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Klassiseche Theorie der Streuung geladener Mesonen
von Markus Fierz.
(15. V. 1941.)

Das Wellenfeld, durch welches geladene Mésonen beschrieben

werden, ist bekanntlich komplex. Dabeiist wegen der Eichinvarianz
(Ladungserhaltung) die Phase des Wellenfeldes keine physikalisch
messbare Grosse Man kénnte deshalb bezweifeln, ob unter diesen
Umstéinden eine klassische Behandlung eines derartigen Feldes
sinnvoll ist; BEaBHA?) hat Bedenken in dieser Richtung gedussert.
In der vorliegenden Arbeit soll aber gezeigt werden, dass trotzdem
eine solche Theorie méglich ist. Die Ladung der schweren Teilchen
ist in einer solchen Theorie natiirlich nicht quantisiert, d.h. sie
hat kontinuierliche Werte, wie dies z. B. auch fiir die z-Komponente
eines Spin-Moments in der entsprechenden klassischen Theorie gilt.
Die Behandlung der Ladung des schweren Teilchens in unserem
Falle ist iiberhaupt ganz analog zu BraBHA’s?) Behandlung des
Spin in seiner klassischen Theorie von Teilchen mit Spin.
: In der klassischen Theorie ist es dabei zwanglos moglich, die
Strahlungsdampfung zu beriicksichtigen, und zwar - nach der
Methode, die zuerst D1rac®) in seiner klassischen Elektronentheorie
angegeben hat.

Bekanntlich bereitet dies in der Quantentheorie Schwierig-
keiten, da sich hier die Divergenzen dieser Theorie bemerkbar
machen. .

Wir wollen in dieser Arbeit die vektorielle Mesontheorie unter-
suchen, und zwar in der Niherung, dass das schwere Teilchen ruht.
Die Wechselwirkung der Mesonen mit diesem Teilchen soll quasi-
elektrisch sein, d.h. die von Yukawa eingefiihrte Koppelungs-
konstante g, setzen wir Null. Im Gegensatz zur Theorie ungeladener
 Felder liefert die Mesontheorie auch in diesem Grenzfall eine
Streuung der Mesonen an schweren Teilchen, die zudem, falls man
die Strahlungsdémpfung unberiicksichtigt lésst, mit der Frequenz w
des gestreuten Feldes anwichst. Gestreut wird nur der, im Ruh-
system des schweren Teilchens longitudinale Feldanteil, wihrend
das transversale Mesonfeld vom schweren Teilchen nicht beein-
flusst wird.
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258 Markus Fierz.

Wir werden zeigen, dass die klassische Theorie Formeln fiir
den Streuquerschnitt liefert, die sich nur durch den Einfluss der
Strahlungsdampfung von den quantentheoretischen Formeln unter-
scheiden. Die Strahlungsdémpfung hat dabei zur Folge, dass fiir
hohe Frequenzen o des Mesonfeldes die Querschnitte wie 1/w?
abfallen®). ‘ ’ '

§ 1. Wir betrachten zuerst die quantisierte Mesontheorie,
und zwar in derjenigen Form, in welcher nur die quasielektrische
Koppelungskonstante g; von Null verschieden ist. Im Grenzfall,
in welchem das schwere Teilchen, mit welchem eine Wechsel-
wirkung stattfindet, ruht, kann in dessen Ruhsystem das Mesonfeld
in einen longitudinalen und einen transversalen Teil aufgespalten
werden, die voneinander unabhéngig sind. Der transversale Teil
hat keine Wechselwirkung mit dem schweren Teilchen. Wir in-
teressieren uns daher nur fiir den longitudinalen Teil. Zur Be-
schreibung des Feldes verwenden wir die von FrouvLicH, HEITLER
und KeEmMER?) eingefiihrte, komplexe Grosse v, = — p xor (L. C.
S. 519 Formel (18)), die im wesentlichen gleich der quasielektrischen
Feldstirke ist. Da y; ein longitudinaler Vektor ist, d. h. rot p = 0,
kann er aus einem skalaren Potential abgeleitet werden. Wir setzen

0z
0

Yr = (1.1)

Mit Hilfe von z kann die Energie des betrachteten Systems
wie folgt geschrieben werden:

_ 1 3 0z 0z* 0z 0z*
=—— [dVidz Az* 3
= 4 f { eas +,§1(” 0x;, 0x, + 0x;, 0z, )}

+ g {(T* A2y + (t A7), o} + M (x) 1)

Die Masseinheiten sind so gewihlt, dass , = ¢ = 1. ¢ hingt
mit der von Yukawa®) eingefithrten Grosse g; durch die Formel
g = §/p zusammen. g ist die Masse des Mesons. 7 ist der Operator,
der die Ladungszustiande des schweren Teilchens dndert. M (z;) ist
dessen Masse, die von seinem, durch 7, beschriebenen Ladungs-
zustand abhingt. Das schwere Teilchen soll hierbei im Koordinaten-
Ursprung ruhen.

*) Wie Lanpavu (Journal of Phys. U.S.S.R. II. 1940, S. 483) bemerkt hat,
sollte dies auch in der Quantentheorie gelten. Dabei stiitzt er sich auf die Formel
von BREIT und WiGNER fiir die Streuung von Neutronen (BETHE, Rev. Mod. Phys. 9.
115 (1937)).
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Fiir 2z gelten die Vertauschungsrelationen

(5% (8), 2 (B)] = — =t

v T —Z|

3
Mit ihrer Hilfe und mittels der allgememen Regel,
f [H, f] (1.4)

die fur jede, die Zeit nicht exphmte enthaltende Grosse gilt, folgt
fir z die Wellengleichung
Az—3=p2z—4dmgrd (@)

Wenn die Matrlces von 7 und 7, gegeben sind, folgt ihr ze1t-
liches Verhalten ebenso aus (1.4). k

Fiir 7, 7, sind in der Hauptsache zwei Ansitze behandelt
worden:

I. Der urspriingliche Ansatz von Yukawa betrachtet zweil
Ladungszustdnde des schweren Teilchens (Proton, Neutron).
Dabei wird fiir die = folgender Ansatz gemacht |

(0 (0 e ()

- Wenn man zu hermiteschen Operatoren iibergeht gemiss
T=T:T17,
so konnen die drei Grossen 7 als Vektor in einem Ladungsraum
aufgefasst werden. Ihre Matrizen sind Pauali’sche Spinmatrizen.

Das Quadrat dieses Vektors ist dann mit der Hamiltonfunktion
vertauschbar, also eine Konstante.

TP=f (T +r* ) trp =i+l vl =const. - (I 1)

II. Man betrachte nach HeirLer®), BaaBHA!) und WENTZEL?)
unendlich viele Ladungszustinde. Fir die Matrlxelemente von
7, 7, wird folgender Ansatz gemacht

(n |te] n')=mn b,,/; (n|r| n+1)=1, alle anderen Matrixelemente =0
n= (0,41, £2...)
Fir 7%= 77* + 7} findet man in diesem Fall
(n] %2 ) = (02 +1) 5,
Diese Gleichungen konnen wir auch so schreiben:
TP=1p41; Tev=1 (IT 1)
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Die Ansitze I. und II. sind im wesentlichen durch die beiden
Ausdriicke fiir 72 bestimmt.

Damit sind die Grundgleichungen fiir eine quantentheoretische
Behandlung des Problems gegeben.

§ 2. Wir wollen jetzt die, obiger Theorie korrespondierende
klassische Theorie entwickeln.

Wir behalten die Bewegungsgleichung fiir 2z, die aus (1.2)
(1.8) (1.4) folgt, bei:

Az—2=p2z—4ng76(x) (2

Die Gleichung wird durch g

| Tret 29

: 22)

gelost, wo z* der homogenen Wellengleichung geniigt. 2° heissen
wir das dussere Feld. 7., ist wie folgt definiert: Sei

fdv‘r girt

Tt ~——fdvr eivt—ikr

2=2+2z, =g

so 1st

wobel
k m]/vz 2furv>,u,k——'b]/,u —v2firv<pu (23)

Das durch 7 ausdruekbare Feld z® helssen wir das Eigenfeld.
Wir miissen jetzt Bewegungsgleichungen fir v und 7, aufstellen.
Diese sind, wie wir zeigen werden, durch die Forderung der Energie-
und Ladungserhaltung weitgehend bestimmt.

Es ist fir das Folgende bequem, anstelle der komplexen
Grossen 7 und z reelle Grossen emzufuhren indem wir Jene in
Real- und Imaginérteil aufspalten: '

z=2s+12,, r—ré—t-@'rﬂ

Es ist zweckméssig, 7¢, 7,, 7, als Vektor in einem Ladungsraum
(&, n, {) aufzufassen. Bei Drehungen um die {-Achse bleiben alle
physikalischen Grossen ungeéndert; hierin besteht die Eichinvarianz
der Theorie. Ebenso ist z ein Vektor in diesem Raume mit den
Komponenten (2, z,, 0), die aber noch Funktionen der- Orts-
koordinaten sind.

Die Energiedichte H und der Energiestrom T des Mesonfeldes
konnen dann wie folgt geschrieben werden:

LR L (O R Tl

1 0z
Ty= — = S Ag, Lo
£ 275; Za{)xk

(2.4)
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Diese Ausdriicke sollen im ganzen. Raume, ausser fiir z = 0,
dem Ort des schweren Teilchens, gelten. Es gilt, ausgenommen
fir Z = 0 zufolge (2.1) die Kontinuititsgleichung

divT+H=0
Strom- und Ladungsdichte des Mesonfeldes haben die Gestalt

1 [0 0z, 03, 0z)
0T G 2\ 0 0wy 0wk O]
. i 2.5)
) z; 2
o A ﬂ‘A
=oa [om,c Tow, Y

Auch hier gilt die Kontinuititsgleichung
divi+6=0

¢ und j lassen sich als {-Komponenten eines Vektorpmdukts im
(¢, m, {)-Raum aaffassen:

0

1 0z 0z
2 ;[Owk x O:L",C'L

(2.6
£d 1 [ 0z " z]
¢

275 ()ﬂ?k

Um die Bewegungsgleichungen fiir 7 zu erhalten, betrachten
wir, analog wie DIrAc in seiner klassischen Elektronentheorie, den
Energie- und Ladungsstrom, der aus einer Kugel vom Radius r um
das schwere Teilchen, also um den Nullpunkt, austritt. Im limes
r = 0 sind dann diese Grossen gleich der Energie bzw. Ladungs-
dnderung des schweren Teilchens. Die bei der Rechnung auf-
tretenden, im limes r = 0 singuldren Terme koénnen wie in der
Elektronentheorie subtrahiert werden, da sie die Gestalt totaler
zeitlicher Ableitungen haben.

Wir betrachten zuerst den Ladungsstrom durch die Kugel-
oberfliche. Die Ladung im Kugelinnern heissen wir P. Dann
lautet die Kontinuitidtsgleichung

. 1 0z
— P = A
2nf[07‘ x4z

r2dQ 27
g

Das Integral ist iiber die Oberfliche der Kugel vom Radius r
zu erstrecken.



262 ; Markus Fierz.

Im Integral setzen wir fiir z die Losung (2.2) ein, und ent-
wickeln z* nach Potenzen von r. Wir finden:
02z g

el & + Groéssen der Ordnung r?
r r 3

= fk“’ vy ei’tdv +ig /ks v)ertdy
+ Grossen der Ordnung r

Jos = ]/v2—1u2 fiir v> p, k—‘—'b]/,u —v2fur'p<,u

Zur Abkiirzung setzen wir - |
—ifk‘*‘r(v) eivtdy= 1"
fir v >> pist 7' ~ 7.
Weiter ist

szr(v) et’tdy=—17—pit
Also ist

Az = f (T + p?7) + 97"+

Diese Entwicklungen setzen wir in (2.7) ein, und nehmen nur
Terme mit, die fiir » = 0 nicht verschwinden. So erhalten wir

. 2
P=2g[tx42%,—2¢*[tx7"],+ 29 [TX 7], (2.8)

Der singuléire Term in (2.8) ist ein totaler Differentialquotient,
némlich
e d .
X7l =—[tX
[TX 1] = [tX 1]

Wir setzen daher

2
P+ 29 [rx3] (2.9)

und erhalten fiir die Ladung 7, des schweren Teilchens die Gleichung
1,=2g[rx(dz2—g7"")), (2.10)

Jetzt berechnen wir in analoger Weise den Energiestrom, der aus
der Kugel vom Radius r austritt. Die in der Kugel enthaltene
Energie se1 E. Dann lautet die Kontinuitéttsgleichung

-—E—-—Ef( Az,)rdQ @.11)
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Setzen wir Wleder fur 2° unsere Entwwklungen em, so erhalten wir
—E=2¢g > T (Az“ gr"’%i(,u T,+ T ))
a=51

Wieder sind die Terme ~ 1/r totale Ab]eitungen:

Deshalb setzen wir )
_ 9 :
E-M@E)—L 3 (e +i))

a=§7 n

»n

Die Gleichung fiir die Masse M (z;) des schweren Teilchens lautet
dann |
. d M . ; . j rre

iz, Tp=—2g > . (d#—g1") (2.12)

G_—'evﬂ

M=

Die Bewegungsgleichungen fiir 7, und 7, konnen nun angegeben
werden, wenn 72= 2 f (7;) gegeben ist. (Dass 72 nur von 7, ab-
héngen kann, ist eine Folge der Eichinvarianz.) Differenzieren
wir ndmlich diese Beziehung nach der Zeit, so erhalten wir

o _ 4
dt  dr,

tr= 7,7, (2.18)

o

Durch Elimination von 7. aus (2.12) und (2.13) folgt
| . d M
¢ dr

Dabei wurde zu Abkiirzung gesetzt:

B=2g(d2—g7")

Beachten wir (2.10) so folgt |

+R ( d f rg)}"cc= i, (t,R;—:R,)
dT;

p- df dM | |
| i, = R, (:C dtg) = (2:14)
Ebenso folgt ,
: df dM
TEV= e 1%17 (TC—E;;") + T’?% (2.15)

Die Gleichungen (2.10) (2.14) (2.15) enthalten nur noch das #ussere
Feld z¢. Die Wirkung des Eigenfeldes 2* auf die zeitliche Anderung
der 7 ist durch die Dampfungsterme proportional ¢2 v""’ beschrieben.
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- Wir wollen jetzt noch die Gleichungen anschreiben, wenn
fiir 72 die in § 1 unter I. und II. angegebenen spezlellen Ausdriicke
eingesetzt werden. Mit der Abkiirzung

e’ “III dM
R= (29(425 gTe); 29(dz—gr ) )
T
erhalten wir folgende zwei Gleichungssysteme:
f = const. | ) (L)
T=[T xR (L)
f=b@+n ua
'EE = RC Ty
%1] == “—RC T§' (1]:2)
'&C = TERﬂ_TﬂRE

§ 3. Mittelst der Gleichungen (I,) bzw. (IIL,) Wollen wir jetzt
die Streuung einer ebenen Mesonwelle an einem schweren Teilchen
berechnen. Dabei nehmen wir an, dass die Intensitit der Meson-
welle so gering sei, dass 7 kleine Schwingungen um eine Ruhelage
austiihrt.

aM )

Fall I (G- =0
g

Wir nehmen an, das schwere Teilchen sei im Protonenzustand
(oder auch im Neutronenzustand). In diesem Falle werden namlich
die Gleichungen besonders einfach. Auch entspricht diese Annahme
derjenigen, die gewohnlich in der Quantentheorie gemacht wird.
Wir setzen demgemiss:

72 soll stets gegen 7, vernachlissigt werden kénnen, da 7, pro-
portional zu 2, sein soll. Das Feld z¢ (x) soll geladen sein, wir
setzen deshalb

20 = %€ (zpseireell); Azl = —k2z et wobei k2= w?— u?

Den Massenunterschied zwischen Proton und Neutron wollen wir
vernachldssigen, setzen also

aM
dTC

— R, = 0.
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Fir 7, und 7, gelten dann die Gleichungen

e

Te= 297, k%2 8in ot + 2 g% 7, 7 3.1)

r,= —2¢g7t. k%zycos wt —2¢g%7, 7’

Machen wir jetzt den Ansatz
Te=Tyre, T,=T1,, Te=4%+ T,

so ergeben die Gleichungen (3.1), indem wir 22 vernachldssigen

rree?

T,=—1é°tgk?z,—ig%cos ¥ (3.2)
Dabei ist
. ; Ty =T T 17y
Wir setzen
res S . 3 3 t
7, =—t1k3ce”
und erhalten fiir ¢ die Gleichung

L2 | .
twe=—19g—2zy—k3g%¢
®

k® )
c=—g—2cos e’
. w
wobel
13
tgg=—g°
()

@ ist die Phasenverschiebung von 7; gegen 4 2%. Fiir den Streu-
strom durch die Kugeloberfliche um den Koordinatenursprung
erhalten wir daher, zufolge (2.2), (2.3)

5 7
s — 9 ad 22 0os?
95 = 2 g* 22 cos ¢ 5

Der einfallende Strom ist gleich

: 1
o= O k32§

Daher wird der ‘Wirkungsquerschnitt

1
- ¢I=4ng4%cos2 =i—:sin2<p
1 | (3.3)

k6

cos2p= — "=
1-}-g4ﬁ
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Falls man die Dampfung vernachldssigt, d.h. cos?2 ¢ = 1, so ist
der von uns abgeleitete Wirkungsquerschnitt identisch mit dem-
jenigen, den HEITLER®) mit Hilfe der quantisierten Mesontheorie
abgeleitet hat. (Unsere Konstante g hdngt mit der Heitler’schen

durch die Gleichung 92 = g%- zusammen.) Fir kleine &k wachst

® mit wachsendem k an, fir g4l€-62—> 1 wird jedoch durch die
w

Strahlungsdampfung ein Abfallen des Wirkungsquerschnittes her-
vorgerufen, es gilt dann 4
Lo T

k2

Setzt man mit HErTLEr u2 g% ~ Y/, so erreicht @; fir k ~ 2,6 u
seinen grossten Wert. Dieser maximale Querschnitt ergibt sich mit
1/p=2-10"1% cm zu 4-10-2¢ cm? FEin Streuquerschnitt dieser
Grosse 1st aber immer noch unvereinbar mit den experimentellen
Daten iiber die Strevung der harten Komponente der Hohen-
strahlung. Die Strahlungsddmpfung ist also nicht geniigend
wirksam, um die Theorie mit den Experimenten in Uberein-
stimmung zu bringen.

Wir wollen jetzt noch den allgemeineren Fall untersuchen,
dass 7y, und 7y, von null verschieden sind. Setzen wir wieder
2%=z, ¢!, dann lauten die Gleichungen (3. 1) fir t=1,+17,

T=—2¢g1k%z et —2g%7" (8.14a)

7. erfiillt die Gleichung

¢I~

T,=2gk%%, coswt——2gk2zor§sinwt (3.1 Db)
+292 !IIT _29 T"”

Wir betrachten zuerst den Fall, dass das dussere Feld verschwindet,
setzen also 2z, = 0. 7 ist dann nicht konstant, vielmehr gilt

T=—21¢g%7, 7"
Mit dem Ansatz 7,= }cos &, 7= }sin & e~* folgt
A=g*Bcos &; l=1/u?— A%
+
Diese Gleichung fiir 4 hat gerade eine reelle, positive Liosung, wobei
A < p 1st. Dies miissen wir auch erwarten, da ja keine Ausstrah-
lung zustandekommen kann. Daher ist auch 7, proportlonal T s
7, proportional 7;”" und die Gleichung fiir 7, liefert 7,=0, ist also
durch unseren Ansatz erfillt. Das von 7 erzeugte Feld 2¢ ist gleich
sin ¢
r

s — 1 —iAt—Ir
=3 e
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Dass dieses Feld nicht zeitlich konstant ist, ist im Hinblick auf die
Kernkrifte bemerkenswert. Die gewdhnliche quantenmechanische
Behandlung des Problems liefert kein Analogon zu diesem Resultat,
da dort die Ruckw1rkung des Elgenfeldes auf 7 Vern&(:hl&SSlgt
wird (A ist fiir u®g%<< 1 gleich g u3 cos #).

Nehmen wir nun an, 2, sei nicht null, Dann setzen wir Tp=
Tort Tie, T=To+ Ty Wobei Ty = $cos &, 1y = 3sin de 4  Hir
7, und 7, ; erhalten wir aus (3.1a) und (8.1b) folgende Gleichungen

Tyc=—gk%>2ysin & sin (0 + A) t + ¢g%sin dcos At (77, —1%7,,)
+ ¢g%sin ¢sindt(vye — 131

rr:

T,=—19k¥zycos ¥ et —1g2 cos Py’ —1g%1% sin et
Terme proportional 2%, d.h. 72, wurden vernachlissigt. Wegen
des Termes proportional e~#*¢ 7, . in der Gleichung fiir 7; werden
die Losungen dieses Gleichungssystems ziemlich verwickelt. Es
treten neben ® auch Frequenzen w-+ n i auf. Fir k> | werden
aber diese Zusitze unwesentlich, da dann 7" > 137, ist. Wenn
wir daher in diesem Falle 1® gegen k3 vernachlasmgen, konnen wir
die Gleichung fiir 7, 16sen. Wir finden, analog wie bei der Lisung
von (3.2) einen Streuquerschnitt

b = sin? @

wobei aber tg ¢ = (k% w) g* cos & ist.

Fall II.
Die Gleichung fir 7.+ ¢7,= v lautet
fea B (8.4)
dz; 3

5

Sie lasst sich sofort integrieren. 77* ist geméss II; gleich 1.

t
—ifgff e
]

T=8
Die Gleichung fiir 7, lautet somit

¢
;=29 (4a—g7)") eosf

0

dM n o fAM
iz, dt+2g(4z¢ g7e’)sin ;l;;dt

(3.6)
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aM

Wir setzen 7,= 10 + 14. =, entwickeln wir nach 7, und vernach-

lassigen wieder 7,2 |
t ' t t.
dM dM d* M -
dt = * di=At+B dt (3.7

0

Ts

Sel1 wiederum )
2= w>u

Wir machen nun die weitere Annahme
w>A4,B; u>A4,B (3.8)

und vernachléssigen A, B gegen w, falls diese Grossen als Faktoren
auftreten.

Die Damptung SPlelt erst fir w>1u eine wesentliche Rolle.

Deshalb ersetzen wir in (3.6) "’ durch 7. Diese Vereinfachung
hat wegen (8.8) zur Folge, dass nach (8.5) und (3.7) gilt:

t
f§~Belrn=—B%lsinf‘Z_Mdt
it C
(3.9)
LM

-'Eﬁ"""__B :!,:1‘(§=—B:LZICOS —d—dt
C

Damit erhalten wir aus (8.6) die vereinfachte Gleichung

——29k2z0%1n(wt+f~—~——dt)+2ng‘51 (8.10)

Mit dem Ansatz

dM
Rea]teﬂ‘ { o 9% )} (8.11)

erhalten wir aus (3.10), indem wir (8.8) beniitzen:

twe=2102,k2— 292 B w?¢
Daher 9% J

k2

t
T, = 2gzojcos<p cos (wH—f M
: 0

i dt + qp)

. |
~2g¢ zok— cos ¢ cos {(w+4) t+¢}; cos? p= -
" .

Trigiorge ©12)
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Weiter wird -

_ | ' 2
Ty = cos{A t+2g¢ 2, k—2 B cos ¢ sin [(w+A4) t—i—cp]}
L4
- 2 (3.13)
T,=— sin{A t+2g2 — B cos ¢ sin [(w+A4) t—l—tp]}

Im Sinne unserer Niherung, soll 292z, (k¥/w) B<K1 sein.
Wir kénnen daher auch schreiben: '

2
Te = COS At~—2gz(,i2B cos @ sin [(w + A4) t+ @] sin At
: w
2 | (3.13a)
t,=—sindt—2g2— Bcosgsin [(0+4) t+¢]. cos At
w _

Wegen 4 <u geben die Terme cos At, sin At zu keiner Aus-
strahlung Anlass. Rechnet man nun auf Grund (8.18a), mit Hilfe
- (2.2), (2.6) den Ladungs-Streustrom aus, so kommt in unserer
Naherung null heraus, weil 7, und 7, in gleicher Phase schwingen.
Der Energie-Streustrom ergibt sich jedoch, nach (2.4) zu

7

T,=8g* zo2k—3 cos? @+ B2-cos?[(w+4)t+¢] (3.14)
w

Mitteln wir dies iiber die Zeit und dividieren durch den ein-
fallenden Energiestrom, so erhalten wir den Wirkungsquerschnitt
@11287594——03‘1'0082@' B2

1
1+4g* w® B2

(8.15)

cos2 ¢ =

Wir erhalten also einen ungeladenen Streustrom, wihrend

im Falle I. der Streustrom das Ladungsvorzeichen des einfallenden

Mesonfeldes tréigt. Dies stimmt mit dem Ergebnis der Quanten-

theorie tberein. Fiur hohe Frequenzen féllt die Streuung wieder

wie 1/w? ab. |

HerrLer®) hat mittelst der quantisierten Theorie den Quer-
schnitt

k4

Dp=4m gt 3 (AM)?2 (3.16)

gefunden, wobei AM den Massenunterschied des Protons und des

Teilchens der Ladung 2 bedeutet. Setzen wir etwa M (v;) = § B73.
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so wird AM = § B und @, = ¢ Py, falls man in (8.15) cos ¢ =1
setzt. Bis auf Zahlfaktoren der Ordnung 1 stimmen daher die
Querschnitte tiberein. Mehr kann aber auch nicht erwartet werden.

Die Streuung verschwindet, falls —:}% = 0 ist, wie dies die Glei-
chungen II, zeigen, da dann 7, und 7, konstant sind. In erster
a: M
dr}
zustande kommt. Auch in dieser Beziehung stimmt unser Ergebnis
mit der Quantentheorie iiberein?).

Die von uns gegebene Theorie zeigt also eine weitgehende,
korrespondenzmissige Ubereinstimmung mit der quantentheore-
tischen Formulierung des Problems und ermoglicht tiberdies die
Strahlungsddmpfung zu beriicksichtigen. In héheren Néherungen
wird man allerdings keine derartige Korrespondenz mehr erwarten ;
hier wird jedoch die Quantentheorie problematisch. Die Unter-
suchung lésst jedoch erkennen, dass die zu grossen theoretischen
‘Wirkungsquerschnitte im Falle I nicht auf der Vernachldssigung
der Dampfung beruhen, wie dies die Diskussion von @, gezeigt hat.

Basel, Physikal. Anstalt der Universitit
und Mathem. Physikal. Seminar.

+ 0 sein, damit eine Streuung

Néherung muss jedoch auch
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