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Klassische Theorie der Streuung1 geladener Mesonen

von Markus Fierz.
(15. V. 1941.)

Das Wellenfeld, durch welches geladene Mesonen beschrieben
werden, ist bekanntlich komplex. Dabei ist wegen der Eichinvarianz
(Ladungserhaltung) die Phase des Wellenfeldes keine physikalisch
messbare Grösse. Man könnte deshalb bezweifeln, ob unter diesen
Umständen eine klassische Behandlung eines derartigen Feldes
sinnvoll ist ; Bhabha1) hat Bedenken in dieser Richtung geäussert.
In der vorliegenden Arbeit soll aber gezeigt werden, dass trotzdem
eine solche Theorie möglich ist. Die Ladung der schweren Teilchen
ist in einer solchen Theorie natürlich nicht quantisiert, d. h. sie

hat kontinuierliche Werte, wie dies z. B. auch für die ^-Komponente
eines Spin-Moments in der entsprechenden klassischen Theorie gilt.
Die Behandlung der Ladung des schweren Teilchens in unserem
Falle ist überhaupt ganz analog zu Bhabha's2) Behandlung des

Spin in seiner klassischen Theorie von Teilchen mit Spin.
In der klassischen Theorie ist es dabei zwanglos möglich, die

Strahlungsdämpfung zu berücksichtigen, und zwar nach der
Methode, die zuerst Dirac3) in seiner klassischen Elektronentheorie
angegeben hat.

Bekanntlich bereitet dies in der Quantentheorie Schwierigkeiten,

da sich hier die Divergenzen dieser Theorie bemerkbar
machen.

Wir wollen in dieser Arbeit die vektorielle Mesontheorie
untersuchen, und zwar in der Näherung, dass das schwere Teilchen ruht.
Die Wechselwirkung der Mesonen mit diesem Teilchen soll
quasielektrisch sein, d. h. die von Yukawa eingeführte Koppelungskonstante

g2 setzen wir Null. Im Gegensatz zur Theorie ungeladener
Felder liefert die Mesontheorie auch in diesem Grenzfall eine
Streuung der Mesonen an schweren Teilchen, die zudem, falls man
die Strahlungsdämpfung unberücksichtigt lässt, mit der Frequenz co

des gestreuten Feldes anwächst. Gestreut wird nur der, im
Ruhsystem des schweren Teilchens longitudinale Feldanteil, während
das transversale Mesonfeld vom schweren Teilchen nicht beeinflusst

wird.
17



258 Markus Fierz.

Wir werden zeigen, dass die klassische Theorie Formeln für
den Streuquerschnitt liefert, die sich nur durch den Einfluss der
Strahlungsdämpfung von den quantentheoretischen Formeln
unterscheiden. Die Strahlungsdämpfung hat dabei zur Folge, dass für
hohe Frequenzen co des Mesonfeldes die Querschnitte wie ljco2
abfallen*).

§ 1. Wir betrachten zuerst die quantisierte Mesontheorie,
und zwar in derjenigen Form, in welcher nur die quasielektrische
Koppelungskonstante g^ von Null verschieden ist. Im Grenzfall,
in welchem das schwere Teilchen, mit welchem eine Wechselwirkung

stattfindet, ruht, kann in dessen Ruhsystem das Mesonfeld
in einen longitudinalen und einen transversalen Teil aufgespalten
werden, die voneinander unabhängig sind. Der transversale Teil
hat keine Wechselwirkung mit dem schweren Teilchen. Wir
interessieren uns daher nur für den longitudinalen Teil. Zur
Beschreibung des Feldes verwenden wir die von Fröhlich, Heitler
und Kemmer4) eingeführte, komplexe Grösse y>k — /u %9k (1. c.
S. 519 Formel (18)), die im wesentlichen gleich der quasielektrischen
Feldstärke ist. Da rpk ein longitudinaler Vektor ist, d. h. rot y> 0,
kann er aus einem skalaren Potential abgeleitet werden. Wir setzen

dz i. i\V^T^ (1J)

Mit Hilfe von z kann die Energie des betrachteten Systems
wie folgt geschrieben werden:

H i, / 0 dz dz* dz dz*-L[dVÌAzAz* + ±L2^df +4n J { ^Ax\ dxk dxk (JXfc UXjq

+ g {(r* A z)x=0 + (rA z*)x^} + M (t:) (1.2)

Die Masseinheiten sind so gewählt, dass % — c= 1. g hängt
mit der von Yukawa5) eingeführten Grösse gx durch die Formel
g gjjft zusammen, fx ist die Masse des Mesons, t ist der Operator,
der die Ladungszastände des schweren Teilchens ändert. M (rc) ist
dessen Masse, die von seinem, durch tc beschriebenen Ladungszustand

abhängt. Das schwere Teilchen soll hierbei im Koordinaten-
Ursprung ruhen.

*) Wie Landau (Journal of Phys. Ü.S.S.R. II. 1940, S. 483) bemerkt hat,
sollte dies auch in der Quantentheorie gelten. Dabei stützt er sich auf die Formel
von Breit undWigner für die Streuung von Neutronen (Bethe, Rev. Mod. Phys. 9.

115 (1937)).
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Für z gelten die Vertauschungsrelationen

[z*(x),z(x')] - L_ (1.8)
l \x — X |

Mit ihrer Hilfe und mittels der allgemeinen Regel,

~f [H,.f] (1-4)
%

die für jede, die Zeit nicht explicite enthaltende Grösse gilt, folgt
für z die Wellengleichung

A z — z fi2 z — 4n g x ô (x)

Wenn die Matrices von r und xt gegeben sind, folgt ihr
zeitliches Verhalten ebenso aus (1.4).

Für x, xr sind in der Hauptsache zwei Ansätze behandelt
worden :

I. Der ursprüngliche Ansatz von Yukawa betrachtet zwei
Ladungszustände des schweren Teilchens (Proton, Neutron).
Dabei wird für die x folgender Ansatz gemacht

(oo)' i o ' r« U-y,
Wenn man zu hermiteschen Operatoren übergeht gemäss

so können die drei Grössen x als Vektor in einem Ladungsraum
aufgefasst werden. Ihre Matrizen sind Pauli'sche Spinmatrizen.
Das Quadrat dieses Vektors ist dann mit der Hamiltonfunktion
vertauschbar, also eine Konstante.

x2 \ (xr* + x*x)+x\ x\+x2n+x\ const. (I 1)

IL Man betrachte nach Heitler6), Bhabha1) und Wentzel7)
unendlich viele Ladungszustände. Für die Matrixelemente von
x, xt wird folgender Ansatz gemacht

(n |t{| n') n ôm,; (n \x\ n +1) 1, alle anderen Matrixelemente 0

n=(0, ±1, ±2...)
Für x2 xx* + x2 findet man in diesem Fall

(n|T«|n')=(n» + l) ônn,

Diese Gleichungen können wir auch so schreiben:

x2=x2( +1; tt*= 1 (II 1)
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Die Ansätze I. und II. sind im wesentlichen durch die beiden
Ausdrücke für x2 bestimmt.

Damit sind die Grundgleichungen für eine quantentheoretische
Behandlung des Problems gegeben.

§ 2. Wir wollen jetzt die, obiger Theorie korrespondierende
klassische Theorie entwickeln.

Wir behalten die Bewegungsgleichung für z, die aus (1.2)
(1.3) (1.4) folgt, bei:

A z — z n2 z — 4tc gx ô (x) (2.1)

Die Gleichung wird durch

z za + zs, zs g -!«*- (2.2)
r

gelöst, wo za der homogenen Wellengleichung genügt. za heissen
wir das äussere Feld. rret ist wie folgt definiert: Sei

so ist

wobei

x(t) f dvx(v)eivt,

Tret f dvx (v) eivt~ikr

k ^v2 — fi2 für v~> pi; k -i ]/{i2 — v2iöx vA.fi (2.3)
+ +

Das durch r ausdrückbare Feld zs heissen wir das Eigenfeld.
Wir müssen jetzt Bewegungsgleichungen für x und xr aufstellen.
Diese sind, wie wir zeigen werden, durch die Forderung der Energie-
und Ladungserhaltung weitgehend bestimmt.

Es ist für das Folgende bequem, anstelle der komplexen
Grössen r und z reelle Grössen einzuführen, indem wir jene in
Real- und Imaginärteil aufspalten:

z z4 + i zn, x xi + i xn

Es ist zweckmässig, xs, xn, x» als Vektor in einem Ladungsraum
(f, rj, C) aufzufassen. Bei Drehungen um die f-Achse bleiben alle
physikalischen Grössen ungeändert ; hierin besteht die Eichinvarianz
der Theorie. Ebenso ist z ein Vektor in diesem Räume mit den
Komponenten (zs, zn, 0), die aber noch Funktionen der
Ortskoordinaten sind.

Die Energiedichte H und der Energiestrom T des Mesonfeldes
können dann wie folgt geschrieben werden:

dz„\21 dz
+ (A2

d xkl \ à x.
(2.4)
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Diese Ausdrücke sollen im ganzen* Räume, ausser für x 0,
dem Ort des schweren Teilchens, gelten. Es gilt, ausgenommen
für x 0 zufolge (2.1) die Kontinuitätsgleichung

div T + È 0

Strom- und Ladungsdichte des Mesonfeldes haben die Gestalt

Q

J*

1 ^ \d z$ dzv i

2 tt ^ } d xk dxk

1 \ dzt dz„* Ar» 1

2tt dxk * d xk

dxk dxk\

A z.

(2.5)

Auch hier gilt die Kontinuitätsgleichung

div j + q 0 \

q und / lassen sich als C-Komponenten eines Vektorprodukts im
(I, rj, £)-Raum auffassen:

1

n 2n

k

dz dz
A— x A—O Xk 0 xk

'dz-— X Az
[d xk i

(2.6)

Um die Bewegungsgleichungen für x zu erhalten, betrachten
wir, analog wie Dirac in seiner klassischen Elektronentheorie, den
Energie- und Ladungsstrom, der aus einer Kugel vom Radius r um
das schwere Teilchen, also um den Nullpunkt, austritt. Im limes
r 0 sind dann diese Grössen gleich der Energie bzw.
Ladungsänderung des schweren Teilchens. Die bei der Rechnung
auftretenden, im limes r 0 singulären Terme können wie in der
Elektronentheorie subtrahiert werden, da sie die Gestalt totaler
zeitlicher Ableitungen haben.

Wir betrachten zuerst den Ladungsstrom durch die
Kugeloberfläche. Die Ladung im Kugelinnern heissen wir P. Dann
lautet die Kontinuitätsgleichung

--L.JT
2tt J

dz
d r

X A z r2dü (2.7)
Je

Das Integral ist über die Oberfläche der Kugel vom Radius r
zu erstrecken.
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Im Integral setzen wir für z die Lösung (2.2) ein, und
entwickeln zs nach Potenzen von r. Wir finden:

à zs —^— x + Grössen der Ordnung r°
d r

A zs= — — fk2x (v) eivtdv + ig fk3x (v) eivtdv

+ Grössen der Ordnung r

k yv2 — fi2 für v~> jx, k — i ]/'fx2 — v2für v<fi
+ +

Zur Abkürzung setzen wir

— ifksx(v)eivtdvo= x'"
für v > > jx ist x'" ~ x

Weiter ist

f k2 x (v) eivt dv — x — /t2 x
Also ist

Azs YL(ï + ^x) + g %'" +

Diese Entwicklungen setzen wir in (2.7) ein, und nehmen nur
Terme mit, die für r 0 nicht verschwinden. So erhalten wir

P= 2g[xxAz°]i-2g2[xxx'"]i + ^[xXxl (2.8)
r

Der singulare Term in (2.8) ist ein totaler Differentialquotient,
nämlich

bxï]: —[TXT]
Wir setzen daher

P t? + 1i!-[tXt] (2.9)

und erhalten für die Ladung rf des schweren Teilchens die Gleichung

xi 2g[xx(Az--gx'")]r (2.10)

Jetzt berechnen wir in analoger Weise den Energiestrom, der aus
der Kugel vom Radius r austritt. Die in der Kugel enthaltene
Energie sei E. Dann lautet die Kontinuitätsgleichung
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Setzen wir wieder für zs unsere Entwicklungen ein, so erhalten wir

-É=2«2 iaUt-gC + ^ir'^+ï.))
cc=4, ti \ r l

Wieder sind die Terme ~ l/r totale Ableitungen :

i« U2 ** + tJ h-jj ((Axl + xl)
Deshalb setzen wir

E=M(xr)-f- V (j^xl + ii)
Die Gleichung für die Masse M (x~) des schweren Teilchens lautet
dann

M=AM_i;=_2g 2 -x^Azl-gx-') (2.12)

Die Bewegungsgleichungen für rê und xv können nun angegeben
werden, wenn x2 2/ (t£) gegeben ist. (Dass t2 nur von Tj
abhängen kann, ist eine Folge der Eichinvarianz.) Differenzieren
wir nämlich diese Beziehung nach der Zeit, so erhalten wir

Durch Elimination von Tj aus (2.12) und (2.13) folgt

dM _ / df \\ ¦ -n t> x

Dabei wurde zu Abkürzung gesetzt:

B 2g(Azl-gx':')
Beachten wir (2.10) so folgt

r> / df \ dM '..

T^MT^^7rT^ (2-14)

Ebenso folgt

*•--». (*<-£)+*.4£ (2-15)

Die Gleichungen (2.10) (2.14) (2.15) enthalten nur noch das äussere
Feld za. Die Wirkung des Eigenfeldes zs auf die zeitliche Änderung
der r ist durch die Dämpfungsterme proportional g2 x'" beschrieben.
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Wir wollen jetzt noch die Gleichungen anschreiben, wenn
für x2 die in § 1 unter I. und II. angegebenen speziellen Ausdrücke
eingesetzt werden. Mit der Abkürzung

B=(2g(AA,-gx'-); 2 g (â z% - g <,') ; ^j
erhalten wir folgende zwei Gleichungssysteme:

/ const. (LJ

x=[xXB] (I2)

/=H*? + i) (ni)

T„=-EjT{ j (II2)

x^= xsBn—xrìBs J

§ 3. Mittelst der Gleichungen (I2) bzw. (II2) wollen wir jetzt
die Streuung einer ebenen Mesonwelle an einem schweren Teilchen
berechnen. Dabei nehmen wir an, dass die Intensität der Mesonwelle

so gering sei, dass t kleine Schwingungen um eine Ruhelage
ausführt.

M I. (4| 0) V

Wir nehmen an, das schwere Teilchen sei im Protonenzustand
(oder auch im Neutronenzustand). In diesem Falle werden nämlich
die Gleichungen besonders einfach. Auch entspricht diese Annahme
derjenigen, die gewöhnlich in der Quantentheorie gemacht wird.
Wir setzen demgemäss:

T T0 + Ti

r0 £ 2 T0 { T0 i;
0

x\ soll stets gegen x^ vernachlässigt werden können, da ij
proportional zu z0 sein soll. Das Feld za (x) soll geladen sein, wir
setzen deshalb

z(o) züeimt; (zx, sei reell) ; A za(0) — k2 z0 eimt wobei /c2 co2—pi2

Den Massenunterschied zwischen Proton und Neutron wollen wir
vernachlässigen, setzen also
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Für x* und xn gelten dann die Gleichungen

i j= 2 g Tj fc2 z0 sin cot + 2 g2 ts t'„" ,g _
t^= — 2gxck2z0 cos <wf — 2 o2 tc t'^"

Machen wir jetzt den Ansatz

ri~ Tlf> T>j=Tl>j> Tc=î + Tic

so ergeben die Gleichungen (3.1), indem wir 2^ vernachlässigen

i1 — ieia>tgk2z0-ig2cos *<" (3.2)
Dabei ist

Wir setzen

wobei

T1 Tu + iXlri

x-, c .eimt

ri" — ik3ceiat
die Gleichung

fc2
i co c — i g z0 — k3g2c

CO

fe2
c — e/ 20 cos ç> e*v

(O

k3
tg 9" — 32

ft)

93 ist die Phasenverschiebung von xx gegen A za. Für den Streustrom

durch die Kugeloberfläche um den Koordinatenursprung
erhalten wir daher, zufolge (2.2), (2.3)

fc7
i* 2 ql zl cos2 œ1 y ° r co2

Der einfallende Strom ist gleich

V=-^fc3*2

Daher wird der Wirkungsquerschnitt

^ a
fc4

g 4n 90I= 4ng* cos-' cp sin'' cp
co2 k2

2
1

cos2 cp p-i + s4-V

(3.3)



266 Markus Fierz.

Falls man die Dämpfung vernachlässigt, d. h. cos2 cp 1, so ist
der von uns abgeleitete Wirkungsquerschnitt identisch mit
demjenigen, den Heitler3) mit Hilfe der quantisierten Mesontheorie
abgeleitet hat. (Unsere Konstante g hängt mit der Heitler'sehen

durch die Gleichung g2 -^- zusammen.) Für kleine k wächst
i1

tc"0 mit wachsendem k an, für g4 —f ^ 1 wird jedoch durch die

Strahlungsdämpfung ein Abfallen des Wirkungsquerschnittes
hervorgerufen, es gilt dann

.*. 4ti
0T

k2

Setzt man mit Heitler pA g2 ~ 1/6, so erreicht <2>T für k ~ 2,6 [i
seinen grössten Wert. Dieser maximale Querschnitt ergibt sich mit
l/ji 2 • 10~13 cm zu 4 • IO-26 cm2. Ein Streuquerschnitt dieser
Grösse ist aber immer noch unvereinbar mit den experimentellen
Daten über die Streuung der harten Komponente der
Höhenstrahlung. Die Strahlungsdämpfung ist also nicht genügend
wirksam, um die Theorie mit den Experimenten in
Übereinstimmung zu bringen.

Wir wollen jetzt noch den allgemeineren Fall untersuchen,
dass t0j und x0n von null verschieden sind. Setzen wir wieder
2a 20eim', dann lauten die Gleichungen (3.1) für x xs + i xn

x — 2gik2z0eimt — 2g2x'"xi (3.1a)

Tf erfüllt die Gleichung

xr 2 g k2 z0 xn cos co t — 2 g k2 z0 xs sin co t (3.1 b)

+ 2g2x'("xri-2g2x;"x.
Wir betrachten zuerst den Fall, dass das äussere Feld verschwindet,
setzen also z0 0. x ist dann nicht konstant, vielmehr gilt

x —2ig2xix'"
Mit dem Ansatz t£= \ cos &, x | sin ê e~iK folgt

A g2l3 cos &; J= yV-A2
+

Diese Gleichung für 1 hat gerade eine reelle, positive Lösung, wobei
1 < /x, ist. Dies müssen wir auch erwarten, da ja keine Ausstrahlung

Zustandekommen kann. Daher ist auch xs proportional x'f",
rn proportional x'v" und die Gleichung für xr liefert Tf=0, ist also
durch unseren Ansatz erfüllt. Das von x erzeugte Feld zs ist gleich

zs= l sm fl c-iXt-lr
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Dass dieses Feld nicht zeitlich konstant ist, ist im Hinblick auf die
Kernkräfte bemerkenswert. Die gewöhnliche quantenmechanische
Behandlung des Problems liefert kein Analogon zu diesem Resultat,
da dort die Rückwirkung des Eigenfeldes auf r vernachlässigt
wird (X ist für /ji2 f/2<^ 1 gleich g2 /j3 cos &).

Nehmen wir nun an, z0 sei nicht null. Dann setzen wir x{
To ç+ Ti c> T To + Ti wobei x01 \ cos 7?, t0 \ sin # e~iAe. Für
xx und tx f erhalten wir aus (3.1a) und (3.1b) folgende Gleichungen

x-, r — g k2 z0 sin & sin (co + X) t + g2 sin # cos X t (xx'n — Is xx n)

+ g2 sin t? sin A i (x["s — Is xx t)

xx — i gk3 z0 cos & eimt — ig2 cos & x'x — ig2 Is sin & e_i kt xm

Terme proportional z2, d. h. x\, wurden vernachlässigt. Wegen
des Termes proportional e~iKt xxi in der Gleichung für xx werden
die Lösungen dieses Gleichungssystems ziemlich verwickelt. Es
treten neben co auch Frequenzen coYzn X auf. Für fc ^> l werden
aber diese Zusätze unwesentlich, da dann x'x" ^>l3 xix ist. Wenn
wir daher in diesem Falle l3 gegen k3 vernachlässigen, können wir
die Gleichung für xx lösen. Wir finden, analog wie bei der Lösung
von (3.2) einen Streuquerschnitt

^ 4n0 — sm2 cp

wobei aber tg cp (k3jco) g2 cos ê ist.

Fall II.
Die Gleichung für xs + ixn x lautet

• dM lor — %——t (3.4
dxr

Sie lässt sich sofort integrieren, xx* ist gemäss II, gleich 1.

r dM j,/ ^3— dti dzr0

Die Gleichung für t? lautet somit

dM „ rdM\i=2g(Azan-gx';') cos f—— dt + 2g (A z%-gx''') sin f^—dt
J dXr J aXr°

(3.6)



Markus Fierz.

Wir setzen xt= x\ + xx. -^— entwickeln wir nach x1 und vernachlässigen

wieder xx2.

rdM,, /dM\ [d2M\ } Ja •_ ¦} 3x /nm
0 b * fc ' ¦ 'o 0

Sei wiederum
z" z0ëimt; co > pi

Wir machen nun die weitere Annahme

ca^A, B; fi> A,B (3.8)

und vernachlässigen A, B gegen co, falls diese Grössen als Faktoren
auftreten.

Die Dämpfung spielt erst für co^>/j, eine wesentliche Rolle.
Deshalb ersetzen wir in (3.6) x'" durch x. Diese Vereinfachung
hat wegen (3.8) zur Folge, dass nach (3.5) und (3.7) gilt:

f'dMjx.
x t ~ B xx x — B xx sm / —— dt

J dtr
0 '

(3.9)

t. B xx Xt — B t, cos / —— dt15 x J dtr
0 ;

Damit erhalten wir aus (3.6) die vereinfachte Gleichung

xx - 2g k2 z0 sin (tot + f^- dt\+2g2Bxx (3.10)

Mit dem Ansatz

Il r dM \]
l{mt + l^rYdt)\ (3.11)

c e °

erhalten wir aus (3.10), indem wir (3.8) benützen:

icoc 2 ig z0k2 — 2 g2 B co2 c
Daher

fc2 / /
a z cos m cos I m t, -4- / -xx 2 o 0O — cos 95 cos coi + /

J_ dt + cp

0

fc2 1
~ 2 o z0— cos cp cos {(©-M) <+<?}; cos2 cp

co l ¦* l+4gicoiBi
(3.12)
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Weiter wird

{fc2At + 2 g z0 —- B cos cp sin [(co+A) t+cp]\

!k2 }
At + 2 g z0 B cos cp sin[(co+A) t+cp]\

co2 j

(3.13)

Im Sinne unserer Näherung, soll 2 g z0 (k2/co) B <^ 1 sein.
Wir können daher auch schreiben:

fc2

Tj cos At — 2gz0 —- B cos cp sin [(co + A) t + cp] sin At
"fc2 (3-13a)

t — sin At — 2g z0—- B cos© sin [(co+A) t+cp]. cos At
co2

Wegen A A fi geben die Terme cos At, sin At zu keiner
Ausstrahlung Anlass. Rechnet man nun auf Grund (3.13a), mit Hilfe
(2.2), (2.6) den Ladungs-Streustrom aus, so kommt in unserer
Näherurig null heraus, weil x( und xn in gleicher Phase schwingen.
Der Energie-Streustrom ergibt sich jedoch, nach (2.4) zu

Ts 8 fl4 z2 ^— cos2 cp • B2 ¦ cos2 [(w + A) t + cp] (3.14)
co3

Mitteln wir dies über die Zeit und dividieren durch den
einfallenden Energiestrom, so erhalten wir den Wirkungsquerschnitt

0U - 8 n g* Jt- cos2 cp ¦ B2
10\ (3.15)

COS2 Cp

l+4gico2B2

Wir erhalten also einen ungeladenen Streustrom, während
im Falle I. der Streustrom das Ladungsvorzeichen des einfallenden
Mesonfeldes trägt. Dies stimmt mit dem Ergebnis der Quantentheorie

überein. Für hohe Frequenzen fällt die Streuung wieder
wie 1/co2 ab.

Heitler6) hat mittelst der quantisierten Theorie den
Querschnitt

4>H=4ng*^(AM)2 (3.16)
coò

gefunden, wobei AM den Massenunterschied des Protons und des
Teilchens der Ladung 2 bedeutet. Setzen wir etwa M (x:) \ B x\ »
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so wird AM f B und 0B £ Ö>n, falls man in (3.15) cos 99 1

setzt. Bis auf Zahlfaktoren der Ordnung 1 stimmen daher die
Querschnitte überein. Mehr kann aber auch nicht erwartet werden.

Die Streuung verschwindet, falls -5— 0 ist, wie dies die

Gleichungen II2 zeigen, da dann x$ und xn konstant sind. In erster

Näherung muss jedoch auch £ 0 sein, damit eine Streuung

zustande kommt. Auch in dieser Beziehung stimmt unser Ergebnis
mit der Quantentheorie überein7).

Die von uns gegebene Theorie zeigt also eine weitgehende,
korrespondenzmässige Übereinstimmung mit der quantentheoretischen

Formulierung des Problems und ermöglicht überdies die
Strahlungsdämpfung zu berücksichtigen. In höheren Näherungen
wird man allerdings keine derartige Korrespondenz mehr erwarten ;

hier wird jedoch die Quantentheorie problematisch. Die
Untersuchung lässt jedoch erkennen, dass die zu grossen theoretischen
Wirkungsquerschnitte im Falle I nicht auf der Vernachlässigung
der Dämpfung beruhen, wie dies die Diskussion von 0j gezeigt hat.

Basel, Physikal. Anstalt der Universität
und Mathem. Physikal. Seminar.
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