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Über die Wechselwirkung schwerer Teilchen mit Elektronen
von J. M. Jaueh.
(1. VIII. 1941.)

Die relativistisch invarianten Ansätze einer Wechselwirkung von schweren
Teilchen mit Elektronen, werden untersucht für den Fall, dass die schweren
Teilchen als ruhend betrachtet werden können (statischer Grenzfall). Die Wechselwirkung

in einer relativistisch invarianten, quantisierten Feldtheorie drückt sich
durch einen invarianten Zusatzterm zur Lagrange-Funktion aus, der eine <S-Funk-
tion enthält. Die Eigenfunktionen der stationären Zustände lassen sich exakt und
ohne Störungstheorie berechnen, falls man an Stelle der <5-Funktion eine endliche
A -Funktion einführt. Der Grenzübergang A -> ô wird für diese Eigenfunktionen
untersucht, und es wird gezeigt, dass von fünf möglichen invarianten Ansätzen,
welche die zeitliche Ableitung nicht enthalten, nur zwei im Limes A ->¦ ö für die
Eigenfunktionen eine Grenzfunktion ergeben. Für die andern Fälle wird das
Problem sinnlos. Die beiden Ausnahmefälle dürften deshalb für eine Elektronen-
paartheorie der Kernkräfte bevorzugt werden.

§ 1. Einleitung.

Im Hinblick auf die Schwierigkeiten, welche einer Feldtheorie
der Kernkräfte mit Mesonen vom Spin 1 entgegenstehen1), ist in
letzter Zeit eine schon vor der Mesontheorie von Wentzel2) und
gleichzeitig von Gamow und Teller3) vorgeschlagene Elektronen-
paartheorie der Kernkräfte wieder erneut aufgegriffen und durch
verschiedene Arbeiten weiter ausgebaut worden4)5). In dieser
Theorie verzichtet man auf den Austauschcharakter der
Kernkräfte, und die bekannten Sättigungseigenschaften der Kerne
müssen deshalb auf andere Weise erklärt werden. Ferner
verzichtet man auf einen Zusammenhang zwischen den Theorien der
Kernkräfte und des /J-Zerfalls. Vielmehr soll sich dieser aus
einer andern Wechselwirkung der schweren Teilchen mit dem
Elektron-Neutrinofeld ergeben, von der Art, wie sie von Fermi
oder Konopinski-Uhlenbeck benützt worden ist, und die dann in

H. Bethe, Phys. Rev. 57, 260, 390 (1940).
2) G. Wentzel, Helv. Phys. Acta 10, 107 (1937); Zs. f. Phys. 104, 36 (1936).
3) Gamow und Teller, Phys. Rev. 51, 289 (1937).
4) Critchfield und Teller, Phys. Rev. 53, 812 (1938). — Wigner, Critch-

field und Teller, Phys. Rev. 56, 531 (1939). — Critchfield und Lamb, Phys.
Rev. 58, 46 (1940).

5) Marshak, Phys. Rev. 57, 1101 (1940). — Marshak und Weisskopf,
Phys. Rev. 59, 130 (1941).

30



466 J. M. Jauch.

keinem numerischen Zusammenhang mit den Kernkräften steht.
Diesen Nachteilen steht der Vorteil gegenüber, dass man schon
mit einem einzigen Teilchen ladungsunabhängige Kräfte erhält.

Formal ähnlich dieser Elektronpaartheorie ist die Mesonpaartheorie

von Weisskopf und Marshak1), in der schwere Elektronen
vom Spin % die Rolle der leichten Elektronen übernehmen. In
dieser Theorie ist eine Beziehung zwischen Kernkräften und
/3-Zerfall denkbar, jedoch noch nicht untersucht. Die folgenden
Betrachtungen können sowohl auf Elektronen- als auch auf Mesonpaare

bezogen werden, da sich die beiden Theorien nur durch den
Wert der Massenkonstante, bzw. der Masseneinheit unterscheiden.

Für die Paartheorien der genannten Art ist charakteristisch,
dass die Hamiltonfunktion der Elektronen, einschliesslich des

Terms, der die Wechselwirkung mit den ruhenden Protonen oder
Neutronen beschreibt, in yi und rp* bilinear ist:

H= fy*ûfipdT

^ist ein Operator, der auf die Orts- und Spinkoordinaten der
Elektronen, sowie auf den Spin der schweren Teilchen wirkt. Der Fall,
dass die Lagrange-Funktion die zeitlichen Abteilungen enthält, sei
zunächst ausgeschlossen2), f und y>* genügen dann den V.-R.

!>*-• Vßl+ K ß ô ix,x')
Die Eigenfunktionen fn von YH bestimmen sich aus

ûffn= SnVn (1)

Wenn wir y> nach Eigenfunktionen entwickeln

(»)

so genügen die an den Vertauschungsrelationen

\_aH anrj+ 0nnr

und H wird in diesen Variabein wenn wir die fn auf 1 normieren

H / fln&nen
(»)

Die a* an stellen die Operatoren für die Teilchenzahl des Zustandes
n dar. Sie haben die Eigenwerte 0 oder 1. Das Problem, die
Eigenfunktionen und Eigenwerte von

HF EF (2)

x) Weisskopf und Marshak loc. cit.
2) Vgl. hiezu, M. Fierz, Helv. Phys. Acta 14, 487 (1941).
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zu finden, ist damit vollständig gelöst durch die Angabe der
Besetzungszahlen Nn der Zustände n. Der Eigenwert E ist dann
gegeben durch

(«)

Zu bemerken ist noch, dass in dieser Formulierung die Wechselwirkung

der Elektronen untereinander vernachlässigt worden ist.
Wie man sieht, wird das Problem (2) durch die Transformation

auf die an reduziert auf das Problem, die Eigenfunktion des

Operators fffzn finden. Das ist ein gewöhnliches EigenWertproblem
im dreidimensionalen Raum.

Da die Proton-Elektronwechselwirkung aus Gründen der
relativistischen Invarianz als eine Nahewirkung aufgefasst werden
muss, enthält der in Yff enthaltene Kopplungsterm eine ó-Funktion.
Bei der Bestimmung der Eigenfunktionen von (1) wird man die
^-Funktion durch eine Funktion A (q) ersetzen,

8 1 f <- \

x r lUr 0 <- On /r>N^ (<?)= 47T Ql
y ^ (3)

0 für Q > Qoi

Dadurch ist natürlich die relativistische Invarianz zerstört. Doch
entspricht das dem bekannten Abschneideverfahren, das man
immer anwendet, wenn man unendliche Selbstenergien vermeiden
will. Man kann sich zufrieden geben, wenn man wenigstens zeigen
kann, dass die mit (1) bestimmten Eigenfunktionen cpn mit
abnehmendem q0 nach gewissen Grenzfunktionen gehen. Wenn diese
Grenzfunktionen

y>„ lim cpn

existieren, dann lässt sich das Problem auch im relativistischen
Fall im Prinzip wenigstens sinnvoll formulieren. Die Eigenfunktionen

sind ebene Wellen plus auslaufende Kugelwellen.
Es wird im Folgenden gezeigt, dass von den verschiedenen

Kopplungsansätzen, die man im Rahmen des kanonischen
Formalismus in relativistisch invarianter Weise aufstellen kann, nur
zwei die Eigenschaft haben, dass die Grenzfunktionen tpn existieren.
Die übrigen Ansätze sind in dieser Hinsicht unbefriedigend.

Das Problem hat noch ein anderes Interesse. Experimentelles
Material über die elastische Streuung von Elektronen1) scheint
darauf hinzudeuten, dass eine nicht-Coulomb'sche Wechselwirkung
zwischen Elektronen und Kernen besteht, deren Natur uns noch

l) Bosshardt und Scherrer, Helv. Phys. Acta 14, 85 (1941). — Scherrer
und Zünti, ibid. 111 (1941), dort auch weitere Literatur.
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unbekannt ist, und man wird sich fragen, ob diese Streuanomalien
nicht auf Grund der Elektronenpaartheorie erklärbar sind. Das
scheint aber nicht der Fall zu sein aus folgendem Grund. Lässt
man die Coulombkraft des Kernes auf die Elektronen zunächst
ausser acht, so sind die Eigenfunktionen cpn zwar ebene plus
Kugelwellen, solange man mit der A -Funktion (p0 ^ 0) rechnet;
doch geht die Amplitude der Kugelwellen beim Übergang zu den
Grenzfunktionen y>„, sofern sie überhaupt existieren, das heisst
in den beiden Ausnahmefällen, gegen Null. Die nicht-Coulomb-
sche Streuung verschwindet also im Limes A -> ò.

Die Streuung von schweren Elektronen an Kernen ist von
Marshak und Weisskopf1) für den tensoriellen Kopplungstyp
mittelst der Born'schen Näherung berechnet worden, nachdem in
einer früheren Arbeit von Marshak2) Gründe für die Bevorzugung
der Tensorwechselwirkung gegeben worden sind. Zu diesen
Rechnungen ist zu bemerken, dass die Anwendung des Born'schen
Störungsverfahrens auf solche Wechselwirkungen sicher falsch ist,
indem sie auch im Grenzfall der (5-Funktion endliche Werte für
die Streuquerschnitte ergibt, während diese doch nach der hier
entwickelten strengen Rechnung entweder Null oder unbestimmt
sind3). Auch die Bevorzugung der Tensorwechselwirkung scheint
uns damit ungenügend begründet zu sein.

In § 2 werden die invarianten Wechselwirkungen diskutiert
und die Formulierung des Eigenwertproblems (1) durchgeführt.
Die §§ 3, 4, 5, 6, 7 enthalten die Lösungen dieses Eigenwertpro-
blemes für die verschiedenen Fälle. Im § 8 wird noch die Modifikation

der Eigenfunktionen durch das Coulombfeld besprochen.

§ 2. Allgemeine Ansätze.

Die Einheiten sind in dieser Arbeit durchwegs so gewählt,
dass h, c und m 1 und dimensionslos sind. Die Einheiten der

h %

Länge, Zeit und Energie sind dann —= und mc2. Die Energiea i a me me* a
in diesen Einheiten sei mit e bezeichnet, x" (v 1, 4) bezeichnet

die vier Raum-Zeit-Koordinaten, von denen die vierte rein

imaginär sein soll. pv —i-^r sind die Operatoren für Impuls

J) Marshak und Weisskopf, loc cit.
2) loc. cit.
3) Ein solches Versagen der Born'schen Näherung ist auch von G. Wentzel

für eine ähnliche Wechselwirkung (Paarerzeugung skalarer Partikeln) festgestellt
worden (Helv. Phys. Acta 14, 3 (1941), Fussnote S. 19). Die Untersuchung des

Gültigkeitsbereiches der Born'schen Näherung, sowohl für die Streuung, als auch
für die Kernkräfte, sei einer spätem Arbeit vorbehalten.
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und Energie, y", a* (/«=1,2,3), ß bezeichnen die Dirac'schen
Operatoren. Es ist yi ß, yk — ißcA. Weiter sind al — ioYcA
die Operatoren für den Spin. Die Dirac'schen Gleichungen lauten
in diesen Einheiten

pvyvip iy oder iip {(oc, p) + /5} ip.

Ferner sei yfy" y[ftv] und yfy'y* yt/»»flf yiyäySy« yS_ j)ie
entsprechenden Matrizen für die schweren Teilchen werden durch
grosse Buchstaben bezeichnet. Die invarianten Weehselwirkungsterme

in der Lagrangefunktion schreiben wir in der Form
W+tp+OsWy> (W+=iW*ri; xp+ =-¦ iip*y*). Für Os gibt es die
folgenden Möglichkeiten :

01=1 06 iTfpf
02 i> y" On rifvl(yfpr — y"pf)
03 riflytfl 08 irifVtyflp^+y^Wpf+yVflp")
04 rifVylf"*}
o5 rv

Über gleiche Indizes wird immer summiert. Die Darstellung der
Invarianten durch die r>", yf ist zweckmässig, wenn es sich um
eine Übersicht handelt. Für die rechnerische Verwendung ist es

vorteilhafter auf die Darstellung in a, ß überzugehen. Wir wollen
ausserdem die Geschwindigkeit der schweren Teilchen gleich null
setzen. Das bedeutet, dass Ff 0 für p 1, 2, 3 und P4 1

gesetzt wird. Ferner ist J'',i> iZx, wo JA die Spinoperatoren
für die schweren Teilchen sind, und W*W ô(x), wenn das
schwere Teilchen im Nullpunkt angenommen wird, was wir im
Folgenden immer tun werden. In dieser Spezialisierung schreiben
wir für den Zusatzterm ip*Psy). Man sieht dann sofort, dass P5
verschwindet. Für die übrigen Ps hat man1)

4P1 -ß P6 -ißp
P2=-l P7=-(£[aXp])
P3 - ß(Z, a) P8 iß(£, o)p* - iß(E, [5 x p])
P4 -(£,S)

Die Dichte der Lagrangefunktion setzt sich aus zwei Termen
zusammen :

L L0 + Lw
L0 iip*ip — ip*{(a., p) + ß} y>

Lw= rjò(x)y>*Psy)

i] ist ein Parameter, welcher die Stärke der Kopplung beschreibt.

*) Vgl. Bethe und Bacher, Rev. of Mod. Phys. 8, 190, 192 (1936).
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Die zu ipa kanonisch konjugierte Variable na ist na iip*
für diejenigen Wechselwirkungen, welche pi nicht explizite
enthalten. Für P6 und P8 dagegen gilt:

P6: na=-- if*a — irjö(x) (ßxp)l_

Pb- 7ta ift + irjô(x) {ß(£,0)y>}*a

Für die Dichte der Hamiltonfunktion hat man allgemein H n ' —L.
Das ergibt für unsere Fälle

H= vr*{(5,p) + ß-rjo(x)Ps}yi für s 4= 6,8 (I)

H= ip*{{x,p) + ß}ip für s 61

iî= v*{(S,p) + j8 + »jj«CB)j8(^,[a xp])}? für s= 8}
{ '

In der letzten Form (II) kommt rj noch implizite in ip* vor,
das durch n ausgedrückt werden muss. In den nächsten
Paragraphen soll das Eigenwertproblem (1) für die fünf Fälle (I) gelöst
werden. Die beiden letzten Fälle (II), welche zeitliche Ableitungen
enthalten, führen zu Schwierigkeiten in der Quantisierung. Auf
die nähere Diskussion dieser Schwierigkeiten wird Fierz in einer
nachfolgenden Note eingehen1).

§ 3. Die skalare Wechselwirkung P1.

Mit dem skalaren Wechselwirkungsansatz lautet das
Eigenwertproblem (1)

{(a, p) + vß] ip ef
mÌt X A X

v 1 + r\ A (g)

Der Einfluss des schweren Teilchens auf das Elektron ist einer
Veränderung der Elektronenmasse im Bereich p < q0 äquivalent.
Die scheinbare Masse an der Stelle q ist v 1 + rjA (q). Da v

kugelsymmetrisch ist, lassen sich die Winkelfaktoren genau so
abseparieren wie in der relativistischen Theorie des Wasserstoffatoms.
Für die beiden radialen Funktionen Fx und GK erhält man die
simultanen Differentialgleichungen2)

+ (e + v)Fx 0

Fx-(e-v)Gx 0
dQ Q J

d M G
dg q)
d

+
2 + Y

') M. Fierz, Helv. Phys. Acta 14, 487 (1941).
2) H. Bethe, Handb. der Phys., Bd. 24/1, S. 313.
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Für x sind alle positiven und negativen ganzzahligen Werte
zugelassen mit Ausnahme von x — 1, für welchen Wert keine
regulären Lösungen existieren. Der Bahndrehimpuls und die Ge-

samtdrehimpulsquantenzahlen l bzw. j sind mit x verknüpft durch

j x + yz ; l x für x S: 0

/ — x — 1 — y2; l — x — 1 für x < 0

Die Lösungen im Aussenraum GJ zeigen das asymptotische
Verhalten

GJ cos(e + %) (4)
6

Aus den Phasenverschiebungen ergeben sich die Streuamplituden1)

i °°

f(&) =^2 [(* + l){e2*^+***+l} + *{e2i^1 + *"*-M}]P>os#)2

%

*=0

#)=TEHe2i'"!+''"1-1} + {e2iy-*-i+i™—l}]Px1 (cos &) (5)
2 *=o

Der différentielle Streuquerschnitt ist dann

7W n^{l/Wi2 + l^)l2}
Die Phasenverschiebungen bestimmen sich aus der Stetigkeitsbedingung

des Stromes an der Grenzfläche

/ F '
fKSA ^_ (6)

Qx bx
dabei bedeuten :

FJ, GJ die Lösungen für den Aussenraum q > q0

fx, 9x „ „ „ „ Innenraum q < q0

Im Fall q0 <Ai 1 sind nur Kugelwellen für x 0 und x — 2

zu erwarten.
Es sei Gx, Fx die reguläre Lösung und Gx, Fx die singulare

Lösung für den kraftfreien Fall. Die letztere ist erst bestimmt
durch die Angabe ihres asymptotischen Verhaltens:

(82-l)*e (7)

l) N. F. Mott, Proc. Roy. Soc. 135, 429 (1932).

G0 ~
1

— — sm x
X

Go "¦
1

- COS X
X

1 1
X

tr_2'~ COS X
X

G_2~- — sm x
X
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Die Lösung im Aussenraum für rj t 0 ist dann eine Linearkombi-
nation dieser beiden Funktionen.

GJ const. {Gx — £XGX}

FJ const. {Fx-gxFx}

Auflösung nach £x und Verwendung von (6) ergibt

Fx — ÇXGX

\FX Cx Gx

(8)

(9)
Q»

Aus dem asymptotischen Verhalten der Lösungen im Aussenraum
(7) und aus (4) ergibt sich die Beziehung zwischen den
Phasenverschiebungen rj und den f

ctg%=— fo I

/10s
tg j?_2 + f_, |

Bei Beschränkung auf x 0, — 2 vereinfachen sich auch die
Formeln (5) zu

s

f(&) JL {(1 + e2»%) + (1 - e2i^_2) cos i?}

g(#) JL (i_ e2»»?-2) sin ^.

Damit /(#), <7(#) nach Null streben, muss rfo-^y, >?-2-^0 streben.

Wegen (10) genügt es zu zeigen, dass für A -> ô, £0 und -r_2 beide
nach Null streben.

Die Lösungen F, G und F, G ohne Wechselwirkung, mit dem
verlangten asymptotischen Verhalten (7), lassen sich durch die
halbzahligen Besselfunktionen ausdrücken.

F0 -(^)'(f)W> /e —1\*( a; X3

3Ö +

G0 - (f)'*-' J» M ~i+£+...
F-2 (simw> -(£)>- 352

G_2 ~(t) ^^^ a; a;3

~~~3~+ 3Ö + '

(11)
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Fn =_f^V^V-j_.,(x)~-fi=ii*(-i+i
G,

.8 +1/ V 2 / sr/

x 2

e —1\*(1 x
x"_ T

(12)

x (e2 — 1)* g.

Wir haben hier noch den Anfang der Potenzreihenentwicklungen

für x <; 1 hingeschrieben.

Die Lösungen f, g im. Innenraum sind

1 / sinh y.,1 /Sinai/ \
/o =(v — e)*— - — coshy

2/ \ 2/ /

g0 (v + e)* — sinh?/
y

/_2 (v —¦ e)* — sinh 1

y

3-2 (v + e)* — — sinh y — cosh y j
?/ \y

y (v2 — e2)i q {> 0), j» 1 + Jj
4 7100"'

(>8)

Mit Cx fxkx (vgl. (6)) wird

[V — E\ 1/2

C-
v — e\M
v + e/ 3

C —-ctghi/0
i/o

2/o=(„2_£2)H ßo

Im Limes Zl -> <5 (g0 -> 0) geht ?/0 wie q0~2 gegen oo. Man erkennt,
dass infolge des Auftretens des ctghy, lim f — 1 ist. Also

Co ->-l
U^ + l
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Setzen wir in (9) die Potenzentwicklungen (11) (12) ein, so wird

lo

x I e — 1 \ì j.
A [l+Tj ~ Co

z»x - (ttt)*
—)

3+ C-2

mlxix + c-2

Der Faktor x2 zusammen mit dem beschränkten Verhalten von Ç

im Limes A -> d sorgt dann dafür, dass für beide im Limes

lo =1-2=0
wird, wie behauptet wurde.

§ 4. Die Vektorweehselwirkung P2.

Das Eigenwertproblem lautet hier

{(«> p) + ß + ^ (e)} V £f
Das ist das Eigenwertproblem eines sich in einem Zentralfeld
A (q) bewegenden Elektrons. Die Lösungen im Innengebiet sind
halbzahlige Besselfunktionen des Argumentes x= {(e — ijA)2—1}*£,
welche sich nun nicht mehr abklingend, sondern oszillatorisch
verhalten. Für die in (6) definierte Funktion f erhalten wir somit

C l/x0 — ctg x0

Im Gegensatz zum vorigen § ist nun hier für g0->0 C nicht
mehr beschränkt, vielmehr schwankt f mit abnehmendem q0
zwischen den Werten — oo und + oo. Die Werte für ir0 und i_2, welche
durch die Formeln (9) gegeben sind, nehmen dann mit abnehmendem

q0 immer wieder unendlich grosse Werte an, nämlich dann,
wenn einer der Nenner verschwindet. Die Streuung und somit
auch die Eigenfunktion bleiben dann also im Limes (>0 -> 0
unbestimmt. Das «^-Potential hat in der relativistischen Theorie des

Elektrons keinen Sinn.

§ 5. Die Tensorwechselwirkung P3.

Das Eigenwertproblcm lautet in diesem Fall

(a.,p)ip + ß{l + riA(p)(S,o)}y> ey) (13)

Die Funktion y> hängt nun ausser von den Spin- und Ortskoordinaten
des Elektrons auch noch vom Spin des schweren Teilchens ab,
den wir als % annehmen wollen. Die exakte Berechnung der
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Eigenfunktionen und der Streuung lässt sich zwar durchführen,
doch für die uns hier interessierende Fragestellung genügt es ja
zu untersuchen, ob die Eigenfunktionen im Innengebiet q A qq

abklingendes oder periodisches Verhalten aufweisen. Im ersten
Fall existiert die Grenzfunktion, im zweiten Falle nicht.

Die Lösung von (13) in Polarkoordinaten lässt sich leicht
angeben, wenn man beachtet, dass die Gleichung invariant ist bei
Drehungen und Spiegelungen des Koordinatensystems. Die
Lösungen lassen sich also als Linearkombination solcher Teillösungen
schreiben, von denen sich jede nach einer bestimmten irreduziblen
Darstellung der Drehungsgruppe transformiert und die ausserdem
zu einem bestimmten Spiegelungscharakter gehört.

Um diese Teillösungen zu bestimmen, führen wir die vier
Dirac'schen Spinfunktionen u\, us2, u\, ua2 und ausserdem die
Spinfunktion für den Kernspin v,, v2 ein. Die u\, u% gehören zu
den beiden sogenannten grossen Komponenten, während die Ma1; ua2

zu den kleinen Komponenten gehören. Bei Spiegelungen bleiben
die us und die v unverändert, während die ua das Vorzeichen
wechseln1).

Wir zerlegen die Funktion ip in grosse und kleine Komponenten

Q und co

Q Wj^u^Vx + W2u2svx + cpxv,^v2 + <P2ua2v2

co y1M1aü1 + ip2u2vx + cp1u1av2 + cp2u2v2
t

Unter Einführung eines Operators ti, welcher us mit ua vertauscht,
lässt sich die Gleichung (13) aufspalten in die zwei

7i(a,p) co {e — 1 — rjA (p)(27,cr)} Q

n(a,p)Q {s + 1 + rjA(p)(S,a)} co

a bedeutet hier die zweireihigen Spinmatrizen.
Die Linearkombination der Spin- und Kugelfunktion, die sich

nach einer bestimmten irreduziblen Darstellung transformieren,
lassen sich mittelst gruppentheoretischen Methoden bestimmen2).
Das Resultat lässt sich folgendermassen schreiben: Wir reduzieren
zuerst die Spinräume in einen symmetrischen (triplet) und einen
antisymmetrischen (singlett) Bestandteil mit den Spinfunktionen

u\ u^ i\
«Î —7j? K »2 + U\ Vt) U0 — (tt« V2- U\ Vx)

u~\ =¦¦ u2av2

x) Vgl. van dee Waerden, Gruppentheorie und Quantenmechanik, S.

2) Vgl. van dee Waeeden, S. 70, Tabelle.
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Analog für die grossen Komponenten

LT1 u\vx

U°, —=r(u\v2 + u\vx) U0

ü-1 u\ v2

V2
(U\ V2 — U\ Vx)

Dann transformiert sich jede der vier Funktionen

w1, i—i "

(2,-1)*
(j+m)(j+m—1) Y™"1«1 + [(j+m) (/-m)]*Y* w°

+
(,' — m) (j — m—1)

¦}-l al

wTj= (2 .+1)i {- [2 (,"+m) (,• - m+1)]* Yf"1 zt1 + 2 m Yf w?

+ [2 (j+m+1) (j - m)]i Yf+1 ttf1}
1

w;;', i+i -

(2 j+8)*
(,' — m+2)(j — m+1) y™-x n.l1 j+l ul

+

¦[(j + m+1) (j—m+ l)]i Yf+1u1

(j+m+2)(j+m+l)]i J
2;+l ul t

VU Ym ii(2j+l)iXi U°

nach der Darstellung Dj. Analog seien die W?,-,, Wf}, Wfj+1, Vf
definiert, indem man in den obigen Ausdrücken überall u durch U
ersetzt. Es gehören ausserdem whi_x, w}, 3+1, Ws, ,-, Vhj zum
Spiegelungscharakter (—l)3', während wUi, vUi, WUi_x, Wf, f+1 zum
Spiegelungscharakter (—1)3+1 gehören. Die Yf in den obigen
Formeln stehen für die auf 1 normierten Kugelfunktionen:

Yf(^)=(-1Y
2 j+l (j-m)

2 (j+m)
i(l-x2)2] di+m

{x2_iy
*

2>j\ \dx>

(x COS ff)

Schliesslich sind dann

<m — ifiioi wfi-i - *Me) wT,i+i

QÎ,m=Gt{Q)Wïf + Kt(Q) Vf,
CO, A-gAe) «£,- — * Me) vi
QL *M wf^x+HAô) wfj+1

y/2n
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die gesuchten Teillösungen, die sich nach D,- transformieren und
ausserdem zum Spiegelungscharakter (— l)3' bzw. (— 1)3+1 gehören.
Die Funktionen f,h,G,H einerseits und F,H,g,k andrerseits
erfüllen je ein System von Differentialgleichungen, das weiter unten
angegeben werden soll. Es zeigt sich, dass zu jedem Spiegelungscharakter

noch zwei linear unabhängige Lösungen gehören, so
dass die Entartung des durch ,' charakterisierten Zustandes eine
vierfache ist, was auch mit dem Resultat aus dem Vektormodell
übereinstimmt. Im Grenzfall / 0 kann sich die Multiplizität
nicht voll ausbilden. Es ist dann wjtj_x wu ,- W,-,,--i Wj, i 0.
Die Entartung ist dann also nur noch zweifach.

Im Folgenden wollen wir uns auf die Behandlung der mit +
bezeichneten Lösungen beschränken. Die andere Lösung führt auf
genau dasselbe System von Gleichungen, so dass damit nichts
Neues erreicht wird.

Um die radialen Differentialgleichungen zu bestimmen, muss

man das Resultat der Operation (E, a) und (pa) auf die Funktionen
w und v kennen. Nun ist aber

(E, a) wit,_, Wj,,-_!

(E, a) Wj, ; Wj, j
(E, S) Wj, i+1 Wj, j+1

(E,a)V),j =—3 Vj,j

Ferner ist 7t(p, a)cot wieder eine Grösse, die sich nach Dj
transformiert, n und p ändern beide bei Spiegelungen das Vorzeichen,
also gehört diese Grösse wieder zum Spiegelungscharakter (— 1)'.
Sie ist somit eine Linearkombination von Wj, ,• und Vjt j. Genau
so schliesst man, dass 7i(p,o)Qt eine Linearkombination von
Wj, j_x und Wj, i+1 sein muss. Also :

n(p, S) cot A (o) Wj, j + B(q) Vj, j

ti (p a) Qt a (q) Wj, j_x + b (q)wj, 1+l

Die Ausrechnung der Funktionen A,B, a, b, die etwas langwierig
ist, soll hier nicht wiedergegeben werden. Man findet durch
Rechnung:

-4(e) i(/'-^/) + i(/-' + ^fc)
B(e) -j {f~~f) + (?'+i) {h'+ly^h
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a(Q) i2-^tG, + Ì+lG\ A U' + ^KW 2 j+l \ Q } 2j+l\ Q

b(Q)~iJLL(G'-^G)+-J—(K'--i-K
2 j+l V q I 2 j+l

Andererseits erhält man aus (13) durch Gleichsetzen der
Koeffizienten der Winkelfunktionen

A(Q) {e-l-r,A(Q)}G(Q)
B(q) {s-1 + 3ì1A(q)}K(q)
a(o) —i{e + 1 + rjA (q)} /(g)

b(Q) —i{e + l + r]A(o)}h{Q)

Wir führen noch die Abkürzung ein:

C e + 1 + rjA
C e — 1 — nA

C" e - 1 + lòrj A

Dann erhält man schliesslich:

_2f|+D/ J+l \ 1 /Kr+j_+lK\ f
27+1 \ g / 2,+i\ e I '

2 /fil' —L öi -1— fE' - -L K) f fc (14)
2 j+lV e J 2j+l

Wenn man beachtet, dass die halbzahligen Besselfunktionen
Gleichungen genügen von der Form

-J^{x~h J>+i (X))—J x'h J'+i (x) - x~l J'+'l,

—— {ar* Jj+i (x)} +1 x-i Ji+i (x) x-i Jj_i
ci x du
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dann erkennt man, dass man die Lösungen von (14) ansetzen
muss in der Form:

fi Cj x-i J3-_è (x) G, dj x-i Jj+i (x)

hj Cj x~i Jj+>ia (x) Kj d/ x~i Jj+i (x)

X — XQ

Cj, Cj', d,-, dj', x sind noch zu bestimmende Konstanten. Geht
man mit dem Ansatz (15) in die Gleichungen (14), so erhält man
für diese Konstanten das lineare Gleichungssystem:

— —Ci+^-c/ — Ç'dj 0

7 x Cj + (j + l)xc- — Q"d/ 0

Qc, 2.+i xdj + 2j+1ai u

-Ce/+^-xdj + -^~.d1' 0
27+I 27+I

Damit es Lösungen besitzt, muss die Determinante D der
Koeffizienten verschwinden:

D= xi-x2Q(Q' + Ç")+Ç2Ç'Ç" 0

çç' 1. Lösung
QQ" 2. Lösung

1. Lösung 2. Lösung

1 - - 57Ji («")' « - i^i <«">*

dj — Q dj 0

d/ 0 d/ Q

Ob die Wellenfunktion im Innern (q < g0) oszilliert oder
abklingt, hängt vom Vorzeichen von x2 QQ' bzw. QQ" ab. Im
Falle der zweiten Lösung ist x2 (e + 1 + r\A) (e — 1 + 3 rjA) für
grosse Werte von A positiv. Das bedeutet, dass sich die Lösungen
im Innern oszillatorisch verhalten und deshalb für A -> ô keiner
Grenzlösung zustreben. Für die andere Lösung mit x2 QQ' ist
dies zwar der Fall, jedoch genügt das nicht, da die existierenden
Grenzfunktionen kein vollständiges Orthogonalsystem bilden.
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§ 6. Die Pseudovektorwechselwirkung P4.

(«, p) tp + ß ip + rj A (o) (E, a)ip eip

Diese Gleichung unterscheidet sich von (13) nur durch das
Fehlen des Faktors ß vor dem Wechselwirkungsterm. Es ändert
sich deshalb in der Rechnung des letzten Paragraphen gar nichts
ausser der Definition von Q, Q' und Q"

Q e + 1 — rjA
Q' e — 1 — rjA
Q" e-1 +3 rjA

Die Lösungen für x2 sind wieder

QQ' 1. Lösung
QQ" 2. Lösung

Hier ist es nun die erste Lösung, welche für grosse Werte von A
im Innengebiet das oszillatorische Verhalten hat.

§ 7. Wechselwirkung mit räumlichen Ableitungen P7.

{(ap) + i]A([a. X p], E)} ip + ßip eip

Die Gleichung lässt sich wieder aufspalten in zwei Gleichungen :

n{(a,p)+rjA(E,[a Xp])} a>=(e-l)ß
ti {(a,p) + rj A (E,[o Xp])} ü= (e + 1) co

l ;

Auch diese Gleichungen sind invariant bezüglich der
Drehspiegelungsgruppe. Es lassen sich deshalb in derselben Weise wie in
§ 5 diejenigen Teillösungen bestimmen, welche sich nach einer
bestimmten Darstellung der Drehgruppe transformieren und ausserdem

zu einem bestimmten Spiegelungscharakter gehören. Mit der
Bezeichnung des § 5 setzen wir wiederum an

co — i/(o) Wj, j_x — ih (q) Wj, j+1

Q G(e)Wj,j + K(Q)Vj,j
Durch direkte Rechnung findet man

n(£, [5 X p]) » - il 2/ (/' ->~ /) -2 (,+1) (h'+ '-^h)\ V,.,

« «px »û=^{K'+i-fKh''-^wh(E'-jKhM
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Einsetzen dieser Ausdrücke und Nullsetzen der Koeffizienten
der Winkelfunktionen führt auf das folgende System von
Differentialgleichungen für die radialen Funktionen

ür-t^A+Uh'+^h^QG
Q I \ Q

.?'-l;\M_o^/n /„-,-n/v, i±?-,
Q

•Ar_L_l/\(1_2 irjA) + (j+l)(h'+]AtAh\(l-2 irjA) QK

2'' (G'-iGhïh{K'~-7Ky+2i'>â^c'h2 7+1\ o j 27+1\ q

Q e - 1 Q' e + 1

Derselbe Ansatz mit Besselfunktionen, wie (15) Seite 478 ergibt
das Gleichungssystem

— — c, + — c- — Qdj 0

jx(l—2irjA)Cj+(j+l) x(l—2irjA)cj'-Qdj' 0

_rC| _2Ji±ll^3.+^1±iiu1ld/.o
2 7+1

3 2 7+1

2, x (1+2 ir/A)
-Cc<+2jVlXdj+ 27+1 *'=°

mit der Determinante

Z) xi(l+Arj2A2)-x2QQ'(2+4\ri2A2) + (QQ')2= 0

CC 1. Lösung
CC

2. Lösung
l+4»72Zl2

Merkwürdig ist, dass x in der einen Lösung überhaupt
unabhängig vom Kopplungsparameter rj wird. Die zweite Lösung
strebt für A -> ò im Innengebiet nach Null. Die Grenzfunktionen
existieren also und sind, wie wir noch zeigen wollen, ebene Wellen.

Zu dem Zweck müssen wir die Funktionen im Innengebiet
in physikalisch richtiger Weise an die Funktionen im Aussengebiet

anschliessen. Die richtigen Randbedingungen erhält man,
wenn man von einer stetigen A -Funktion ausgeht und dann

31
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den Übergang zu der von uns gewählten unstetigen Funktion macht.
Die ersten zwei Gleichungen (17) besagen:

A-(f + h) A(Q)
ÜQ

-^(-if + (JY-l)h) B(Q)
(18)

wobei A(o) und B(q) beschränkte Funktionen von q sind, die
wir nicht explizite anzuschreiben brauchen. Integriert man jede
der Gleichungen (18) von qx < q0 bis q2Aq0, dann ergibt sich

(f + h) l=fA(Q)dQ
Qi Si

(-jf + (j + l)h)j= JB(Q)dQ

Diese Gleichungen müssen gültig bleiben, wenn man nun vom
stetigen Potentialverlauf zum unstetigen, von uns gewählten A (o)
übergeht. Geht man mit qx und q2 nach qq, so erkennt man,
dass f + h und — jf + (j + 1) h bei q0 stetig verlaufen müssen.
Daraus folgt aber auch die Stetigkeit von / und h allein. Genau
so schliesst man aus der 3. und 4. Gleichung von (17) auf die
Stetigkeit von G und K1). Natürlich ist dann auch die Stromdichte

stetig, die sich bilinear aus f,h, G und K aufbaut. Um
diese Stetigkeitsbedingungen erfüllen zu können, müssen noch
diejenigen Lösungen für den kräftefreien Fall hinzugenommen
werden, welche im Nullpunkt eine Singularität aufweisen. Wir
haben diese nicht explizite aufgeschrieben. Sie lassen sich genau
so wie die regulären durch Besselfunktionen, aber mit negativem
halbzahligem Index ausdrücken. Wir wollen sie mit A, flJ
bezeichnen, während wir für die mit positiv halbzahligem Index die
Bezeichnung fl, fJJ einführen.

I und II soll die beiden noch möglichen Lösungen
unterscheiden. Die Lösung im Innenraum fi an der Stelle q0 ist dann
gleich einer Linearkombination dieser vier Funktionen an der
Stelle o0 ; d.h. man hat:

fAQo) -- fl(Qo) + /- /T(eo) + <yfl(Q0) + */?(<?) (19)

und noch drei weitere Gleichungen mit h, G und K. Das sind

x) Dass diese Grenzbindungen nicht selbstverständlich sind, erkennt man
aus der analogen Diskussion bei Kemmee, Helv. Phys. Acta X, 57 (1937).
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vier Gleichungen für die vier Unbekannten k,u,a,x, die sich
daraus bestimmen lassen. Um zu zeigen, dass im Grenzfall A -> à

die ebenen Wellen Lösungen des Problems sind, brauchen wir nur
zu zeigen, dass die irregulären Bestandteile Jlf1} in dieser
Linearkombination fortfallen, dass also k -> 0, p -> 0. Wenn wir in
Gleichung (19) den Grenzübergang A -> ô (o0 -> 0) ausführen, so bleibt
links für alle Werte von q0 etwas Endliches stehen. Die beiden
irregulären Funktionen /„(o0), /" (q0) dagegen streben mit q0 -> 0
nach oo, während die beiden regulären Bestandteile fl(Q0) und
/F(eo) selbst endlich bleiben, oder sogar nach Null streben. Im
Grenzfall p0 0 müssen deshalb die beiden Koeffizienten k und u
verschwinden und das bedeutet, dass die Lösung dann identisch
ist mit der Lösung für den kräftefreien Fall. Durch geeignete
Linearkombination unserer Eigenfunktionen lässt sich dann eine

Lösung konstruieren, welche eine ebene Welle darstellt. Wir wollen
darauf nicht näher eingehen.

§ 8. Eigenfunktionen im skalaren Fall bei Anwesenheit eines
Coulombfeldes.

Bis jetzt haben wir das Coulombfeld vollständig beiseite
gelassen. Bei gleichzeitigem Vorhandensein einer Coulombkraft und
einer Wechselwirkung Px lässt sich die Streuung ausdrücken durch
die zusätzlichen Phasenverschiebungen rjj der Streuwellen im
Unendlichen1) :

7W=nn*{l/ + <p/ia + lfl' + *r-la}

0 e2i1>°—-° e2ir>~* ——— cos ff
1 + i i0 1 + i |_2

<Pr, — e2^"2 ——— sin ff

mit ix — —tg rjj, f(ff), g(ff) ; rj0, ij_2 sind die Streuamplituden und
Phasenkonstanten für das Coulombfeld allein.

' F — t G
?X

t_x ' ~x /e=e0

Fx, GX,FX,GX sind die radialen Funktionen (reguläre und irregu-

J. M. Jauch, Helv. Phys. Acta XIII, 457 (1940), Gleichungen (6'), (10),
(11). In dieser Arbeit sind leider einige entstellende Druckfehler stehen gebheben,
die wir am Schluss dieser Arbeit berichtigen.
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läre) für den Aussenraum mit den Entwicklungen für a2 <^ 1 und
o2 <la).

G0~l G_2~H«-fe)+|-

i-> fé — l\if, / ,s xl -„ /e — l\iF„~ —r *(a + 6) + -5- F_2.
8. \e + l

2-° x - - X

F.~A!=IV± F. /'-»"
0 L±1 »2 x -2e + 1/ x2 - ' \e + l/ x

(19)

(19)

Die Definition von Qx ist Qx /„/#„, wo fx, gx die Lösungen für den
Innenraum sind. Wegen des singulären Verhaltens von GX,FX für
x 0 ist wiederum notwendig und hinreichend für das Verschwinden

der Zusatzstreuung das beschränkte Verhalten von Qx beim
Grenzübergang A ->• ô.

Die radialen Differentialgleichungen im Innengebiet sind

d x \ „ / a r,Gx=-e + j<+— F„
dQ Q I \ Q

~ + 2^)Fx=le-v + -)Gx
(IQ Q I \ Q

(20)

a ist die Feinstrukturkonstante (~ ^Y). Dabei hat man im Innengebiet

ein Coulombpotential und dazu noch die A -Wechselwirkung
angesetzt. Man könnte auch das Coulombpotential im Innern
ersetzen durch die A -Wechselwirkung allein. Das wäre jedoch der
in § 3 behandelte Fall und dort wurde ja verifiziert, dass Qx

beschränkt ist.
Die Lösungen von (20), welche regulär im Innengebiet sind,

haben nun genau dieselbe Form wie die mit v 1 (rj 0), nur
die Konstanten sind etwas verändert.

; /8-,Ue-
\e+ vj x
g-ix

9 AI —— (cp2 + cpx)
%x

cpx= (y + ia')(2ixyF(y + ia' + 1; 2 y + 1; 2 ix)
[x l—ib')(2ix)vF(y + ia'; 2y + l; 2 ix)

ea xv
*»'=,,, 2U y [(* + l)2-a2]-¦-v2)i (e2-v2)i

x) J. M. Jauch, loc. cit. Formel (27) und (27).
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Benützen wir die Entwicklungen (19) für kleine x mit den

Konstanten a',b' an Stelle von a, b und bilden wir Qx=—, so er-
Qx

kennt man leicht ,dass Qx nach einem endlichen Grenzwert strebt,
dessen genauer Wert belanglos ist.

In jedem Fall also streben die Q-x nach Null mit abnehmendem
q0 und die Streuung geht in die Coulomb'sehe über.

§ 9. Ergebnis.

Von den fünf Wechselwirkungstermen Ps ohne zeitliche
Ableitungen sind zwei dadurch ausgezeichnet, dass die Eigenfunktionen

des Eigenwertproblems (1) auch im Limes A -> ô existieren.
Die beiden Terme sind

Px rj ò (x) ip* ß ip

Pn rjô(x)ip* (E, [a. X p\) ip

Die Eigenfunktionen des Eigenwertproblemes (1) sind dann ebene
Wellen; die Streuung ist deshalb Null.

Herrn Professor Wentzel, von dem die Anregung zu dieser
Arbeit stammt, möchte ich hier danken für viele klärende
Diskussionen über diese Fragen.

Zürich, Physikal. Institut der E.T.H.
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