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Uber die Wechselwirkung schwerer Teilchen mit Elektronen

von J. M. Jaueh.
(1. VIII. 1941.)

Die relativistisch invarianten Ansatze einer Wechselwirkung von schweren
Teilchen mit Elektronen, werden untersucht fiir den Fall, dass die schweren Teil-
chen als ruhend betrachtet werden konnen (statischer Grenzfall). Die Wechsel-
wirkung in einer relativistisch invarianten, quantisierten Feldtheorie driickt sich
durch einen invarianten Zusatzterm zur Lagrange-Funktion aus, der eine §-Funk-
tion enthalt. Die Eigenfunktionen der stationéren Zustéinde lassen sich exakt und
ohne Stérungstheorie berechnen, falls man an Stelle der §-Funktion eine endliche
A-Funktion einfithrt. Der Grenziibergang A - 6 wird fir diese Eigenfunktionen
untersucht, und es wird gezeigt, dass von fiinf moglichen invarianten Anséitzen,
welche die zeitliche Ableitung nicht enthalten, nur zwei im Limes A > ¢ fiir die
Eigenfunktionen eine Grenzfunktion ergeben. Fiir die andern Fille wird das Pro-
blem sinnlos. Die beiden Ausnahmefille diirften deshalb fiir eine Elektronen-
paartheorie der Kernkrafte bevorzugt werden.

§ 1. Einleitung.

Im Hinblick auf die Schwierigkeiten, welche einer Feldtheorie
der Kernkrifte mit Mesonen vom Spin 1 entgegenstehen?), ist in
letzter Zeit eine schon vor der Mesontheorie von WENTZEL?) und
gleichzeitig von Gamow und TELLER?®) vorgeschlagene Elektronen-
paartheorie der Kernkriafte wieder erneut aufgegriffen und durch
verschiedene Arbeiten weiter ausgebaut worden%)®). In dieser
Theorie verzichtet man auf den Austauschcharakter der Kern-
krafte, und die bekannten Sattigungseigenschaften der Kerne
miissen deshalb auf andere Weise erkldrt werden. Ierner ver-
zichtet man auf einen Zusammenhang zwischen den Theorien der
Kernkrafte und des pB-Zerfalls. Vielmehr soll sich dieser aus
einer andern Wechselwirkung der schweren Teilchen mit dem
Elektron-Neutrinofeld ergeben, von der Art, wie sie von I'ErMI
oder KonopinskI-UHLENBECK beniitzt worden ist, und die dann in

1) H. BETHE, Phys. Rev. 57, 260, 390 (1940).

%) G. WeNTzZEL, Helv. Phys. Acta 10, 107 (1937); Zs. f. Phys. 104, 36 (1936).

%) Gamow und TELLER, Phys. Rev. 51, 289 (1937).

4) CrITcHFIELD und TELLER, Phys. Rev. 53, 812 (1938). — WiGNER, CRITCH-
FIELD und TELLER, Phys. Rev. 56, 531 (1939). — CrirTcHFIELD und LaMB, Phys.
Rev. 58, 46 (1940). '

5) MarsHAK, Phys. Rev. 57, 1101 (1940). — MarsHAK und WEISSKOPF,
Phys. Rev. 59, 130 (1941).
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466 J. M. Jauch.

keinem numerischen Zusammenhang mit den Kernkriften steht.
Diesen Nachteilen steht der Vorteil gegeniiber, dass man schon
mit einem einzigen Teilchen ladungsunabhingige Krifte erhilt.

Formal &hnlich dieser Elektronpaartheorie ist die Mesonpaar-
theorie von WrIisskorr und MarsuAk?!), in der schwere Elektronen
vom Spin 15 die Rolle der leichten Elektronen tibernehmen. In
dieser Theorie ist eine Beziehung zwischen Kernkriften und
p-Zerfall denkbar, jedoch noch nicht untersucht. Die folgenden
Betrachtungen kénnen sowohl auf Elektronen- als auch auf Meson-
paare bezogen werden, da sich die beiden Theorien nur durch den
Wert der Massenkonstante, bzw. der Masseneinheit unterscheiden.

Fir die Paartheorien der genannten Art ist charakteristisch,
dass die Hamiltonfunktion der Elektronen, einschliesslich des
Terms, der die Wechselwirkung mit den ruhenden Protonen oder
Neutronen beschreibt, in » und y* bilinear ist:

17=f1,u*5[7pd1:

FHist ein Operator, der auf die Orts- und Spinkoordinaten der Elek-
tronen, sowlie auf den Spin der schweren Teilchen wirkt. Der Fall,
dass die Lagrange-Funktion die zeitlichen Abteilungen enthilt, sei
zundchst ausgeschlossen?).  und y* gentigen dann den V.-R.

> -n-,)

[w:! wﬁ’]+ = 60:,36(1;5 L

Die Eigenfunktionen w, von % bestimmen sich aus

Hpn = &nPn (1)
Wenn wir » nach Eigenfunktionen entwickeln

Y= Z Qp Y
(n)

so genligen die a, den Vertauschungsrelationen

[a: an,]+ = dnnf
und H wird in diesen Variabeln wenn wir die v, auf 1 normieren

H = Za;'; Gy S

(n)
Die aya, stellen die Operatoren fiir die Teilchenzahl des Zustandes
n dar. Sie haben die Eigenwerte 0 oder 1. Das Problem, die
Eigenfunktionen und Eigenwerte von
HF = EF (2)

1) WersskopPF und MARSHAK loc. cit.
%) Vgl. hiezu, M. Fierz, Helv. Phys. Acta 14, 487 (1941).
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zu finden, ist damit vollstindig gelést durch die Angabe der
Besetzungszahlen N, der Zustinde n. Der Eigenwert E ist dann
gegeben durch
B =% N,z,.
(n)

Zu bemerken 1st noch, dass in dieser Formulierung die Wechsel-
wirkung der Elektronen untereinander vernachléssigt worden ist.

Wie man sieht, wird das Problem (2) durch die Transforma-
tion auf die a, reduziert auf das Problem, die Eigenfunktion des
Operators 4 zu finden. Das ist ein gewohnliches Eigenwertproblem
im dreidimensionalen Raum.

Da die Proton-Elektronwechselwirkung aus Griinden der rela-
tivistischen Invarianz als eine Nahewirkung aufgefasst werden
muss, enthélt der in % enthaltene Kopplungsterm eine é-Funktion.
Bei der Bestimmung der Kigenfunktionen von- (1) wird man die
0-Funktion durch eine Funktion 4(p) ersetzen,

3 1
2 fir o <
Ale) =1 4n o ¢ < |

0 fir o >{ 90[

Dadurch ist natiirlich die relativistische Invarianz zerstort. Doch
entspricht das dem bekannten Abschneideverfahren, das man
immer anwendet, wenn man unendliche Selbstenergien vermeiden
will. Man kann sich zufrieden geben, wenn man wenigstens zeigen
kann, dass die mit (1) bestimmten Eigenfunktionen ¢, mit abneh-
mendem g, nach gewissen Grenzfunktionen gehen. Wenn diese
Grenzfunktionen

(3)

P, = lim ¢,

e—0
existieren, dann ldsst sich das Problem auch im relativistischen
Fall im Prinzip wenigstens sinnvoll formulieren. Die KEigenfunk-
tionen sind ebene Wellen plus auslaufende Kugelwellen.

Es wird im Folgenden gezeigt, dass von den verschiedenen
Kopplungsansitzen, die man im Rahmen des kanonischen For-
malismus In relativistisch invarianter Weise aufstellen kann, nur
zweil die Eigenschaft haben, dass die Grenzfunktionen v, existieren.
Die dbrigen Ansidtze sind in dieser IHinsicht unbefriedigend.

Das Problem hat noch ein anderes Interesse. Experimentelles
Material tiber die elastische Streuung von Elektronen?) scheint
darauf hinzudeuten, dass eine nicht-Coulomb’sche Wechselwirkung
zwischen Elektronen und Kernen besteht, deren Natur uns noch

1) BossHARDT und ScHERRER, Helv. Phys. Acta 14, 85 (1941). — SCHERRER
und ZUNrr, ibid. 111 (1941), dort auch weitere Literatur.
*
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unbekannt ist, und man wird sich fragen, ob diese Strenanomalien
nicht auf Grund der Elektronenpaartheorie erkldarbar sind. Das
scheint aber nicht der Fall zu sein aus folgendem Grund. Lésst
man die Coulombkraft des Kernes auf die Elektronen zun#chst
ausser acht, so sind die Figenfunktionen ¢, zwar ebene plus
Kugelwellen, solange man mit der A-Funktion (g,+ 0) rechnet;
doch geht die Amplitude der Kugelwellen beim Ubergang zu den
Grenzfunktionen y,, sofern sie iiberhaupt existieren, das heisst
in den beiden Ausnahmefillen, gegen Null. Die nicht-Coulomb-
sche Streuung verschwindet also im Limes 4 - 6.

Die Streuung von schweren Elektronen an Kernen ist von
Marspak und WEersskopr!) fiir den tensoriellen Kopplungstyp
mittelst der Born’schen Néherung berechnet worden, nachdem in
einer fritheren Arbeit von Marsmak?)Griinde fir die Bevorzugung
der Tensorwechselwirkung gegeben worden sind. Zu diesen Rech-
nungen ist zu bemerken, dass die Anwendung des Born’schen
Storungsverfahrens auf solche Wechselwirkungen sicher falsch ist,
mdem sie auch im Grenzfall der d-Funktion endliche Werte fiir
die Streuquerschnitte ergibt, wéhrend diese doch nach der hier
entwickelten strengen Rechnung entweder Null oder unbestimmt
sind?3). Auch die Bevorzugung der Tensorwechselwirkung scheint
uns damit ungentigend begriindet zu sein.

In §2 werden die invarianten Wechselwirkungen diskutiert
und die Formulierung des Eigenwertproblems (1) durchgefiihrt.
Die §§ 8, 4, 5, 6, 7 enthalten die Losungen dieses Eigenwertpro-
blemes fiir die verschiedenen Fille. Im § 8 wird noch die Modifi-
kation der Eigenfunktionen durch das Coulombfeld besprochen.

§ 2. Allgemeine Ansiitze.
Die Einheiten sind in dieser Arbeit durchwegs so gewihlt,
dass f, ¢ und m = 1 und dimensionslos sind. Die Einheiten der
Lange, Zeit und Energie sind dann % 3 % und mc2. Die Energie

in diesen Einheiten sei mit ¢ bezeichnet. «” (v =1, ... 4) bezeich-
net die vier Raum-Zeit-Koordinaten, von denen die vierte rein

imaginér sein soll. p, = —1—— sind die Operatoren fiir Impuls
1) MarsHAK und WEISSKOPF, loc cit.
?) loc. cit.

%) Ein solches Versagen der Born’schen Naherung ist auch von G. WENTZEL
fiir eine dahnliche Wechselwirkung (Paarerzeugung skalarer Partikeln) festgestellt
worden (Helv. Phys. Acta 14, 3 (1941), Fussnote S. 19). Die Untersuchung des
Giiltigkeitsbereiches der Born’schen Niherung, sowohl fiir die Streuung, als auch
tir die Kernkrafte, sei einer spatern Arbeit vorbehalten.
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und Energie. y# o* (k= 1,2,8), B bezeichnen die Dirac’schen
Operatoren. Es ist y¢ = 8, y* = — if«*. Weiter sind o' = — jata
die Operatoren fiir den Spin. Die Dirac’schen Gleichungen lauten
in diesen Einheiten

p'y"y = iy oder 19 = {(x, ) + B} v.

Ferner sei p#yp* = ylev] und pry*p* = ylevl | yly2939% = 45 Die
entsprechenden Matrizen fiir die schweren Teilchen werden durch
grosse Buchstaben bezeichnet. Die invarianten Wechselwirkungs-
terme in der Lagrangefunktion schreiben wir in der Form
Yryp+rO, Py (P+=iP*T; gt = iyp*y4). Fir O, gibt es die
folgenden Moglichkeiten :

0,=1 Og = i I'kp+

Op = Iy 0 = I'e(ytp* — y*p)

Og = Twslylenl O = § Tar 21 (yluslph oyl A poy ol g7

()4 - ]“[ﬂvﬂly[‘uvﬁ]

0, = I'sy5
Uber gleiche Indizes wird immer summiert. Die Darstellung der
Invarianten durch die I'“, y* ist zweckmissig, wenn es sich um
eme Ubersicht handelt. Fir die rechnerische Verwendung ist es
vorteilhafter auf die Darstellung in &, 8 iiberzugehen. Wir wollen
ausserdem die Geschwindigkeit der schweren Teilchen gleich null
setzen. Das bedeutet, dass I'* =0 fiir u=1,2,3 und I™=1
gesetzt wird. Ferner ist I'*I* = 2% wo 2* die Spinoperatoren
fir die schweren Teilchen sind, und ¥*¥ = 6(z), wenn das
schwere Teilchen im Nullpunkt angenommen wird, was wir im
Folgenden immer tun werden. In dieser Spezialisierung schreiben

wir fiir den Zusatzterm u* P,y. Man sieht dann sofort, dass P
verschwindet. Fir die ibrigen P, hat man?)

P,=—8 P6=—i,§p4
Po=—1  P=—(5[Exd) _
Py = —ﬁizs a) PS = @B(Z: E)p[l_’l’ﬂ(z’ [E X ;7])
P,=—(20)
Die Dichte der Lagrangefunktion setzt sich aus zwei Termen
zusammen :

L = Ly+ Ly,

Ly=iy*yp — p*{(a,p) + B}y

Ly,= 776(?8) Q/"*Psw
n 1st ein Parameter, welcher die Stirke der Kopplung beschreibt.
1) Vgl. Berae und Bacumr, Rev. of Mod. Phys. 8, 190, 192 (1936).
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oL . .
m 15t T, = ’l;'lj):
fir diejenigen Wechselwirkungen, welche p% nicht explizite ent-
halten. Fir Pg; und Pg dagegen gilt:

Py: =, —iwi——inﬁ(*) (ﬁw)z
Pg: 7, =iy +ind(x) {B(2,0) v}

Fiir die Dichte der Hamiltonfunktion hat man allgemein H=n" —L.
Das ergibt fiir unsere Fille

H=y*(a,p) + p—nd(x) P}y fir s+ 68 (I)

H=y*(x,p) + B}y N fiir s = 6
H=qy*(a,p) +B+ino@)p(2,[a xp])}y fir s=8

In der letzten Form (IT) kommt % noch implizite in y* vor,
das durch m ausgedriickt werden muss. In den nichsten Para-
graphen soll das Eigenwertproblem (1) fir die fiinf Falle (I) gelost
werden. Die beiden letzten Félle (II), welche zeitliche Ableitungen
enthalten, filhren zu Schwierigkeiten in der Quantisierung. Auf
die nahere Diskussion dieser Schwierigkeiten wird FiErz In einer
nachfolgenden Note eingehen?).

Die zu v, kanonisch konjugierte Variable z, =

(IT)

§ 3. Die skalare Wechselwirkung P,.

Mit dem skalaren Wechselwirkungsansatz lautet das Eigen-
wertproblem (1)

{@,p) +rvBly=cyp
v=1+n4(g)

Der Einfluss des schweren Teilchens auf das Elektron ist einer
Veranderung der Elektronenmasse im Bereich o < g, dquivalent.
Die scheinbare Masse an der Stelle ¢ ist » =1+ 54 (p). Da »
kugelsymmetrisch ist, lassen sich die Winkelfaktoren genau so ab-
separieren wie in der relativistischen Theorie des. Wasserstoffatoms.
Fir die beiden radialen Funktionen F, und G, erhilt man die
simultanen Differentialgleichungen?)

- mit

("Ei—_”g—) G, + (e + )F, = ]
(ddg +2;") Fx—(a—v)GFO]

1) M. Fierz, Helv. Phys. Acta 14, 487 (1941).
2) H. BETHE, Handb. der Phys., Bd. 24/1, S. 313.
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Fir x sind alle positiven und negativen ganzzahligen Werte zu-
gelassen mit Ausnahme von » = — 1, fiir welchen Wert keine
reguldren Losungen existieren. Der Bahndrehimpuls und die Ge-
samtdrehimpulsquantenzahlen ! bzw. § sind mit » verkniipft durch
j=x+Y%; l=x firx=0
j=—-x—1—Y,; l=—x—1 fir 2 <0
Die Losungen im Aussenraum G, zeigen das asymptotische Ver-
halten

1
G,/ e cos (o + ,) | (4)
Aus den Phasenverschiebungen ergeben sich die Streuamplitudenl) |

P

2
73

i (1) {e20mtinmy 1} 4 nfe20n1tixni 1] P, (cosd)
2|

{e2®1§‘u+@%7’5_1}+{e2@77—x—1+7/%ﬂ_1}:|P L{cos®) (5)

o l

Der differentielle Streuquerschnitt ist dann

1
I(ﬁ)zw{lﬂ ) |2+ | g(® |3}
Die Phasenverschiebungen bestimmen sich aus der Stetigkeitsbe- |
dingung des Stromes an der Grenzfliche
f?t . F%’
g G

i (6)

dabel bedeuten:
F,', G, die Losungen fiir den Aussenraum g > g,
fh'? gx LX] LX) 3 29 Innenra'um Q < QD

Im Fall g, €1 sind nur Kugelwellen fiir # = 0 und » = —2
zu erwarten. ‘

Es sei G,, F, die regulire Losung und @G,, F, die singuldre
Losung fir den kraftfreien Fall. Die letztere ist erst bestimmt
durch die Angabe ihres asymptotischen Verhaltens:

Gy ~— —sin x Gy ~—COS &
xr
’ z=(2—Dte (1)

Gy~ -~ cosx G_o~ —sin x
% x

1) N. F. Morr, Proc. Roy. Soc. 135, 429 (1932).
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Die Losung im Aussenraum fiir # + 0 ist dann eine Linearkombi-
nation dieser beiden Funktionen.

G, = const. {G, — E } (8)
F,) = const. {F, —§,F,}
Auflésung nach &, und Verwendung von (6) ergibt
F,—¢{.G
b= (g—2%) 9
Fu - Cx Gn Qo ( )

Aus dem 'aéympto_tischen Verhalten der Losungen im Aussenraum
(7) und aus (4) ergibt sich die Beziehung zwischen den Phasen-
verschiebungen # und den &

Ct’g Ho = —50 } (]0)
tg no= + &2

Bei Beschrinkung auf x = 0, — 2 vereinfachen sich auch die
Formeln (5) zu

[(B) = {(1 + e2 ;no) + (1 — €2i7) cos 8}

N)lt" L\Dls

q(9) (1 — €273 sin .
Damit f(#), g(&) nach Null streben, muss n0—>3-2t—, 7_g — 0 streben.

Wegen (10) geniigt es zu zeigen, dass fir 4 > é, & und &_, beide
nach Null streben.

Die Losungen F, G und F, G ohne Wechselwirkung, mit dem
verlangten asymptotischen Verhalten (7), lassen sich durch die
halbzahligen Besselfunktionen ausdriicken.

—1\¥/ m\? e—1I\¥ x B
Fo—_(® )(ﬁ) 4. _~( ){__ LA
0 (e—l—l 9 )T . (%) e+1 3 T30

A\ x2
G, :—-(3) 24 J, () ~—1+2 4

e (53 (3 ~+<::1>*{1-%+---1

F A 0 w3
= — —_— ~ — —
G, (2) z3J, (x) s T30 + - J

(11)
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(e+1)( ) _QJ“’“("”)’”_C:YP%+%+---}1
= JLl_e
(2)m%Jq i) . 12:1 .
- =( )( ) vt dy () N(:1) ;—§+---}
= (5 )t o, @ ~— gt
x=(e2—1)

Wir haben hier noch den Anfang der Potenzreihenentwick-
lungen fir ¢ <1 hingeschrieben.
Die Losungen f, ¢ im Innenraum sind

fo = (v—e)t 1 (Sl—n}—lﬂ ——coshy)
Y Y
1 .
go = (v + e)ig sinh y
foo=(v—e)t % sinh y

go=—(v+ e} 1 (l sinhy — coshy)

Yy \y
S (NP (>0), v=l4q o (>0
4 70,8
Mit ¢, = f/g. (vgl. (6) wird
y—g\ 2 1
C°=(v+e) ¢ C=§;~—~ctghy0
v —eg\ 21

_ ol — (02 2\%

C~2 (V+8) 3 Yo ('V 8) Qo

Tm Limes 4 > 0 (0> 0) 'geht 1Yo Wie g% gegen co. Man erkennt,

dass infolge des Auftretens des ctghy, lim {= —1 ist. Also
A—>8

CO "‘“>""—“1
L o> +1
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Setzen wir in (9) die Potenzentwicklungen (11) (12) ein, so wird

z [e—1\%
§(6+1)_Co

— m2
$o =@ ¢ (3—1'%
o — :;‘1")
e—1\% x
£ = 2+(8+1)+C—2§
s-g = & e—1\%
(s—i—l)m_'_c—z

Der Faktor z2 zusammen mit dem beschrankten Verhalten von C
im Limes 4> 6 sorgt dann dafir, dass fiir beide im Limes

50 = ‘E_z =0
wird, wie behauptet wurde.

§ 4. Die Vektorwechselwirkung P,.
Das Eigenwertproblem lautet hier

{@p) +B+nd(Q}y—ey
Das ist das Eigenwertproblem eines sich in einem Zentralfeld
A(p) bewegenden Elektrons. Die Losungen im Innengebiet sind
halbzahlige Besselfunktionen des Argumentes = {(¢ — 7 4)2—1} ¢,
welche sich nun nicht mehr abklingend, sondern oszillatorisch
verhalten. Fiir die in (6) definierte Funktion { erhalten wir somit

{=1/zy — ctg x,

Im Gegensatz zum vorigen § ist nun hier fir g, 0 { nicht
mehr beschriankt, vielmehr schwankt { mit abnehmendem g, zwi-
schen den Werten — co und + oo. Die Werte fiir &, und &_,, welche
durch die Formeln (9) gegeben sind, nehmen dann mit abnehmen-
dem g, immer wieder unendlich grosse Werte an, ndmlich dann,
wenn einer der Nenner verschwindet. Die Streuung und somit
auch die Higenfunktion bleiben dann also im Limes py->0 un-
bestimmt. Das d-Potential hat in der relativistischen Theorie des
Elektrons - keinen Sinn.

§ 5. Die Tensorwechselwirkung P,.

Das Eigenwertproblem lautet in diesem Fall

@ Py +B{l+n4p) (2, 5)}p=—cy (13)
Die Funktion p héingt nun ausser von den Spin- und Ortskoordinaten

des Elektrons auch noch vom Spin des schweren Teilchens ab,
den wir als 1% annehmen wollen. Die exakte Berechnung der
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Eigenfunktionen und der Streuung ldsst sich zwar durchfiihren,
doch fiir die uns hier interessierende Fragestellung geniigt es ja
zu untersuchen, ob die Eigenfunktionen im Innengebiet ¢ < g,
abklingendes oder periodisches Verhalten aufweisen. Im ersten
Fall existiert die Grenzfunktion, im zweiten Falle nicht.

Die Losung von (18) in Polarkoordinaten lésst sich leicht an-
geben, wenn man beachtet, dass die Gleichung invariant ist bei
Drehungen und Spiegelungen des Koordinatensystems. Die Lod-
sungen lassen sich also als Linearkombination solcher Teillosungen
schreiben, von denen sich jede nach einer bestimmten irreduziblen
Darstellung der Drehungsgruppe transformiert und die ausserdem
zu einem bestimmten Spiegelungscharakter gehort.

Um diese Teillosungen zu bestimmen, fithren wir die vier
Dirac’schen Spinfunktionen %®;, %, u%, 4% und ausserdem die
Spinfunktion fiir den Kernspin v;, v, ein. Die u?;, 4%, gehoren zu
den beiden sogenannten grossen Komponenten, wihrend die u?; , u%
zu den kleinen Komponenten gehéren. Bei Spiegelungen bleiben
die %* und die v unverindert, wihrend die u¢ das Vorzeichen
wechseln?).

Wir zerlegen die Funktion u in grosse und kleine Kompo-
nenten £ und o

2 = ¥ u v, + Pous®vy + @y u2v, + O, “'202}
w = 7!’1“1 Uy + Pallp®Vy + P1U1% Vg + @alisVy

Unter Einfuhrung eines Operators 7, welcher 4* mit u® vertauscht,
lasst sich die Gleichung (18) aufspalten in die zwei

(5, P)w = {8~—1—?711(P)(§,3)} 0
n(o,p)R=1{e+1+7n4(p)(2,0)} ®
o bedeutet hier die zweireihigen Spinmatrizen.

Die Linearkombination der Spin- und Kugelfunktion, die sich
nach einer bestimmten irreduziblen Darstellung transformieren,
lassen sich mittelst gruppentheoretischen Methoden bestimmen?).
Das Resultat lasst sith folgendermassen schreiben: Wir reduzieren

zuerst die Spinrdume in einen symmetrischen (triplet) und einen
antisymmetrischen (singlett) Bestandteil mit den Spinfunktionen

Up = utv

u? = (u? v + u v,) Uy = 1 (u? vy — u fvl)
V 2 V2

Ul = Uy,

1) Vgl. vAN DER WAERDEN, Gruppentheorie und Quantenmechanik, S. 98.
%) Vgl. vax pER WAERDEN, S. 70, Tabelle.
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Analog fiir die grossen Komponenten

Ul =uwv

1 1
Ue = ﬁ(“ivz‘f‘%?)ﬂ U(,::\/—Qm (f vy — us vy)
Ul = ui v,

Dann transformiert sich jede der vier Funktionen

w 1 GmGrm— P m 0
W= 29—1)% {[ 2 ] Yitui+[G+m) (7—m)PY9'-1 Uy
G—m)G—m—1P_ .
+[ 9 ] Y7 g }

1

M

= g U2 Ut i —mt DY+ 2m Y o

+[2 (+mer1) (G —m)B Vs

o 1 (—m+2)—m+ 1)
%j, 1 (2 7+3)& H: 2 Yj+11 1

—[(+m+1) G—m+)FYR, o

(j+m~+2) (j+m+1)]} e
[t

= (27+1)% Y7 u,

nach der Darstellung D;. Analog seien die W?._,, Wr., W», ., Vr
definiert, indem man in den obigen Ausdriicken uberall_u durch U
ersetzt. Es gehoren ausserdem w;, ;_;, wj, i1, W3, 5, Vj; zum Spie-
gelungscharakter (— 1)/, wahrend w;,,, v, Wy i1, Wj 441 zum
Spiegelungscharakter (— 1)7*! gehoren. Die Y7 in den obigen
Formeln stehen fiir die auf 1 normierten Kugelfunktionen:

[y N s | 2?;& Ai+m im @
27+1 (j-m) ¥ A1—=x 2] d o gn. €

2_1y =

] da:”m(w ) Van

Y7 (8, ¢)=(—1)m [

2 (4+m)!| 279!
(x = cos &)
Schliesslich sind dann
0f = — i1f;(0) wy ;1 — ths(0) W5 ;14
Qr,, = Gi(o) W;?,ay' + K;(o) Vi,
W) = —19;(0) wj; — 1k;(0) vj);

‘Q; = I, (9) 7—1 + H (Q) Wy i+1
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die gesuchten Teillosungen, die sich nach D; transformieren und
ausserdem zum Spiegelungscharakter (— 1) bzw. (— 1)"‘*1 gehoren.
Die Funktionen f,%, G, H einerseits und F, H, g, k andrerseits
erfiillen je ein System von leferentlalglelchungen das weiter unten
angegeben werden soll. Es zeigt sich, dass zu jedem Spiegelungs-
charakter noch zwei linear unabhingige Losungen gehdren, so
dass die Entartung des durch 4 charakterisierten Zustandes eine
vierfache 1st, was auch mit dem Resultat aus dem Vektormodell
ibereinstimmt. Im Grenzfall j = 0 kann sich die Multiplizitat
nicht voll a,usbllden Esistdann w; ; = w; ;= W, ;= W; ;= 0.
Die Entartung ist dann also nur noch zweifach.

Im Folgenden wollen wir uns auf die Behandlung der mit +
bezeichneten Losungen beschrinken. Die andere Losung fiihrt auf
genau dasselbe System von Gleichungen, so dass damit nichts
Neues erreicht wird.

Um die radialen Differentialgleichungen zu bestimmen, muss

man das Resultat der Operation (£, 7) und (p&) auf die Funktionen
w und v kennen. Nun ist aber

(_y:” 0) Wi, 51 = Wi, 51
(Z‘f’, 3’) Wj,; = Wy, ;
(2 ) @) Wy, i1 = Wy, i1y
(Z,5)v;,; =—8v,;

Ferner ist 7 (p, o) w} wieder eine Grosse, die sich nach D; trans-
formiert. 7 und p #ndern beide bei Spiegelungen das Vorzeichen,
also gehort diese Grosse wieder zum Spiegelungscharakter (— 1)7.
Sie ist somit eine Linearkombination von W, ; und V; ;. Genau
so schliesst man, dass #(p,s) 2F eine Linearkombination von
wj, j—; und wj, ;. sein muss. Also:

7(p, o) of = A(@) Wy, + B(o) Vi,
75@5 ’ 3) -Q;'r = a(o) ws, -1 + b(Q)Wj, j11

Die Ausrechnung der Funktionen 4, B, a, b, die etwas langwierig
ist, soll hier nicht wiedergegeben werden. Man findet durch Rech-

nung:
s0=3(r -1 )ea (v 122)

B(@)=m:i(f’~—%—1f)+(7’+l) (h'+’;2 )
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o4 (o) (2t

. 29 27 (. ] , ]
b (G __0) (K K)
) = QHJ 0 %+1 0

Andererseits erhédlt man aus (13) durch Gleichsetzen der Koeffi-
zienten der Winkelfunktionen

A(0) ={e—1—n4(0)} G(o)
={e—1+3n4(e)} K(o)

a(o) = —i{e +1+ nd(e)} (o)

b(o)=—ife+ 1+ nd(0)}h(o)

Wir fithren noch die Abkiirzung ein:

{ =e+1+n4
" =e—1—nd
F—e—1+8n4

Dann erhélt man schliesslich:

%Oﬁﬁz—ﬂ+l@tﬁ22)ﬁzﬁ

—'9’(1‘ ~———f) 1) (4 1 ): 'K

204+ [  9+1 ] , 7+1 )
. S Y | VT Rl o K =
5711 ( + ; — +—= Cf

2§ [ i 1 [ ‘
G—Lq)\ - (K— 1 K)=rtnh 4
2]+1( 0 ) 2j—|—1( 0 ) ¢ (1)

Wenn man beachtet, dass die halbzahligen Besselfunktionen
Gleichungen gentigen von der Form

d .
dx {x_f iy (fﬁ)} —

d
Ey {ztdy(z
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dann erkennt man, dass man die Losungen von (14) ansetzen
muss in der Form:

fi=cat JQ'—J_; (x) Gy = d;xt Ja'+;-(-’”)
hj = Cj’ J;_% Jj_;_a/g (fL') Kj = dj, m_% Jj_l_% (.’.U)

T = xQ

(15)

¢j,¢i,d;, d;’, » sind noch zu bestimmende Konstanten. Geht
man mit dem Ansatz (15) in die Gleichungen (14), so erhélt man
fir diese Konstanten das lineare Gleichungssystem:

H%@+%¢—r@ =0
jae; + (5 + ey —"d =0
2 (j+1) ”

—fe — d+ -2 d =0
¢ 9541 M a5 “

29 %
— e, + -1 4, d =0
col t o bt e b

Damit es Losungen besitzt, muss die Determinante D der Koeffl-
zlenten verschwinden:

D= xt—%20 (" + ")+ 220°C" =0
02— ¢’ 1. Losung
¢ 2. Losung

1. Losung 2. Losung
2 (9+1 "
r 27 7] ’ 1 rr
o = — gy (€ o = g GO
d,' = C dj = O
dj’ = 0 d’j" — C

Ob die Wellenfunktion im Innern (o < g,) oszilliert oder ab-
klingt, héingt vom Vorzeichen von #»2?= {{’ bzw. {{” ab. Im
Falle der zweiten Losung ist »% = (e + 1 + nd)(e —1 + 8 n4) fiir
grosse Werte von 4 positiv. Das bedeutet, dass sich die Losungen
im Innern oszillatorisch verhalten und deshalb fiir 4 > d keiner
Grenzldsung zustreben. Fir die andere Losung mit »2 = {{ ist
dies zwar der Fall, jedoch gentigt das nicht, da die existierenden
Grenzfunktionen kein vollstindiges Orthogonalsystem bilden.
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§ 6. Die Pseudovektorwechselwirkung P,.

(@, )w By +nd(e)(Z,5)yp=cy

Diese Gleichung unterscheidet sich von (13) nur durch das
Fehlen des Faktors f vor dem Wechselwirkungsterm. Es #@ndert
sich deshalb in der Rechnung des letzten Paragraphen gar nichts
ausser der Defimition von {, {’ und "

{ =e+1—n4d
' =e—1—n4
["=e—1+8n4
Die Losungen fiir »?* sind wieder
. | ¢ 1. Losung
| ¢¢” 2. Losung

Hier ist es nun die erste Lisung, welche fiir grosse Werte von 4
im Innengebiet das oszillatorische Verhalten hat.

Yo/

§ 7. Weehselwirkung mit riiumlichen Ableitungen P..

(@D +n4(& %P, D)} w+ By =eyp

Die Gleichung lésst sich wieder aufspalten in zwei Gleichungen :

7 {3, P) +nA(Zv 6 XP])} o= (e—1)Q
2{G, D) +24(Z,[6 xp)} 2= (¢ + 1o

Auch diese Gleichungen sind invariant beziiglich der Drehspiege-
lungsgruppe. Es lassen sich deshalb in derselben Weise wie in
§ 5 diejenigen Teillosungen bestimmen, welche sich nach einer
bestimmten Darstellung der Drehgruppe transformieren und ausser-
dem zu einem bestimmten Spiegelungscharakter gehoren. Mit der
Bezeichnung des § 5 setzen wir wiederum an

(16)

o =—1f(@)w;, ;1 — 1h(e) wj, jx
R=G@W;;+ KoV,

Durch direkte Rechnung findet man
2
(2 [O'Xp])(x)—’b{2y(f —__*f)_g(j_'_]) h+:’+ } i

. & 2 1+1 ]
2, Q=_—— K e —J :
7 ( [o X p]) 27_1_1( +— 0 )w, 1 2?+1(K 0 )w,a+1
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Einsetzen dieser Ausdriicke und Nullsetzen der Koeffizienten
der Winkelfunktionen fithrt auf das folgende System von Diffe-
rentialgleichungen fiir die radialen Funktionen

%(f’—j—'i ) (h'+7+2 ) qe
° . _
“f(f'—'f';l'f)(l—%nzl)+(j+1)(h’+ﬂh)(1—2ind)=CK
e 0

20G+1) (511 j+1 : _
— G K +—K|1+2pd)=1{' 17
27.}_1( ® 0 )+27+1( 0 )(+ ind)={"f (A7)

29 9 1 ;

G——G K’——-MK 14+2end) = C'h

27+1( 0 ) 21+1( 0 )( ind) = ¢
" f=e—1 '=¢e+1

Derselbe Ansatz mit Besselfunktionen, wie (15) Seite 478 ergibt
das Gleichungssystem

"‘%C:;—F%le—é'dj =0
1261 —2inMe;+(G+1) #(L —2ind)ef’ —Ld =0
_2041), x(1+2in4)

— ' . & =1
2 251 2 j+1 ’
29 x(1+24n4) .,
P dj- 3 d,=0
VI R R P

mit der Determinante

D= x4 (144 2 4% — 220 (2+4 242 +(L L)% = 0

j LC 1. Losung
n® = 49 ,

Merkwiirdig ist, dass » in der einen Losung tiberhaupt unab-
héangig vom Kopplungsparameter # wird. Die zweite Losung
strebt fiir 4 > ¢ im Innengebiet nach Null. Die Grenzfunktionen
existieren also und sind, wie wir noch zeigen wollen, ebene Wellen.

Zu dem Zweck miissen wir die Funktionen im Innengebiet
in physikalisch richtiger Weise an die Funktionen im Aussen-
geblet anschliessen. Die richtigen Randbedingungen erhélt man,
wenn man von einer stetigen A-Funktion ausgeht und dann

31
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den Ubergang zu der von uns gewihlten unstetigen Funktion macht.
Die ersten zwei Gleichungen (17) besagen:

d

a7 FHH =40

d ) ) (18)
—— (—if + (7 + 1)k) = B(o)

wobei A(p) und B(p) beschrinkte Funktionen von ¢ sind, die
wir nicht explizite anzuschreiben brauchen. Integriert man jede
der Gleichungen (18) von g, < g, bis g, > go, dann ergibt sich

Q2 Q2

(+m) [ = [4l@de
(—if+G0R) [ = [ Blode

Diese Gleichungen miissen giiltig bleiben, wenn man nun vom
stetigen Potentialverlauf zum unstetigen, von uns gewahlten 4 (o)
tibergeht. Geht man mit ¢, und g, nach g4, so erkennt man,
dass f4+ h und —jf+ ( + 1)h bei g, stetig verlaufen miissen.
Daraus folgt aber auch die Stetigkeit von f und h allein. Genau
so schliesst man aus der 3. und 4. Gleichung von (17) auf die
Stetigkeit von G und K1), Natiirlich ist dann auch die Strom-
dichte stetig, die sich bilinear aus f, h, G und K aufbaut. Um
diese Stetigkeitsbedingungen erfiillen zu koénnen, miissen noch
diejenigen Losungen fiir den kraftefreien Fall hinzugenommen
werden, welche im Nullpunkt eine Singularitit aufweisen. Wir
haben diese nicht explizite aufgeschrieben. Sie lassen sich genau
so wie die reguliaren durch Besselfunktionen, aber mit negativem
halbzahligem Index ausdriicken. Wir wollen sie mit f;, 7' be-
zeichnen, wihrend wir fiir die mit positiv halbzahligem Index die
Bezeichnung f1, fi' einfithren.

I und II soll die beiden noch méglichen Losungen unter-
scheiden. Die Losung im Innenraum f;, an der Stelle g, ist dann
gleich einer Linearkombination dieser vier IFunktionen an der
Stelle gy; d. h. man hat:

Ti(eo) = 2 f4(e0) + e f4'(0o) -+ afaleo) + 713 (0) (19)
und noch drei weitere Gleichungen mit h, G und K. Das sind

1) Dass diese Grenzbindungen nicht selbstverstandlich sind, erkennt man
aus der analogen Diskussion bei KEMMER, Helv. Phys. Acta X, 57 (1937).
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vier Gleichungen fiir die vier Unbekannten 1, u, o, 7, die sich
daraus bestimmen lassen. Um zu zeigen, dass im Grenzfall 4 - ¢
die ebenen Wellen Losungen des Problems sind, brauehen wir nur
zu zeigen, dass die irreguliren Bestandteile 7. 74 in dieser Linear-
kombination fortfallen, dass also 2 > 0, u - 0. Wenn wir in Glei-
chung (19) den Grenziibergang 4 - 6(90 - 0) ausfihren, so bleibt
links fiir alle Werte von g, etwas Endliches stehen. Die beiden
irreguléiren Funktionen f}(g,), 7o (0o) dagegen streben mit gy = 0
nach oo, wihrend die beiden reguliren Bestandteile fI(p,) und
fi(0y) selbst endlich bleiben, oder sogar nach Null streben. Im
Grenzfall oy = 0 miissen deshalb die beiden Koeffizienten 4 und u
verschwinden und das bedeutet, dass die Losung dann identisch
ist mit der Losung fiir den kriftefreien Fall. Durch geeignete
Linearkombination unserer Eigenfunktionen ldsst sich dann eine
Losung konstruieren, welche eine ebene Welle darstellt. Wir wollen
darauf nicht néher eingehen.

§ 8. Eigenfunktionen im skalaren Fall bei Anwesenheit eines
Coulombfeldes.

Bis jetzt haben wir das Coulombfeld vollstandig beiseite ge-
lassen. Be1 gleichzeitigem Vorhandensein einer Coulombkraft und
einer Wechselwirkung P, lisst sich die Streuung ausdriicken durch

die zusatzlichen Phasenverschlebungen 7, der Streuwellen im Un-
endlichen?):

1(9) =

{|f+&1>+|9+ @, %}

| k|

£ . £
D, = e2im ___9 — e2in- _2—-_ cos 9
a 1 + % E(} 1 + % -5—2

; &g
@,z—ehnz—smﬁ

+8&

mit &, = —tg n.', f(#), ¢(&) ; 7o, 9 sind die Strenamplituden und
Phasenkonstanten fiir da,s Coulombfeld allein.

B e b — LG,
" EZ_’ZQ" €=0o |

F,, G, F,, G, sind die radialen Funktionen (reguldre und irregu-

1) J. M. JavucH, Helv. Phys. Acta XIII, 457 (1940), Gleichungen (6’), (10),
(11). In dieser Arbeit sind leider einige entstellende Druckfehler stehen geblieben,
die wir am Schluss dieser Arbeit berichtigen.
*
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lare) fiir den Aussenraum mit den Entwicklungen fir «* <1 und
e L 1Y).

Gy ~1 Gy~ }(a—b)+ =
(19)
—1\2 x e—1\%
Fo~|f 1 R B o
0 (a+1){2(“+b)+3} Fe (s+1)
1 1
Gy~ Go~—"73
(19)

' e—1 %_1 7 e—1 %__1“
T T e+ 1) 22 i N PPRNEETY P

Die Definition von ¢, ist ¢, = 1,/g., wo [, g, die Losungen fiir den
Innenraum sind. Wegen des singuldren Verhaltens von G, F, fiir
x = ( ist wiederum notwendig und hinreichend fiir das Verschwin-
den der Zusatzstreuung das beschriankte Verhalten von £, beim
Grenziibergang A - 0.

Die radialen Differentialgleichungen im Innengebiet sind

(Ed——i) G,,=-—(s+v+—oi)Fx l '
o 0 0 (20)

(e Emefred)el
do 0 0

o ist die Feinstrukturkonstante (~ Z.). Dabei hat man im Innen-
gebiet ein Coulombpotential und dazu noch die 4-Wechselwirkung
angesetzt. Man konnte auch das Coulombpotential im Innern er-
setzen durch die 4-Wechselwirkung allein. Das wére jedoch der
in § 3 behandelte Fall und dort wurde ja verifiziert, dass £, be-
schrankt 1ist.

Die Losungen von (20), welche reguldr im Innengebiet sind,
haben nun genau dieselbe Form wie die mit » =1 (5 = 0), nur
die Konstanten sind etwas verdndert.

f=N (E—V)% 7 (e — )

e+ x
-1

: (‘Pz + @1)
1

1= (y +ia)Qix)*F(y +4a’ +1; 29 +1; 212)
o= (x+1—ib)Qix)? Fly +1a’; 2y +1; 2ix)

g=N

' &% " oy
il A AL it

') J. M. Javucs, loc. cit. Formel (27) und (27).
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Beniitzen wir die Entwicklungen (19) fiir kleine z mit den Kon-

stanten a’, b’ an Stelle von a,b und bilden wir ¢, =——, so er-

4

kennt man leicht ,dass {, nach einem endlichen Gren&wert strebt
dessen genauer Wert belanglos ist.

In jedem Fall also streben die &, nach Null mit abnehmendem
0o und die Streuung geht in die Coulomb’sche iiber.

8§ 9. Ergebnis.

Von den finf Wechselwirkungstermen P, ohne zeitliche Ab-
leitungen sind zwel dadurch ausgezeichnet, dass die Eigenfunk-
tionen des Eigenwertproblems (1) auch im Limes 4 6 existieren.
Die beiden Terme sind

Py = nd(@)y*py

Py = no(Z)y* (2, [a X Py
Die Eigenfunktionen des Eigenwertproblemes (1) sind dann ebenc
Wellen; die Streuung ist deshalb Null.

Herrn Professor WENTZEL, von dem die Anregung zu dieser
Arbeit stammt, méchte ich hier danken fiir viele klirende Dis-
kussionen tiber diese Fragen.

Zirich, Physikal. Institut der E.T.H.



	Über die Wechselwirkung schwerer Teilchen mit Elektronen

