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Beziehungen zwischen den Clifford’schen Zahlen und den Spinoren

von André Mercier.
(27. VIII. 41.)

Zusammenfassung. Im ersten Teil dieses Artikels werden algebraische Be-
ziehungen zwischen den Clifford’schen Zahlen und den Spinoren besprochen.
Diese Besprechung stiitzt sich auf Untersuchungen von Marcel Riesz in Lund,
von denen derselbe uns miindlich oder durch Mitteilung eines Manuskriptes Kennt-
nis gegeben hat. :

Im zweiten Teil werden geometrische Beziehungen erldutert, die mit Dre-
hungen und Spiegelungen zusammenhéngen.

Im ersten Teil ist der Fall des Minowski-Raumes, im zweiten dagegen, der
Einfachheit halber, der Fall des gewohnlichen drei-dimensionalen Raumes be-
handelt.

I. Teil.

Mittels der Clifford’schen Zahlen konnen Probleme der spe-
ziellen Relativititstheorie behandelt werden. In der Raum-Zeit
selen vier Grundeinheiten I'; eingefiihrt; sie unterliegen den Be-
dingungen I, I', + I, I"; = 2 8;,. Eine Clifford’sche Zahl C ist wie
folgt definiert

4
C=a +Zairz‘ JFZlgﬂch' Iy +}]ym]}r,cPi+6.F1F2F3F4. (1)
i=1 T %

Ist S der 4-dimensionale Clifford’sche Vektor des elekfrischen
Stromes!)?), und F' eine Clifford’sche Zahl, die das elektromagne-
tische Feld zu beschreiben vermag, so lassen sich die Maxwell’schen
Gleichungen fiir das Vakoum in der folgenden einzigen Clifford’-
schen Gleichung zusammenfassen:

V—>F=—8%
F' 1st emn Bivektor, und kann aus einem Vektor @, genannt
Potential, wie folgt abgeleitet werden:
F=v >®,
Dann muss die Lorentz’sche Bedingung fiir @ erfiillt werden.
Die Dirac’sche Gleichung fiir ein Elektron der Ladung e, das
sich in einem elektromagnetischen Feld befindet, lautet?):
(V>+BD)yp +ay=0, (2)
wo o~! gleich der Compton’schen Wellenlédnge ist und g = e/hec.

*) Fiir die Bezeichnungen siehe 1) oder 2).
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(2) 1st automatisch Lorentz-invariant; « ist eine skalare
Grosse, V > + @ ein Vektor-Operator. Da @ bis auf die Tat-
sache, dass es die Lorentz’sche Bedingung erfiillen muss, beliebig
ist, besagt die Dirac’sche Glelchung u. a., dass die Anwendung
eines Vektors von links aus auf eine Wellenfunktlon eine Operation
darstellt, die wiederum eine Wellenfunktion liefert. Im allgemeinen
wiirde man erwarten, dass y eine vollstindige Clifford’sche Zahl
der Form (1) sein kann. Die Tatsache, die wir gerade erkannt
haben, ldsst aber vermuten, dass v emer ganz speziellen Klasse
von Gebilden angehort.

Wir haben damals gezeigt®), dess wenn y eine Clifford’sche
Zahl mit reellen Koeffizienten a, o;, - - - 0 1st, sich die sechszehn
unter (2) zusammengefassten Gleichungen im Falle @ = 0 auf acht
unabhéingige Gleichungen reduzieren lassen. Dies spricht schon
dafiir, dass y eine besondere Zahl ist.

Dass o einer speziellen Klasse angehoren muss, weil von links
aus mit einem Vektor darauf operiert wird, wurde von M. Riesz
erkannt. Thm kam der Gedanke, v als Element eines Linksideals
des Korpers der Clifford’schen Zahlen zu betrachten. In der Tat:
Eine Submenge { ¥} der Clifford’schen Zahlen muss gefunden
werden derart, dass die Multiplikation von links, mit einem belie-
bigen Clifford’schen Vektor X, eines beliebigen Elements ¥ dleser
Submenge wiederum ein Element derselben ergibt:

Sind daneben ¥; und ¥, zwei Elemente von {‘P}, SO mMuss
Y+ ¥y=% (4)

wegen (2) auch Element von { ¥} sein. (3) und (4) sind die Be-
dingungen fiir die Definition eines Linksideals. Sie beziehen sich
aber nur noch aut Vektoren X. Statt (3) sollte man { C¥ } = { ¥}
schreiben kinnen. Wir geben jetzt den Beweis, dass dies moglich
ist. Allgemein hat C die Form (1), elso ist

CV=a¥+ 2o, '\ ¥+ 2B I ¥ +
= {alf'] & Zw L] + ZPa Ll Ly + =

.
s

wo jede Klammer auf Grund von (3) wiederum ein ¥ darstellt,
weil I'; ein Vektor ist, so dass sich schliesslich C¥ als eine lineare

Kombination von Gréssen darstellen ldasst, welche alle ein ¥ oder
X¥ sind.
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Damit lasst sich ¥ als Element des Linksideals

{C¥} ={¥} (5)
deuten. Die Aufstellung von (5) ist nur dann moglich, wenn die Ko-
effizienten @, o, By, - - - komplex sind, und verlangt die Einfiih-

rung von Nullteilern, wie Rimsz gezeigt hat. Rimsz schliagt vor,
den Nullteiler :
| 2 2 2 2
zu bilden, und dann ist
{Ce} = {s} (6)
die Klasse der Zahlen ¥, die er als Losungen von (2) betrachtet
(C 1st eine bheliebige Clifford’sche Zahl). (6) ist tatséchlich ein
Linksideal von { C'}. Dieses Ideal {s} kann mit Hilfe folgender
Basis ug, * + -, uy5 dargestellt werden:

Up=€, U= ————" €, Uy = — e, Ug = y
2 ’ 2 ’ 2 2

+0

und zwar ist
S = 8071;0 —’r Slq’l'l + 82'2/62 "i’* 8121u12,

WO S8y, * 82 komplexe Koeffizienten sind. Schreibt man
z
| %o
| 8
1
s =8
| %2
! S12

so ist die Matrix s das, was man gewohnlich unter Spinor ver-
steht*). '

Die transponierten Spinoren werden als Elemente eines Rechts-
ideals {eC } definiert, ausgehend von der assozilerten Dirac’schen

Gleichung?) V(< T— B ®) + va=0.

II. Teil.

Der Einfachheit halber sei jetzt der drei-dimensionale Raum
B, unseren Betrachtungen zugrunde gelegt. Nur drei Einheiten
1y, I'y, I'y kommen in Frage. Es set #/2 der Winkel zwischen

zwel Ebenen 7, und ny, L der Einheitsvektor lings des Schnittes
von wy und @y, A und B die Einheitsvektoren senkrecht zu n,
und 7y, A, B und L entsprechen Clifford’schen Vektoren 4, B

*) Die interessanten Untersuchungen von Franz?) sind denjenigen dhnlich,
welche in unserem I. Teil besprochen sind.
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und L. Eine Drehung um L des Korpers der Chfford’schen
Vektoren X um den Winkel & wird mit Hilfe des Operators

. D
o= BA_= cos~g—+31n2LF

nach folgendem Schema erzeugt:
X >0Xo 1 wo ogol=1.

I'=1T, Iy I'; ist die pseudo-skalare oder trivektorielle Em-
heit in E;. Der Operator

1+9,.=1+—‘;irjr

e}

erzeugt eine infinitesimale Drehung um den Winkel ¢; um ;. Da-
bei geht ein Vektor X in

X'=(14+0)X(1+0) =14 0)X(1—0)
tiber und dndert sich um

aX|,= (X'~ X);= L [IX —XI)]= o, X — Xoy.
Be1 einer infinitesimalen Drehung um L variiert X um
_ .
d)x:——g—r[LX—XL] I (7)

Wir werden jetzt gewisse Grissen & definieren.

Der Ausdruck (7) fir d X ist symmetrisch aber nicht einfach.
Man kann Grossen definieren, die sich einfacher transformieren.
Sie werden zu den Spinoren isomorph sein. Definition:

Es gibt die & und die &*;

&1+ & 15t eln &, &* + £, 1st ein &* (diese Summen sind
assoziatlv und kommutativ);

"*'" 1st elne auf & angewandte Operation, welche &* zu ¢
assozilert; ferner ist (£¥)* = &, (&* &)* = &> &, (& &%)*
= &, &*; 1st m eine (komplexe) Zahl, so 1st mé& ein &, und 3
(m&)* = mé*; ()

das Produkt zweier & ist sinnlcs, ebenso dasjenige zweler
&*; dagegen sind Produkte von der Form & &,* oder &*&,
sinnvoll; endlich transformieren sich & und &* wihrend der
infinitesimalen Drehung (7) wie folgt:

dé | = 0;&, d&¥ |, = ¥ ;7% d& = 0105058

\
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Dann ist

=&+ [dé=0f und E¥ =g+ [d&* = ol

Aus (8) folgt: Sind & und #% zwei solche Zahlen, so sind
Je, =&y und J, .= y*&

gegeniiber Drehungen invariant. Postuliert wird auch, dass J;,
gegeniiber Spiegelungen invariant ist. .J¢, ist also skalar. Da-

sind
segen St P.,=&y* und P, .= n&*
nicht invariant. Wenn & = 7, schreiben wir P, statt Pg und J:
statt J&'E‘
Die genaue Beziehung zwischen &* und & wird unter (11)
prazisiert werden. Das Ausrechnen zeigt, dass -
PEWPEWZJHEPE;;:- ¢(9)

Also: Pg, ist eine Art Projektor, der nicht nur projiziert, son-
dern auch im Verhiiltnis JJ, ¢ : 1 verzerrt. Auf Wunsch kann & nor-
miert werden, z. B. dadurch, dass J¢ = 1.

Unter zwei Umstinden wird (9) erfiillt: Entweder 1st

oder gleich Null; im letzteren Falle ist auch PZ, = 0. Dieser
Fall diene zur Definition von &*: Ist P2, = 0, so ist = &= §,;
&, wird als einfach bezeichnet. Also:

J{: =— O
P:=0
P ist in (11) eine isotrope Zahl Pi, in Ey also einem isotropen

Vektor P} zugeordnet: Pi- Pi= 0.
Rechnet man

} Definition der Beziehung zwischen &, und &;.  (11)

aus, so sieht man, dass, wenn ?5 ein isotroper Vektor PE 1st, der
zugeordnete Clifford’sche Vektor das zugeordnete einfache &, ver-
schwinden ldsst: Pi&, = 0.

Definiert man
*
£ = E L&y

iePer=dJeP: und Pi= Py
& PL = & Pi=1,

so 18t

und also
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Weiter transformiert P, jedes & in ein Vielfaches von 5 (von

links aus): |
P 5 S J,?E?’].

Sind jetzt &, und ; evnfach, und keine Vielfache voneinander,
so 1st thre Summe nicht einfach, denn

JES+JCS= 2 J-ESCS#O‘

Den Definitionen (8) und (11) fiigen wir somit folgendes hin-
zu: BEs gibt ein einziges zu &, assoziiertes & ; jedes nicht einfache
& 15t eine lineare Kombination

&= ch En, s (12)
mit komplexen oder reellen Koeffizienten ¢,. Dann ist
&% = e by ..

Allgemein gilt J¢ = J. und P, P, = P, P, = J¢ P,.

Bemerkung. Ersetzt man & durch — &, bzw. &* durch — &%,
so 18t (— &) (— &*) = P und (— &*)(— &) = J:. Fir jede Drehung
um @ = z 15t ibrigens o = — 1.

Eiwne Rewhe Siitze ldsst sich ableiten. Z. B. kann man zeigen,
dass P, weder eine Invariante, noch ein Vektor, noch ein Bivektor,
noch ein Trivektor ist, insofern es kein P ist.

Ferner kann man zeigen, dass P, im allgemeinen eine Clifford-

sche Zahl ist, wo weder die Invariante I, noch der Vektor V, noch
der Bivektor B = I'W, noch der Trivektor T' = I'K fehlen:

Pe,=1+V +I'(K+ W).
Jedoch gibt es Beziehungen zwischen I, V, W und K, wie z. B.:
e, — 21
e
Man kann zeigen, dass Pg,, P:, und P., Nullteiler sind.

Und so fort.

Grossen erster Art und zweiter Art. — Die Grossen &, bzw. &*
sind Grossen erster Art. Ist A ein Clifford’scher Einheitsvektor,

so 1st die Grosse
Ps = AES, bZW' (p: = E:A

kein & (kein &%) und soll als einfache Grosse zweiter Art bezeichnet
werden. Eine nicht einfache Grosse ¢ zweiter Art ist definiert als
eine Kombination ¢ = X4, ,. Der Ausdruck J, = ¢*¢ ist dann

2
(V—iW)2= "5,

K —
4
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gegeniiber Drehungen und Spiegelungen invariant. Dagegen ist
¢*& nur gegentiber Drehungen invariant, weshalb ¢ und & nicht
von derselben Art sind.
Es kénnen verschiedene Invarianten und Trivektoren in E,
gebildet werden. Bezeichnen I eine beliebige Invariante, V einen
Vektor, B einen Bivektor und 7T einen Trivektor, so sind

*¥1& und ¢* ¢ invariant (gegeniiber Drehungen und Spie-
gelungen),
V¢ und ¢*V ¢ Trivektoren,
&* B& und ¢* Be invariant,
&*T& und ¢*T ¢ Trivektoren,
E*Iep und ¢*I&, oder &*Bg und qa*B.f vaektoren,
& Ve und ¢*VE, oder & To und ¢* T& invariant.

- Abbildung durch Matrizen. — Ein isotroper Vektor X¢ wird
durch drei komplexe Koeffizienten bestimmt, die ‘die Bedingung
(X?2 = 0 erfilllen. Vier unabhiingige reelle Koeffizienten bestim-
men somit X¢ wie auch &, da & durch &, vollstindig bestimmt
werden muss, Fiir X?, im allgemeinen sogar fiir C kann eine zwei-
reihige quadratische Matrix angegeben werden. Man kann &, bzw.
£* mit einer Matrix abbilden.

Damit die Produkte C& oder &* C einen Sinn haben, wie auch
£&* und £*&, muss & zwel Zeilen und &* zwel Spalten haben, und
&* muss gleich viel Zeilen haben wie & Spalten hat. Damit vier
reelle Koeffizienten (etwa a, b, ¢,d) in & enthalten sind, liegt fol-
gender Ansatz nahe: _

; a+1b
¢+ id

1 : ()

dann Smd Koeffizienten «, ﬁ , 7,0 1n

= fla+1p y+1id|
zu' finden derart, dass &* die gewiinschten Eigenschaften besitzt.
Wihlen wir die méglichen Matrizen

01 10 —4 1 0
10 N R T R

so muss in Xéi= a, Iy + 25 [ + 25 [y ‘(’:1:1, Ly, L3 Teell):

”: I'ls

. 3712 -+ .’L'zz = m32-
Damit £,&* = X* (wo & in der Form (18) ausgedriickt wird),
miissen gewisse Beziehungen bestehen, aus welchen folgt, dass
a4+ b:=d?®+c% . .. . (14)

*
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Normiert man, wie dies moglich ist, wie folgt: « = a, so wird
| x=a, f=—b, y=—c, 6=d.
Folgende Gleichungen bleiben dann iibrig:
| a?+ b= x5 = c2 + d?
ac +bd=—1x,, ad —be = .
Schreiben wir nun

£— & &1 = a + b,
&lII7 & =c+id,
so folgt _
‘512 _ 522 s 5152 X (15)
Ty+ixTy Ty — 1T T ' -

g Vergleicht man Formel (15) mit der Cartan’schen Darstellung
der Spinoren?), so sieht man, dass & ein Spinor ist, und

E* - }El _‘ggil

- Die Bedingung (14), die dafiir sorgt, dass &, einfach ist, la,sst
sich wie folgt schreiben:

£ & = 5 &,

Die Theorie der Zahlen & liesse sich weiter entwickeln.

- Schlussbemerkung. — Die bekannten Pauli’schen Arbeiten und
die Dirac’sche Gleichung sind es, welche die Einfilhrung der Spi-
noren in die Physik gefordert haben. Sobald die Spinoren dem
Physiker bekannt wurden, wurde ihr Verhalten mit geometrischen
Methoden in vielen Einzelheiten studiert. Jedoch scheint uns, ab-
gesehen von dem physikalischen Grund (Spin und relativistische
Forderungen) der mathematische Grund fiir ihre Einfiihrung in
die Quantenmechanik viel klarer aus den Riesz’schen algebraischen
Betrachtungen, die in Teil I besprochen worden sind, als aus geo-
‘metrischen Betrachtungen hervorzutreten. Natiirlich kapn umber-
sucht werden, was mit den Eigenschaften, wie dem Spin, bei
Drehungen und Spiegelungen vor sich geht; dem entspricht die
Methode von Teil II. Sowohl die Pauli’sche als auch die Dirac’sche
Theorie ldsst sich mit Hilfe der Clifford’schen Zahlen untersuchen.
Im Teil II. ist dies nach geometrischer Art fiir den Pauli’schen
Fall, im Teil I nach algebraischer Art fir den Dirac’schen Fall
geschehen. Aus den Betrachtungen von Teil II geht besonders
hervor, dass den Spinoren eine Transformationsformel entspricht,
die aus derjenigen der Chfford schen Zahlen durch eine Art Spal-
tung gewonnen wird.
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Aber in den geometrischen Beziehungen tritt die Notwendig-
keit der Einfiihrung der Spinoren nicht so klar hervor, denn von
. vornherein wire der Gebrauch der Clifford’schen Zahlen gleich so
berechtigt wie derjenige der Spinoren, um die Zusténde von quan-
tenmechanischen Systemen darzustellen, was zuerst von Proca’®)
bemerkt wurde. (Dies gab zu mehreren Untersuchungen An-
lass®)1)7)3).) Wir suchten damals schon®), von der Geometrie Ab- -
stand zu nehmen; dies ist aber wirklich von Riesz viel besser
getan worden. Im iibrigen ist die Existenz der Zahlen & erst dann
gesichert, wenn z. B. Matrizen zu ihrer Darstellung gefunden wer-
den konnen, wie wir solche angegeben haben. Nach der Methode
des I. Teils waren solche Betrachtungen belanglos, da die Spinoren
als spezielle Clifford’sche Zahlen erscheinen, deren Existenz schon
langst gesichert ist.

Zusammenfassend sei der mathematische Standpunkt ver-
treten, dass die Spinoren am besten als Elemente eines Links-,
bzw. eines Rechtsideals der Clifford’schen Zahlen bezeichnet
werden. : '

Seminar fiir theoretische Physik der Universitidt Bern.

Bibliographie.

G. JUVET et A. Scmipro¥, Bull. Soc. neuchételoise Sc. nat. 57, 127 1932.
A. MERCIER, Arch. Sc. phys. et nat. 17, 305, 1935. :

A. MErciEr, C. R. 201, 1320, 1935 und 204, 1148, 1937.

E.

A.

1
2
3

]

CarTaN, Lecons sur la théorie des splnéurs, t. I et II (Paris 1938).

5 Proca, C. R. 190, 1937 und 191, 26, 1930, und J. de Phys V11, 1, 236, 1930.
%) G. Juver, Comm. Math. Helv. 2, 225, 1930.

") W. Franz, Sitzungsber. d. Bayenschen Akad. d. Wiss. 2. Nov. 1935. Dort
sind weitere Arbeiten von Sauter usw. erwahnt.

)
)
)
)
)
)
)



	Beziehungen zwischen den Clifford'schen Zahlen und den Spinoren

