Zeitschrift: Helvetica Physica Acta

Band: 14 (1941)

Heft: IV

Artikel: Über die Synchronisierung von Röhrengeneratoren

Autor: Samulon, Heinz

DOI: https://doi.org/10.5169/seals-111183

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Über die Synchronisierung von Röhrengeneratoren von Heinz Samulon.

(10. V. 1941.)

Zusammenfassung: Es wird die Synchronisierung eines Röhrengenerators durch eine von aussen zugeführte Wechselspannung betrachtet und zwar für den Fall, dass die Frequenz dieser "Fremdspannung" annähernd ein ganzes Vielfaches der Frequenz der selbsterregten Schwingung ist. Zunächst wird im Kapitel B in Übereinstimmung mit früherer Literatur eine qualitative Erklärung gegeben, indem gezeigt wird, dass die selbsterregte Schwingung infolge Vorhandenseins von Kombinationsfrequenzen eine Frequenzänderung erfährt, welche je nach den Bedingungen periodisch ändert oder einem konstanten Werte zustrebt (H. Winter-Günther, U. Bab, H. Schlicke). Im Kapitel C wird dann versucht, diese Vorgänge für einen rückgekoppelten Röhrengenerator mit Anodenschwingkreis mathematisch zu formulieren. Die Phasenbilanz ergibt eine Differentialgleichung für die Frequenz der selbsterregten Schwingung; ihre Lösungen werden angegeben. Ferner wird die Hüllkurve der Anodenspannung bestimmt. Im Kapitel D werden einige nichtbehandelte Fälle kurz gestreift und anschliessend über die Art der Berechnung der verwendeten Konstanten berichtet.

A. Einleitung.

Es ist eine bekannte, in der Technik bereits vielfach verwendete Erscheinung, dass sich Röhrengeneratoren durch von aussen zugeführte Wechselspannungen unter gewissen Umständen synchronisieren lassen, d. h. mit einer anderen Frequenz schwingen als beim Fehlen der Fremdspannung. Ihre Frequenz ist dann nicht mehr lediglich durch Röhrendaten, Arbeitspunkt und Schaltelemente bedingt. — Die Synchronisierung selbst und die Vorgänge, die zu ihr führen, das Verhalten des Generators vor und bei der Synchronisierung sollen in diesem Aufsatz vor allem analytisch behandelt werden. Hierbei wird stets Amplitude und Frequenz der "Fremdspannung" als konstant vorausgesetzt.

Wenn ω_0 die Frequenz der selbsterregten Schwingung beim Fehlen der Fremdschwingung, ω_f die Frequenz der Fremdschwingung ist, so soll gesetzt werden:

$$m/n\cdot\omega_f-\delta=\omega_0$$
 darin sei: $m=1,\ 2,\ 3,\ 4\dots$ $n=1,\ 2,\ 3,\ 4\dots$ $\delta<\omega_0/n$

Wie bereits von Schlicke¹⁶) gezeigt wurde, lassen sich hier grundsätzlich zwei Fälle unterscheiden, nämlich: n=1 und $n \neq 1$. Es soll in Folgendem der Fall $n \neq 1$ behandelt werden und nur im Anhang der Fall n=1 kurz gestreift werden. Wir wollen ferner m=1 annehmen und im Kapitel D zeigen, dass für $m \neq 1$ die Theorie keine Änderung erfährt. Für die weitere Untersuchung gilt dann also:

$$1/n \cdot \omega_f - \delta = \omega_0$$
 worin*): $n = 2, 3, 4, 5 \dots$ $\delta < \omega_0/n$

B. Eine kurze, qualitative Übersicht über die Erscheinungen kurz vor und bei der Synchronisierung.

a) Eine Vorbetrachtung. (In diesem Abschnitt soll nur das Verhalten eines nichtlinearen Widerstandes betrachtet werden.)

Es mögen an einem nichtlinearen Widerstand, dessen Charakteristik das Gesetz einer Potenzreihe befolge:

$$\mathfrak{i}=k_{\mathbf{0}}+k_{\mathbf{1}}\cdot\mathfrak{u}+k_{\mathbf{2}}\cdot\mathfrak{u}^{\mathbf{2}}+k_{\mathbf{3}}\cdot\mathfrak{u}^{\mathbf{3}}+\ldots$$

zwei Spannungen \mathfrak{u}_1 und \mathfrak{u}_2 liegen, die sich gegenseitig nicht beeinflussen:

$$egin{aligned} \mathfrak{u_1} &= U_1 \cdot \sin \, \omega_0 \, t \ \mathfrak{u_2} &= U_2 \cdot \sin \, \omega_f \, t \ \mathrm{worin} \colon \, \omega_f / n = \, \omega_0 \, + \, \delta \end{aligned}$$

Da unser Interesse vorwiegend den Erscheinungen in der Nähe des Synchronismus gilt, soll $\delta \ll \omega_0/n$ sein. Der resultierende Strom wird neben Strömen von den Grundfrequenzen ω_0 und ω_f und deren Harmonischen auch noch eine grosse Anzahl Kombinationsfrequenzen enthalten, und zwar werden die Kombinationsfrequenzen

$$\omega_k = \pm \ q_f \cdot \ \omega_f \pm \ q_0 \cdot \ \omega_0$$

auftreten, worin $q_f = 1, 2, 3, 4...$

$$q_0 = 1, 2, 3, 4...$$

Bei ganz allgemeiner Widerstandscharakteristik werden stets Kombinationsfrequenzen auftreten, die in der Nähe der Frequenz ω_0 liegen. Zum Beispiel wird für: $q_0=1$ und $q_f=n-1$ $\omega_k=\omega_f-(n-1)\cdot\omega_0=(n\cdot\omega_0+n\cdot\delta)-(n-1)\cdot\omega_0=\omega_0+n\cdot\delta$

^{*)} Für $\delta=0$ bezeichnet man die Schwingung der Frequenz ω_0 als "synchron" mit derjenigen der Frequenz ω_t .

Es werden auch noch für bestimmte andere Werte von q_f und q_0 die Kombinationsfrequenzen in der Nähe von ω_0 liegen, doch wollen wir uns auf obigen Fall beschränken. Damit erhalten wir — unter anderem — zwei Ströme ungefähr gleicher Frequenz, die sich überlagern. Nämlich:

$$\mathbf{i}_{\text{res. }\omega_0} = J_0 \cdot \sin \, \omega_0 t + J_k \cdot \sin \, (\omega_0 + n \, \delta) \, t$$

Man kann diese Schwebung aber auch anders darstellen.

 $\mathfrak{i}_{\mathrm{res.}\ \omega_0} = J_0 \cdot \sin\ \omega_0\ t + J_k \cdot \cos\ n\ \delta\ t \cdot \sin\ \omega_0\ t + J_k \cdot \sin\ n\ \delta\ t \cdot \cos\ \omega_0 t,$ oder zusammengefasst:

$$egin{aligned} egin{aligned} A_t &= \sqrt{(J_0 + J_k \cdot \cos n \, \delta \, t)^2 + J_k^2 \cdot \sin^2 \, n \, \delta \, t}; \ &oldsymbol{\Phi}_t &= rctg\left\{ rac{J_k \cdot \sin n \, \delta \, t}{J_0 + J_k \cdot \cos n \, \delta \, t}
ight\} \end{aligned}$$

Wir können demnach die Summe der beiden Ströme mit nur kleiner Frequenzdifferenz auch auffassen als einen einzigen Strom der Frequenz ω_0 mit periodisch ändernder Amplitude und Phasenverschiebung.

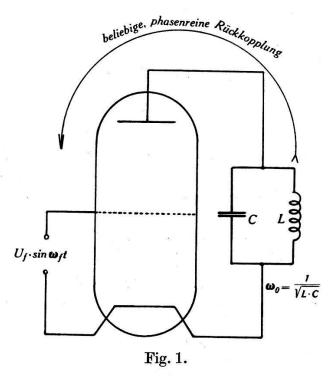
Dieses Ergebnis kann auch so ausgedrückt werden: Der durch den nichtlinearen Widerstand fliessende Strom von der Frequenz ω_0 besitzt bei gleichzeitigem Vorhandensein einer Spannung von der Frequenz ω_f gegen die angelegte Spannung von der Frequenz ω_0 eine periodisch variierende Amplitude und Phasenverschiebung. Dies gilt natürlich nur, falls $\delta \neq 0$ ist, da im Synchronismus ($\delta = 0$) der Phasenwinkel nicht variiert, wie die Gleichung für Φ_t zeigt. Die Bestätigung dieser Tatsachen lässt sich auch auf experimentellem Wege leicht erbringen.

b) Anwendung der Rechnungen des vorigen Abschnittes auf den Röhrengenerator.

Gibt man auf das Gitter eines Röhrengenerators in Rückkopplungsschaltung (Fig. 1), der mit der Frequenz ω_t schwinge, die Fremdspannung $U_f \cdot \sin \omega_f t$, so werden infolge der Nichtlinearität der Röhrencharakteristik wiederum eine Anzahl von Kombinationsfrequenzen entstehen, die in der Nähe der Eigenfrequenz ω_t liegen. Man kann dann in Analogie zur Zusammenfassung des vorigen Abschnittes sagen, dass der Anodenstrom*) der

^{*)} Die im totalen Anodenstrom enthaltenen Ströme anderer Frequenzen als ω_0 (resp. der in der Nähe von ω_0 liegenden Kombinationsfrequenzen) werden durch den Parallelschwingkreis praktisch kurz geschlossen und fallen daher für unsere Betrachtung fort.

Frequenz ω_t gegen die Gitterspannung der gleichen Frequenz einen periodisch ändernden Phasenwinkel besitzt. Da aber zur Erfüllung der Selbsterregungsbedingungen Anodenspannung und Gitterspannung in Phase (genauer in Gegenphase) sein müssen — phasenreine Rückkopplung vorausgesetzt —, so muss auch der Phasenwinkel zwischen Anodenstrom und Anodenspannung periodisch variieren. Dies ist, da die Schaltelemente zeitunabhängig sind, nur möglich durch eine periodische Änderung der Frequenz der selbsterregten Schwingung, also einer Art Frequenzmodulation. Die



selbsterregte Frequenz wird zwischen zwei Grenzen: $\omega_0 + |\Delta_{\max}|$ und $\omega_0 - |\Delta_{\min}|$ periodisch hin- und herschwanken. Wählen wir:

$$\mid \delta \mid = \mid \frac{\omega_f}{n} - \omega_0 \mid \leq \mid \Delta_{\max} \mid \text{resp.} \mid \Delta_{\min} \mid$$

so wird zu irgendeinem Zeitpunkt der Fall eintreten, dass die selbsterregte Frequenz synchron ist zur Fremdfrequenz. Wenn nun von diesem Zeitpunkt an die Änderung des Phasenwinkels, die, wie früher gezeigt worden ist, durch den Asynchronismus bedingt ist, dauernd aufhört, so bedeutet dies Frequenzkonstanz der selbsterregten Schwingung, sie ist "synchronisiert" (bisweilen wird das Wort "mitgenommen" dafür gebraucht). Dies ist — natürlich nur in ganz rohen Zügen — der Kern der Vorgänge bei der Synchronisierung, deren genauere analytische Darstellung im Kapitel C versucht werden soll.

C. Analytische Betrachtung des Problems.

a) Voraussetzungen und Einschränkungen.

Wir betrachten einen Röhrengenerator mit Anodenschwingkreis. Seine Rückkopplung sei annähernd phasenrein und frequenzunabhängig, sie werde auf das gleiche Gitter der Röhre wie die Fremdspannung geführt. Die Röhre arbeite im gitterstromlosen Gebiet, mit konstanter Vorspannung und ihr Durchgriff sei sehr klein. Wir treffen ferner noch zwei Einschränkungen, die die späteren Ableitungen erheblich vereinfachen und wohl für jeden gebräuchlichen Röhrengenerator gelten dürften.

- 1. Es sei die der Grundfrequenz zukommende Stromamplitude erheblich grösser als diejenige der hier interessierenden Kombinationsfrequenzen (das sind jene Kombinationsfrequenzen, die in der Nähe der Grundfrequenz liegen).
- 2. Es mögen die Koeffizienten der die Röhrenkennlinie charakterisierenden Potenzreihe

$$\mathfrak{i}=k_{\mathbf{0}}+k_{\mathbf{1}}\boldsymbol{\cdot}\,\mathfrak{u}+k_{\mathbf{2}}\boldsymbol{\cdot}\,\mathfrak{u}^{\mathbf{2}}+k_{\mathbf{3}}\boldsymbol{\cdot}\,\mathfrak{u}^{\mathbf{3}}+\ldots$$

mit zunehmender Indexzahl rasch abnehmen, so dass wir bei der Berechnung der uns interessierenden Kombinationsfrequenzen die Potenzreihe bei $k_{2n} \cdot \mathfrak{u}^{2n}$ abbrechen dürfen (hierin gilt wie früher:

$$n=rac{\omega_f}{\omega_0+\delta}$$
).

Daraus folgt dann, dass der Anteil, welchen das Glied:

$$k_{2n+1} \cdot \mathfrak{u}^{2n+1}$$

zur Amplitude der Kombinationsschwingung beisteuert, erheblich kleiner ist als jener des Gliedes: $k_n \cdot \mathfrak{u}^n$.

b) Bezeichnungen.

$$\omega_0 = \frac{1}{\sqrt{L \cdot C}}$$
 = die Resonanzfrequenz des Anodenschwingkreises.

$$\omega_t$$
 = die im allgemeinen nicht konstante Frequenz der selbsterregten Schwingung.

$$\Delta_t = \omega_t - \omega_0 \text{ (vgl. Fig. 2)}.$$

$$\omega_f = n (\omega_0 + \delta) = \text{die Frequenz der Fremdschwingung } (\delta = \text{konstant}).$$

$$\omega_{k,1}$$
, $\omega_{k,2}$,... = jene Kombinationsfrequenzen, die in der Nähe der Frequenz ω_0 liegen.

$$J_{k,1,t}$$
, $J_{k,2,t}$, = die zu den Schwingungen der Kombinationsfrequenzen $\omega_{k,1}$ und $\omega_{k,2}$ gehörigen Stromamplituden im Anodenkreise.

 $J_{s,t}$ = die Stromamplitude der selbsterregten Schwingung (ω_t) .

 $J_{\text{res. }t}$ = die resultierende Stromamplitude.

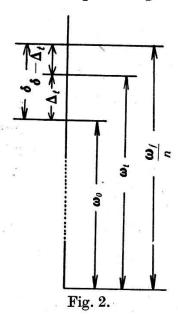
 $J_{D,\,t} = J_{\text{res},\,t} - J_{s,\,t} = \text{Differenz der Str\"{o}me } J_{\text{res},\,t} \text{ und } J_{s,\,t}$

K = Rückkopplungsfaktor.

 $\mathfrak{R}_t = R_t \cdot e^{j \cdot \varphi_t}$ = Widerstand des Anodenschwingkreises mit dem Absolutwert R_t und dem Phasenwinkel φ_t .

e, v = Resonanzschärfe und Verstimmung des Schwingkreises, vgl. Ваккнаизем: Elektronenröhren, Bd. I.

 Φ_t = die Phasenverschiebung zwischen Anodenstrom und Anodenspannung der Frequenz ω_t .



c) Mathematische Formulierung der Vorgänge.

Wegen Einschränkung 2 von Abschnitt a) genügt es, wenn wir in der Formel

$$\omega_k = \pm q_f \cdot \omega_f \pm q_0 \cdot \omega_0 \sim \omega_0 \tag{1}$$

von allen möglichen Kombinationsfrequenzen, die in der Nähe von ω_0 liegen, nur jene, für die $q_f = 1$ ist, berücksichtigen. Zum Wert $q_f = 1$ gehört $q_0 = (n-1)$ oder (n+1), damit $\omega_k \sim \omega_0$ wird.

Damit ergibt sich:

$$\begin{array}{ll} q_0 = n-1 \colon & \omega_{k\,\mathbf{1}} = \omega_f - (n-1) \cdot \omega_t = n \cdot (\omega_0 + \delta) - (n-1) \; (\omega_0 + \Delta_t) \\ & = \omega_t + n \; (\delta - \Delta_t) \end{array} \tag{2a}$$

$$\begin{array}{ll} q_{0} = n+1 \colon & \omega_{k\,\mathbf{2}} = -\ \omega_{t} + (n+1) \cdot \omega_{t} = (n+1)\ (\omega_{0} + \varDelta_{t}) - n \cdot (\omega_{0} + \delta) \\ & = \omega_{t} - n\ (\delta - \varDelta_{t}) \end{array} \tag{2b}$$

Es wird sich also der totale Anodenstrom — unter Weglassung jener Ströme, die praktisch durch den Parallelschwingkreis kurzgeschlossen sind — so darstellen*):

$$\begin{split} \mathbf{i}_{\text{res}} &= J_{s,\,t} \cdot \sin \int \omega_t \cdot dt + J_{k\,1,\,t} \cdot \sin \left\{ \int \omega_{k\,1} \cdot dt + \alpha_1 \right\} \\ &+ J_{k\,2,\,t} \cdot \sin \left\{ \int \omega_{k\,2,\,t} \cdot dt - \alpha_2 \right\} \\ &= J_{s,\,t} \cdot \sin \int \omega_t dt + J_{k\,1,\,t} \cdot \sin \left\{ \int \omega_t dt + \underbrace{n \int (\delta - \Delta_t) dt}_{= \psi_t} + J_{k\,2,\,t} \cdot \sin \left\{ \int \omega_t dt - \underbrace{n \int (\delta - \Delta_t) dt}_{= \psi_t} + \alpha_1 \right\} \end{split}$$

Es sei: $n \int (\delta - \Delta_t) dt = \psi_t$

$$\begin{split} \mathbf{i}_{\mathrm{res}} &= J_{s,\,t} \cdot \sin \int \, \omega_t d\,t + J_{k\,1,\,t} \cdot \cos \left(\psi_t + \alpha_1 \right) \cdot \sin \int \, \omega_t d\,t \\ &\quad + J_{k\,1,\,t} \cdot \sin \left(\psi_t + \alpha_1 \right) \cdot \cos \int \, \omega_t d\,t \\ &\quad + J_{k\,2,\,t} \cdot \cos \left(\psi_t + \alpha_2 \right) \cdot \sin \int \, \omega_t d\,t - J_{k\,2,\,t} \cdot \sin \left(\psi_t + \alpha_2 \right) \cdot \cos \int \, \omega_t d\,t \end{split}$$

Es lässt sich darstellen:

$$J_{k1, t} \cdot \cos (\psi_t + \alpha_1) + J_{k2, t} \cdot \cos (\psi_t + \alpha_2) = J'_{k, t} \cdot \cos (\psi_t + \alpha')$$
$$J_{k1, t} \cdot \sin (\psi_t + \alpha_1) - J_{k2, t} \cdot \sin (\psi_t + \alpha_2) = J''_{k, t} \cdot \sin (\psi_t + \alpha'')$$

damit wird:

$$\mathbf{i}_{res} = \left(\sin \int \omega_t dt\right) \cdot \left\{ J_{s,t} + J'_{k,t} \cdot \cos \left(\psi_t + \alpha'\right) \right\} \\
+ \left(\cos \int \omega_t dt\right) \cdot \left\{ J''_{k,t} \cdot \sin \left(\psi_t + \alpha''\right) \right\} \tag{4}$$

worin: $\psi_t = n \int (\delta - \Delta_t) dt$ ist. Zusammengefasst ergibt dies

$$\mathbf{i}_{\mathrm{res}} = J_{\mathrm{res}, t} \cdot \sin \left(\int \omega_t dt + \boldsymbol{\Phi}_t \right)$$
 (5a)

worin:

$$J_{\text{res},t} = \sqrt{\{J_{s,t} + J'_{k,t} \cdot \cos\left[n\int(\delta - \Delta_t) dt + \alpha'\right]\}^2 + \{J''_{k,t} \cdot \sin\left[n\int(\delta - \Delta_t) dt + \alpha''\right]\}^2}$$

$$\Phi_t = \arctan \frac{J''_{k,t} \cdot \sin\left[n\int(\delta - \Delta_t) dt + \alpha''\right]}{J_{s,t} + J'_{k,t} \cdot \cos\left[n\int(\delta - \Delta_t) dt + \alpha'\right]}$$

$$= \arctan \frac{J''_{k,t} \cdot \sin\left(\psi_t + \alpha''\right)}{J_{s,t} + J'_{k,t} \cdot \cos\left(\psi_t + \alpha'\right)}$$

$$(5c)$$

^{*) 1.} Man beachte, dass, da die Frequenz ("Winkelgeschwindigkeit") nicht mehr konstant ist, auch der "Winkel" nicht mehr $\omega \cdot t$ sondern $\int \omega \cdot dt$ ist.

^{2.} Die Amplituden $J_{k\,1},\,J_{k\,2}$ und die entsprechenden Phasenwinkel α_1 und α_2 ergeben sich, bei Kenntnis der Röhrencharakteristik, als Funktionen der Amplitude $J_{s,\,t}$ und der Fremdspannungsamplitude. Vgl. Kapitel D, Abschnitt c.

d) Die Amplitudenbilanz in erster Annäherung.

Diese soll zunächst nur zeigen, dass $J_{s,t}$ konstant ist und damit auch $J'_{k,t}$ und $J''_{k,t}$.

In erster Annäherung gilt — da gemäss 1, Abschnitt a), $J_{s,t}$ gross ist gegen $J'_{k,t}$ und $J''_{k,t}$ —

$$J_{\mathrm{res},\,t}=J_{s,\,t}$$

Ferner gilt

 $\begin{array}{ll} J_{s,\,t} \cdot R_t = U_a & = \text{Anodenwechselspannung.} \\ J_{s,\,t} \cdot R_t \cdot K & = \text{r\"{u}ckgekoppelter Teil der Anodenwechselspan-} \end{array}$ nung.

 $J_{s,t} \cdot R_t \cdot K \cdot S_{m(J_s)} = \text{Amplitude des Stromes von der Frequenz } \omega_t$ hervorgerufen durch den rückgekoppelten Teil der Anodenwechselspannung ($S_m = \text{mitt-}$ lere Steilheit).

Damit die Amplitudenbilanz erfüllt ist, muss

$$J_{s,t} = J_{s,t} \cdot R_t \cdot K \cdot S_{m(J_{s,t})}$$

sein. Demnach wird:

$$S_m = \frac{1}{R_t \cdot K}$$

Da R_t als zeitlich konstant angesehen werden darf*), muss auch S_m konstant sein. Da S_m eine Funktion von $J_{s,t}$ ist (ohne Maxima oder Minima in dem von uns betrachteten Gebiet), so muss auch $J_{s,t}$ konstant sein, damit aber auch $J'_{k,t}$ und $J''_{k,t}$. Wir wollen daher im weiteren bei $J_{s,t}$, $J'_{k,t}$, $J''_{k,t}$ den Index t der Einfachheit halber fortlassen.

e) Die Phasenbilanz.

Anodenspannung und Gitterspannung müssen zur Erfüllung der Selbsterregungsbedingungen in Gegenphase sein (Fig. 3). Da aber der Anodenstrom gegen die Gitterspannung um den Winkel Φ_t verschoben ist (siehe Abschnitt c)), so muss auch die Anodenspannung gegen den Anodenstrom um den Winkel $180^{\circ} - \Phi_t$ verschoben sein.

Nehmen wir z. B. an, sie betrage $^{1}/_{10}$ der 45° -Verstimmung, so ändert der Absolutwert des Widerstandes nur um das

$$\sqrt{1+\left(rac{v}{v_{45}}
ight)^2} = \sqrt{1+0.01} = 1,005 ext{ fache.}$$

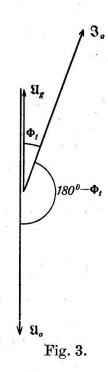
^{*)} Die maximal auftretenden Verstimmungen von ω_t gegen ω_0 sind bei Voraussetzung Nr. 1, Abschnitt a), stets erheblich kleiner als die sogenannte 45°-Verstimmung (letztere vgl. Barkhausen, Elektronenröhren, Bd. I).

Es muss somit der Phasenwinkel φ_t des Widerstandes gleich Φ_t sein. — Es ist φ_t für einen Parallelschwingkreis in der Nähe der Resonanz:

$$\varphi_t = v \cdot \varrho = \frac{2 \varrho}{\omega_0} \cdot \Delta_t = a \cdot \Delta_t \tag{7}$$

$$\varphi_t = \Phi_t \tag{8}$$

$$a \cdot \Delta_{t} = \operatorname{arctg} \left\{ \frac{J_{k}^{\prime\prime} \cdot \sin\left[n \int (\delta - \Delta_{t}) dt + \alpha^{\prime\prime}\right]}{J_{s} + J_{k}^{\prime} \cdot \cos\left[n \int (\delta - \Delta_{t}) dt + \alpha^{\prime}\right]} \right\}$$
(9a)



f) Aufstellung einer Differentialgleichung für die Frequenz ω_t bzw. für Δ_t .

Da $\Phi_t \ll 45^{\circ}$, kann: $\Phi_t \sim \operatorname{tg} \Phi_t$ gesetzt werden, ferner ist $J_{k'} \ll J_s$ so dass:

$$a \cdot \Delta_t = \frac{J_k^{"}}{J_s} \cdot \sin\left[n \int (\delta - \Delta_t) dt + \alpha^{"}\right]$$
 (9b)

Die Ableitung nach t ergibt

$$\frac{d(a \cdot \Delta_t)}{dt} = \frac{J_k^{\prime\prime}}{J_s} \cdot \cos\left[n \int (\delta - \Delta_t) dt + \alpha^{\prime\prime}\right] \cdot n \left(\delta - \Delta_t\right) (10a)$$

$$\frac{a}{n(\delta - \Delta_t)} \cdot \frac{d}{dt} (\Delta_t) = \frac{J_k^{"}}{J_s} \cdot \cos \left[n \int (\delta - \Delta_t) dt + \alpha^{"} \right] \quad (10b)$$

Die Gleichungen (9b) und (10b) quadriert und addiert ergeben:

$$a^{2} \cdot \Delta^{2}_{t} + \frac{a^{2}}{n^{2} \left(\delta - \Delta_{t}\right)^{2}} \left[\frac{d \left(\Delta_{t}\right)}{d t} \right]^{2} = \left(\frac{J_{k}^{\prime\prime}}{J_{s}} \right)^{2}$$
 (11a)

$$\frac{d\Delta_t}{dt} = \frac{n}{a} \left(\delta - \Delta_t\right) \cdot \sqrt{\left(\frac{J_k^{\prime\prime}}{J_s}\right)^2 - a^2 \Delta_t^2}$$
 (11b)

Bevor wir an die Lösung dieser Differentialgleichung für Δ_t gehen, wollen wir noch nach den Extremwerten von Δ_t fragen. Für diesen Fall wird

$$\frac{d\Delta_t}{dt} = 0 \quad \text{oder} \quad \sqrt{\left(\frac{J_k^{\prime\prime}}{J_s}\right)^2 - a^2 \Delta_t^2} \left(\delta - \Delta_t\right) = 0$$

Da die erste Lösung $\Delta_t = \delta$ bedeutet, dass falls Fremdfrequenz und Eigenfrequenz synchron sind, eine weitere Änderung der Eigenfrequenz nicht mehr stattfindet, wollen wir nur die beiden andern Lösungen betrachten:

$$\left(\frac{J_k^{\prime\prime}}{J_s}\right)^2 = a^2 \cdot \Delta_t^2; \quad \Delta_{t_{\max}} = \pm \frac{J_k^{\prime\prime} *}{J_s \cdot a}$$

$$\Delta_m = |\Delta_{t_{\max}}| = |\Delta_{t_{\min}}| = |\frac{J_k^{\prime\prime}}{J_s \cdot a}| = |\frac{J_k^{\prime\prime}}{J_s}| \cdot \frac{\omega_0}{2 \varrho} \quad (12a)$$

oder:

$$\frac{2 \cdot \Delta_m}{\omega_0} = v_m = \left| \frac{J_k^{"}}{J_s} \right| \cdot \frac{1}{\varrho} \tag{12b}$$

Hierin ist v_m die maximal auftretende Verstimmung der Eigenfrequenz ω_t gegen die Resonanzfrequenz des Schwingungskreises ω_0 ; v_m , welches, wie später exakt bewiesen werden wird, ein Mass für die Synchronisierungsbreite ist, hängt demnach ab von $\left(\frac{J_k''}{J_s}\right)$ d. h. der Röhrencharakteristik, der Grösse der Fremdspannung, der Grösse der Rückkopplung einerseits und von der Resonanzschärfe ϱ des Anodenschwingkreises andererseits. Man sieht, dass die frühere Behauptung $v_m \ll v_{45^\circ}$ zutrifft, da

$$v_m \cdot \varrho = \frac{v_m}{v_{45}} = \left(\frac{J_k^{"}}{J_s}\right).$$

^{*)} Diese Formel wurde bereits bei Schlicke¹⁶) angegeben.

g) Die Lösung der Differentialgleichung.

Lösungsweg: Separation der Variablen; man erhält dann

$$\int dt = +\frac{a}{n} \int \frac{d\Delta_t}{\sqrt{\left(\frac{J_k^{\prime\prime}}{J_s}\right)^2 - a^2 \cdot \Delta_t^2} (\delta - \Delta_t)}$$

$$= -\frac{a}{n} \int \frac{d\Delta_t}{\frac{J_k^{\prime\prime}}{J_s} \cdot \sqrt{1 - \left(\frac{J_s}{J_k^{\prime\prime}} \cdot a \cdot \Delta_t\right)^2} (\Delta_t - \delta)}$$
(13)

Wir substituieren:

$$z = \frac{\Delta_t}{\Delta_m} = \frac{\Delta_t \cdot a \cdot J_s}{J_{k''}}; \quad dz = \frac{a \cdot J_s}{J_{k''}} \cdot d\Delta_t$$

Damit wird:

$$\int dt = -\frac{1}{n} \int \frac{dz}{\sqrt{1-z^2} \left(z \cdot \Delta_m - \delta\right)} = -\frac{1}{n \cdot \Delta_m} \cdot \int \frac{dz}{\sqrt{1-z^2} \left(z - \frac{\delta}{\Delta_m}\right)}$$

Es sei ferner:

$$\frac{\delta}{\Delta_m} = p$$

Damit wird:

$$\int dt = t + C_1 = -\frac{p}{n \cdot \delta} \int \frac{dz}{\sqrt{1 - z^2} (z - p)}$$
 (14)

Die Lösungen dieses Integrals lauten (nach Laska, Sammlung von Formeln der Mathematik; Vieweg und Sohn, 1888—1894):

$$\int \frac{dz}{(z-p) \cdot \sqrt{1-z^2}} =
\begin{cases}
\frac{1}{\sqrt{p^2-1}} \cdot \arcsin\left\{\frac{1-p \cdot z}{z-p}\right\} & (15a) \\
\text{für: } p^2 > 1, \text{ d. h. } |\delta| > \Delta_m \\
\frac{-1}{\sqrt{1-p^2}} \cdot \lg\left\{\frac{\pm 1 \mp p \cdot z + \sqrt{1-p^2} \cdot \sqrt{1-z^2}}{z-p}\right\} (15b) \\
\text{für: } p^2 < 1, \text{ d. h. } |\delta| < \Delta_m
\end{cases}$$

Es soll zunächst die periodische Lösung behandelt werden.

$$\begin{split} -\left(t+C_{\mathbf{1}}\right) \cdot \frac{n \cdot \delta}{p} \cdot \sqrt{p^2-1} &= C_2 - t \left\{n \cdot \delta \cdot \sqrt{1-\frac{1}{p^2}}\right\} \\ &= \arcsin \frac{1-p \cdot z}{z-p} = C_2 - \varOmega \cdot t \end{split}$$

worin:

$$Q = n \cdot \delta \cdot \sqrt{1 - \frac{1}{p^2}} = n \cdot \Delta_m \cdot \sqrt{p^2 - 1}$$

für $p = \sqrt{2}$: $\Omega = n \cdot \Delta_m$; damit wird:

$$\frac{\Omega_{p=\sqrt{2}}}{\Omega} = \frac{T_N}{T_{N, p=\sqrt{2}}} = \frac{1}{\sqrt{p^2 - 1}}$$

$$\sin\left\{C_2-\varOmega\cdot t\right\}=\frac{1-p\cdot z}{-p+z}\,;\quad (z-p)\cdot\sin\left\{C_2-\varOmega\cdot t\right\}=1-p\cdot z$$

$$z = \frac{1 + p \cdot \sin \left\{C_2 - \Omega \cdot t\right\}}{p + 1 \cdot \sin \left\{C_2 - \Omega \cdot t\right\}} \tag{16a}$$

$$\varDelta_{t} = \varDelta_{m} \frac{1 + p \cdot \sin \left\{C_{2} - \varOmega \cdot t\right\}}{p + 1 \cdot \sin \left\{C_{2} - \varOmega \cdot t\right\}}$$

Die Integrationskonstante C_2 lässt sich aus den Anfangsbedingungen leicht bestimmen. Nehmen wir z. B. an, dass zur Zeit t=0: $\Delta_t = \Delta_m$ war, so wird:

$$\Delta_m = \Delta_m \cdot \frac{1 + p \cdot \sin C_2}{p + 1 \cdot \sin C_2}$$
; $C_2 = \frac{\pi}{2}$

und damit:

$$\Delta_t = \Delta_m \cdot \frac{1 + p \cdot \cos \Omega t}{p + \cos \Omega t} \tag{16b}$$

worin:

$$\Omega = n \cdot \delta \cdot \sqrt{1 - rac{1}{p^2}} = \Omega_{p = \sqrt{2}} \sqrt{p^2 - 1}$$

Graphische Darstellungen von $\frac{\Delta_t}{\Delta_m} = z$ als Funktion der Zeit mit $p = \frac{\delta}{\Delta_m}$ als Parameter und

$$\left(\frac{T_N}{T_{N, p=\sqrt{2}}}\right)$$

als Funktion von p siehe Fig. 5a und 7a. Die Diskussion der

Lösung findet sich im nächsten Abschnitt. Es soll jetzt die Behandlung der aperiodischen Lösung folgen:

$$(t+C_3)\cdot\frac{n\cdot\delta}{p}\cdot\sqrt{1-p^2}=\lg\left\{\frac{\pm\;1\mp\;p\cdot z+\sqrt{1-p^2}\;\sqrt{1-z^2}}{z-p}\right\}=C_4+\varOmega\cdot t$$

worin:

$$Q = n \cdot \delta \cdot \sqrt{\frac{1}{p^2} - 1} = n \cdot \Delta_m \cdot \sqrt{1 - p^2}$$

für p = 0: $\Omega_{p=0} = n \cdot \Delta_m$; damit wird:

$$\frac{\Omega_{p=0}}{\Omega} = \frac{T_N}{T_{N, p=0}} = \frac{1}{\sqrt{1-p^2}}$$

$$e^{t \cdot \Omega + C_4} = \frac{\pm \ (1 - p \cdot z) + \sqrt{1 - p^2} \cdot \sqrt{1 - z^2}}{z - p} = b$$

d. h. es sei:

$$e^{\Omega \cdot t + C_4} = b$$

Dies führt zu folgender quadratischen Gleichung für z:

$$z^2 - 2 \cdot z \cdot \frac{p + p \cdot b^2 \pm b \pm p^2 b}{b^2 \pm 2 \ p \, b + 1} = \frac{-p^2 - p^2 b^2 \mp 2 \ p \, b}{b^2 \pm 2 \ p \, b + 1}$$

z wird dann:

(17a)

$$z = \frac{p + p\,b^2 \pm b \pm p^2\,b}{b^2 \pm 2\,p\,b + 1}\,\frac{(\pm)}{(\mp)}\,\sqrt{\frac{(p + p\,b^2 \pm b \pm p^2b)^2}{(b^2 \pm 2\,p\,b + 1)^2}} + \frac{-\,p^2 - p^2b^2 \mp 2\,p\,b}{b^2 \pm 2\,p\,b + 1}$$

Dies vereinfacht sich bei der Ausrechnung stark und ergibt folgende Lösungen:

$$z_1 = \frac{1 \pm p \left\{ \frac{e^{(\Omega t + C_4)} + e^{-(\Omega t + C_4)}}{2} \right\}}{p \pm 1 \cdot \left\{ \frac{e^{(\Omega t + C_4)} + e^{-(\Omega t + C_4)}}{2} \right\}} = \frac{1 \pm p \cdot \cosh \left(\Omega \cdot t + C_4\right)}{p \pm 1 \cdot \cosh \left(\Omega \cdot t + C_4\right)}$$

$$\Delta_{t,1} = \Delta_m \frac{1 \pm p \cdot \cosh (\Omega \cdot t + C_4)}{p \pm \cosh (\Omega \cdot t + C_4)}$$
(17b)

$$\Delta_{t,2} = \Delta_m \cdot p = \delta \tag{17c}$$

Hierin ist C_4 durch die Anfangsbedingungen gegeben.

Graphische Darstellungen von $\frac{\Delta_t}{\Delta_m}=z$ als Funktion der Zeit mit $p=\frac{\delta}{\Delta_m}$ als Parameter und

$$\left(\frac{T_N}{T_{N, p=0}}\right)$$

als Funktion von p siehe Fig. 6 und 7b.

h) Die Interpretation der Lösungen. (Vergleiche Kurven.)

Die periodische Lösung.

Ist $\delta > \Delta_m$, so ist die Frequenz der selbsterregten Schwingung ω_t nicht konstant, sondern variiert beständig zwischen $(\omega_0 + \Delta_m)$ und $(\omega_0 - \Delta_m)$; nähert sich die Fremdfrequenz mehr den Grenzen $n(\omega_0 \pm \Delta_m)$, so wird die Dauer, während der ω_t fast konstant und zwar gleich $(\omega_0 + \Delta_m)$ für ein positives δ oder gleich $(\omega_0 - \Delta_m)$ für ein negatives δ ist, immer grösser; bei Messungen hat man in diesem Falle den Eindruck einer "teilweisen" Synchronisierung. Gleichzeitig wächst auch die Periodendauer

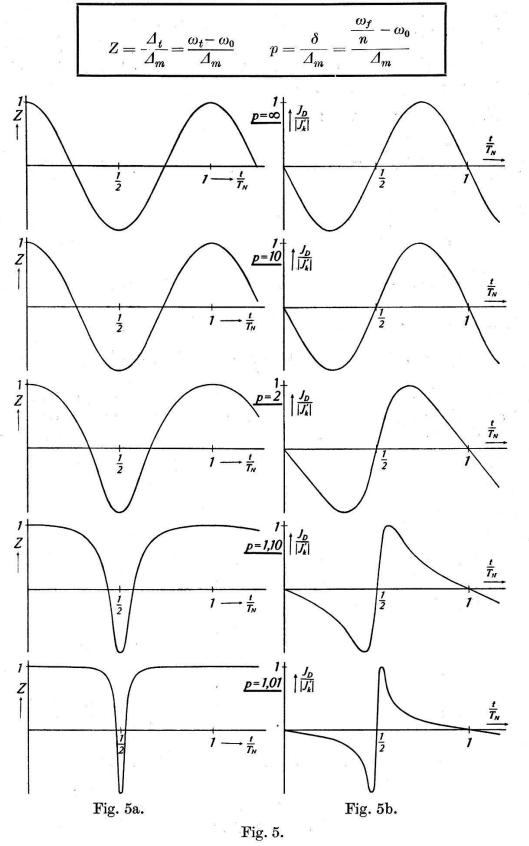
$$T_N = rac{2 \cdot \pi}{\varOmega} = rac{2 \cdot \pi \cdot p}{n \cdot \delta \cdot \sqrt{p^2 - 1}}$$

. *sehr stark* an.

Die aperiodische Lösung.

Ist $\delta < \Delta_m$, so nähert sich Δ_t für wachsendes t asymptotisch dem Werte $p \cdot \Delta_m = \delta$, d. h. es muss sich allmählich der Zustand des Synchronismus ausbilden. Damit ist also auch bewiesen, dass Δ_m ein Mass für die Breite des Synchronisierungsbereiches ist; je nach den Anfangsbedingungen werden in Formel (17b) die positiven oder negativen Vorzeichen Geltung besitzen (d. h. je nach den Anfangsbedingungen wird ω_t auf dem oberen oder unteren Ast der in Fig. 6 dargestellten Kurven verlaufen). Lautet jedoch die Anfangsbedingung: $\delta = \Delta_m$ zur Zeit t = 0, so gilt Lösung (17c), d. h. dass in diesem Spezialfall eine asymptotische Annäherung nicht erfolgt.

Wir sehen also, dass aus den Lösungen deutlich hervorgeht, dass einerseits für $\delta > \Delta_m$ ein Synchronismus nicht möglich ist, andererseits sich für $\delta < \Delta_m$ der synchrone Zustand zwangsläufig einstellen muss.



Der Generator ausserhalb des Synchronisierungsbereiches ("ausser Tritt").

j) Die Spannungsamplitude.

Es soll die im Abschnitt c) dieses Kapitels nur sehr roh vorgenommene Untersuchung der Spannungsamplitude jetzt bei Kenntnis der Frequenz ω_t genauer vorgenommen werden und zwar für den periodischen Fall.

Nach Früherem war:

$$J_{\text{res}} = \sqrt{\{J_s + J_{k'} \cdot \cos\left[n \cdot \int (\delta - \Delta_t) dt + \alpha'\right]\}^2 + \{J_{k''} \cdot \sin\left[n \cdot \int (\delta - \Delta_t) dt + \alpha''\right]\}^2}$$
 (5b hierin ist:
$$(J_{k''})^2 \ll [J_s + J_{k'} \cdot \cos\left(\dots\right)]^2$$
 und somit*):
$$J_{\text{res}} = J_s + J_{k'} \cdot \cos\left[n \cdot \int (\delta - \Delta_t) dt + \alpha'\right] = J_s + J_{k'} \cdot \cos\left(\psi_t + \alpha'\right)$$
 (18) und mit:
$$J_D = J_{\text{res}} - J_s \text{ wird}$$

$$J_D = J_{k'} \cdot \cos\left[n \cdot \int (\delta - \Delta_t) dt + \alpha'\right]$$

^{*)} Auch jetzt kann noch J_s als annähernd konstant, d. h. nicht von der Zeit abhängig angesehen werden, da die Erhöhung der Gitterspannung um den kleinen Betrag $J_k' \cdot R \cdot K$ beim Arbeiten an der flachen Stelle der Schwinglinie

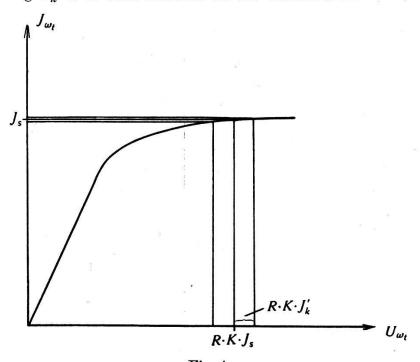


Fig. 4. Schwinglinie.

praktisch keine Erhöhung des Anodenstromes zur Folge hat vgl. Fig. 4 (dies wird bei mehr als kritischer Rückkopplung stets der Fall sein).

Wir müssen zunächst den Winkel $(\psi_t + \alpha')$ berechnen:

$$\begin{split} (\psi_t + \alpha') &= n \cdot \int \left(\delta - \Delta_t\right) dt + \alpha' = n \cdot \delta \cdot t + \alpha' - n \cdot \int \Delta_t \cdot dt \\ &= n \cdot \delta \cdot t + \alpha' - n \cdot \Delta_m \cdot \underbrace{\int \frac{1 + p \cdot \cos \Omega t}{p + 1 \cdot \cos \Omega t} \cdot dt}_{A} \end{split}$$

$$A = p \int \frac{\cos \Omega t \cdot dt}{p + \cos \Omega t} + \int \frac{dt}{p + \cos \Omega t}$$
 (19)

Es sei: $\Omega \cdot t = \eta$ $d\eta = \Omega \cdot dt$

$$A = rac{p}{arOmega} \int rac{\cos \eta \cdot d\, \eta}{p + \cos\, \eta} \, + \, rac{1}{arOmega} \int rac{d\, \eta}{p + \cos\, \eta}$$

dies ist (nach Laska, Sammlung von Formeln d. Mathem.):

$$\begin{split} &= \frac{p}{\Omega} \left\{ \eta - p \int \frac{d\,\eta}{p + \cos\,\eta} \right\} + \frac{1}{\Omega} \int \frac{d\,\eta}{p + \cos\,\eta} = \frac{p \cdot \eta}{\Omega} \\ &\qquad \qquad - \left(\int \frac{d\,\eta}{p + \cos\,\eta} \right) \cdot \left(\frac{p^2}{\Omega} - \frac{1}{\Omega} \right) \end{split}$$

Ferner ist:

$$\int \frac{d\eta}{p + \cos \eta} = \frac{2}{p \cdot \sin \beta} \cdot \arctan\left\{ \operatorname{tg} \frac{\beta}{2} \cdot \operatorname{tg} \frac{\eta}{2} \right\} + D_1 \tag{20}$$

worin: $\beta = \arccos(1/p)$; damit wird:

$$\begin{split} \sin \, \beta &= \pm \, \sqrt{1 - \frac{1}{p^2}} \, ; \ \, \sin \frac{\beta}{2} = \pm \, \, \sqrt{\frac{1 - 1/p}{2}} \, ; \ \, \cos \frac{\beta}{2} = \pm \, \, \sqrt{\frac{1 + 1/p}{2}} \\ \mathrm{tg} \, \, \frac{\beta}{2} &= \pm \, \, \sqrt{\frac{p - 1}{p + 1}} \end{split}$$

$$\int \frac{d\eta}{p + \cos \eta} = \frac{\pm 2 p}{p \cdot \sqrt{p^2 - 1}} \cdot \operatorname{arctg} \left\{ \sqrt{\frac{p - 1}{p + 1}} \cdot \operatorname{tg} \frac{\eta}{2} \right\}$$

$$A = \frac{p \cdot \eta}{\Omega} \pm \frac{1}{\Omega} \cdot \frac{p^2 - 1}{\sqrt{p^2 - 1}} \cdot 2 \cdot \operatorname{arctg} \left\{ \sqrt{\frac{p - 1}{p + 1}} \cdot \operatorname{tg} \frac{\eta}{2} \right\} + D_1$$

Es war:
$$\eta = \Omega \cdot t = n \cdot \delta \frac{\sqrt{p^2 - 1}}{p} \cdot t$$

$$A = \frac{p \cdot \Omega \cdot t}{\Omega} \pm \frac{2 \cdot p}{n \cdot \delta \cdot \sqrt{p^{2} - 1}} \cdot \sqrt{p^{2} - 1} \cdot \operatorname{arctg} \left\{ \sqrt{\frac{p - 1}{p + 1}} \cdot \operatorname{tg} \frac{\Omega \cdot t}{2} \right\} + D_{1}$$

$$(\psi_{t} + \alpha') = n \cdot \delta \cdot t + (\underline{\alpha' - D_{1} \cdot n \cdot \Delta_{m}}) - n \cdot \delta \cdot t$$

$$\pm 2 \cdot \operatorname{arctg} \left\{ \sqrt{\frac{p - 1}{p + 1}} \cdot \operatorname{tg} \frac{\Omega \cdot t}{2} \right\}$$

$$= \pm 2 \cdot \operatorname{arctg} \left\{ \sqrt{\frac{p - 1}{p + 1}} \cdot \operatorname{tg} \frac{\Omega \cdot t}{2} \right\} + D_{2}$$

$$(21)$$

Für positive p (d. h. positives δ) wird der Winkel:

$$\psi_t + \alpha' = [n \cdot \int (\delta - \Delta_t) dt + \alpha']$$

mit der Zeit wachsen, für negative p (negatives δ) dagegen kleiner werden müssen; es gilt also das positive Vorzeichen für positives p, das negative für negatives p.

Die Bestimmung der Konstanten D_2 : Die Konstante D_2 ist hier von grosser Wichtigkeit für den Charakter der Kurve, wie sich leicht einsehen lässt, wenn man den Verlauf der Kurve für $D_2=\pi/2$ und $D_2=0$ vergleicht. Zur Bestimmung von D_2 wollen wir J_k als positiv annehmen (für J_k negativ ist die Überlegung analog durchführbar). Es sei noch bemerkt, dass unter Voraussetzung der Einschränkung 2 des Abschnittes a) sich beweisen lässt, dass $\alpha_1=\alpha_2$ und somit $\alpha'=\alpha''=\alpha$ (siehe auch Kapitel D, Abschnitt c)). Es war zur Zeit t=0: $\Delta_t=\Delta_m$. Nach Gleichung (9b) muss dann $\psi_t+\alpha=\pi/2$ sein.

Dies eingesetzt in Gleichung (21)

$$\pi/2 = D_2 \pm 0$$
; $D_2 = \pi/2$

Damit wird

$$\begin{split} \psi_t + \alpha &= +\frac{\pi}{2} \pm 2 \cdot \operatorname{arctg} \left\{ \sqrt{\frac{p-1}{p+1}} \cdot \operatorname{tg} \frac{\Omega t}{2} \right\} \\ J_D &= J_{\operatorname{res}} - J_s = \mp |J_{k'}| \cdot \sin \left\{ 2 \cdot \operatorname{arctg} \left[\sqrt{\frac{p-1}{p+1}} \cdot \operatorname{tg} \frac{\Omega t}{2} \right] \right\} \end{split} \tag{22a}$$

Dies lässt sich auf Grund einfacher trigonometrischer Formeln in die folgende, wohl etwas einfachere Form bringen*):

$$oxed{J_D = J_{
m res} - J_s = \pm \mid J_{k}' \mid \cdot rac{2}{\sqrt{rac{p+1}{p-1} \cot g rac{\Omega \cdot t}{2} + \sqrt{rac{p-1}{p+1}} \cdot ext{tg} rac{\Omega \cdot t}{2}}} } oxed{(22b)}$$

^{*)} Schlicke¹⁶) hat Kurven ähnlichen Charakters auf andere Art — nicht rein analytisch — gefunden und auch experimentell bestätigen können.

Hierin gilt:

Positives Vorzeichen für negatives p; negatives Vorzeichen für positives p.

Graphische Darstellung von J_D/J_k' als Funktion von t/T_N mit p als Parameter: siehe Fig. 5b.

Die Anodenwechselspannung ist proportional $J_{\rm res}$, nämlich $J_{\rm res} \cdot R$. Man sieht, dass die Hüllkurve in der Nähe der Synchronisierungsgrenzen sehr stark von der Sinusform abweicht,

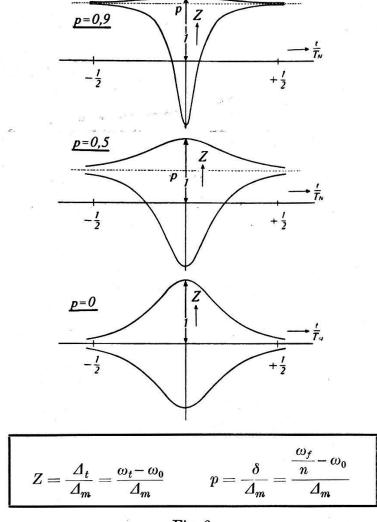


Fig. 6.

Der Generator innerhalb des Synchronisierungsbereiches (es wurde hier $C_4 = 0$ angenommen).

während sie in grosser Entfernung von denselben fast genau Sinusform besitzt. Macht man durch entsprechende Schaltung diese "Hüllschwingung" im Kopfhörer hörbar, so kann die Zunahme der Unreinheit des Tones bei der Annäherung an die Synchronisierungsgrenzen deutlich festgestellt werden.

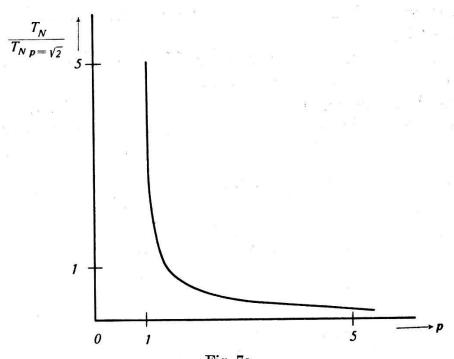
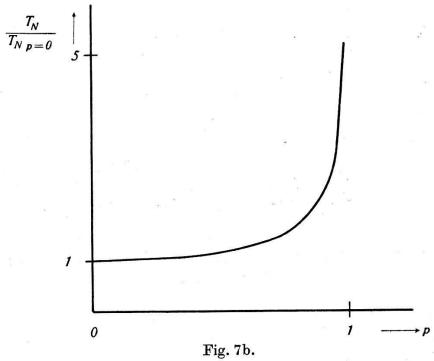


Fig. 7a. $\left(\frac{T_N}{T_{N,\,p=\sqrt{2}}}\right) \text{ als Funktion von } p \text{ (für } p>1).$



 $\left(\frac{T_N}{T_{N, p=0}}\right)$ als Funktion von p (für p<1)

D. Anhang.

a) Der Fall: $m \neq 1$.

Auch in diesem Fall, in dem $\omega_0 + \delta = \frac{m}{n} \cdot \omega_f$ ist, werden Kombinationsfrequenzen auftreten, die in der Nähe der Frequenz ω_0 liegen, nur wird in Formel $\pm q_f \cdot \omega_f \pm q_0 \cdot \omega_0$ der Faktor q_f nicht = 1, sondern = m sein müssen. Damit wird in Analogie zu dem Resultat des Abschnittes c) dieses Kapitels erst das Glied $k_{m+n-1} \cdot \mathfrak{u}^{m+n-1}$ der Röhrencharakteristik einen Beitrag zu J_k leisten. In allem übrigen unterscheidet sich dieser Fall nicht vom Fall m=1.

b) Der Fall: n = 1.

Nehmen wir einmal an, aus irgendwelchen Gründen würde der Strom jener Kombinationsfrequenz, die in der Nähe der Grundfrequenz liegt, nicht vorhanden oder verschwindend gering sein, so dürfte nach der früheren Theorie keine Synchronisierung auftreten. Dies ist jedoch für den Fall n=1 nicht richtig. Von einem bestimmten Wert von δ an wird nämlich der Generator für die Spannung der Frequenz $\omega_f = \omega_0 + \delta$ wie ein Verstärker wirken. Schliesslich kommt es bei kleiner werdendem δ infolge Abnahme der mittleren Steilheit zum Auslöschen der selbsterregten Schwingung. Der Generator wirkt dann lediglich wie ein entdämpfter Verstärker für die Fremdspannung. Man hat dann ebenfalls den Eindruck, dass die selbsterregte Schwingung mit der Fremdschwingung synchronisiert sei, in Wirklichkeit ist dann jedoch die selbsterregte Schwingung ausgelöscht. (Hierüber existiert eine ausführliche Literatur, insbesondere von Balthasar van der Pol¹³), der auch die Grenzen der Stabilität der Unterdrückung der selbsterregten Schwingung untersuchte.) Selbstverständlich beruht auch diese Erscheinung auf Nichtlinearitäten der Kennlinie. Im allgemeinen Fall wird natürlich J_{k} und J_{k} nicht Null sein; es wird dann je nach Schaltung und Röhre die eine oder andere Erscheinung überwiegen.

c) Berechnungsweg für die Amplituden der Ströme von den Frequenzen $\omega_{k,1}$, $\omega_{k,2}$ usw.

Hiefür muss die Röhrenkennlinie empirisch oder analytisch gegeben sein; man kann sie dann in jedem Falle als eine Potenzreihe darstellen. Unter Umständen wird sich die Charakteristik durch eine Summe von Exponentialfunktionen einfacher darstellen lassen (vgl. Strutt, Moderne Mehrgitterröhren; ferner Schlicke¹⁶),

doch wollen wir uns in Folgendem auf die allgemeine Darstellung durch eine Potenzreihe beschränken.

$$\mathbf{i} = k_0 + k_1 \cdot \mathbf{u} + k_2 \cdot \mathbf{u}^2 + \ldots + k_{\lambda} \cdot \mathbf{u}^{\lambda} + \ldots + k_{\mu} \cdot \mathbf{u}^{\mu} = \sum_{\lambda=0}^{\lambda=\mu} k_{\lambda} \cdot \mathbf{u}^{\lambda}$$

Es sei hier noch an einige einfache mathematische Beziehungen erinnert:

$$\sin^{\mu}\eta = \begin{array}{c} \frac{1}{2^{\mu-1}} \{\frac{1}{2} a_0 + a_{2,\,\mu} \cdot \cos 2\, \eta + a_{4,\,\mu} \cdot \cos 4\, \eta + \ldots + a_{\mu,\,\mu} \cdot \cos \mu \cdot \eta \} \\ & \text{ für: } \mu \text{ gerade} \\ \frac{1}{2^{\mu-1}} \cdot \{b_{1,\,\mu} \cdot \sin \, \eta + b_{3,\,\mu} \cdot \sin 3\, \eta + b_{5,\,\mu} \cdot \sin 5\, \eta + \ldots \\ & + b_{\mu,\,\mu} \cdot \sin \mu \cdot \eta \} & \text{ für } \mu \text{ ungerade} \\ \end{array}$$

worin

$$a_{\lambda,\,\mu} = \left(\frac{\mu}{\frac{\mu-\lambda}{2}}\right) \cdot (-1)^{\frac{\lambda}{2}} \quad \text{und} \quad b_{\lambda,\,\mu} = \left(\frac{\mu}{\frac{\mu-\lambda}{2}}\right) \cdot (-1)^{\frac{\lambda-1}{2}}$$

Man sieht hieraus, dass die höchste auftretende Harmonische jeweils die μ te ist. — Ferner ist:

$$\sin \alpha \cdot \cos \beta = \frac{1}{2} \cdot \sin (\alpha + \beta) + \frac{1}{2} \cdot \sin (\alpha - \beta)$$

$$\sin \alpha \cdot \sin \beta = \frac{1}{2} \cdot \cos (\alpha - \beta) - \frac{1}{2} \cdot \cos (\alpha + \beta)$$

$$\cos \alpha \cdot \cos \beta = \frac{1}{2} \cdot \cos (\alpha + \beta) + \frac{1}{2} \cdot \cos (\alpha - \beta)$$

Die Spannung am Gitter ist

$$\mathbf{u}_{g} = \left\{ U_{f} \cdot \sin \left(\omega_{f} t + \alpha \right) + U_{R} \cdot \sin \int \omega_{t} \cdot dt + U_{gl} \right\}$$

worin:

$$U_R = R \cdot K \cdot J_{\text{res}}$$

sein soll.

Greifen wir zunächst ein beliebiges Glied der Potenzreihe, welche die Röhre charakterisiert, heraus und entwickeln mit Hilfe des binomischen Lehrsatzes:

$$\begin{split} k_{\lambda} \cdot \mathfrak{u}^{\lambda} &= k_{\lambda} \cdot \left\{ \left[U_{f} \cdot \sin \left(\omega_{f} \cdot t + \alpha \right) + U_{R} \cdot \sin \int \omega_{t} \cdot dt \right]^{\lambda} \right. \\ &+ \binom{\lambda}{1} \cdot \left[U_{f} \cdot \sin \left(\omega_{f} \cdot t + \alpha \right) + U_{R} \cdot \sin \int \omega_{t} \cdot dt \right]^{\lambda-1} \cdot U_{gl} \\ &+ \binom{\lambda}{2} \cdot \left[U_{f} \cdot \sin \left(\omega_{f} \cdot t + \alpha \right) + U_{R} \cdot \sin \int \omega_{t} dt \right]^{\lambda-2} \cdot U_{gl}^{2} \\ &+ \binom{\lambda}{3} \cdot \left[U_{f} \cdot \sin \left(\omega_{f} \cdot t + \alpha \right) + U_{R} \cdot \sin \int \omega_{t} dt \right]^{\lambda-3} \cdot U_{gl}^{3} \\ &+ \dots \\ &+ \binom{\lambda}{1} \cdot \left[U_{f} \cdot \sin \left(\omega_{f} \cdot t + \alpha \right) + U_{R} \cdot \sin \int \omega_{t} \cdot dt \right] \cdot U_{gl}^{\lambda-1} \\ &+ U_{gl}^{\lambda} \right\} \end{split}$$

Jede dieser eckigen Klammern lässt sich jetzt wiederum mit Hilfe des binomischen Lehrsatzes entwickeln.

$$\begin{split} k_{\lambda} \cdot \mathfrak{u}^{\lambda} &= k_{\lambda} \Big\{ \Big[U_{R}^{\lambda} \cdot \sin^{\lambda} \Big(\int \omega_{t} dt \Big) + \binom{\lambda}{1} \cdot U_{R}^{\lambda-1} \cdot U_{f} \cdot \sin^{\lambda-1} \Big(\int \omega_{t} dt \Big) \cdot \sin \big(\omega_{f} \cdot t + \alpha \big) \\ &\quad + \binom{\lambda}{2} \cdot U_{R}^{\lambda-2} \cdot U_{f}^{2} \cdot \sin^{\lambda-2} \Big(\int \omega_{t} \cdot dt \Big) \cdot \sin^{2} \big(\omega_{f} \cdot t + \alpha \big) + \ldots \\ &\quad + \binom{\lambda}{1} \cdot U_{R} \cdot U_{f}^{\lambda-1} \cdot \sin \Big(\int \omega_{t} dt \Big) \cdot \sin^{\lambda-1} \big(\omega_{f} t + \alpha \big) + U_{f}^{\lambda} \cdot \sin^{\lambda} \big(\omega_{f} t + \alpha \big) \Big] \\ &\quad + \binom{\lambda}{1} \cdot U_{gt} \cdot \Big[U_{R}^{\lambda-1} \cdot \sin^{\lambda-1} \Big(\int \omega_{t} dt \Big) + \binom{\lambda-1}{1} \cdot U_{R}^{\lambda-2} \cdot U_{f} \cdot \sin^{\lambda-2} \Big(\int \omega_{t} dt \Big) \\ &\quad + \binom{\lambda-1}{2} \cdot U_{R}^{\lambda-3} \cdot U_{f}^{2} \cdot \sin^{\lambda-3} \Big(\int \omega_{t} dt \Big) \sin^{2} \big(\omega_{f} t + \alpha \big) + \ldots \\ &\quad + \binom{\lambda-1}{1} U_{R} \cdot U_{f}^{\lambda-2} \cdot \sin \Big(\int \omega_{t} dt \Big) \cdot \sin^{\lambda-2} \big(\omega_{f} t + \alpha \big) + U_{f}^{\lambda-1} \sin^{\lambda-1} \big(\omega_{f} t + \alpha \big) \Big] \\ &\quad + \binom{\lambda}{2} \cdot U_{gt}^{2} \cdot \Big[U_{R}^{\lambda-2} \cdot \sin^{\lambda-2} \Big(\int \omega_{t} \cdot dt \Big) + \binom{\lambda-2}{1} \cdot U_{R}^{\lambda-3} \cdot U_{f} \cdot \sin^{\lambda-3} \Big(\int \omega_{t} dt \Big) \\ &\quad \cdot \sin \big(\omega_{f} t + \alpha \big) \Big] \\ &\quad + \binom{\lambda-2}{2} \cdot U_{R}^{\lambda-1} \cdot U_{f}^{\lambda-2} \cdot \sin^{\lambda-2} \Big(\int \omega_{t} dt \Big) \cdot \sin^{\lambda-2} \big(\omega_{f} t + \alpha \big) + U_{f}^{\lambda-2} \cdot \sin^{\lambda-2} \big(\omega_{f} t + \alpha \big) \Big] \\ &\quad + \binom{\lambda}{3} \cdot U_{gt}^{3} \cdot \Big[U_{R}^{\lambda-3} \cdot \sin^{\lambda-3} \Big(\int \omega_{t} dt \Big) \cdot \sin^{\lambda-3} \big(\omega_{f} t + \alpha \big) + U_{f}^{\lambda-2} \cdot \sin^{\lambda-2} \big(\omega_{f} t + \alpha \big) \Big] \\ &\quad + \binom{\lambda-3}{1} U_{R} \cdot U_{f}^{\lambda-2} \cdot \sin^{\lambda-5} \Big(\int \omega_{t} dt \Big) \cdot \sin^{\lambda} \big(\omega_{f} t + \alpha \big) + U_{f}^{\lambda-3} \cdot \sin^{\lambda-3} \big(\omega_{f} t + \alpha \big) \Big] \\ &\quad + \binom{\lambda-3}{1} U_{R} \cdot U_{f}^{\lambda-4} \cdot \sin \Big(\int \omega_{t} dt \Big) \cdot \sin^{\lambda-4} \big(\omega_{f} t + \alpha \big) + U_{f}^{\lambda-3} \cdot \sin^{\lambda-3} \big(\omega_{f} t + \alpha \big) \Big] \\ &\quad + \binom{\lambda-3}{1} U_{R} \cdot U_{f}^{\lambda-4} \cdot \sin \Big(\int \omega_{t} dt \Big) \cdot \sin^{\lambda-4} \big(\omega_{f} t + \alpha \big) + U_{f}^{\lambda-3} \cdot \sin^{\lambda-3} \big(\omega_{f} t + \alpha \big) \Big] \\ &\quad + \binom{\lambda}{1} \cdot U_{gt}^{\lambda-1} \Big[U_{R} \sin \Big(\int \omega_{t} dt \Big) + U_{f} \sin \big(\omega_{f} \cdot t + \alpha \big) \Big] \\ &\quad + U_{gt}^{\lambda-1} \Big[U_{R} \sin \Big(\int \omega_{t} dt \Big) + U_{f} \sin \big(\omega_{f} \cdot t + \alpha \big) \Big] \\ &\quad + U_{gt}^{\lambda-1} \Big[U_{R} \sin \Big(\int \omega_{t} dt \Big) + U_{f} \sin \big(\omega_{f} \cdot t + \alpha \big) \Big] \\ &\quad + U_{gt}^{\lambda-1} \Big[U_{R} \sin \Big(\int \omega_{t} dt \Big) + U_{f} \sin \big(\omega_{f} \cdot t + \alpha \big) \Big] \\ &\quad + U_{gt}^{\lambda-1} \Big[U_{R} \sin \Big(\int \omega_{t} dt \Big) + U_{f} \sin \big(\omega_{f} \cdot t + \alpha \big) \Big] \\ &\quad + U_{gt}^{\lambda-1} \Big[U_{R} \sin \Big(\int \omega_{t$$

Man denke sich jetzt noch die höheren Potenzen der Winkelfunktionen in ihre Harmonischen zerlegt (siehe oben), so erkennt man, dass die niedrigste auftretende Kombinationsfrequenz:

$$\omega_{k_{ ext{min}}} = \omega_f - (\lambda - 1) \cdot \omega_t$$
 ist, d. h. für: $\lambda < n \quad ext{wird}: \quad \omega_{k_{ ext{min}}} \geq \sim 2 \; \omega_0$

Man kann also auch sagen: Kein Glied der Potenzreihe, dessen Exponent kleiner als n ist, liefert einen Beitrag zum Strom der uns interessierenden Kombinationsfrequenz.

Für $\lambda = n$ liefert das Glied:

$$k_{\lambda} \cdot {\lambda \choose 1} \cdot U_R^{\lambda-1} \cdot U_f \cdot \sin^{\lambda-1} \left(\int \omega_t \cdot dt \right) \cdot \sin \left(\omega_f t + \alpha \right)$$

einen Beitrag zu $J_{k,1}$, welcher proportional $U_R^{\lambda-1}$ und U_f ist. Für $\lambda = n+1$ trägt das Glied:

$$k_{\lambda} \cdot {\lambda-1 \choose 1} \cdot U_{R}^{\lambda-2} \cdot U_{f} \cdot \sin^{\lambda-2} \left(\int \omega_{t} \cdot dt \right) \cdot \sin \left(\omega_{f} t + \alpha \right)$$

bei zum Strom $J_{k,1}$; hier ist der Beitrag proportional $U_R^{\lambda-2}$ und U_f . Wir sehen bereits hieraus, dass die Synchronisierungsbreite, die eine Funktion von $J_{k,1}$ und $J_{k,2}$ ist, sehr stark mit U_R variieren muss, insbesondere für eine grosses n, d. h. mit andern Worten, dass bei starker Rückkopplung die Synchronisierungsbreite erheblich grösser sein muss als bei schwacher, und dass dies umso ausgeprägter in Erscheinung tritt, je grösser n ist*). Es würde kaum den Aufwand lohnen, wenn man für den allgemeinen Fall mehr als den oben gezeigten Weg angeben würde.

d) Einige Bemerkungen zur Synchronisierung von Kippschwingungsgeneratoren.

Es ist bekannt, dass die Synchronisierung von Kippschwingungsgeneratoren besonders leicht ist, dass sogar n=100 noch erreicht werden kann. Aus der obigen Theorie ergibt sich, dass, falls ϱ klein ist (und dies ist beim Kippschwingungsgenerator der Fall), die Synchronisierungsbreite gross wird, da Δ_m proportional $1/\varrho$. Darauf wurde auch bereits von Schlicke¹⁶) hingewiesen. Ausserdem jedoch besteht noch ein anderer, sehr wesentlicher Grund: Enthält die rückgekoppelte Spannung bereits höhere Harmonische — wie dies bei Kippschwingungen der Fall ist —, so würde bereits ein Glied $k_{\lambda} \cdot \mathfrak{u}^{\lambda}$ mit einem $\lambda < n$ einen Strom der uns interessierenden Kombinationsfrequenz liefern. Da die Faktoren k der Potenz-

$$\sin \left\{ \int \left[\mp \omega_f \pm (n \pm 1) \omega_t \right] dt \mp \alpha \right\}$$

auf, während für n gerade anstelle des Sinus der Cosinus tritt, nämlich

$$\cos\left\{\int\left[\mp\omega_{f}\pm\left(n\pm1\right)\omega_{t}\right]dt\mplpha
ight\}$$

(Dies natürlich nur unter der im Kapitel C, Abschnitt a), Nr. 2, gemachten Einschränkung.)

Damit wird aber $\alpha_1 = \alpha_2 = \alpha' = \alpha'' = \alpha$, welche Beziehung bereits bei der Bestimmung der Spannungsamplitude benützt worden ist.

^{*)} Es ist ferner folgendes leicht einzusehen: Für n ungerade und $n \pm 1$ gerade treten alle uns interessierenden Kombinationsfrequenzen nur in der Form:

reihe für die üblichen Röhren mit zunehmender Indexzahl sehr stark abnehmen, so bedeutet dies unter Umständen eine erhebliche Vergrösserung der Stromamplituden $J_{k,1}$ und $J_{k,2}$ und damit auch des Synchronisierungsbereiches. Es sei beispielsweise n=25, die rückgekoppelte Spannung enthalte ausser der Grundharmonischen noch die 4te Harmonische: es wird dann bereits das Glied $k_7 \cdot \mathfrak{u}^7$ zur Amplitude etwas beitragen, während beim Fehlen der 4ten Harmonischen erst das Glied $k_{25} \cdot \mathfrak{u}^{25}$ einen Beitrag zur Amplitude $J_{k,1}$ geleistet hätte.

Zum Schlusse möchte ich noch Herrn Prof. Dr. F. TANK für die Anregung zu dieser Arbeit und für sein stetes Interesse an ihr herzlichst danken.

Zürich, Institut für Hochfrequenztechnik der E.T.H.

E. Literatur.

- 1) Andronow und Witt, Archiv für Elektrotechnik, Bd. 24 (1930), S. 99. "Zur Theorie des Mitnehmens von Balthasar van der Pol".
- ²) E. V. Appleton, Camb. Phil. Soc. Proc., Bd. 21 (1923), S. 231. "Automatic Synchronization of Triode Oscillators".
- ³) U. Bab, E.N.T., Bd. 11 (1934), S. 187. "Graphische Behandlung von Mitnahmeerscheinungen".
- ⁴) Golicke, Veröff. aus d. Gebiet d. Nachrichtentechnik, Bd. 8 (1938), S. 233. "Teilung und Vervielfachung von Frequenzen".
- ⁵) Groszkowski, Proc. Inst. Radio Engin., Bd. 18 (1930). "Frequency Division".
- 6) Jeloneck, Hochfrequenztechnik und Elektroakustik, Bd. 46 (1935), S. 164. "Eine neue Auffassung der Mitnahmeerscheinungen".
- ⁷) Kober, Archiv für Elektrotechnik, Bd. 32 (1938), S. 581. "Die Selbsterregung von Schwingungen. Mathem. Theorie der Rückkopplung und der Mitnahme von Schwingungskreisen".
- ⁸) I. Koga, Proc. Inst. Radio Engin., Bd. 15 (1927), S. 669. "A new frequency transformer or frequency changer".
- ⁹) Kryloff und Bogoliuboff, 1. Comptes-rendues des séances de l'Acad. de Paris, Bd. 194 (1934), S. 957, 1064, 119, 2. Schweizer Bauzeitung, Bd. 103 (1934), S. 255, 267.
 - ¹⁰) Marrison, Bell Syst. Techn. Journ., Bd. 8 (1929), S. 493.
 - ¹¹) MÖLLER, Die Elektronenröhren, Vieweg & Sohn, 1929.
 - ¹²) J. J. Muller, Bulletin S. E. V., Bd. 29 (1938), S. 573.
- ¹³) Balthasar van der Pol, 1. Nature, Bd. 120 (1927), S. 363. "Frequency demultiplication". 2. Phil. Mag., Bd. 3 (1927), S. 65. "Forced oscillations in a circuit with non-linear resistance".
- ¹⁴) ROCARD, l'onde électrique, Bd. 16 (1937), S. 396. "Relaxation, synchronisation et démultiplication de Fréquence".

306

- ¹⁵) SCHEIBE und ADELSBERGER, Hochfrequenztechnik und Elektroakustik, Bd. 43 (1934), S. 37. "Die technischen Einrichtungen der Quarzuhr der Physteichn. Reichsanstalt".
- ¹⁶) H. Schlicke, Über die Synchronisierung selbsterregter Röhrensender, Dr.-Diss. 1938 (T. H. Dresden).
- 17) Seiberth, Hochfrequenztechnik und Elektroakustik, Bd. 45 (1935),
 S. 148. "Mitnahmeerscheinungen in der Akustik".
- ¹⁸) URTEL, Zeitschrift für techn. Physik, Bd. 19 (1938), S. 460. "Mitnahme und Synchronisierung selbsterregter Röhrensender".
- ¹⁹) Winter-Günther, Hochfrequenztechnik und Elektroakustik, Bd. 37 (1931), S. 39. "Über Mitnahmeerscheinungen an Röhrengeneratoren bei verschiedenen Frequenzverhältnissen".