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Zur Hypothese der hoheren Proton-Isobaren
von Gregor Wentzel, Ziirich.
(7. XII. 40.)

Inhalt: Einleitend wird die HETTLER-BHABHA’sche Hypothese der Proton-
zustdnde hoherer Ladung!) in ihrer Auswirkung auf das Problem der Meson-
streuung diskutiert; die Forderung, dass die Mesonstreuung bei gegebener Grosse
der Kernkrifte schwach, sei, liefert eine Einschrinkung fiir die Wahl der Proton-
Meson-Kopplung. Fir den Fall, dass der Kopplungsansatz gewisse einfache

Eigenschaften besitzt, lasst sich ein Approximationsverfahren angeben, welches

darauf beruht, dass die Massenunterschiede benachbarter Proton-Isobaren und
(eventuell) die Riickstossenergien der Protonen als klein betrachtet werden, und
welches gegeniiber der iiblichen Entwicklung nach Potenzen des Kopplungspara-
meters den Vorzug hat, nicht auf den Fall schwacher Kopplung beschrinkt zu
sein. Die Rechnung wird fiir das skalare (geladene) Mesonfeld durchgefiihrt, und
zwar auf Grund zweier verschiedener Kopplungsansidtze. Der eine Ansatz fiihrt
zu dem Ergebnis, dass jede Wechselwirkung zwischen Protonen und Mesonen
verschwindet in der Grenze, dass die Massen der Proton-Isobaren einander gleich,
gesetzt werden; in diesem Fall liefert die Einfithrung hoéherer Proton-Isobaren
keine Verbesserung der urspriinglichen Yurawa’schen Theorie.

§ 1. Zum Problem der Mesonstreuung.

Da es auf Grund der Yurawa’schen Theorie schwierig, wenn
nicht unmoglich ist, die erfahrungsmissige Kleinheit der Meson-
streuung?) mit der Grosse der Kernkrifte in Einklang zu bringen,
haben BmaBHA und HEIiTLER?!) eine Variante der Mesontheorie
vorgeschlagen, nach welcher es ausser Neutron und Proton wei-
tere ,,Protonen‘ hoherer Ladung, z. B. mit den Ladungszahlen
+ 2 und —1, geben soll. Diese Partikeln sollen dank hoherer
Masse instabil (zum mindesten p-aktiv) sein. Die Frage, unter
welchen Umstdnden solche Partikeln entstehen und beobachtet
werden konnten, ist von BmaBHA untersucht worden. Nach der
so modifizierten Theorie kann die Mesonstreuung, bel grossenord-
nungsméssig gleich bleibenden Kernkriften, in der Tat erheblich
kleiner sein als nach der urspriinglichen Yukawa’schen Theorie.

Woran es liegt, dass die Existenz oder Nicht-Existenz hoherer
Proton-Isobaren fiir die Mesonstreuung so wesentlich ist, wurde

1) Herrrer, Nature 145, 29, 1940. Bhabba, Proc. Indian Acad. Sc. 11,

347, 1940.

?) Vgl. J. G. WmsoN, Proc. Roy. Soc. 174, 73, 1940. ’
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bereits von HEITLER und BaABHA ausgefiihrt. Etwas allgemeiner
dargestellt, ist die Lage die folgende: Der die Proton-Meson-
Wechselwirkung beschreibende Hamilton-Operator enthilt einen
Term H+, welcher die Absorption eines positiven und die Emission
eines negativen Mesons beschreibt, also Prozesse, bei denen sich
die Ladung des ,,Protons um 1 vermehrt, daneben den zu H+*
hermitisch-konjugierten Term H-, der die inversen Prozesse dar-
stellt, welche die Protonladung um 1 vermindern. Als Matrizen
beziiglich der Protonladungszahl n geschrieben, haben H+ und H-
folgende Gestalt:

\ H;:’nz an’, n+l ' A'n ’ H;’—n = H:nﬂ: = dn’, n—1" A*—l ; (1)

n

hier ist 4, noch eine Matrix bzw. ein Operator beziiglich der
anderen Systemvariablen. Berechnet man nun das Matrixelement
eines Streuprozesses, wie iblich, aus einer zweiten stérungstheo-
retischen Naherung, so sind fiir diesen zweistufigen Prozess (der
iber einen virtuellen Zwischenzustand fiihrt) jeweils zwei Wege
in Betracht zu ziehen, die sich durch die Reihenfolge der Teil-
prozesse (Absorption des prim#iren und Emission des sekundiren
Mesons) unterscheiden. In der Naherung, dass der Energieunter-
schied des streuenden Protons in Anfangs- und Zwischenzustand
(Massenunterschied und Riickstossenergie) vernachlassigt wird,
sind die Energie-Nenner gleich der Meson-Energie w, einmal mit
dem positiven und einmal mit dem negativen Vorzeichen genom-
men. In dieser Naherung sind daher, wie man leicht sieht, die
Matrixelemente der Streuprozesse bis auf einen Faktor +1/w
gleich den betreffenden Elementen der Kommutatormatrix | H+, H-|,
fir welche man mit (1) erhilt:

[H* H "y = O - {Anq A%, — A*A,). @)

Es scheint nun, dass das Verschwinden dieser Matrixelemente
gefordert werden muss, damit die exakt berechnete Streuung
gentigend klein wird. Damit insbesondere die Streuung am Neu-
tron (n = 0) und am normalen Proton (n = 1) schwach wird, wire
also zu verlangen: '

[H*, HJgp = A1 4%, — 454, =0, (3
[H*, H ]y, = Ao 45 — 474, = 0. )
In der urspriinglichen Yukawa-Theorie ist diese Forderung uner-
fullbar, da n auf das Wertepaar 0,1 beschréankt ist und alle 4,
ausser 4, nach Definition verschwinden. Vielmehr erfordert (3),

dass ausser 4, mindestens A_; und 4, von null verschieden sind,
was die Existenz der Zustinde n = — 2 und n = + 1 voraussetzt.
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Verlangt man iiberdies — was naheliegend scheint —, dass
dié Protonzustéande » = 0 und 1 hinsichtlich der Stérke der Meson-
streuung vor den iibrigen Zusténden nicht amsgezeichnet sind, so
lauft dies offenbar auf die weitergehende Forderung hinaus, dass
alle Matrixelemente (2) verschwinden:

H+ H]=0, A, ,A* = A*4,  (tir alle n). (4)
n—1 n

Dies ist beispielsweise der Fall, wenn man die-Operatoren. 4, von
n unabhéngig wihlt, derart dass 4 und A* kommutieren:

CAdn= 4, [4,4*%]=0. ()

Es 1st bemerkenswert, dass (4) nur erfillbar ist, wenn A4, fiir
alle ganzzahligen n-Werte von Null verschieden 1st (sofern 44+ 0);
es 1st also dann nicht moglich, die Ladungszahlen auf einen ein-
seitig oder zweiseitig begrenzten Bereich zu beschrinken, wie etwa
die negativen Ladungen auszuschliessen; jedenfalls wiirde ein an
einer solchen Grenze gelegenes Proton-Isobar, wie z. B. das Neutron
(n = 0), die Mesonen stark streuen. Dies gilt auch, wenn man dem
Proton noch weitere hohere Zustinde (z. B. solche héheren Spins,
s.u.) zuschreibt.

Da die Theorie ferner jeder Partikel noch eine Antipartikel
(gleicher Masse und umgekehrter Ladung) zuordnet, hitte man
also jede Ladungszahl durch (mindestens) zwei schwere Partikeln
reprasentiert zu denken, die nicht miteinander identifiziert werden
diirfen. Beispielsweise gibe es fiir n = + 1 neben dem normalen
Proton die Antipartikel des ,,negativen Protons* (n = —1), die
nicht nur eine grossere Masse, sondern auch andere Ubergangs-
moglichkeiten besitzt; so kann sie — nach der ,,Léchervorstellung*’
— zusammen mit einem normalen Neutron in ein positives Meson
und ein Lichtquant ,,zerstrahlen‘, was vom normalen Proton
natirlich nicht angenommen werden darf.

Es 1st zuzugeben, dass das so erhaltene Bild auf den ersten
Blick wenig ansprechend ist. Doch muss man mit der Méglich-
keit rechnen, dass die Mesontheorie nur haltbar ist, wenn min-
destens das negative und das doppelt-positive Proton existieren,
und dann liegt es zweifellos nahe, beliebige ganzzahlige Ladungen
zuzulassen und ferner hinsichtlich der Kopplung mit dem Meson-
feld eine Gleichberechtigung aller isobaren Zustéinde anzunehmen,
d.h. 4, von n unabhingig anzusetzen. In diesem Falle ist die
Streuung an allen Proton-Isobaren schwach, vorausgesetzt dass
A und A* (wenigstens im statischen Grenzfall, d. h. beir Vernach-
lassigung der Protongeschwindigkeiten) kommutieren.
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Diese Vertauschbarkeit von 4 und 4* besteht tatsédchlich 1m
Fall des skalaren Mesonfeldes. Anders ist dies jedoch im Falle
des vektoriellen Mesonfeldes mit Spinkopplung, wo die Pauli’schen
Spinmatrizen des Protons zu einer Nichtvertauschbarkeit Anlass
geben. Die Einfithrung der Protonzustinde hoherer Ladung gentigt
hier also noch nicht, um die Streuung der (transversalen) Mesonen
wesentlich herabzusetzen. Aus diesem Grunde hat HeiTLER ausser-
dem Protonzustéinde mit héherem Spin (3/2, 5/2, ...) eingefiihrt
und die Matrix 4 dementsprechend erweitert. Dagegen glaubt
BraBHA mit den Zustinden hoherer Ladung allein, d.h. ohne
diejenigen hoheren Spins auskommen zu kénnen, da er durch
Rechnungen tiiber eine klassische (unquantisierte) Mesonfeldtheorie
hat zeigen konnen, dass die spin-bedingte Streuung der trans-
versalen neutralen Mesonwellen durch Strahlungsdémpfungseffekte
wesentlich herabgesetzt wird, und zwar schon bei verhéltnisméssig
niedrigen Werten der Mesonenergie!). Es bleibt allerdings sehr
zweifelhaft, ob eine solche klassische Theorie der Strahlungsddmp-
fung eine gute Approximation darstellt. Angesichts dieser ver-
wickelten Lage scheint es zweckmiissig, vorerst vom Spin abzu-
sehen und die Untersuchung auf die skalare Theorie zu beschrénken.

§ 2. Problemstellung.

Bel der bisherigen Diskussion der Mesonstreuung stiitzten wir
uns auf die ibliche Stérungsmethode, welche die Kopplungs-
operatoren H+ H- als kleine Grossen betrachtet und nach ihnen
entwickelt; in der verwendeten N#herung bleiben Strahlungs-
ddampfungs- und &hnliche Effekte unberiicksichtigt. Angesichts
der bekannten Méngel dieser Methode diirfte es nicht tberflissig
sein, ihre Ergebnisse mittels eines andern Niherungsverfahrens
nachzupriifen, das nicht auf den Fall schwacher Kopplung be-
schrénkt 1st.

In der Tat kann fir Theorien, welche den Anforderungen (5)
(exakt oder angendhert) gentigen, ein solches Verfahren ange-

1) BEABHA, Proc. Indian Acad. Sec. 11, 247, 1940; vgl. auch HEISENBERG,
ZS. f. Phys. 113, 61, 1939 und IwaNENKO, Comptes Rendus (Doklady) de I’Acad.
des Sciences de 'URSS 28, 411, 1940.— In welchem Ausmass die ladung-bedingte
Streuung durch ahnliche Effekte beeinflusst wird, ist noch nicht bekannt, da
eine klassische Theorie geladener Felder fehlt und eine quantentheoretische Be-
rechnung auf Grund der urspriinglichen Yukawa-Theorie in ausreichender Nahe-
rung bisher nicht gelungen ist; die vom Grenzfall starker Kopplung ausgehende
Niherung (WENTZEL, Helv, Phys. Acta 13, 269, 1940) spricht aber gegen einen
geniigenden Strahlungsdampfungseffekt und somit indirekt fiir die Existenz der
Protonen hoéherer Ladung.
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‘geben werden; es beruht darauf, dass die Energiedinderungen, die
das ,,Proton’® — z. B. bei Streuprozessen — erleidet, als klein
angesehen werden ; diese Energiednderungen setzen sich zusammen
aus den Massendifferenzen benachbarter Proton-Isobaren und aus
den Anderungen der kinetischen Energie infolge Riickstosses.
Wenn diese Energieinderungen iiberhaupt vernachlissigt werden,
ist das Problem, wie wir am Beispiel des skalaren Feldes mit beson-
derer Kopplung bereits an anderer Stelle gezeigt haben?), exakt
l6sbar; in dieser ,,nullten Naherung* findet iiberhaupt keine Meson-
streuung statt, d.h. die Streuung verschwindet nicht nur, wie
im §1 gezeigt wurde, In zweiter storungsmaéssiger Naherung, son-
dern exakt, hinsichtlich beliebiger Potenzen des Kopplungspara-
meters. Von dieser nullten N#aherung ausgehend kann dann nach
den kleinen Energiedifferenzen entwickelt werden.

Es ist auffallend, dass die Theorie in dieser Form eine gewisse
Verwandtschaft zur Elektrodynamik aufweist, wo ja auch im Falle
ruhender Punktladungen, d.h. bei Vernachléssigung des Riick-
stosses, exakte Losungen existieren, welche die Lichtstreuung zu
null machen. Obwohl wir keinen theoretischen Grund haben, eine
solche Analogie mit der Elektrodynamik zu fordern, legt doch
die erfahrungsmissige Kleinheit der Mesonstreuung die Annahme
nahe, dass die Analogie tatsiichlich besteht, dass also der Ansatz (5),
auf dem das Naherungsverfahren wesentlich beruht, der Wirk-
lichkeit entspricht, '

Die Lagrange’sche Funktion des Systems (Protonen und ska-
lares geladenes Mesonfeld) sei:

L=L? 4+ LF + LW (6)
mit

Lpzéfdm’{’*{%(fp+§grad ) + MY}, -

L7 = fdm{qp* p — grad p* - grad v — pu? p* p}.
‘Hier bedeuten ¥, v die Proton- und Meson-Wellenfunktionen;
¥ ist mit Spin- und Ladungsindices versehen zu denken (z. B.
YEMBY=-22295 M,B,,P.,); , f sind die Dirac’schen Spin-

ne o

matrizen. Fir den Wechselwirkungsterm LW gibt es bekannt-
lich?) zwei relativistisch invariante Ansiitze:
LY = [dx®* {fr(y+& grad p) + fFo*(p* + & grad y*)} ¥, (8)
LY = [da®* B {gvy + g* v* y*} ¥, (9)

1) WenNTzEL, Helv. Phys. Acta 13, 269, 1940, Anhang 2.
%) Vgl. KemmEeR, Proc. Roy. Soc. 1685, 127, 1938.



8 Gregor Wentzel.

die auch linear kombiniert werden konnen. 7,t* bedeuten die
auf die Ladungszahl n wirkenden Matrizen des ,,isotopen Spins*:

Tprn = (t*)nn’ = 67‘1’7&_1 : (10)

(also P*t W = ZW* W, W** W — ZW*YP, ). Da n alle ganz-

zahligen Werte annehmen soll, sind = und t* vertauchbar. Ferner
sollen die Kopplungsparameter f und g in (8), (9) von n unabhéngig
gewahlt sein, damit die entsprechenden Terme der Hamilton-
funktion den Forderungen (5) im statischen Grenzfall (a = 0)
geniigen. f hat die Dimension einer Lénge, g ist dimensionslos
(Massen und Energien werden in reziproken Ldngen gemessen).
Elektromagnetische Wechselwirkungen bleiben ausser Betracht.

Wir werden im Folgenden die Ansdtze (8) und (9) getrennt
behandeln, und zwar aus folgendem Grunde. Fir den Fall (8)
wird sich zeigen, dass es fiir die Aufstellung strenger Losungen
nur notig i1st, die Ruhmassen der Protonzustédnde einander gleich
zu setzen, wihrend die Vernachlassigung der kinetischen Energien
nicht erfoderlich ist. Die so erhaltenen relativistisch invarianten
Losungen sind aber insofern uninteressant, als sie jede Wechsel-
wirkung zwischen Protonen und Mesonen zunichte machen: nicht
nur die Mesonstreuung, sondern auch die Selbstenergie und die
Kernkréafte verschwinden in der Naherung, dass die Ruhmassen-
differenzen der Proton-Isobaren vernachlassigt werden. Wenn nun
von hier aus nach den Massendifferenzen entwickelt wird, so zeigt
sich fiir den Fall (8), dass bei gegebener Grosse der Kernkrifte die
Streuung nicht schwach ist (vgl. § 3).

Anders liegen die Dinge im Falle des Ansatzes (9). Hier sind
die exakten Losungen nur fiir den statischen Grenzfall giiltig. In
nullter Naherung verschwindet zwar die Mesonstreuung, nicht aber
die Kernkréafte, so dass man in erster Niaherung eine schwache
Streuung erhilt (§ 4). Ebenso verhilt es sich, wenn eine lineare
Kombination von (8) und (9) gewihlt wird. Fiir diesen komplizier-
teren Fall filhren wir aber die Rechnung nicht durch, da er gegen-
tiber (9) nichts wesentlich Neues ergibt.

§ 3. Der Ansatz LW:L}V.

Die zu y, y* kanonisch konjugierten Wellenfunktionen sind
nach (6), (7) und (8):

n=9£,=¢*+fT*tYf, n*:——gi
¥

— LW
iv p+] T
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Hiermit erhélt man fiir die Hamiltonfunktion im Falle (8)?):

H=[da¥* (ﬂM+a 3 grad — fr(grad y) — f*<* (grad v )}) '
+[dz {(n* — fPERP) (n — fPRTP) + p* (u— Ay} (11)

Wir behandeln einfachheitshalber zunichst den Fall, dass nur
ein einziges Proton anwesend ist, und stellen zu diesem Zwecke H
in bekannter Weise?) als einen Operator dar, der ausser auf die
Feldvariablen auf die Protonkoordinaten zp, n (Ladungszahl) und
Spinindex wirkt:

H=pBM+%-{p—fr(grad y)p — f*7* (grad y*)p}

+ [da{(a* —f*o* 8 (z— 2p)) (x—frd (@—zp)) +9* (u> — A) v} (12)
(p = — 4 gradp; der Index P an den Wellenfunktionen deutet an,

dass diese am Ort des Protons zu nehmen sind). Die Vertau-
schungsrelationen fiir die kanonisch konjugierten Feldfunktionen

lauten: :
[v(z), #(2z")] = [9* (2), 2* (2)] = 16 (z — ), (18)

wahrend die anderen Funktionenpaare kommutieren.
Wir definieren einen Operator S durch:

S — gré+E (14)
WO
E=—ifyp, E*¥=+if*yh (15)
Da 7¢& und 7* &* kommutieren, 1st

B =88%=1, %= 81,

S ist also ein unitirer Operator, der zur Transformation von H
dienen kann. Nach (13), (14) und (15) erhédlt man durch Vertau-
schung von #,n* und p = — 4 gradp, mit S:

{n (x —fréx—xP}S Sx(x),

{n* (x) —f*¥1* 6 (x—xp)} S = Sa* (x),

{p — f'r(grad ) p — f¥v*(grad y*) } S=S8p.
Der Hamiltonoperator (12) transformiert sich hiernach wie folgt:

H' =S-HS={M' +ap}+[dx{n*n + y* (u*— A)v}. (16)

(13

Wird in ,nullter Néherung die Protonmasse M von der
Ladungszahl » unabhéngig angenommen, so ist [M, S]= 0 und

1) Vgl. KEMMER, L. c.
%) Formal braucht man in (11) nur ¥* - - - ¥ durch 6(x— xp) * - - zZu ersetzen.
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folglich M" =S-*MS = M. In dieser Niaherung ist das Pro-
blem separiert: wir haben ein Proton und ein Mesonfeld ohne
jede Kopplung. Dabei ist zu beachten, dass jede Feldgrosse (Funk-
tion von m* 7, 9*, w und ihrer Ableitungen) ausserhalb des Pro-
tons (z+ zp) mit S kommutiert, also durch die Transformation
mit S nicht gedndert wird. Hieraus folgt, dass in nullter Naherung
die Erwartungswerte solcher Feldgrossen (z. B. der Energiedichte)
in beliebigen Zustdnden des Systems die gleichen sind wie bel
Abwesenheit des Protons, womit insbesondere evident ist, dass
eine Mesonstreuung in dieser Néherung nicht stattfindet. Die
Iixistenz dieser trivialen relativistisch invarianten Losungen héngt
offenbar -mit dem Fehlen einer Selbstenergiekonstanten in (16)
zusammen.

Hinsichtlich der physikalischen Interpretation der stationéren
Zustinde nullter Néherung ist auf folgendes zu achten: Die La-
dung und der Impuls des Mesonfeldes sind bekanntlich:

N = ifda:(nip—n*w*), pP= a—fdw(ngrad p + 7* grad p*).
Vertauscht man diese mit S, so kommt:
[N, 8] =i {fryp—f*e*pp} 8 = —[n, 8],
[P, 8] = —{fr(grad v)p + f*7* (grad y*)p} S = —[p, §];
telghen (n+N,S]=0, [p+P 8=0.

Die Transformation mit S lasst also die Gesamtladang (n + N)

von Proton und Mesonen sowie ihren Gesamtimpuls (p + P) in-
variant. Die Eigenfunktionen nullter Ndherung von H', die beziiglich
Proton- und Feld-Variablen separiert sind, kénnen nun so gewahlt

werden, dass n und N, sowie p und P einzeln diagonal werden.

Die so erhaltenen Eigenwerte von N und P kénnen als Ladung
und Impuls der freien Mesonen interpretiert werden, wahrend
Ladung und Impuls des gesamten Mesonfeldes sich durch Anwen-

dung der Operatoren N’ = S-!NS und P’'= S-1PS auf die
Eigenfunktionen nullter Naherung berechnen. Demgeméss geben
jene Eigenwerte von n und » Ladung und Impuls des Protons
einschliesslich seiner gebundenen Mesonen an, wogegen die auf
das feldfreie Proton beziiglichen Grossen n' = S-1nS,p ' =S-1p S
nicht diagonal sind. In diesem Sinne kann man sagen, dass die
Eigenfunktionen nullter Niherung stationire Zustinde der freien
Mesonen und des Protons mit gebundenem Mesonfeld beschreiben.

Y Aus[n, )= -7, [n, 78] = —kk folgt [n, c-7¢ = 7Ee-7¢, cntsprechend
[n, e* &' = v* §*er* &%, also [n, 8] = (v E+7* &%) S,
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Kehren wir zum Problem (16) zuriick, wo nunmehr die Proton-
masse irgendwie ladungsabhingig angenommen werden soll (M=
M(n)), so wird M’ = S-*MS+ M. Mit (14) erhélt man durch
Entwicklung der Exponentialfunktion:

- i i %ll (E7 — EXT¥)E M (— £ + E¥ %)
@ 1 z_‘ . ] W

= S 3 () v — e M (g 4 gy
=0 Ic=0 _

= Mot [gr— s, M)+ o [sr—gver, [Sr— 840, M])+-

Nach (10) sind aber 7, * die Operatoren, die die Ladungszahl n
um 1 erhéhen bzw. vermindern:

tM(n) = M(n + D)7,  t*M(n) = M(n —1)z*

Hiermit lasst sich M’ leicht als Matrix beziiglich der Ladungs-
zahl darstellen :
M;L’n =M (n) an’, n
-+ {f* [M(’ﬂz + 1) — M(n)] dn’, n+1
- E[M(n) T M(% - 1)] 61@’, n—1 }
+ 3{&*2 [(M(n+2) —2M(n + 1) + M(n)]6, .5
+ 28 [Mmn+1)—2M(n) + M(n—1)]6, ,
+ &2 [M(n)—2 M(n —1) + M(n—2)18, 52}
+5g {E¥2 [M(n+8) —8 M(n+2)+8 M(n + 1) — M(n)]d, s
+3 §*2§[M(n_1'_2) (fn,—l— )+3 M(Tb)_M(n_l)]én’,nJrl
18 gHee [M(n+1)—3M(n) M(n—1)—M(n—2)]8,, ,—
+ &8 [M(n)—8 M(n—1)+8 M(n 2) — M (n —8)]0,,03}
© mmme, am

(Das Bildungsgesetz dieser Reihe diirfte auch ohne Anschreibung
des allgemeinen Gliedes klar sein: im ¢-ten Gliede treten ausser
Binomialkoeffizienten die i-ten Differenzenquotienten der Funk-
tion M (n) auf.) |
Schreibt man statt (16):
' H' = H?P + HF + (M’ — M), (18)
WO
HP = BM + 2P, HY= [da{n*7 + y*(u2—4)y}, (19)
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s0 kann man den Term B(M’'— M) als eine Stérungsmatrix be-
trachten. Setzt man in diese die Reihe (17) ein, so heben sich
die Terme 4 fM (n)d,, , heraus, und die iibrigen Terme konnen
als klein gelten, wenn die Ruhmassenunterschiede benachbarter

Proton-Isobaren:
OM = M(n+ 1) — M(n) (20)

geniigend klein sind, und zwar, wie die Diskussion von Beispielen
lehren wird, klein gegen die Energien der beteiligten Mesonen.
Man kann dann im Sinne der Stérungsmethode nach Potenzen
von 0 M entwickeln. Die Elemente der Stérungsmatrix beschreiben,
vermoge der Faktoren &, &* (vgl. (15)), Emissions- und Absorp-
tionsprozesse freier Mesonen, die mit entsprechenden Ladungs-
und Impulsénderungen des Protons (einschliesslich seines gebun-
denen Mesonfeldes) verkniipft sind. Wir werden im §5 auf die
Diskussion der Stérungsmatrix und auf die Entwicklung nach
0M zuriickkommen.

Will man mehrere Protonen beriicksichtigen, so geht man
zweckméssig auf die Darstellung (11) des Hamiltonoperators zu-
riick, in der ¥* und ¥ Operatoren bedeuten, welche auf die Be-
setzungszahlen der Protonzustdnde wirken und den Vertauschungs-
regeln der Fermi-Dirac-Statistik gentigen. Fiir die Transforma-
tionsmatrix S i1st dann an Stelle von (14) zu setzen:

i [de W*frp+frr*ey*} &
Smef He,

; (21)
da ¥P*1¥ und P*1*¥ kommutieren, ist S wiederum unitér. Fiir
den transformierten Hamiltonoperator erhidlt man durch eine
kurze Rechnung, analog zu (16):

H = S'HS =81 [dzP*BMY¥ - S+ [daP*ap¥+ HF. (22)

In der nullten Niherung (M (n)=const.) kommutiert [dx¥*BM ¥
mit S, d.h. es wird
H' = > HP? + HF;
¥
in dieser Naherung besteht also keinerlei Wechselwirkung zwischen
Protonen und Mesonen oder zwischen zwei Protonen'). Fiir
M = M (n) erhdlt man dhnlich wie oben:

'2
+—;T [fry + f*T*tp*, [fry + [*v*p*, M]] +- - - '

1) Es ist zu beachten, dass auch keine Kernkrifte vom Nahewirkungstypus
(Potential ~ d(xp— xps)) auftreten.
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Die Storungsfunktion S—[ f dxP*BMVY, S) koppelt demnach das

Mesonfeld mit. jedem einzelnen Proton in derselben Weise, wie
dies oben durch die Stérungsfunktion B(M’ — M) beschrieben
wurde. Diese Meson-Proton-Wechselwirkung vermittelt zwar auch
Wechselwirkungen zwischen zwel Protonen, dies aber erst in
zwelter storungsméssiger Naherung, so dass die Proton-Krifte
den kleinen Faktor 0 M2 enthalten. Natiirlich konnte man durch
Wahl des Kopplungsparameters |f| diese Kernkrifte auf die er-
fahrungsméssige Grossenordnung bringen, doch wiirden dann die
Matrixelemente der Meson-Streuprozesse, welche 6 M nur in erster
Ordnung enthalten (vgl. § 5), viel zu gross. Im Falle des Kopp-
lungstypus L¥ = L kann also die Einfithrung der hheren Proton-

Isobaren keine Verbesserung gegeniiber der urspriinglichen Yu-
Kawa’schen Theorie mit sich bringen.

§ 4. Der Ansatz LY = L;V .
Mit dem Ansatz (9) wird der Hamiltonoperator:
H=[dz¥P*{fM + ap —grfy — g*v*By*} W+ HE. (29)

Rechnen wir zunichst wieder mit einem einzigen Proton, so wird
H, als Operator beziiglich der Proton-Koordination dargestellt:

H = HP + HF + HY, (24)

wo H? und H¥ (vgl. (19)) sich auf das freie Proton und das Va-
cuumfeld beziehen, und wo

HW = —gtByp — g*t* Byh. (25)

Zur Transformation von H verwenden wir wieder einen unitiren
Operator der Form (14), wo aber &, &* statt durch (15) folgender-
massen definiert sein sollen:

§=igB{(w?— M 7a*p, &= —ig*p{(u*—A)'a}p  (26)

Die Operation (42 — A)~! kann in bekannter Weise durch Fourier-
zerlegung ausgefilhrt werden, oder mit Hilfe der Formel:

e # |-t —xl

(2= 2)2f(x) = | [aa’ Tt @

Da auch hier v& und 7*&* kommutieren, gilt wieder S* = S-1.
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Mit (19), (14), (26), (13) und (25) kommt:
[HE, 8] = gepyp- S + 8 g*t*fyt = {—H” + B% 8,

E0 = — |g[2 {(u® — )71 ()} (28)

eine unendliche Selbstenergie des Protons darstellt, die natirlich
durch Einfiilhrung eines ,,Formfaktors* in H¥ (25) endlich gemacht
werden konnte. Man erhélt somit:

S-1(HF + HW)S = E° + HF,
H =S-'HS = HP +EO+-HF — 0+ HP L HF L (HP'— HP). (29)

WO

Um das Problem in nullter Naherung beziiglich des Protons
und der Mesonen zu separieren, vernachldssigen wir in H' (29)
den Term HF" — HP = S-1[HP?, S]. In dieser Niherung verschwin-
det wiederum die Mesonstreuung; da ndmlich alle Feldgrossen in
gentigendem Abstand vom Proton (| —Zp|> 1/u) mit S ((14),
(26)) kommutieren, sind ihre Erwartungswerte dort in nullter
Naherung die gleichen wie bei Abwesenheit des Protons. Auch

die Gesamtladung (n + N) und der Gesamtimpuls (p + P) erweisen
sich wieder als mit S vertauschbar. Die Eigenfunktionen nullter
Naherung beschreiben stationére Zustinde der freien Mesonen
sowle des Protons mit seinem gebundenen Mesonfeld.

Im Hinblick auf hohere Niherungen berechnen wir die Sto-
rungsfunktion

HP' — HP = p(M’ — M) + (3 5)' — (2 5). (30)
Hier gilt fir M’ = S-*MS wieder die Formel (17), wobel nur
&, &* die verdnderte Bedeutung (26) haben; die obige Ableitung
von (17) stiitzte sich ndmlich nur auf die auch hier giiltige Formel

(14). Zu beachten ist, dass die f-Matrix mit &, £* und folglich
auch mit S kommutiert. Dagegen gilt fiir die @-Matrix, wegen

af=—Pu:
aS=8"1%.

Hiermit ergibt sich fiir den Term (%)’ in (30):
(@) = S-1apS = S-1%S {p + S [p, ST}
= S-2% {p + vigradp & — v*i gradp £*},
oder
(ap) = e Ih —rigrady & + t*igrad, ¥} .  (31)

Die Bedeutung der nullten N#herung erhellt daraus, dass
die Storungsfunktion (30) verschwindet, wenn man einerseits allen
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Proton-Isobaren die gleiche Ruhmasse zuschreibt (6 M = 0, M’ = M)
und andererseits die Protonen als ruhend annimmt (¢ = 0, (¢ D)’
= (a p) = 0))). Eine Entwicklung nach den Matrixelementen von
(30) 1st daher im wesentlichen eine Entwicklung nach den Massen-
differenzen 6 M und nach der Riickstossenergie des Protons. Dieses
Verfahren ist, verglichen mit der tiblichen Entwicklung nach |g!,
natiirlich nur vorteilhaft, wenn die Matrixelemente von (30) klein
sind gegeniiber denjenigen, die man mit dem urspriinglichen Kop-
plungsoperator H? (25) als Stérungsfunktion erhalten wiirde. Dies
bedingt, wie man leicht sieht, dass nicht nur M, sondern auch
die kinetische Energie des Protons immer (auch in virtuellen
Zwischenzusténden) klein gegen die Mesonenergien o bleiben soll,
was wiederum nur erfiillbar ist, wenn alle Meson-Impulse <€ M
sind. Unter diesen Umstiénden bleiben aber die Riickstossenergien
des Protons klein gegen M, und es gentigt, sie in unrelativistischer
Niherung zu beriicksichtigen (rechterhand in (81) @ - p/M und
B —1). |
~ Bleibt die kinetische Energie des Protons sogar klein gegen
die Ruhmassendifferenzen 6M (20), wie z. B. bei der Streuung
langsamer Mesonen (Impuls < +/M[dM]), so sind die Matrix-
elemente von (81) belanglos gegeniiber denen von M’ (17), und
es geniigt eine statische Niherung (e > 0, # - 1). Dann reduziert
sich die Storungsfunktion (30) auf M’ — M, d. h. es wird (wie im
Falle LW = L¥) die Matrix (17) allein massgebend. Bei der Dis-
kussion im § 5 werden wir uns auf diesen statischen Grenzfall
beschrénken. Abgesehen von dieser Einschrénkung und von der
verinderten Bedeutung von &, &*, wird die Diskussion mit der-
Jenigen des Falles LW = L iibereinstimmen.

Zur Ableitung der Kernkréfte greifen wir wieder auf die all-
gemeine Darstellung (23) des Hamiltonoperators zuriick und trans-
formieren 1hn mit

S = e—.-ifdx Tx 3 (p2—A)-(gra*+gre*rm)t & (32)
(S* = S-' wegen [¥*BrVW,¥V*p+*¥]|=10). Die Vertauschung
dieses Operators mit HF (19) ergibt:
[HE, 8] [daP*grpyp¥ - S+ 8 - [ daPrgrr*py ¥

—[do B (gepy -+ greByN Y S+ Y,
WO

Ve==ig] 2fd ¥ (z)7 5P'(ﬂ?)fd x' P*(2)r* B (') - (uP-4)~1d (z—2'),

1) In dieser Naherung haben wir die Losung, wenn auch in anderer Schreib-_
weise, bereits im Anhang 2 der S. 7 zitierten Arbeit angegeben.
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oder mit (27): (33)
V=L facwe@yepeis) [arve @) pew) ;;%#

Fir den transformierten Hamiltonoperator (28) erhélt man hiermit:
H =S8'HS=8"1[dz¥V*{BM+ap} ¥ -S+V+HF. (34)

Vernachlassigen wir, im Sinne der nullten Naherung, den Kom-
mutator [ [dzP*{BM + &5} ¥, S], so wird

H' =S\H? + V + HF,
P

d. h. wir haben freie Mesonen ohne Wechselwirkung mit den Pro-
tonen, wihrend die Protonen untereinander durch das statische
Potential V' gekoppelt erscheinen. In der Tat beschreibt V (38)
ausser Selbstenergietermen vom Typus (28), statische Kernkrifte,
die hinsichtlich ihrer Ortsabhingigkeit mit den YUkAwA’scheh
Kriften iibereinstimmen, und deren Austauschcharakter durch die
1sotopen Spin-Matrizen 7, 7* (vgl. (10)) gekennzeichnet ist. Die
Moglichkeiten des Ladungsaustausches sind gegeniiber denen der
urspriinglichen Yukawa-Theorie verdoppelt, da jedes ,,Proton*
~die Ladung + 1 und die Ladung — 1 auf ein anderes Proton iiber-
tragen kann'). In hoheren N#herungen sind nur Meson-Proton-
Wechselwirkungen vom Typus (80) zu beriicksichtigen; ihre Bei-
trage zu den Kernkriften ergeben sich als klein gegen V, ausser
fiir Proton-Abstinde = 1/M (Compton-Wellenlinge des Protons),
wo die vom statischen Grenzfall ausgehende Néherung aus be-
kannten Griinden unzweckmissig ist. |

Der Ansatz L¥ = L¥ erweist sich also insofern als befriedi-
gend, als man Kernkrifte bereits in nullter Niherung, eine Meson-
streuung aber erst in erster Ndaherung erhalt. Natirlich sind die durch
das skalare Mesonfeld vermittelten Kernkrifte in der statischen
N#herang spin-unabhéngig, und es wird daher, wie in der YUKAWA-
schen Theorie, unerlasslich sein, auch vektorielle Mesonen in
Betracht zu ziehen.

1) Vgl. BHABHA, l. ¢., WENTZEL, 1. ¢. Z. B. kénnen sich zwei normale Pro-
tonen (n = 1) beim Zusammenstoss in ein Neutron und ein doppelt-positives
Proton umwandeln. Diese und dhnliche Umwandlungsmoglichkeiten diirften auch
beim Problem der Kernbindungsenergien nicht ohne Bedeutung sein, und zwar
sowohl bei den leichten als bei den schweren Kernen.
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§ 5. Diskussion der Meson-Proton-Wechselwirkung.

Wir diskutieren im Folgenden die Wechselwirkung freier Me-
sonen mit einem Proton (womit jetzt immer das Proton einschliess-
lich seiner gebundenen Mesonen gemeint ist). Nach Obigem wird
diese Wechselwirkung durch die Stérungsfunktion A(M"— M)
beschrieben, wobei M’ durch die Reihe (17) dargestellt werden
kann; und zwar gilt dies im Falle des Ansatzes L% — L¥ exakt,
im Falle LW = L¥ jedoch nur in statischer Néherung (ruhendes
Proton). & und &* sind im ersten Falle durch (15), im zweiten
Falle durch (26) definiert. Einen Term der Reihe (17), der in &
und &* vom t¢-ten Grade ist, nennen wir kurz einen ,,Term i-ten
Grades‘; er enthilt den Kopplungsparameter |f| bzw. |g| in der
i-ten Potenz. Diese Kopplungsparameter brauchen aber hier keines-
wegs als klein zu gelten; vielmehr sind es die als Koeffizienten
in (17) auftretenden Differenzenquotienten der Funktion M (n), die
wir als klein betrachten, weill sie sich linear durch die kleinen
Massendifferenzen M (20) ausdriicken, nach denen wir entwickeln
wollten. Die Terme verschiedenen Grades sind also alle von der
ersten «Ordnung klein.

Dies hat zur Folge, dass gewisse Fragen, die nach der tiblichen
- Storungsmethode (Entwicklung nach |f|loder |g|) die Durchrech-
nung komplizierter hoherer Naherungen erfordern wirden, auf
Grund von (17) schon mittels einer ersten Niherung beantwortet
werden konnen. Ob das Verfahren gut konvergiert, wird weniger
vom Zahlwert des Kopplungsparameters als von den massgeben-
den 0M-Werten und den Energien der beteiligten Mesonen ab-
héngen.

Freilich enthalten die Eigenwerte der Storungsfunktion
B(M"— M) wieder unendliche Selbstenergieterme, und zwar
bereits in der ersten Niaherung, da die Storungsmatrix selbst
unendliche Diagonalelemente besitzt. Daher stellt sich, ebenso
wie bel der iblichen Entwicklung nach |f| und |g|, die Frage,
wie weit die Ergebnisse von Storungsrechnungen iiberhaupt glaub-
haft sind. Mangels strenger Losungen (fir 6M +0) kiénnen wir
diese Frage nicht entscheiden und nehmen daher bei der folgenden
Diskussion wie tblich an, dass die verschiedenen Effekte durch
die niederste Niherung, in welcher die Storungstheorie nicht-
verschwindende Matrixelemente fiir dieselben liefert, wenigstens
qualitativ richtig beschrieben werden. (Vgl. hierzu aber Fuss-
note 1, S. 19.)

Unter den Termen 1. Grades in (17) beschreiben diejenigen
~ &* Protoniibergiinge n—>n + 1, die mit der Absorption eines

2
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positiven oder der Emission eines negativen Mesons verbunden
sind ; die Terme ~ & beschreiben natiirlich die inversen Prozesse.
Im Falle |0M| <€ u kommen diese Absorptions- und Emissions-
Prozesse nur als virtuelle Ubergénge (im Sinne der Stérungstheorie)
in Betracht; dann sind die betreffenden Matrixelemente klein
gegen diejenigen des urspriinglichen Kopplungsoperators H% (der
z. B. im Falle LW = L durch (25) gegeben ist), und zwar klem
wie |60M | gegen die Energie w des betreffenden Mesons. Im Falle
eines reellen Absorptions- oder Emissionsprozesses unter Energie-
Erhaltung (wir denken an den Fall, dass das Proton in einem
Kern gebunden ist, so dass |6 M| > u sein kann) werden die Matrix-
elemente, wie man leicht nachrechnet, gleich denen von HW, wo-
durch die Ubereinstimmung mit der iiblichen stérungsmissigen
Berechnung der Absorptions- und Emissionswahrscheinlichkeiten
fir den Fall schwacher Kopplung evident wird.

Die Terme 2. Grades entsprechen Prozessen, bei denen zwel
Mesonen gleichzeitig absorbiert oder emittiert werden, sowie
Streuprozessen. Im Falle |0M| <€ @ kommen nur die letzteren
als reelle Prozesse vor. Zu den betreffenden Matrixelementen
liefern zwar auch die Terme 1. Grades in zweiter storungsméssiger
Niherung Beitrige; doch sind diese Beitrige quadratisch in éM
und bleiben klein gegen die Terme 2. Grades, sofern | M(n 4 1)
— M (n)| klein ist gegen die Energie w des gestreuten Mesons (und
gegen M(n), falls > M(n)). Dies trifft z. B. sicher zu, wenn
| M(n 4+ 1) — M(n)| <€ u ist. Dann braucht man also bei der
Diskussion der Mesonstreuung nur die Terme zweiten (und hoheren)
Grades in erster stérungsmissiger Naherung in Betracht zu ziehen.

Wihrend der Term ~ &* & in (17) die gewdhnliche Streuung
eines positiven oder negativen Mesons enthalt, beschreiben die
Terme ~ &*2 und ~ &% Streuprozesse, die mit einem Ladungs-
wechsel des Mesons verbunden sind?). So sind in &*2 die Matrix-
elemente von Prozessen enthalten, bei denen ein positives Meson
verschwindet und ein negatives Meson entsteht, wahrend das Proton
seine Ladung um 2 #ndert. Da entsprechende Matrixelemente von
&* und & gleiche Betrige haben, ergibt sich nach (17) das Matrix-
element der Streuung eines positiven [negativen] Mesons unter
Ladungswechsel am Kern n—1 [n+1] (Endzustand n+1 [n—1]) gleich
gross wie das Matrixelement der Streuung ohne Ladungswechsel
am Kern n2) (sofern |0M| <€ w; beziglich der Beitrige der

1) Auf die Méglichkeit solcher Prozesse haben wir schon in der 8. 7 zitierten
Arbeit hingewiesen.

2) Der in (17) vor &£* & stehende Faktor 2 wird dadurch kompensiert, dass
die Terme &*2 und &2 die betreffenden Matrixelemente aus Symmetriegriinden
doppelt enthalten.
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Terme hoheren Grades gilt das gleiche; die Wahrscheinlichkeiten
der genannten Prozesse unterscheiden sich dann nur durch die
bekannten ,,Phasenvolumen‘‘-Faktoren?).

Von den Prozessen, die durch die Terme 3. und hoheren
Grades in (17) beschrieben werden, erwidhnen wir die Erzeugung
eines Mesonschauers: ein Meson wird absorbiert und es entstehen
(t+—1) Mesonen. Zur Berechnung der Wahrscheinlichkeit dieses
(reellen) Prozesses gentigt es, falls die mit dem Ubergang ver-
bundenen Masseninderungen des Protons klein gegen die Energien
der beteiligten Mesonen bleiben, die Terme i-ten (und hoheren)
Grades von (17) in erster storungsmissiger Ndherung heranzu-
ziehen, es sei denn, dass diese Terme aus anderen Griinden (s. unten)

1) Die oben besprochenen Streuprozesse liefern ein instruktives Beispiel
dafiir, wie vorsichtig man bei der Bewertung stérungstheoretischer Ergebnisse
sein muss: Greifen wir aus der Stérungsmatrix nur die Elemente der normalen
Streuung (ohne Ladungswechsel) heraus, welche ~ £*& gind, und beschrianken
wir uns auf die Streuung langsamer Mesonen, so dass das Proton als ruhend an-
gesehen werden kann. Dann reduziert sich die Storungsfunktion nach (15) bzw.
(26) auf :

B =H{ = ayp ¥p ; im Falle LV = LY,
HS = HY = b{(u2— A a*} {(u*— 4y @}, im Falle LV = L7,

wo a und b reelle positive Konstanten sind. Das so reduzierte Problem kann exakt
gelost werden durch die Hauptachsentransformation der in =*(z), #(x), y*(z),
w(x) bilinearen Form HF + HS. Die Eigenfrequenzen (») und Eigenschwingungen
dieser Form bestimmen sich im Falle HS H 3 durch die Differentialgleichung:

o(H'+ HY)
oy* ()

Dies ist die Schrodingergleichung einer Partikel in einem statischen Potentialfeld
~0d(x— xp), wobei das positive Vorzeichen von a einer abstossenden Kraft ent-
spricht; ein solches Potential bewirkt aber im Limes der ,,normierten‘ §-Funktion
( f dx d (z)=1, a endlich) bekanntlich iberhaupt keine Streuung. Die Proton-Meson- -
Wechselwirkung H f liefert also bei strenger Rechnung die Streuung null, wihrend
man in erster storungsméissiger Naherung (entsprechend der Born’schen Néhe-
rungslosung fiir ¢) den Streuquerschnitt a?/4 n erhalten hatte. Hieraus darf zwar
nicht geschlossen werden, dass die Storungsfunktlon (17) die Streuung null ergibt,
da bei strenger (nicht-linearer) Beriicksichtigung der ,,Terme 2. Grades konse-
quenterweise mindestens auch diejenigen 1. Grades streng in Rechnung gesetzt
werden miissten, was auf ein Problem vom Typus (24), (25) zuriickfithren wiirde.
Immerhin diirfte das obige — freilich besonders krasse — Beispiel lehren, dass
die niedersten storungstheoretischen Niherungen nicht immer vertrauenswiirdig
sind. — Was den Fall LY = LW anlangt, ist die Bestimmung der Eigenschwin-

gungen der Form HY + H - etwas verwickelter (fast das gleiche Problem haben wir

im § 7 der S. 7 zitierten Arbelt behandelt); hier ergibt sich Ubereinstimmung mit
der sbﬁrungstheoretlsehen Berechnung der Streuung, solange b <<€ w, d. h. |g|?|d M |
< o (= Meson-Energie).

—vip(x) + =(-v*+ut)y—Ady+ad(z—2p)y =0.
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klein sind, so dass auch die Beitrige der Terme niederen Grades
in zweiter und héherer stérungsmissiger Niherung von Bedeutung
werden.

In quantitativer Hinsicht spielt nach (17) der Charakter der
Funktion M (n), welche die Proton-Ruhmasse in Abhingigkeit von
der Ladungszahl darstellt, eine entscheidende Rolle. Die ein-
fachste, mit den bekannten Massen von Neutron (n= 0) und
Proton (n = 1) vertriagliche Annahme wire die einer quadratischen
Masse-Ladungsbeziehung :

M(n) = ap +aym +ayn® (a3 > 0, a; L —ay). (85)

Da die dritten und héheren Differenzenquotienten dieser Funktion
verschwinden, bricht dann die Reihe (17) mit den Termen 2. Gra-
des ab. Die zweiten Differenzenquotienten sind bereits von n un-
abhéangig, so dass die Matrixelemente der Streuung vom Zustand
des streuenden Protons unabhénglg werden; auch sind sie gleich
gross fir die Streuprozesse mit und ohne Ladungswechsel. Die
oben erwéhnten Matrixelemente der Schauer-Erzeugung, soweit
sie in 6 M linear sind, verschwinden im Falle (35); die betreffen-
den Wahrscheinlichkeiten werden also von hherer Ordnung klein:
1m Falle der Zweier- und Dreierschauer (1=38 bzw. 4) ~ 6M?*, be1
Vierer- und Fiinferschauern ~ M6, usw. Anders wird dies aber,
wenn dritte und hohere n-Potenzen in M(n) wesentlich vorkommen.
Wiirde die hier diskutierte oder eine verwandte Theorie der Wirk-
lichkeit entsprechen, so konnte man also aus der relativen Haufig-
keit von Schauern mit verschiedenen Partikelzahlen in Erfahrung
bringen, wie die Masse der Proton-Isobaren von der Ladung ab-
héngt.

Zum Schluss sel nochmals daran erinnert, dass sich die obige
Diskussion im Falle des Ansatzes LW = LY nur auf den statischen
‘Grenzfall beziehen sollte, indem die kinetische Energie des Pro-
tons <€ | 6M | angenommen wurde, was z. B. bei der Mesonstreuung
die Beschrinkung auf Meson-Impulse << 4/M [§ M| bedingt. Was
die Streuung schnellerer Mesonen und die Schauer-Erzeugung in
jenem Falle anlangt, konnen die Aussagen mit Hilfe der Formeln
(30), (81) erweitert werden; aber nur bei Impulsen <€ M bleiben
dann die Vorziige unseres Niherungsverfahrens bestehen (vgl. § 4).
Im Falle LW = L fallen diese Einschrinkungen fort.

Zirich, Physikalisches Institut der Universitit.
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