
Zeitschrift: Helvetica Physica Acta

Band: 14 (1941)

Heft: I

Artikel: Zur Hypothese der höheren Proton-Isobaren

Autor: Wentzel, Gregor

DOI: https://doi.org/10.5169/seals-111168

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-111168
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Zur Hypothese der höheren Proton-Isobaren
von Gregor Wentzel, Zürich.

(7. XII. 40.)

Inhalt: Einleitend wird die HEiTLER-BHABHA'sche Hypothese der
Protonzustände höherer Ladung1) in ihrer Auswirkung auf das Problem der
Mesonstreuung diskutiert; die Forderung, dass die Mesonstreuung bei gegebener Grösse
der Kernkräfte schwach sei, liefert eine Einschränkung für die Wahl der Proton-
Meson-Kopplung. Für den Fall, dass der Kopplungsansatz gewisse einfache
Eigenschaften besitzt, lässt sich ein Approximationsverfahren angeben, welches
darauf beruht, dass die Massenunterschiede benachbarter Proton-Isobaren und
(eventuell) die Rückstossenergien der Protonen als klein betrachtet werden, und
welches gegenüber der üblichen Entwicklung nach Potenzen des Kopplungsparameters

den Vorzug hat, nicht auf den Fall schwacher Kopplung beschränkt zu
sein. Die Rechnung wird für das skalare (geladene) Mesonfeld durchgeführt, und
zwar auf Grund zweier verschiedener Kopplungsansätze. Der eine Ansatz führt
zu dem Ergebnis, dass jede Wechselwirkung zwischen Protonen und Mesonen
verschwindet in der Grenze, dass die Massen der Proton-Isobaren einander gleich
gesetzt werden; in diesem Fall liefert die Einführung höherer Proton-Isobaren
keine Verbesserung der ursprünglichen YuKAWA'schen Theorie.

§ 1. Zum Problem der Mesonstreuung.

Da es auf Grund der YuKAWA'schen Theorie schwierig, wenn
nicht unmöglich ist, die erfahrungsmässige Kleinheit der
Mesonstreuung2) mit der Grösse der Kernkräfte in Einklang zu bringen,
haben Bhabha und Heitler1) eine Variante der Mesontheorie
vorgeschlagen, nach welcher es ausser Neutron und Proton weitere

„Protonen" höherer Ladung, z. B. mit den Ladungszahlen
+ 2 und —1, geben soll. Diese Partikeln sollen dank höherer
Masse instabil (zum mindesten /3-aktiv) sein. Die Frage, unter
welchen Umständen solche Partikeln entstehen und beobachtet
werden könnten, ist von Bhabha untersucht worden. Nach der
so modifizierten Theorie kann die Mesonstreuung, bei grössenord-
nungsmässig gleich bleibenden Kernkräften, in der Tat erheblich
kleiner sein als nach der ursprünglichen YuKAWA'schen Theorie.

Woran es liegt, dass die Existenz oder Nicht-Existenz höherer
Proton-Isobaren für die Mesonstreuung so wesentlich ist, wurde

OE
x) Heitler, Nature 145, 29, 1940. Bhabha, Proc. Indian Acad. Sc. II.

347, 1940.
a) Vgl. J. G. Wilson, Proc. Roy. Soc. 174, 73, 1940.
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4 Gregor Wentzel.

bereits von Heitler und Bhabha ausgeführt. Etwas allgemeiner
dargestellt, ist die Lage die folgende: Der die Proton-Meson-
Wechselwirkung beschreibende Hamilton-Operator enthält einen
Term H+, welcher die Absorption eines positiven und die Emission
eines negativen Mesons beschreibt, also Prozesse, bei denen sich
die Ladung des „Protons" um 1 vermehrt, daneben den zu H+
hermitisch-konjugierten Term H~, der die inversen Prozesse
darstellt, welche die Protonladung um 1 vermindern. Als Matrizen
bezüglich der Protonladungszahl n geschrieben, haben H+ und H~
folgende Gestalt:

hier ist An noch eine Matrix bzw. ein Operator bezüglich der
anderen Systemvariablen. Berechnet man nun das Matrixelement
eines Streuprozesses, wie üblich, aus einer zweiten störungstheoretischen

Näherung, so sind für diesen zweistufigen Prozess (der
über einen virtuellen Zwischenzustand führt) jeweils zwei Wege
in Betracht zu ziehen, die sich durch die Reihenfolge der
Teilprozesse (Absorption des primären und Emission des sekundären
Mesons) unterscheiden. In der Näherung, dass der Energieunterschied

des streuenden Protons in Anfangs- und Zwischenzustand
(Massenunterschied und Rückstossenergie) vernachlässigt wird,
sind die Energie-Nenner gleich der Meson-Energie co, einmal mit
dem positiven und einmal mit dem negativen Vorzeichen genommen.

In dieser Näherung sind daher, wie man leicht sieht, die
Matrixelemente der Streuprozesse bis auf einen Faktor ±l/eo
gleich den betreffenden Elementen der Kommutatormatrix [H+, H~],
für welche man mit (1) erhält:

[H+,H-]n>n <V,„ • {An_xAl_x - A*nAn}. (2)

Es scheint nun, dass das Verschwinden dieser Matrixelemente
gefordert werden muss, damit die exakt berechnete Streuung
genügend klein wird. Damit insbesondere die Streuung am Neutron

(n 0) und am normalen Proton (n 1) schwach wird, wäre
also zu verlangen:

[H+, H-]oo= A_XA*_X- A*0A0= 0

[HAH-]11=AoA*0-A*1A1=0. j
(3)

In der ursprünglichen Yukawa-Theorie ist diese Forderung
unerfüllbar, da n auf das Wertepaar 0,1 beschränkt ist und alle An
ausser A0 nach Definition verschwinden. Vielmehr erfordert (3),
dass ausser A0 mindestens A_x und Ax von null verschieden sind,
was die Existenz der Zustände n — 2 und n + 1 voraussetzt.
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Verlangt man überdies — was naheliegend scheint —, dass
die Protonzustände n 0 und 1 hinsichtlich der Stärke der
Mesonstreuung vor den übrigen Zuständen nicht ausgezeichnet sind, so
läuft dies offenbar auf die Weitergehende Forderung hinaus, dass
alle Matrixelemente (2) verschwinden:

[H+, HA 0, An_xA*_x AIAn (für alle n). (4)

Dies ist beispielsweise der Fall, wenn man dia- Operatoren A„ von
n unabhängig wählt, derart dass A und A* kommutieren:

An A, [A,A*] 0. (5)

Es ist bemerkenswert, dass (4) nur erfüllbar ist, wenn An für
alle ganzzahligen n-Werte von Null verschieden ist (sofern A0 $ 0) ;

es ist also dann nicht möglich, die Ladungszahlen auf einen
einseitig oder zweiseitig begrenzten Bereich zu beschränken, wie etwa
die negativen Ladungen auszuschliessen ; jedenfalls würde ein an
einer solchen Grenze gelegenes Proton-Isobar, wie z. B. das Neutron
(n 0), die Mesonen stark streuen. Dies gilt auch, wenn man dem
Proton noch weitere höhere Zustände (z. B. solche höheren Spins,
s. u.) zuschreibt.

Da die Theorie ferner jeder Partikel noch eine Antipartikel
(gleicher Masse und umgekehrter Ladung) zuordnet, hätte man
also jede Ladungszahl durch (mindestens) zwei schwere Partikeln
repräsentiert zu denken, die nicht miteinander identifiziert werden
dürfen. Beispielsweise gäbe es für n + 1 neben dem normalen
Proton die Antipartikel des „negativen Protons" (n ——1), die
nicht nur eine grössere Masse, sondern auch andere Übergangs-
möglichkeiten besitzt; so kann sie — nach der „Löchervorstellung"
— zusammen mit einem normalen Neutron in ein positives Meson
und ein Lichtquant „zerstrahlen", was vom normalen Proton
natürlich nicht angenommen werden darf.

Es ist zuzugeben, dass das so erhaltene Bild auf den ersten
Blick wenig ansprechend ist. Doch muss man mit der Möglichkeit

rechnen, dass die Mesontheorie nur haltbar ist, wenn
mindestens das negative und das doppelt-positive Proton existieren,
und dann liegt es zweifellos nahe, beliebige ganzzahlige Ladungen
zuzulassen und ferner hinsichtlich der Kopplung mit dem Mesonfeld

eine Gleichberechtigung aller isobaren Zustände anzunehmen,
d. h. An von n unabhängig anzusetzen. In diesem Falle ist die
Streuung an allen Proton-Isobaren schwach, vorausgesetzt dass
A und A* (wenigstens im statischen Grenzfall, d. h. bei Vernachlässigung

der Protongeschwindigkeiten) kommutieren.
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Diese Vertauschbarkeit von A und A* besteht tatsächlich im
Fall des skalaren Mesonfeldes. Anders ist dies jedoch im Falle
des vektoriellen Mesonfeldes mit Spinkopplung, wo die Pauli'schen
Spinmatrizen des Protons zu einer Nichtvertauschbarkeit Anlass
geben. Die Einführung der Protonzustände höherer Ladung genügt
hier also noch nicht, um die Streuung der (transversalen) Mesonen
wesentlich herabzusetzen. Aus diesem Grunde hat Heitler ausserdem

Protonzustände mit höherem Spin (3/2, 5/2, eingeführt
und die Matrix A dementsprechend erweitert. Dagegen glaubt
Bhabha mit den Zuständen höherer Ladung allein, d. h. ohne
diejenigen höheren Spins auskommen zu können, da er durch
Rechnungen über eine klassische (unquantisierte) Mesonfeldtheorie
hat zeigen können, dass die spin-bedingte Streuung der
transversalen neutralen Mesonwellen durch Strahlungsdämpfungseffekte
wesentlich herabgesetzt wird, und zwar schon bei verhältnismässig
niedrigen Werten der Mesonenergie1). Es bleibt allerdings sehr
zweifelhaft, ob eine solche klassische Theorie der Strahlungsdämpfung

eine gute Approximation darstellt. Angesichts dieser
verwickelten Lage scheint es zweckmässig, vorerst vom Spin
abzusehen und die Untersuchung auf die skalare Theorie zu beschränken.

§ 2. Problemstellung.

Bei der bisherigen Diskussion der Mesonstreuung stützten wir
uns auf die übliche Störungsmethode, welche die Kopplungsoperatoren

H+,H~ als kleine Grössen betrachtet und nach ihnen
entwickelt; in der verwendeten Näherung bleiben Strahlungs-
dämpfungs- und ähnliche Effekte unberücksichtigt. Angesichts
der bekannten Mängel dieser Methode dürfte es nicht überflüssig
sein, ihre Ergebnisse mittels eines andern Näherungsverfahrens
nachzuprüfen, das nicht auf den Fall schwacher Kopplung
beschränkt ist.

In der Tat kann für Theorien, welche den Anforderungen (5)
(exakt oder angenähert) genügen, ein solches Verfahren ange-

1) Bhabha, Proc. Indian Acad. Sc. II, 247, 1940; vgl. auch Heisenberg,
ZS. f. Phys. 113, 61, 1939 und Iwanenko, Comptes Rendus (Doklady) de l'Acad.
des Sciences de l'URSS 28, 411, 1940.— In welchem Ausmass die ladung-bedingte
Streuung durch ähnliche Effekte beeinflusst wird, ist noch nicht bekannt, da
eine klassische Theorie geladener Felder fehlt und eine quantentheoretische
Berechnung auf Grund der ursprünglichen Yukawa-Theorie in ausreichender Näherung

bisher nicht gelungen ist; die vom Grenzfall starker Kopplung ausgehende
Näherung (Wentzel, Helv. Phys. Acta 13, 269, 1940) spricht aber gegen einen
genügenden Strahlungsdämpfungseffekt und somit indirekt für die Existenz der
Protonen höherer Ladung.
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geben werden; es beruht darauf, dass die Energieänderungen, die
das „Proton" — z. B. bei Streuprozessen — erleidet, als klein
angesehen werden ; diese Energieänderungen setzen sich zusammen
aus den Massendifferenzen benachbarter Proton-Isobaren und aus
den Änderungen der kinetischen Energie infolge Rückstosses.
Wenn diese Energieänderungen überhaupt vernachlässigt werden,
ist das Problem, wie wir am Beispiel des skalaren Feldes mit besonderer

Kopplung bereits an anderer Stelle gezeigt haben1), exakt
lösbar; in dieser „nullten Näherung" findet überhaupt keine
Mesonstreuung statt, d. h. die Streuung verschwindet nicht nur, wie
im § 1 gezeigt wurde, in zweiter störungsmässiger Näherung,
sondern exakt, hinsichtlich beliebiger Potenzen des Kopplungsparameters.

Von dieser nullten Näherung ausgehend kann dann nach
den kleinen Energiedifferenzen entwickelt werden.

Es ist auffallend, dass die Theorie in dieser Form eine gewisse
Verwandtschaft zur Elektrodynamik aufweist, wo ja auch im Falle
ruhender Punktladungen, d. h. bei Vernachlässigung des
Rückstosses, exakte Lösungen existieren, welche die Lichtstreuung zu
null machen. Obwohl wir keinen theoretischen Grund haben, eine
solche Analogie mit der Elektrodynamik zu fordern, legt doch
die erfahrungsmässige Kleinheit der Mesonstreuung die Annahme
nahe, dass die Analogie tatsächlich besteht, dass also der Ansatz (5),
auf dem das Näherungsverfahren wesentlich beruht, der
Wirklichkeit entspricht.

Die Lagrange'sche Funktion des Systems (Protonen und ska-
lares geladenes Mesonfeld) sei:

L Lp + IA + Lw (6)
mit

Lp=-fdxW* |i(«F+Sgrad W) + MßWJ, 1

LF fdx Up* Yp — grad ip* • grad ip — fi2 f* y>}. ]

Hier bedeuten W, y die Proton- und Meson-Wellenfunktionen;
¥ ist mit Spin- und Ladungsindices versehen zu denken (z. B.
W*MßW=2:i:z;V*0MnßoalFna); a, ß sind die Dirac'schen Spin-
matrizen. Für den Wechselwirkungsterm Lw gibt es bekanntlich2)

zwei relativistisch invariante Ansätze:

Lf fdxW*{fr(y + a grad ip) + f*r*(y>* + S grad ip*)}W, (8)

LJ fdxiF*ß{gxf + g*r*f*}W, (9)

x) Wentzel, Helv. Phys. Acta I3, 269, 1940, Anhang 2.
2) Vgl. Kemmer, Proci Roy. Soc. I6S, 127, 1938.

(•)
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die auch linear kombiniert werden können, t, t* bedeuten die
auf die Ladungszahl n wirkenden Matrizen des „isotopen Spins" :

rn'n (x )nn' — ««', n-1 (1")

(also V*tV Z¥*xWn,¥*T*W=2W*n¥n_x). Da n alle ganz-
n n

zahligen Werte annehmen soll, sind t und t* vertauchbar. Ferner
sollen die Kopplungsparameter / und g in (8), (9) von n unabhängig
gewählt sein, damit die entsprechenden Terme der Hamiltonfunktion

den Forderungen (5) im statischen Grenzfall (a 0)

genügen. / hat die Dimension einer Länge, g ist dimensionslos
(Massen und Energien werden in reziproken Längen gemessen).
Elektromagnetische Wechselwirkungen bleiben ausser Betracht.

Wir werden im Folgenden die Ansätze (8) und (9) getrennt
behandeln, und zwar aus folgendem Grunde. Für den Fall (8)
wird sich zeigen, dass es für die Aufstellung strenger Lösungen
nur nötig ist, die Ruhmassen der Protonzustände einander gleich
zu setzen, während die Vernachlässigung der kinetischen Energien
nicht erfoderlich ist. Die so erhaltenen relativistisch invarianten
Lösungen sind aber insofern uninteressant, als sie jede Wechselwirkung

zwischen Protonen und Mesonen zunichte machen: nicht
nur die Mesonstreuung, sondern auch die Selbstenergie und die
Kernkräfte verschwinden in der Näherung, dass die Ruhmassendifferenzen

der Proton-Isobaren vernachlässigt werden. Wenn nun
von hier aus nach den Massendifferenzen entwickelt wird, so zeigt
sich für den Fall (8), dass bei gegebener Grösse der Kernkräfte die
Streuung nicht schwach ist (vgl. § 3).

Anders liegen die Dinge im Falle des Ansatzes (9). Hier sind
die exakten Lösungen nur für den statischen Grenzfall gültig. In
nullter Näherung verschwindet zwar die Mesonstreuung, nicht aber
die Kernkräfte, so dass man in erster Näherung eine schwache
Streuung erhält (§ 4). Ebenso verhält es sich, wenn eine lineare
Kombination von (8) und (9) gewählt wird. Für diesen komplizierteren

Fall führen wir aber die Rechnung nicht durch, da er gegenüber

(9) nichts wesentlich Neues ergibt.

§ 3. Der Ansatz Lw=Lj.
Die zu ip, y>* kanonisch konjugierten Wellenfunktionen sind

nach (6), (7) und (8):

n= d^A= w* + f¥*r¥, n* ^Ì-= w + f*W*x*W.
dip dip*
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Hiermit erhält man für die Hamiltonfunktion im Falle (8)x) :

H=fdxW*(ßM + x •jigrad-/T(grad^)-/*T* (grad y*)}) W

+jdx{(n*-f*W*T*W)(n-fW*riF) + ip*(fi2-A)ip}. (11)

Wir behandeln einfachheitshalber zunächst den Fall, dass nur
ein einziges Proton anwesend ist, und stellen zu diesem Zwecke H
in bekannter Weise2) als einen Operator dar, der ausser auf die
Feldvariablen auf die Protonkoordinaten xP, n (Ladungszahl) und
Spinindex wirkt:

H ßM + a • {p - fr (grad ip)P — f*x* (grad ip*)P}

+fdx{(n*-f*x*ô(x-xP))(n-frô(x-xP)) + ip*(fi2-A)ip} (12)

(p — i gradp ; der Index P an den Wellenfunktionen deutet an,
dass diese am Ort des Protons zu nehmen sind). Die
Vertauschungsrelationen für die kanonisch konjugierten Feldfunktionen
lauten :

[ip(x),n(x')] [ip*(x),n*(x')~] iô(x-x'), (13)

während die anderen Funktionenpaare kommutieren.
Wir definieren einen Operator S durch:

s=sr~,t + *rt (14)
wo

i=-ifipP, |*=+i/*y*. (15)

Da t| und t*|* kommutieren, ist

S*S=SS* 1, 8*=S-\
S ist also ein unitärer Operator, der zur Transformation von H
dienen kann. Nach (13), (14) und (15) erhält man durch Vertauschung

von n, n* und p — i gradP mit S :

{ji (x) — fxb(x — #p)} S Sn(x),
{n* (x) -/*x* ô (x-Xp)} S=Sn*(x),
{p — /r(grad ip)P — /*T*(grad ip*)P} S Sp.

Der Hamiltonoperator (12) transformiert sich hiernach wie folgt:

H' S-^HS {ßM' + *p} +f dx{n*n + ip* (fi2 - A)ip). (16)

Wird in „nullter Näherung" die Protonmasse M von der
Ladungszahl n unabhängig angenommen, so ist [M, 8] 0 und

1) Vgl. Kemmer, 1. c.
2) Formal braucht man in (11) nur W* ¦ ¦ ¦ V durch ô(x- xP) ¦ ¦ ¦ zu ersetzen.
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folglich M' S'1 MS M. In dieser Näherung ist das
Problem separiert: wir haben ein Proton und ein Mesonfeld ohne
jede Kopplung. Dabei ist zu beachten, dass jede Feldgrösse (Funktion

von n*,n, ip*, ip und ihrer Ableitungen) ausserhalb des Protons

(x dp xP) mit 8 kommutiert, also durch die Transformation
mit S nicht geändert wird. Hieraus folgt, dass in nullter Näherung
die Erwartungswerte solcher Feldgrössen (z. B. der Energiedichte)
in beliebigen Zuständen des Systems die gleichen sind wie bei
Abwesenheit des Protons, womit insbesondere evident ist, dass
eine Mesonstreuung in dieser Näherung nicht stattfindet. Die
Existenz dieser trivialen relativistisch invarianten Lösungen hängt
offenbar mit dem Fehlen einer Selbstenergiekonstanten in (1 6)

zusammen.
Hinsichtlich der physikalischen Interpretation der stationären

Zustände nullter Näherung ist auf folgendes zu achten: Die
Ladung und der Impuls des Mesonfeldes sind bekanntlich:

N i f dx(nip — n*ip*), P — f dx(n grad ip + n* grad ip*).

Vertauscht man diese mit 8, so kommt:

[N, S] i{fripP-f*x*ip*p} S -[n, S]1),

[P, S] -{/r(grad ip) P + f* x* (grad ip*)P} S=-[p,S];
folglich

[n + N,S] 0, [p + P, -S] 0.

Die Transformation mit S lässt also die Gesamtladung (n + N)
von Proton und Mesonen sowie ihren Gesamtimpuls (p + P)
invariant. Die Eigenfunktionen nullter Näherung von H', die bezüglich
Proton- und Feld-Variablen separiert sind, können nun so gewählt
werden, dass n und N, sowie p und P einzeln diagonal werden.
Die so erhaltenen Eigenwerte von N und P können als Ladung
und Impuls der freien Mesonen interpretiert werden, während
Ladung und Impuls des gesamten Mesonfeldes sich durch Anwendung

der Operatoren N' S~1NS und P'=S-1PS auf die
Eigenfunktionen nullter Näherung berechnen. Demgemäss geben
jene Eigenwerte von n und p Ladung und Impuls des Protons
einschliesslich seiner gebundenen Mesonen an, wogegen die auf
das feldfreie Proton bezüglichen Grössen n' S~1nS, p' S_1p S
nicht diagonal sind. In diesem Sinne kann man sagen, dass die
Eigenfunktionen nullter Näherung stationäre Zustände der freien
Mesonen und des Protons mit gebundenem Mesonfeld beschreiben.

x) Aus [«, t] -t, [n, ?*] - krk folgt [n, e-rî| xt^c-ti, entsprechend
[n, e*' «*] T*|*e** £*, also [n, S] (t£ + t*|*)ä.
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Kehren wir zum Problem (16) zurück, wo nunmehr die Protonmasse

irgendwie ladungsabhängig angenommen werden soll (M
M(n)), so wird M S^MS* M. Mit (14) erhält man durch
Entwicklung der Exponentialfunktion:

00 CO 1 1

M 2 2 TT TT (tr - S*r*)*M(- |r + i*x*Y
k=0 1=0 Û- tl

2^ S (lì (êr-£*T*)kM(- Çx + è*x*y-*

M + -A[ix-i*r*,M] + ^-[ix-er*AJx-i*x*,M]] + ---.

Nach (10) sind aber x, x* die Operatoren, die die Ladungszahl n
um 1 erhöhen bzw. vermindern:

xM(n) M(n + l)x, x*M(n) M(n — l)x*.

Hiermit lässt sich M' leicht als Matrix bezüglich der Ladungszahl

darstellen:

M'n,n= M(n)dn,.n
+ {i*[M(n + i)-M(n)]ô<n+1

+ ç[M(n)-M(n-l)]ô<n_1}
+ è {Ç*2 [M(n + 2)-2M(n + l) + M(n)]ô<n+2

+ 2 |*| [M(n + 1) — 2 M(n) -r M(n - 1)]S„,, „
+ |2 [M(n) - 2 M(n - 1) + M(n - 2)]ôn/n_2}

-^{f3 [M(n+8)-8 M(™+2)+3 M(n + l)-M(n)]ô<n+3
+ 3 Ì*2Ì[M(n+2)-\ì M(n+l)+3 M(n)-M(n-l)]ô<n+x
+ 8i*i2[M(n+l)-SM(n)+W,M(n-l)-M(n-2)]ôn^n_x
+ |s [M (n) - 3 M (n -1) +3 M (n- 2) - M (n - 3)] d„,, »_8}

+ • (17)

(Das Bildungsgesetz dieser Reihe dürfte auch ohne Anschreibung
des allgemeinen Gliedes klar sein: im i-ten Gliede treten ausser
Binomialköeffizienten die i-ten Differenzenquotienten der Funktion

M(n) auf.)
Schreibt man statt (16) :

wo
H' HP + HF + ß (AT - M), (18)

Hp ßM+xp, HF= fdx{n*n + ip*(fi2-A)ip}, (19)
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so kann man den Term ß (M' — M) als eine Störungsmatrix
betrachten. Setzt man in diese die Reihe (17) ein, so heben sich
die Terme YzßM(n)on,<n heraus, und die übrigen Terme können
als klein gelten, wenn die Ruhmassenunterschiede benachbarter
Proton-Isobaren :

ÔM= M(n + 1)-M(n) (20)

genügend klein sind, und zwar, wie die Diskussion von Beispielen
lehren wird, klein gegen die Energien der beteiligten Mesonen.
Man kann dann im Sinne der Störungsmethode nach Potenzen
von ô M entwickeln. Die Elemente der Störungsmatrix beschreiben,
vermöge der Faktoren f, |* (vgl. (15)), Emissions- und
Absorptionsprozesse freier Mesonen, die mit entsprechenden Ladungsund

Impulsänderungen des Protons (einschliesslich seines gebundenen

Mesonfeldes) verknüpft sind. Wir werden im § 5 auf die
Diskussion der Störungsmatrix und auf die Entwicklung nach
ÒM zurückkommen.

Will man mehrere Protonen berücksichtigen, so geht man
zweckmässig auf die Darstellung (11) des Hamiltonoperators
zurück, in der W* und W Operatoren bedeuten, welche auf die
Besetzungszahlen der Protonzustände wirken und den Vertauschungs-
regeln der Fermi-Dirac-Statistik genügen. Für die Transformationsmatrix

S ist dann an Stelle von (14) zu setzen :

ifdxwu-cv + r^^iv ,ni.ki e J ; (21)
da ï/*TÏ/und ¥*x*W kommutieren, ist S wiederum unitär. Für
den transformierten Hamiltonoperator erhält man durch eine
kurze Rechnung, analog zu (16) :

H'= «-^5= S-1-fdxW*ßMW-S+fdxW*^plP + HF. (22)

In der nullten Näherung (M(n) const.) kommutiert fd x W* ßMfmit 8, d. h. es wird
H' =yiHp + H]f;

f
in dieser Näherung besteht also keinerlei Wechselwirkung zwischen
Protonen und Mesonen oder zwischen zwei Protonen1). Für
M M (n) erhält man ähnlich wie oben :

8~J ¦JdxiP*ßMW -S fdxlF*ßlM+ -, [fxip + f*x*ip*,M]
i2

+ "m [/TV> + f*r* ip*,[f ry> + f*x*ip*,M]] + ¦ ¦ AW.

x) Es ist zu beachten, dass auch keine Kernkräfte vom Nahewirkungstypus
(Potential ~ ô(xP— Xpi)) auftreten.
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Die Störungsfunktion S-1[fdxW*ßMiF, S) koppelt demnach das

Mesonfeld mit jedem einzelnen Proton in derselben Weise, wie
dies oben durch die Störungsfunktion ß (M' — M) beschrieben
wurde. Diese Meson-Proton-Wechselwirkung vermittelt zwar auch
Wechselwirkungen zwischen zwei Protonen, dies aber erst in
zweiter störungsmässiger Näherung, so dass die Proton-Kräfte
den kleinen Faktor ÔM2 enthalten. Natürlich könnte man durch
Wahl des Kopplungsparameters |/| diese Kernkräfte auf die er-
fahrungsmässige Grössenordnung bringen, doch würden dann die
Matrixelemente der Meson-Streuprozesse, welche à M nur in erster
Ordnung enthalten (vgl. § 5), viel zu gross. Im Falle des
Kopplungstypus Lw Ly kann also die Einführung der höheren Proton-
Isobaren keine Verbesserung gegenüber der ursprünglichen
YuKAWA'schen Theorie mit sich bringen.

§ 4. Der Ansatz LW=L^.

Mit dem Ansatz (9) wird der Hamiltonoperator :

H fdxW* {ßM + xp- gxßip - g*x*ßf*} W + HF. (23)

Rechnen wir zunächst wieder mit einem einzigen Proton, so wird
H, als Operator bezüglich der Proton-Koordination dargestellt:

H=HP + Hp + Hw, (24)

wo Hp und HF (vgl. (19)) sich auf das freie Proton und das Va-
cuumfeld beziehen, und wo

Hw=-gxßipP-g*x*ßipP. (25)

Zur Transformation von H verwenden wir wieder einen unitären
Operator der Form (14), wo aber |, f* statt durch (15) folgender-
massen definiert sein sollen:

C=igß{(fi*-A)-in*}P, C*=-ig*ß{(fJL2-A)-in}P (26)

Die Operation (fi2 — A)-1 kann in bekannter Weise durch Fourier-
zerlegung ausgeführt werden, oder mit Hilfe der Formel:

(fA-A)-i-f(x) -* fdx' eA^AAf(x'). (27)
4n J \x — x |

Da auch hier t| und t*|* kommutieren, gilt wieder 8* S~\
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Mit (19), (14), (26), (13) und (25) kommt:

[HF,S] gxßipP ¦ S + S-g*x*ßip* {- Hw + E0} S,
wo

E«=-\g\2{(fi2-A)-iò(x)}x=0 (28)

eine unendliche Selbstenergie des Protons darstellt, die natürlich
durch Einführung eines „Formfaktors" in Hw (25) endlich gemacht
werden könnte. Man erhält somit:

S-AHF + HW)S E° + HF,
H' S-1HS= HP'+E°+HF FA + Hp+HF+(Hp'-Hp). (29)

Um das Problem in nullter Näherung bezüglich des Protons
und der Mesonen zu separieren, vernachlässigen wir in H' (29)
den Term Hp' — Hp S^1 [Hp, 8]. In dieser Näherung verschwindet

wiederum die Mesonstreuung; da nämlich alle Feldgrössen in
genügendem Abstand vom Proton (\x —xPj ^> 1/^) mit S ((14),
(26)) kommutieren, sind ihre Erwartungswerte dort in nullter
Näherung die gleichen wie bei Abwesenheit des Protons. Auch
die Gesamtladung (n + N) und der Gesamtimpuls (p + P) erweisen
sich wieder als mit S vertauschbar. Die Eigenfunktionen nullter
Näherung beschreiben stationäre Zustände der freien Mesonen
sowie des Protons mit seinem gebundenen Mesonfeld.

Im Hinblick auf höhere Näherungen berechnen wir die
Störungsfunktion

Hp' - Hp ß (M - M) + (a p)' - (S p). (30)

Hier gilt für M' S~1MS wieder die Formel (17), wobei nur
|, |* die veränderte Bedeutung (26) haben; die obige Ableitung
von (17) stützte sich nämlich nur auf die auch hier gültige Formel
(14). Zu beachten ist, dass die /3-Matrix mit f, |* und folglich
auch mit S kommutiert. Dagegen gilt für die S-Matrix, wegen
a.ß — /Ja :

a S S~x a

Hiermit ergibt sich für den Term (ap)' in (30):

(ap)' sS-i^g= S-i*S{p + S~l[p,S]}
S~2x{p + xi gradp | — x* i gradP £*},

oder

(Sp)'= e2 <T s~r' 4*> • {p —xi gradp | + x* i gradp |*} a. (31)

Die Bedeutung der nullten Näherung erhellt daraus, dass
die Störungsfunktion (30) verschwindet, wenn man einerseits allen
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Proton-Isobaren die gleiche Ruhmasse zuschreibt SM — 0, M' — M)
und andererseits die Protonen als ruhend annimmt (a 0, (ap)'

(a p) 0)J). Eine Entwicklung nach den Matrixelementen von
(30) ist daher im wesentlichen eine Entwicklung nach den
Massendifferenzen ÔM und nach der Rückstossenergie des Protons. Dieses
Verfahren ist, verglichen mit der üblichen Entwicklung nach \g\,
natürlich nur vorteilhaft, wenn die Matrixelemente von (30) klein
sind gegenüber denjenigen, die man mit dem ursprünglichen
Kopplungsoperator Hw (25) als Störungsfunktion erhalten würde. Dies
bedingt, wie man leicht sieht, dass nicht nur SM, sondern auch
die kinetische Energie des Protons immer (auch in virtuellen
Zwischenzuständen) klein gegen die Mesonenergien co bleiben soll,
was wiederum nur erfüllbar ist, wenn alle Meson-Impulse <3ç; M
sind. Unter diesen Umständen bleiben aber die Rückstossenergien
des Protons klein gegen M, und es genügt, sie in unrelativistischer
Näherung zu berücksichtigen (rechterhand in (31) a -> p/M und

Bleibt die kinetische Energie des Protons sogar klein gegen
die Ruhmassendifferenzen ÒM (20), wie z. B. bei der Streuung
langsamer Mesonen (Impuls <^ VM \óM\), so sind die
Matrixelemente von (31) belanglos gegenüber denen von M' (17), und
es genügt eine statische Näherung (a -> 0, ß->-1). Dann reduziert
sich die Störungsfunktion (30) auf M' — M, d. h. es wird (wie im
Falle Lw LJ) die Matrix (17) allein massgebend. Bei der
Diskussion im § 5 werden wir uns auf diesen statischen Grenzfall
beschränken. Abgesehen von dieser Einschränkung und von der
veränderten Bedeutung von |, £*, wird die Diskussion mit
derjenigen des Falles Lw LJ übereinstimmen.

Zur Ableitung der Kernkräfte greifen wir wieder auf die
allgemeine Darstellung (23) des Hamiltonoperators zurück und
transformieren ihn mit

g -ifäxW*ß{Ui'-Ayi (gru* +g*r* n)\ W ,g2)

(S*=S-1 wegen [¥*ßxW,W*ßx*W]= 0). Die Vertauschung
dieses Operators mit HF (19) ergibt:

[HF, S]= JdxxP*gxßy,W ¦ S + S ¦ JdxW*g*x*ßip*W
JdxW*(gxßip + g*x*ßf*)W ¦ S + S -V,

V^-\g\2fdxW*\x)rßW(x)Jdx'W*(x')x*.ß.W(x')-(fi2-A)-1Ö(x-x')!

x) In dieser Näherung haben wir die Lösung, wenn auch in anderer Schreibweise,

bereits im Anhang 2 der S. 7 zitierten Arbeit angegeben.

wo
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oder mit (27) : /gg\

7= -M! fdxW*(x)xpW(x) fdx'W*(x')x*ßW(x') • C'T,,' ¦
4 Jt ./ J • ja; —x |

Für den transformierten Hamiltonoperator (23) erhält man hiermit :

H' ^S^HS- S-1-/da;«fr*{/SM + ap}¥r-/S4-F + H^ (34)

Vernachlässigen wir, im Sinne der nullten Näherung, den
Kommutator [fdxW*{ßM + a.p}W, 8], so wird

H' 2 Hp + V + HF,
p

d. h. wir haben freie Mesonen ohne Wechselwirkung mit den
Protonen, während die Protonen untereinander durch das statische
Potential V gekoppelt erscheinen. In der Tat beschreibt V (33)
ausser Selbstenergietermen vom Typus (28), statische Kernkräfte,
die hinsichtlich ihrer Ortsabhängigkeit mit den YuKAWA'schen
Kräften übereinstimmen, und deren Austauschcharakter durch die
isotopen Spin-Matrizen x, x* (vgl. (10)) gekennzeichnet ist. Die
Möglichkeiten des Ladungsaustausches sind gegenüber denen der
ursprünglichen Yukawa-Theorie verdoppelt, da jedes „Proton"
die Ladung + 1 und die Ladung — 1 auf ein anderes Proton
übertragen kann1). In höheren Näherungen sind nur Meson-Proton-
Wechselwirkungen vom Typus (30) zu berücksichtigen; ihre
Beiträge zu den Kernkräften ergeben sich als klein gegen V, ausser
für Proton-Abstände <1/M (Compton-Wellenlänge des Protons),
wo die vom statischen Grenzfall ausgehende Näherung aus
bekannten Gründen unzweckmässig ist.

Der Ansatz Lw Lw erweist sich also insofern als befriedigend,

als man Kernkräfte bereits in nullter Näherung, eine
Mesonstreuung aber erst in erster Näherung erhält. Natürlich sind die durch
das skalare Mesonfeld vermittelten Kernkräfte in der statischen
Näherung spin-unabhängig, und es wird daher, wie in der Yukawa-
schen Theorie, unerlässlich sein, auch vektorielle Mesonen in
Betracht zu ziehen.

*) Vgl. Bhabha, 1. c, Wentzel, 1. c. Z. B. können sich zwei normale
Protonen (ra 1) beim Zusammenstoss in ein Neutron und ein doppelt-positives
Proton umwandeln. Diese und ähnliche Umwandlungsmöglichkeiten dürften auch
beim Problem der Kernbindungsenergien nicht ohne Bedeutung sein, und zwar
sowohl bei den leichten als bei den schweren Kernen.
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§ 5. Diskussion der Meson-Proton-Wechselwirkung.

Wir diskutieren im Folgenden die Wechselwirkung freier
Mesonen mit einem Proton (womit jetzt immer das Proton einschliesslich

seiner gebundenen Mesonen gemeint ist). Nach Obigem wird
diese Wechselwirkung durch die Störungsfunktion ß (M' — M)
beschrieben, wobei M' durch die Reihe (17) dargestellt werden
kann ; und zwar gilt dies im Falle des Ansatzes Lw LJ exakt,
im Falle Lw L^ jedoch nur in statischer Näherung (ruhendes
Proton). £ und |* sind im ersten Falle durch (15), im zweiten
Falle durch (26) definiert. Einen Term der Reihe (17), der in f
und |* vom t-ten Grade ist, nennen wir kurz einen „Term i-ten
Grades"; er enthält den Kopplungsparameter |/| bzw. \g\ in der
i-ten Potenz. Diese Kopplungsparameter brauchen aber hier keineswegs

als klein zu gelten; vielmehr sind es die als Koeffizienten
in (17) auftretenden Differenzenquotienten der Funktion M(n), die
wir als klein betrachten, weil sie sich linear durch die kleinen
Massendifferenzen ÔM (20) ausdrücken, nach denen wir entwickeln
wollten. Die Terme verschiedenen Grades sind also alle von der
ersten «Ordnung klein.

Dies hat zur Folge, dass gewisse Fragen, die nach der üblichen
Störungsmethode (Entwicklung nach |/|oder \g\) die Durchrechnung

komplizierter höherer Näherungen erfordern würden, auf
Grund von (17) schon mittels einer ersten Näherung beantwortet
werden können. Ob das Verfahren gut konvergiert, wird weniger
vom Zahlwert des Kopplungsparameters als von den massgebenden

SM-Werten und den Energien der beteiligten Mesonen
abhängen.

Freilich enthalten die Eigenwerte der Störungsfunktion
ß(M' — M) wieder unendliche Selbstenergieterme, und zwar
bereits in der ersten Näherung, da die Störungsmatrix selbst
unendliche Diagonalelemente besitzt. Daher stellt sich, ebenso
wie bei der üblichen Entwicklung nach |/| und |gt|, die Frage,
wie weit die Ergebnisse von Störungsrechnungen überhaupt glaubhaft

sind. Mangels strenger Lösungen (für ôM^O) können wir
diese Frage nicht entscheiden und nehmen daher bei der folgenden
Diskussion wie üblich an, dass die verschiedenen Effekte durch
die niederste Näherung, in welcher die Störungstheorie nicht-
verschwindende Matrixelemente für dieselben liefert, wenigstens
qualitativ richtig beschrieben werden. (Vgl. hierzu aber Fussnote

1, S. 19.)
LTnter den Termen 1. Grades in (17) beschreiben diejenigen

~ f* Protonübergänge n -> n + 1, die mit der Absorption eines
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positiven oder der Emission eines negativen Mesons verbunden
sind; die Terme ~| beschreiben natürlich die inversen Prozesse.
Im Falle \ôM\<^.fi kommen diese Absorptions- und Emissions-
Prozesse nur als virtuelle Übergänge (im Sinne der Störungstheorie)
in Betracht; dann sind die betreffenden Matrixelemente klein
gegen diejenigen des ursprünglichen Kopplungsoperators Hw (der
z. B. im Falle Lw LJ durch (25) gegeben ist), und zwar klein
wie \6M\ gegen die Energie co des betreffenden Mesons. Im Falle
eines reellen Absorptions- oder Emissionsprozesses unter Energie-
Erhaltung (wir denken an den Fall, dass das Proton in einem
Kern gebunden ist, so dass | ÔM | > fi sein kann) werden die
Matrixelemente, wie man leicht nachrechnet, gleich denen von Hw,
wodurch die Übereinstimmung mit der üblichen störungsmässigen
Berechnung der Absorptions- und Emissionswahrscheinlichkeiten
für den Fall schwacher Kopplung evident wird.

Die Terme 2. Grades entsprechen Prozessen, bei denen zwei
Mesonen gleichzeitig absorbiert oder emittiert werden, sowie
Streuprozessen. Im Falle | öM | <^ co kommen nur die letzteren
als reelle Prozesse vor. Zu den betreffenden Matrixelementen
liefern zwar auch die Terme 1. Grades in zweiter störungsmässiger
Näherung Beiträge; doch sind diese Beiträge quadratisch in SM
und bleiben klein gegen die Terme 2. Grades, sofern | M(n ± 1)

— M(n) | klein ist gegen die Energie co des gestreuten Mesons (und
gegen M(n), falls co^> M(n)). Dies trifft z.B. sicher zu, wenn

| M(n Yz 1)—M(n)\ <^. fi ist. Dann braucht man also bei der
Diskussion der Mesonstreuung nur die Terme zweiten (und höheren)
Grades in erster störungsmässiger Näherung in Betracht zu ziehen.

Während der Term ~ £* f in (17) die gewöhnliche Streuung
eines positiven oder negativen Mesons enthält, beschreiben die
Terme ~ f*2 und ~ |2 Streuprozesse, die mit einem Ladungswechsel

des Mesons verbunden sind1). So sind in |*2 die
Matrixelemente von Prozessen enthalten, bei denen ein positives Meson
verschwindet und ein negatives Meson entsteht, während das Proton
seine Ladung um 2 ändert. Da entsprechende Matrixelemente von
£* und £ gleiche Beträge haben, ergibt sich nach (17) das
Matrixelement der Streuung eines positiven [negativen] Mesons unter
Ladungswechsel am Kern n—1 [n+1] (Endzustand n+1 [n—1]) gleich
gross wie das Matrixelement der Streuung ohne Ladungswechsel
am Kern n 2) (sofern | ÔM | <^ co ; bezüglich der Beiträge der

1) Auf die Möglichkeit solcher Prozesse haben wir schon in der S. 7 zitierten
Arbeit hingewiesen.

2) Der in (17) vor |*f stehende Faktor 2 wird dadurch kompensiert, dass
die Terme f*ä und f8 die betreffenden Matrixelemente aus Symmetriegründen
doppelt enthalten.
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Terme höheren Grades gilt das gleiche; die Wahrscheinlichkeiten
der genannten Prozesse unterscheiden sich dann nur durch die
bekannten „Phasenvolumen' ' -Faktoren *¦).

Von den Prozessen, die durch die Terme 3. und höheren
Grades in (17) beschrieben werden, erwähnen wir die Erzeugung
eines Mesonschauers: ein Meson wird absorbiert und es entstehen
(i — 1) Mesonen. Zur Berechnung der Wahrscheinlichkeit dieses

(reellen) Prozesses genügt es, falls die mit dem Übergang
verbundenen Massenänderungen des Protons klein gegen die Energien
der beteiligten Mesonen bleiben, die Terme i-ten (und höheren)
Grades von (17) in erster störungsmässiger Näherung heranzuziehen,

es sei denn, dass diese Terme aus anderen Gründen (s. unten)

x) Die oben besprochenen Streuprozesse liefern ein instruktives Beispiel
dafür, wie vorsichtig man bei der Bewertung störungstbeoretischer Ergebnisse
sein muss: Greifen wir aus der Störungsmatrix nur die Elemente der normalen
Streuung (ohne Ladungswechsel) heraus, welche ~ |* § sind, und beschränken
wir uns auf die Streuung langsamer Mesonen, so dass das Proton als ruhend
angesehen werden kann. Dann reduziert sich die Störungsfunktion nach (15) bzw.
(26) auf

#S Hf ay,*p Wp im Falle Lw Lf,
HS=HS= b{(fi2-A)~l7i*}p{(/x.2-A)-17i}p im Falle lA -w

wo a und ì reelle positive Konstanten sind. Das so reduzierte Problem kann exakt
gelöst werden durch die Hauptachsentransformation der in n*(x), ti(x), ip*(x),
y>(x) bilinearen Form HF+HS. Die Eigenfrequenzen (v) und Eigenschwingungen
dieser Form bestimmen sich im Falle Hs H? durch die Differentialgleichung :

d(HF+Hf)- v2y>(x) + L_ (-v2+(i2)y)-Ay> + aô(x- xP) y> 0
dyj*(x)

Dies ist die Schrödingergleichung einer Partikel in einem statischen Potentialfeld
~<5(œ— Xp), wobei das positive Vorzeichen von a einer abstossenden Kraft
entspricht; ein solches Potential bewirkt aber im Limes der „normierten" <5-Funktion
(fdxô(x)—l, a endlieh) bekanntlich überhaupt keine Streuung. Die Proton-Meson-

Wechselwirkung H? liefert also bei strenger Rechnung die Streuung null, während
man in erster störungsmässiger Näherung (entsprechend der Born'schen
Näherungslösung für y>) den Streuquerschnitt a2/4 n erhalten hätte. Hieraus darf zwar
nicht geschlossen werden, dass die Störungsfunktion (17) die Streuung null ergibt,
da bei strenger (nicht-linearer) Berücksichtigung der „Terme 2. Grades"
konsequenterweise mindestens auch diejenigen 1. Grades streng in Rechnung gesetzt
werden müssten, was auf ein Problem vom Typus (24), (25) zurückführen würde.
Immerhin dürfte das obige — freilich besonders krasse — Beispiel lehren, dass
die niedersten störungstheoretischen Näherungen nicht immer vertrauenswürdig
sind. — Was den Fall Lw lA anlangt, ist die Bestimmung der Eigenschwingungen

der Form HF+ ff? etwas verwickelter (fast das gleiche Problem haben whim

§ 7 der S. 7 zitierten Arbeit behandelt); hier ergibt sich Übereinstimmung mit
der störungstheoretischen Berechnung der Streuung, solange J<^cu,d. h. |<7|2|<51f|
<^ co Meson-Energie).
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klein sind, so dass auch die Beiträge der Terme niederen Grades
in zweiter und höherer störungsmässiger Näherung von Bedeutung
werden.

In quantitativer Hinsicht spielt nach (17) der Charakter der
Funktion M(n), welche die Proton-Ruhmasse in Abhängigkeit von
der Ladungszahl darstellt, eine entscheidende Rolle. Die
einfachste, mit den bekannten Massen von Neutron (n 0) und
Proton (n 1) verträgliche Annahme wäre die einer quadratischen
Masse-Ladungsbeziehung :

M(n) a0 + axn + a2n2 (a2 > 0, ax ¥2 — a2). (35)

Da die dritten und höheren Differenzenquotienten dieser Funktion
verschwinden, bricht dann die Reihe (17) mit den Termen 2. Grades

ab. Die zweiten Differenzenquotienten sind bereits von n
unabhängig, so dass die Matrixelemente der Streuung vom Zustand
des streuenden Protons unabhängig werden; auch sind sie gleich
gross für die Streuprozesse mit und ohne Ladungswechsel. Die
oben erwähnten Matrixelemente der Schauer-Erzeugung, soweit
sie in ò M linear sind, verschwinden im Falle (35) ; die betreffenden

Wahrscheinlichkeiten werden also von höherer Ordnung klein :

im Falle der Zweier- und Dreierschauer (i 3 bzw. 4) ~ SM*, bei
Vierer- und Fünferschauern ~ dM6, usw. Anders wird dies aber,
wenn dritte und höhere n-Potenzen in M(n) wesentlich vorkommen.
Würde die hier diskutierte oder eine verwandte Theorie der
Wirklichkeit entsprechen, so könnte man also aus der relativen Häufigkeit

von Schauern mit verschiedenen Partikelzahlen in Erfahrung
bringen, wie die Masse der Proton-Isobaren von der Ladung
abhängt.

Zum Schluss sei nochmals daran erinnert, dass sich die obige
Diskussion im Falle des Ansatzes Lw Lw nur auf den statischen

g
Grenzfall beziehen sollte, indem die kinetische Energie des Protons

<^ | òM\ angenommen wurde, was z. B. bei der Mesonstreuung
die Beschränkung auf Meson-Impulse <^ VM \òM\ bedingt. Was
die Streuung schnellerer Mesonen und die Schauer-Erzeugung in
jenem Falle anlangt, können die Aussagen mit Hilfe der Formeln
(30), (31) erweitert werden; aber nur bei Impulsen <^ M bleiben
dann die Vorzüge unseres Näherungsverfahrens bestehen (vgl. § 4).
Im Falle Lw Ly fallen diese Einschränkungen fort.

Zürich, Physikalisches Institut der Universität.
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