence avec des vitesses supérieures à celle de la lumière. Ceci, et
d'autres considérations d'ordre causal, nous semble être un argument

important contre l'hypothèse de l'existence de telles forces,
malgré la covariance de leur représentation.

Mais, même sans introduire ces champs nouveaux, la mécanique

proposée a certains avantages sur celle d'EiNSTEiN. La racine
carrée qui, en théorie ordinaire, reliait l'énergie à l'impulsion et
qui formait le grave obstacle à la quantification de la mécanique
relativiste du point matériel a disparu dans notre théorie. Le
procédé de quantification de Schroedinger peut alors être mis
sous une forme où l'espace et le temps interviennent d'une façon
entièrement symétrique. A certains égards, le paramètre X jouera
le rôle de paramètre t dans l'équation de Schroedinger, tandis
que les quatre coordonnées q(= q1, q2, q3, q* t) prendront la place
des trois q q1, q2, q3) en théorie non relativiste.

L'effet de cette quantification est d'établir une correspondance
entre la théorie des rayons x'* qM(X) (optique géométrique) dans
l'espace quatridimensionnel avec la propagation des paquets
d'ondes xp (q, X) normalisées à fJ J J (dq)* | V |2 1 (optique
ondulatoire). Nous discutons l'exemple d'un champ électrique E à

composantes E2 E3 0 et, pendant l'intervalle très court 0 < t < ôt,
Ex dp 0. Dans la limite ôt 0, Ex= oo, Exôt fini, ce champ est
décrit par un potentiel quadrivecteur 02= 03= 04= 0; 0X — 0

pour t > 0 et 0X Exdt pour t < 0. L'hyperplan x4 t 0 est
maintenant une surface de discontinuité dans le continu espace-
temps. Un rayon incident sur cette surface est réfracté. Fig. 2

montre la réfraction d'un rayon xpx venant d'un point situé dans
le demi-espace-temps supérieur t > 0. La ligne d'univers
correspondant à cette réfraction n'est autre chose que le mouvement
d'un électron négatif (dqildX < 0) accéléré par le champ E pendant
l'intervalle ôt. En théorie ondulatoire, un rayon réfléchi d'intensité

définie et non nulle, est relié à tout rayon réfracté. A cet

rayon réfléchi xpA correspond un électron positif, (dqi/dX > 0), créé
au moment t 0.
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L'interprétation probabiliste de ce phénomène a déjà été
discutée d'autre part1). Elle fera l'objet d'un exposé plus détaillé2)
de cette modification apportée à la théorie d'EiNSTEiN. Remarquons

déjà ici que cette théorie permet de prédire les espérances
mathématiques de grandeurs physiques. L'espérance mathématique
de la charge électrique <TF (t) qu'on observera dans un volume spatial

F à un temps donné t et celle de l'énergie Wv(t) dans un tel
volume peuvent être calculées. Les prévisions se basent sur une
mesure faite sur une particule au moment g4 iû t0 o4. La mesure
contient la détermination 1° de l'endroit q ¥2 g0, 2° de la vitesse
v iQ v0 et 3° dans une expérience de deflection électromagnétique,

.X—A2IIA1

t=x<
l—00

Z--OC /\
x=o

t—s

A2y>Ai

Fig.
Sous l'influence d'une discontinuité de &t, le paquet d'ondes y>± qui se trouve
« au moment X 0 » à xf qi*, se décompose « au moment X Ax » en un paquet
réfracté ips et un paquet réfléchi ipA ¦

de la valeur de efm. Les résultats sont naturellement soumis à une
relation d'incertitude (différente de celle d'Heisenberg parce que
A t A q* ip 0). Dans l'exemple exposé, cette mesure a été exécutée
et son résultat est représenté par une particule de charge — e

observée pour t > 0, qui se trouve sur le rayon marqué par xpx.

Tout volume entourant ce rayon (pour t > 0) fournit l'espérance
mathématique ~ex= — e. Par contre, l'espérance mathématique de
la charge contenue dans un volume entourant le rayon réfléchi

1) Stueckelberg. Comm. Soc. Suisse de Phys. Séances des 7 et 8 IX.
1941 ; Helv. Phys. Acta 14,322 (1941 ; Actes Soc. Helv. des Sci. Nat. 121, (1941).

2) A paraître au prochain numéro des Helv. Phys. Acta.
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(marqué par xpA) vaut eA + eWA. WA est un nombre, contenu
entre 0 et 1, déterminé par la théorie. La particule ne pouvant
porter que des charges Yz e, il y a donc certitude que la particule
suit la trajectoire correspondant à celle du paquet d'ondes xpx pour
t > 0, et la probabilité WA qu'une antiparticule (de masse d'ailleurs

égale à celle de la particule observée) se meut le long de la
trajectoire du paquet xpA pour t > 0.

WA est donc la probabilité que le champ E a créé une paire
dont l'une des partenaires suit la ligne d'Univers xpx.

Dans toutes les théories qui ont relié la relativité aux quanta,
on a du faire intervenir le phénomène de la création et de
l'annihilation de paires de particules. Nous voyons qu'ici, encore une
fois, cela est le cas.

Je ne veux pas terminer cet exposé général sans exprimer la
grande joie que j'éprouve à publier ces résultats à l'occasion de

l'anniversaire de Monsieur le Professeur A. Hagenbach. Je le
prie d'accepter cette note comme un signe de ma profonde
reconnaissance.

Genève, Institut de Physique de l'Université.
Octobre 1941.
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