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Beziehungen zwischen den Clifford'schen Zahlen und den Spinoren
von André Mereier.

(27. VIII. 41.)

Zusammenfassung. Im ersten Teil dieses Artikels werden algebraische
Beziehungen zwischen den Clifford'schen Zahlen und den Spinoren besprochen.
Diese Besprechung stützt sich auf Untersuchungen von Marcel Riesz in Lund,
von denen derselbe uns mündlich oder durch Mitteilung eines Manuskriptes Kenntnis

gegeben hat.
Im zweiten Teil werden geometrische Beziehungen erläutert, die mit

Drehungen und Spiegelungen zusammenhängen.
Im ersten Teil ist der Fall des Minowski-Raumes, im zweiten dagegen, der

Einfachheit halber, der Fall des gewöhnlichen drei-dimensionalen Raumes
behandelt.

I. Teil.

Mittels der Clifford'schen Zahlen können Probleme der
speziellen Relativitätstheorie behandelt werden. In der Raum-Zeit
seien vier Grundeinheiten Ft eingeführt; sie unterliegen den
Bedingungen -T, rk + rkFi 2 ôik. Eine Clifford'sehe Zahl C ist wie
folgt definiert

i
c «+^a,-r,. + 2)?«r,rk + vYmr{rkrl+ôFxr2r3r.. (i)

i=l ik ikl
Ist S der 4-dimensionale Clifford'sehe Vektor des elektrischen

Stromes1)2), und F eine Clifford'sche Zahl, die das elektromagnetische

Feld zu beschreiben vermag, so lassen sich die Maxwell'sehen
Gleichungen für das Vakuum in der folgenden einzigen Clifford'schen

Gleichung zusammenfassen:

F ist ein Bivektor, und kann aus einem Vektor 0, genannt
Potential, wie folgt abgeleitet werden:

F= V->#-
Dann muss die Lorentz'sehe Bedingung für 0 erfüllt werden.
Die Dirac'sche Gleichung für ein Elektron der Ladung e, das

sich in einem elektromagnetischen Feld befindet, lautet1) :

(^ ^ + ß0)ip + «.y>= 0, (2)

wo a_1 gleich der Compton'schen Wellenlänge ist und ß ejhc.

*) Für die Bezeichnungen siehe l) oder 2).
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(2) ist automatisch Lorentz-invariant ; a ist eine skalare
Grösse, V -> + ß0 ein Vektor-Operator. Da 0 bis auf die
Tatsache, dass es die Lorentz'sehe Bedingung erfüllen muss, beliebig
ist, besagt die Dirac'sche Gleichung u. a„ dass die Anwendung
eines Vektors von links aus auf eine Wellenfunktion eine Operation
darstellt, die wiederum eine Wellenfunktion liefert. Im allgemeinen
würde man erwarten, dass xp eine vollständige Clifford'sche Zahl
der Form (1) sein kann. Die Tatsache, die wir gerade erkannt
haben, lässt aber vermuten, dass xp einer ganz speziellen Klasse
von Gebilden angehört.

Wir haben damals gezeigt3), dass wenn xp eine Clifford'sche
Zahl mit reellen Koeffizienten a, ol{, • ¦ • ô ist, sich die sechszehn
unter (2) zusammengefassten Gleichungen im Falle 0 0 auf acht
unabhängige Gleichungen reduzieren lassen. Dies spricht schon
dafür, dass xp eine besondere Zahl ist.

Dass xp einer speziellen Klasse angehören muss, weil von links
aus mit einem Vektor darauf operiert wird, wurde von M. Riesz
erkannt. Ihm kam der Gedanke, xp als Element eines Linksideals
des Körpers der Clifford'schen Zahlen zu betrachten. In der Tat:
Eine Submenge { ÎF} der Clifford'schen Zahlen muss gefunden
werden derart, dass die Multiplikation von links, mit einem
beliebigen Clifford'schen Vektor X, eines beliebigen Elements XF dieser
Submenge wiederum ein Element derselben ergibt:

{XW}^{W}. (3)

Sind daneben Wx und XF2 zwei Elemente von { Ï7}, so muss

WX + W2=W (4)

wegen (2) auch Element von { "r7} sein. (3) und (4) sind die
Bedingungen für die Definition eines Linksideals. Sie beziehen sich
aber nur noch auf Vektoren X. Statt (3) sollte man { CW } { W ]
schreiben können. Wir geben jetzt den Beweis, dass dies möglich
ist. Allgemein hat C die Form (1), also ist

cw=aw + Zv.t r, w+ Eßik r, rkw + ¦¦¦
(aW) + £oLt{rjP) + zßart(rkw) + ¦¦¦

wo jede Klammer auf Grund von (3) wiederum ein Ï7 darstellt,
weil Ft ein Vektor ist, so dass sich schliesslich C\¥ als eine lineare
Kombination von Grössen darstellen lässt, welche alle ein W oder
XW sind.
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Damit lässt sich W als Element des Linksideals

{CY}={¥} (5)

deuten. Die Aufstellung von (5) ist nur dann möglich, wenn die
Koeffizienten a, a,-, ßtk, • • • komplex sind, und verlangt die Einführung

von Nullteilern, wie Riesz gezeigt hat. Riesz schlägt vor,
den Nullteiler

rx + ir3 rx-ir3 r2 + ir. r2~-iri to2 2 2 2

zu bilden, und dann ist
{Ce} {s} (6)

die Klasse der Zahlen W, die er als Lösungen von (2) betrachtet
(C ist eine beliebige Clifford'sche Zahl). (6) ist tatsächlich ein
Linksideal von { 0 }. Dieses Ideal {s} kann mit Hilfe folgender
Basis u0, • • •, uX2 dargestellt werden :

rx—ir3 r2—iFx Fx—ir3 r2—ir.
u0=e, ux= —l——i e, u2 -é î e, uX2 -^-—~ -^- e>

und zwar ist
S Sc, Ur, + sx ux + s2 u2 + sx2 ux2,

wo sx, • ¦ • sX2 komplexe Koeffizienten sind. Schreibt man

6,

so ist die Matrix 6 das, was man gewöhnlich unter Spinor
versteht*).

Die transponierten Spinoren werden als Elemente eines Rechtsideals

{e(7} definiert, ausgehend von der assoziierten Dirac'schen
Gleichung1) „ë/ v'(^-V-j8 0) +xpA= 0.

II. Teil.

Der Einfachheit halber sei jetzt der drei-dimensionale Raum
E3 unseren Betrachtungen zugrunde gelegt. Nur drei Einheiten
rx, r2, r3 kommen in Frage. Es sei #/2 der Winkel zwischen
zwei Ebenen tia und nB, L der Einheitsvektor längs des Schnittes

von jia und nB, A und B die Einheitsvektoren senkrecht zu nA
und nB. A,B und L entsprechen Clifford'schen Vektoren A, B

*) Die interessanten Untersuchungen von Franz7) sind denjenigen ähnlich,
welche in unserem I. Teil besprochen sind.

«0

«1

«2

S12
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und L. Eine Drehung um L des Körpers der Clifford'schen
Vektoren X um den Winkel & wird mit Hilfe des Operators

ir fr
a BA cos h sin —LF

2 2

nach folgendem Schema erzeugt:

X -> oXo"1 wo o-ff_1=l.

r rx F2 F3 ist die pseudo-skalare oder trivektorielle Einheit

in E3. Der Operator

l + ß^i + ^-r.r
erzeugt eine infinitesimale Drehung um den Winkel e,- um rt. Dabei

geht ein Vektor X in

X' (i + ßl)X(i + e,-)-1 (i + ei)X(i - o,)

über und ändert sich um

dx \} (V - V), -^ [F}x - vr,] g,x -xQi.
Bei einer infinitesimalen Drehung um L variiert X um

dX= er[EX-XL]r. (7)

Wir werden jetzt gewisse Grössen £ definieren.

Der Ausdruck (7) für dX ist symmetrisch aber nicht einfach.
Man kann Grössen definieren, die sich einfacher transformieren.
Sie werden zu den Spinoren isomorph sein. Definition:

Es gibt die £ und die £* ;

£x + £2 ist ein £, f!* + f2* ist ein |* (diese Summen sind
assoziativ und kommutativ) ;

"*" ist eine auf £ angewandte Operation, welche £* zu f
assoziiert; ferner ist (£*)* f, (^* £2)* f2* |1( (?i l2*)*

^2 fi* 1S^ m eine (komplexe) Zahl, so ist ml ein £, und
(m£)* m|* ;

das Produkt zweier £ ist sinnlcs, ebenso dasjenige zweier
£*¦; dagegen sind Produkte von der Form £x |2* oder li*f2
sinnvoll; endlich transformieren sich f und |* während der
infinitesimalen Drehung (7) wie folgt:

d£ \j qA, d£* \, è*er1, à£ oxq2q3£.

(8)
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Dann ist

£' £+ jd£=a£ und £*' £* + f d£* £*a~\

Aus (8) folgt: Sind £ und r\ zwei solche Zahlen, so sind

Jèn £*i] und Jni if£
gegenüber Drehungen invariant. Postuliert wird auch, dass J.
gegenüber Spiegelungen invariant ist. Jf ist also skalar.
Dagegen sind

P«, £rj* und Pr/I »jl*

nicht invariant. Wenn £= i], schreiben wir Pf statt Pts und Jt
statt Jff.

Die genaue Beziehung zwischen £* und £ wird unter (11)
präzisiert werden. Das Ausrechnen zeigt, dass

PinP,n J^P,n- ,(9)

Also: Pf ist eine Art Projektor, der nicht nur projiziert,
sondern auch im Verhältnis Jni : 1 verzerrt. Auf Wunsch kann £
normiert werden, z. B. dadurch, dass Js 1.

Unter zwei Umständen wird (9) erfüllt: Entweder ist

J„_*0 (10)

oder gleich Null; im letzteren Falle ist auch P|r/=0. Dieser
Fall diene zur Definition von £*: Ist P'lti 0, so ist y £ £s ;

|s wird als einfach bezeichnet. Also:

* 1 Definition der Beziehung zwischen £s und £*. (11)
P| 0 J

Pf ist in (11) eine isotrope Zahl P\, in E3 also einem isotropen
Vektor P| zugeordnet : PI ¦ Pi 0.

Rechnet man
0

-Jfl + 0
PtS

aus, so sieht man, dass, wenn P( ein isotroper Vektor PI ist, der
zugeordnete Clifford'sche Vektor das zugeordnete einfache £s

verschwinden lässt: P\£s 0.
Definiert man

P* Prt,
so ist 4 6

und also ^-P-C^rPc ™d *- *«.
t* pi* _ £* pi _ n
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Weiter transformiert Pn jedes £ in ein Vielfaches von n (von
links aus) :

P£=Jn,ri.
Sind jetzt £s und Çs einfach, und keine Vielfache voneinander,

so ist ihre Summe nicht einfach, denn

Js + Jc 2 J, ±0.

Den Definitionen (8) und (11) fügen wir somit folgendes hinzu:

Es gibt ein einziges zu £s assoziiertes £*; jedes nicht einfache
£ ist eine lineare Kombination

£=^cn£n,s (12)
n

mit komplexen oder reellen Koeffizienten cn. Dann ist

S ^cn£n,s-

Allgemein gilt Jf. J;l und Pr)P*n= PnèPn= JiriPn.
Bemerkung. Ersetzt man £ durch —£, bzw. £* durch —£*,

so ist (— £) (— £*) P| und (— £*) (— £) — Js. Für jede Drehung
um & n ist übrigens a — 1.

Etne Peifee Säfee lässt sich ableiten. Z. B. kann man zeigen,
dass Pc weder eine Invariante, noch ein Vektor, noch ein Bivektor,
noch ein Trivektor ist, insofern es kein P* ist.

Ferner kann man zeigen, dass P4 im allgemeinen eine Clifford-
sche Zahl ist, wo weder die Invariante I, noch der Vektor V, noch
der Bivektor B rW, noch der Trivektor T FK fehlen :

Ptn i + v + r{K + w).
Jedoch gibt es Beziehungen zwischen I, V, W und K, wie z. B. :

T O T T2

K=i *»¦ {V-iW)2=A^-.

Man kann zeigen, dass Pt „, Pe„ und PE „ Nullteiler sind.
Und so fort.

Grössen erster Art und zweiter Art. — Die Grössen £, bzw. £*
sind Grössen erster Art. Ist A ein Clifford'scher Einheitsvektor,
so ist die Grösse

(ps A£s, bzw. cp* £*A

kein £ (kein £*) und soll als einfache Grösse zweiter Art bezeichnet
werden. Eine nicht einfache Grösse cp zweiter Art ist definiert als
eine Kombination cp SAn£s,n. Der Ausdruck Jy cp*cp ist dann
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gegenüber Drehungen und Spiegelungen invariant. Dagegen ist
cp*£ nur gegenüber Drehungen invariant, weshalb cp und £ nicht
von derselben Art sind.

Es können verschiedene Invarianten und Trivektoren in E3
gebildet werden. Bezeichnen J eine beliebige Invariante, V einen
Vektor, B einen Bivektor und T einen Trivektor, so sind

£*I£ und cp*Icp invariant (gegenüber Drehungen und Spie¬

gelungen),
£*V£ und cp* V cp Trivektoren,
£*B£ und cp*Bcp invariant,
£*T£ und cp*Tcp Trivektoren,
£*Icp und cp*I£, oder £*Bcp und cp*B£ Trivektoren,
£*Vcp und cp*V£, oder £*Tcp und cp*T£ invariant.

Abbildung durch Matrizen. — Ein isotroper Vektor X* wird
durch drei komplexe Koeffizienten bestimmt, die die Bedingung
(X{)2 0 erfüllen. Vier unabhängige reelle Koeffizienten bestimmen

somit Xi, wie auch £s, da £* durch £s vollständig bestimmt
werden muss. Für Xi, im allgemeinen sogar für C kann eine
zweireihige quadratische Matrix angegeben werden. Man kann £, bzw.
£* mit einer Matrix abbilden.

Damit die Produkte C£ oder £*C einen Sinn haben, wie auch
££* und £*£, muss £ zwei Zeilen und £* zwei Spalten haben, und
£* muss gleich viel Zeilen haben wie £ Spalten hat. Damit vier
reelle Koeffizienten (etwa a,b,c,d) in £ enthalten sind, liegt
folgender Ansatz nahe:

a + ib
\- id

£ (13)

dann sind Koeffizienten oc, ß, y, ô in

£* || a + iß y + i-d\\

zu finden derart, dass £* die gewünschten Eigenschaften besitzt.
Wählen wir die möglichen Matrizen

P3,

so muss in X* x1F1 + #2P2 + x3T3 (x1; x2, x3: reell):
Xx2 + x22 x32.

Damit £s£s* X* (wo £s in der Form (13) ausgedrückt wird),
müssen gewisse Beziehungen bestehen, aus welchen folgt, dass

a2 + b2= d2 + c2 (14)

0 1 0 — i 1 0
1 0

Fx, i 0
p2,

0 -1
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Normiert man, wie dies möglich ist, wie folgt : a a, so wird

a a, ß —b, y=—c, ô d.

Folgende Gleichungen bleiben dann übrig:

a2 + b2 x3 c2 + d2

ac + bd — xx, ad — bc x2.
Schreiben wir nun

so folgt

h £x a + ib,
£2 c + id,

£

h2 W _ fifs
X-\ ~\~ V Xn X-t % Xn

(15)

Vergleicht man Formel (15) mit der Cartan'sehen Darstellung
der Spinoren4), so sieht man, dass £ ein Spinor ist, und

£* _ Ile _ F II"
S — \Al ?2Ü •

Die Bedingung (14), die dafür sorgt, dass £, einfach ist, lässt
sich wie folgt schreiben:

Die Theorie der Zahlen £ liesse sich weiter entwickeln.

Schlussbemerkung. — Die bekannten Pauli'schen Arbeiten und
die Dirac'sche Gleichung sind es, welche die Einführung der
Spinoren in die Physik gefördert haben. Sobald die Spinoren dem
Physiker bekannt wurden, wurde ihr Verhalten mit geometrischen
Methoden in vielen Einzelheiten studiert. Jedoch scheint uns,
abgesehen von dem physikalischen Grund (Spin und relativistische
Forderungen) der mathematische Grund für ihre Einführung in
die Quantenmechanik viel klarer aus den Riesz'schen algebraischen
Betrachtungen, die in Teil I besprochen worden sind, als aus
geometrischen Betrachtungen hervorzutreten. Natürlich kann untersucht

werden, was mit den Eigenschaften, wie dem Spin, bei
Drehungen und Spiegelungen vor sich geht; dem entspricht die
Methode von Teil II. Sowohl die Pauli'sche als auch die Dirac'sche
Theorie lässt sich mit Hilfe der Clifford'schen Zahlen untersuchen.
Im Teil II. ist dies nach geometrischer Art für den Pauli'schen
Fall, im Teil I nach algebraischer Art für den Dirac'schen Fall
geschehen. Aus den Betrachtungen von Teil II geht besonders
hervor, dass den Spinoren eine Transformationsformel entspricht,
die aus derjenigen der Clifford'schen Zahlen durch eine Art Spaltung

gewonnen wird.
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Aber in den geometrischen Beziehungen tritt die Notwendigkeit
der Einführung der Spinoren nicht so klar hervor, denn von

vornherein wäre der Gebrauch der Clifford'schen Zahlen gleich so
berechtigt wie derjenige der Spinoren, um die Zustände von
quantenmechanischen Systemen darzustellen, was zuerst von Proca5)
bemerkt wurde. (Dies gab zu mehreren Untersuchungen
Anlass6)1)7)3).) Wir suchten damals schon3), von der Geometrie
Abstand zu nehmen; dies ist aber wirklich von Riesz viel besser

getan worden. Im übrigen ist die Existenz der Zahlen £ erst dann
gesichert, wenn z. B. Matrizen zu ihrer Darstellung gefunden werden

können, wie wir solche angegeben haben. Nach der Methode
des I. Teils waren solche Betrachtungen belanglos, da die Spinoren
als spezielle Clifford'sche Zahlen erscheinen, deren Existenz schon
längst gesichert ist.

Zusammenfassend sei der mathematische Standpunkt
vertreten, dass die Spinoren am besten als Elemente eines Links-,
bzw. eines Rechtsideals der Clifford'schen Zahlen bezeichnet
werden.

Seminar für theoretische Physik der Universität Bern.
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