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Sur ’axiomatique de la théorie cinématique de Milne
par André Mereier (Berne).
(28. X. 40.)

Sommaire. — Cet article est un exposé systématique des propositions (pos-
tulats et définitions) qui forment la base de la théorie cinématique de Milne. Il
précise son axiomatique, et insiste sur le fait qu’on pourrait la mettre & la base de
la théorie de la relativité restreinte aussi bien que 1'une des axiomatiques existantes.
L’article se termine par une comparaison entre la cosmologie de Milne et celle
de la relativité; cela permet de relever certains défauts de la premiére.

1. Remarques préliminaires. — Il y a premiérement dans
toute théorie physique des notions primordiales que l'on admet
sans méme les définir. Ce sont des entités que notre intelligence
est censée comprendre gridce & une expérience journaliére, grice
4 une intuition, ou en vertu d’un facteur quelconque. De plus,
dans toute théorie, on fait des définitions, qui n’ont besoin d’au-
cun commentaire . Enfin toute théorie est fondée sur des relations
qu’'on appelle tantot principe, tantdt axiome, tantot postulat.
Nous dirons axiome pour suivre RercueNBacH dans l'exposé des
«axiomes de la lumiére »; ailleurs, nous dirons postulat.

Nous commencerons par un bref rappel de I'axiomatique déja
connue de la relativité restreinte.

H. REeicerxBacH®) ?) 8) et CarAaTHEODORY!) ont, indépen-
demment I'un de 'autre, proposé des systémes d’axiomes pouvant
servir de base a la théorie de la relativité. Les notions a priori,
gréce auxquelles leur énoncé est possible, sont la suite: des nombres
réels et la notion d’un ensemble & de points ayant la puissance du
continu, la notion de signauz, celle de leur émission et de leur
réception; puis celle d’événement en un point de ’ensemble &, ce
qui suppose qu’en ce point il puisse exister un point matériel
distinct du point mathématique. ReErcHENBACH énonce des axiomes,

dits de la lumieére, qu'on peut résumer comme suit: A chaque
- point de & correspond une suite d’événements qu’on peut ordonner
selon la suite des nombres réels; le nombre réel s’appelle temps,
et toute coupure définit I’époque d’'un événement. On peut tou-
jours en un point de & émettre un signal & ’époque d’un certain
événement. A chaque point de & correspond un dispositif capable,
lorsqu’il rec¢oit un signal, d’en émettre un simultanément. Il faut
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préciser qu’a chaque émission d’un signal en un point de & correspond
la réception d’un et d’un seul signal, appelé premier signal. La suc-
cession de deux premiers signaux, a la réception en un point F’,
est la méme qu’d leur émission en un point P. La comparaison
des temps mesurés en deux points se fait grdce & une définition
que nous reprendrons plus loin. Vient 'aziome, dit de Fermat,
selon lequel les (premiers) signaux consistent en lumiére. Puis
on énonce deux axiomes qui reviennent a affirmer Uexistence d’un
ensemble dense de points liés entre eux d'une maniére invariable
(la liaison invariable est définie sans qu’il soit fait appel & la notion
de distance). On définit alors la distance entre deux points. Enfin
un dernier axiome fixe la metmque de U'espace des points apparte-
nant & 'ensemble dense qui vient d’étre cité, en déclarant qu’elle
est euclidienne et qu’elle a trois dimensions, la lumiére s’y pro-
pageant en ligne droite. Un pareil systéme s’appelle inertial.
Suivant comment on définit la maniére de mesurer les longueurs
dans des systémes en mouvement uniforme l'un par rapport &
Pautre, on est conduit & employer la transformation de GALILEE
ou celle de LoreENTz. Supposons définie la transformation de
LorENTZ, on peut alors postuler que c’est elle qui préside & la
réalité des corps matériels. C’est ce que propose REICHENBACH.

Il est trés instructif de comparer pas & pas les énoncés de
ReicaENBACH & ceux qui forment le fondement de la Théorie
Cinématique et que nous exposons au paragraphe suivant.

2. Emoncés (A) & (P) de U'axiomatique de la Théorie Cinéma-
tigue. — MILNE a émis des idées fort intéressantes sur le ciné-
matique générale (cf. 5) et %)). Si en certains points il suit un
chemin qui coincide & peu prés avec celui des auteurs de l’axio-
matique relativiste que nous avons cités plus haut, il s’écarte
toutefois de leur méthode et il établit surtout les bases d’une
cinématique moins restreinte que celle de la relativité restreinte.
Nous allons exposer systématiquement, comme 1’a fait par exemple
REIcHENBACH pour la relativité, les postulats et les définitions
qui forment la base de cette théorie.

(A). Notions primordiales*). Citons tout d’abord, parmi les
notions primordiales de cette théorie la suite des nombres réels,
notion mathématique qui sera utilisée & peu prés comme dans
Paxiomatique résumée au §1. Mais ensuite, en théorie cinéma-
tique, il n’est pas question d’un ensemble de points, mais bien

*) Les lettres( ), (B), etec., qui suivent servent & numéroter soit les désigna-
tions des notions primordiales, soit les énoncés d’axiomes, soit ceux de postulats
soit ceux de définitions.
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d’'une notion de caractére absolument physique, un ensemble de
particules. Cet ensemble est évidemment dénombrable, ce qui fait
qu’on ne pourra pas introduire dans cette théorie une métrique
euclidienne de la m@éme maniére que dans 1’énoncé du dernier
axiome de la lumiére de Reicaeneacu, De plus, on admet la
notion d’observateur, c’est-a-dire non seulement de mécanisme,
mais d’étre intelligent capable d’intentions; en particulier les
observateurs communiquent entre eux. La notion d’observateur
est plus compliquée que celles adoptées par REICHENBACH ou
CARATHEODORY, mais on peut & peu prés la réduire & ces derniéres.
En effet, les observateurs doivent pouvolr communiquer entre
eux, ce qul n’est rien d’autre que ’envoi des signaux et leur récep-
tion, et 1’on pourrait énoncer de nouveau les axiomes selon
lesquels & toute émission due & I'un des observateurs correspond
la réception d'un signal par tous les autres. Pour ne pas allonger
nous n’introduisons pas d’exposé détaillé de ces axiomes. De plus
les observateurs sont censés avoir la notion d’événements et celle
des adjectifs amtérieur, simultané et postérieur. Ces notions sont
aussi parmi celles que CaraTmiopory adopte; par contre, Rei-
CHENBACH les définit & partir des notions de signal, d’émission
et de réception, ainsi que celle d’événement. Il vaut la peine de
rappeler ici la définition de RercEENBACH. « De deux événements
E, et E, arrivés en un point P, E, est dit postérieur a E, (et E,
antérieur & E,) lorsqu’il est possible de choisir un signal dont
Pémission coincide avec E; et le retour (la réception en P) avec
Es». Il ne serait pas possible de traduire cette définition
dans la cinématique de MILNE, car comme nous le verrons
en (B), le nombre des observateurs est le méme que celui des
particules, et I'on n’est pas assuré que pour deux événements E,
et H, quelconques observés par un observateur, celui-ci puisse
trouver un signal dont I’émission coincide avec E;, et la réception,
au retour, avec F,. Il faut donc nécessairement compter les
adjectifs antérieur, simultané et postérieur parmi les notions pri-
mordiales. |

Les premiers postulats de la théorie cinématique sont les
suivants:

(B) A chaque particule est associé un observateur.

(C) En chaque particule se produisent des événements, dont les
observateurs font l’expérience. Comme nous l’avons wvu, cette
expérience est temporelle (succession ou simultanéité). De plus
cette expérience temporelle est supposé telle, qu’étant donné deux
événements non simultanés arrivés & I’endroit de la méme parti-
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cule, 'observateur associé puisse toujours discerner un troisiéme
événement qul serait postérieur au premier et antérieur au second.

(D) On postule que Pexpérience de tout observateur est continue,
c’est-a-dire qu’en chaque particule il y a une suite continue d’événe-
ments qu’on peut ordonner selon la suite des nombres réels¥).

L’exposé de MILNE coincide avec celul de REICHENBACH quant
a la définition d’une horloge:

(E) La correlation entre les nombres réels et les événements
qui constituent ’expérience temporelle d’'un observateur est une
horloge.

Comme on le voit, la différence essentielle entre la théorie
cinématique et I’axiomatique indiquée plus haut réside dans l’en-
semble des particules de I'une et celui des points de l'autre, et
nous pouvons indiquer dés maintenant que ce n’est pas tellement
a propos du temps et de sa mesure, mais bien plus & propos de
la maniére et de la possibilité de comparer des mesures que la
théorie cinématqiue se distingue (cf. surtout (J)).

Vient la comparaison des époques d’événements qui se pro-
duisent en des particules différentes. Pour cela il faut postuler que

(F) L’ordre d’émission des signaux est le méme que celui de la
réception.

MiLne définit I'époque d’un événement en B mesurée par 4
et la distance entre 4 et B. Ces définitions ne sont rien d’autre
que celles de I’axiomatique de REICHENBACH, mais elles sont accom-
pagnées dans ’exposé de MiLNE d’'un commentaire trés intéressant:

(G) Définitions. L’époque T4 étant celle de la réflexion en

B d’un signal envoyé par 4 & ’époque t, et retourné en 4 a1’époque
ty (toutes époques mesurées par A4), T4 est définie par les condi-
tions de tomber entre t; et t;, et d’étre telle que si on ajoute une
constante au temps mesuré en A4, elle augmente aussi d’autant.
Quant & la distance R4 de 4 & B, mesurée par 4, elle doit étre
définie de maniére que si B est en 4, elle soit nulle; de plus elle
ne doit pas dépendre de l'origine du temps. Il résulte de ces con-
ditions que l'expression de l’époque T4 (cp. & t, dans 7)) doit
étre de la forme
b3 + 1

2
et celle de la distance R4

Yo (ts — 1) avec v (0) = 0.

*) Pour traduire I'expression «at a particle», nous disons «en une parti-
cule», comme on dit «en un point».

+1(ts — 1) avec p1(0) =0
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Sur quoi MiLNE choisit les formes particuliéres

v, =0;  donc T4 _ 5 _; b
et
c _
P2 (t3 — ty) = 9 (3 — 1) = R4

ou ¢ est une constante positive arbitraire. La forme générale de

I’expression de ’époque: iﬁ’—;i + 1 (t; —t;) est une généralisation

de 'expression proposée par RErcuensacH dans sa définition N©27),
qui est elle-méme une généralisation de la définition d’Einstein
(qu’il numérote 8 dans?)).

B envoie & 4, en méme temps qu’il renvoie le signal, I'indi-
cation % de son horloge & ’époque de cette réflexion. De la sorte,
A peut étudier en fonction de ’époque T4 de cette réflexion fixée
par la derniére définition & sa propre horloge, I’époque #5 mesurée
a T'horloge de B, ainsi que la distance R4 qui le sépare de B:

tﬁ = fAB(TfEL?)
R4 =coap (T49).

Réciproquement, B peut en faire autant:

ty = fpa(T)
Bi=c ppa(T35).

(H) Postulat. A et B (en général tous les observateurs) con-
viennent de poser ¢’ = c.

(I) Définition. Deusx observateurs A et B sont dits équivalents
s'ils peuvent graduer leur horloge de maniére que

P4B=PBa =@, et fABEfBAEf-

‘Pour que la relativité restreinte apparaisse comme un cas
particulier de la théorie cinématique, il faut exiger ceci:

(J) Postulat. Les observateurs associés aux particules sont équi-
valents entre eux.

- J’appellerai cet énoncé (J) le « postulat de Milne », et je sou-
haiterais qu’on en fasse la pierre de coin de l'axiomatique de la
théorie cinématique. Car c’est en vertu de (J) qu'on montre que
c’est grace & une transformation identique & celle de LorENTZz
que l'on passe de la description de l'univers faite par un observa-
teur & celle faite par un autre en mouvement relatif rectiligne et
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uniforme par rapport au premier. Avant d’en arriver la, on a
besoin de quelques énoncés. Mais nous pouvons tout de suite
remarquer que c¢’est donc (J) qui constitue l'une des idées fonda-
mentales de 'exposé de Miuxe. Cette 1dée est particuliére-
ment originale. Elle appelle deux remarques. Pour qu’un obser-
vateur 4 puisse étudier les fonctions t8 = f,5(t4) et R4 = co 5 (T4)
d’une maniére trés précise, il faut qu’il puisse envoyer des signaux
4 B d’une maniére continue, ce qui est une idéalisation permise.
Il est plus difficile par contre de s’assurer qu’au cours du temps
(qui dure infiniment) 4 et B restent toujours équivalents. Il faut
donc comprendre ce dernier point dans le postulat de MILNE.

(K) On définit alors la wvitesse « extérieure» d’un signal par le
quotient entre la distance R4 parcourue entre 1’émetteur 4 et le
récepteur B, et le temps T'4 — ¢, mis par ce signal pour atteindre B,
ces grandeurs étant mesurées par A4, et

(L) la vitesse « intérieure» du méme signal par le quotient entre
la distance R4 et le temps ¢; — T4 mesuré par 4 et mis par le
signal pour revenir de B en A4.

Le calcul montre que la vitesse intérieure et la vitesse
extérieure sont toutes deux égales a ¢, ce qui est tres remar-
quable, d’autant plus que ce résultat est vrai indépendemment
d’'un mouvement relatif possible de 4 et B (il n'est méme pas
question un seul instant d’'un pareil mouvement relatif). De plus,
ce résultat est encore vrai si I'on intervertit 4 et B. Maintenant
on postule que

(M) la vitesse des signaux s’appelle vitesse de la lumiere.

La signification de (M) est exactement celle de 'axiome de
FERrMAT.

La transformation de LorenNTz rentre dans le cadre de la
cinématique de MiLNE d’une maniére trés élégante. Il faut dire
clairement dans quelles circonstances on I'établit. Dans 1’axio-
matique de RErcHENBACH, on ’obtienten d éfinissant convenable-
ment le mouvement relatif uniforme sansl’aidede barresrigides
(cp. & ce propos®), p. 59, au début du troisieéme alinéa du sommaire!).

Miune (5) §27) définit tout d’abord la vitesse radiale:

(N) La vitesse radiale V d’un observateur B mesurée par un
observateur 4 est définte par le nombre

v Ao (T

gds -
olt ¢ est défini en (G) et (I).



Sur l'axiomatique de la théorie cinématique de Milne. 479

Si I'on imagine alors qu’un signal envoyé par un observateur
A 4 un observateur P «touche en passant» 'observateur B¥),
on peut établir les formules qui relient entre elles la distance
AP = X et I’époque T a laquelle le signal arrive en P, mesurées
par 4, la distance BP = X' et I’époque 7" du méme événement
mais mesurées par B, et la vitesse radiale (instantanée) V. Ce
sont les formules (83) de la page 41 de 5) que nous reproduisons:

r X Xf
T’+XTZP12(T+7), T+)§:P21<T’+_)

Cc
(m)
I~ —=pa(T—2), T =pu(l'—%)
C ¢ c C

h1

ol Py, est 'opérateur qui fait passer de f(T4) & f(T%), et pyy opé-
rateur inverse. Il est inutile de commenter la forme des équations
(m). Ces équations méritent d’étre appelées formules de transfor-
mation de Lorentz-Milne. Elles sont valables quelle que soit la
vitesse radiale V' qui est en général variable en fonction de T'p.

Si V' est constant, on déduit de (m) les formules de la trans-
formation de LorenTz:

_ 2 -
T = amed E7 , ete. (V = const.)

V11— V2|c?
La transformation (m) est valable si 4, B et P sont alignés
sur la trajectoire d’un rayon lumineux. Pour pouvoir suivre les
raisonnements de MILNE qui permettent d’établir les formules de
transformation de LoRENTZ « en trois dimensions», il faut énoncer
deux postulats. Or MiLNE imagine simplement que 4, B et P
ne solent pas alignés, et que A et B essayent de comparer entre elles
lewrs mesures relatives et celles qu’ils font de la position et de I'époque
de P, au moyen de diagrammes dessinés dans une géométrie eucli-
dienne, quittes & ce que ce procédé se révele impossible. Il se
trouve que ce procédé est possible lorsque V' est constant, sinon pas.
St donc on veut exposer la théorie de la relativité restreinte au
moyen du langage de MiLng, il faut premierement spécifier par
un postulat que :

(0) Les observateurs équivalents dont les comptes-rendus d’ob-
servation constituent ’ensemble de la théorie de la relativité res-
treinte sont tels que V = const. pour deux quelconques 4 et B
d’entre eux. Appelons-les observateurs galiléens.

*) Ce qui veut dire qu’un signal envoyé par 4 & P, puis instantanément
par P a B, et retourné en A par le méme chemin, revient en 4 au méme instant
qu'un signal direct de 4 & B et retour. On peut dire alors que 4, P et B sont
alignés.
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Chaque observateur galiléen peut, selon MILNE, convenir d’em-
ployer une géométrie euclidienne pour traduire ses observations,
mais 1l faut deuxiemement postuler que '

(P) Lorsqu’un observateur galiléen décide d’employer une géo-
métrie euclidienne & trois dimensions®) pour la description de ses
expériences, les rayons lumineux lur apparaissent comme des lignes
droites.

On peut alors faire suivre I'axiomatique (A), (B),....(P) de
la cinématique de MILNE par les énoncés des postulats de la rela-
tivité restreinte (dynamique, électromagnétisme, etc.). On obtient
ainsi un exposé complet et original de la relativité restreinte.
Bien entendu, cela n’est possible que dans la supposition de 1’exis-
tence de particules, et non pas de répartitions continues de matiére.
Un pareil exposé servirait admirablement la physique atomique.

Ce n’est d’ailleurs pas la le but de MILNE, qui a développé
cette cinématique avec I'idée d’en faire une théorie cosmologique,
que 'on désigne sous le nom de théorie cinématique de I’'Univers.

3. Relativité générale. — On peut considérer ce paragraphe
comme faisant directement suite au § 1.

La théorie de la relativité générale repose sur l'idée fonda-
mentale que tous les systémes de coordonnées imaginables sont
également justifiés pour la description de la nature. EINSTEINS)
traduit cette idée par le postulat appelé principe de covariance:
Les lois générales de la nature doivent étre exprimées par des
équations de forme covariante vis-a-vis de substitutions quel-
conques de coordonnées.

Il faut préciser par un postulat ce que l'on entend par coor-
données: Les coordonnées permises en physique sont des parametres
quelconques qui caractérisent d’une maniére univoque et continue
les points de l'univers.

La relativité restreinte ne peut tenir compte d’effets gravi-
fiques sous forme newtonienne, puisque celle-ci autorise ’envol de
signaux & vitesse infinie. Le.postulat appelé principe d’équivalence
rétablit la possibilité d’énoncer une loi de gravitation dans la théorie:
Il est toujours possible, en un point de l'univers, de passer a un
systéme local de coordonnées tel que les effets gravifiques dis-
paraissent dans un domaine infiniment petit entourant ce point,
le domaine étant choisi suffisamment petit pour que les variations
(dans I'espace et dans le temps) de la gravitation puissent y &tre
négligées.

*) Rien ne prouve, dans la théorie de Milne, qu’on ne puisse imaginer un
nombre de dimensions d’espace différent de trois.
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On postule une espéce de condition aux limites: Dans le sys-
teme local de coordonnées du domaine infinitésimal dont il est
question dans I’énoncé du principe d’équivalence, la relativité res-
treinte est valable; c’est-a-dire que la forme des équations des lois
de la physique dans ce systéme est la méme que dans un certain
systeme galiléen x, y, 2, ¢t, duquel d’ailleurs on peut passer & un
autre x’, y' 7/, c¢t’, par une transformation de LoRENTZz.

On fait alors des définitions. Tous les systémes galiléens de
coordonnées qui correspondent au systéme local s’appellent sys-
témes de coordonnées naturelles, et si un objet est au repos dans
I'un d’eux, celui-ci est appelé systéme des coordonnées propres de
I'objet. o

Nous n'irons pas plus loin dans ’exposé de la théorie de la
relativité dite générale; il existe des traités fondamentaux la-dessus.
Nous ferons la remarque suivante: Le principe de covariance mis
a part, la relativité générale procéde par généralisation d’une
théorie restreinte. En particulier on postule qu’en coordonnées
naturelles on doit retrouver la relativité restreinte. C’est 14 un
procédé possible. Une théorie exposant des postulats ou des axiomes
fondamentaux sans qu’il soit fait appel & une théorie d’ordre
moins élevé et déja connue me semblerait encore plus élégante.
Cela me paraitrait particuliérement désirable aussitdot qu’il s’agit
d’une théorie dont la portée est d’ordre cosmologique, et il me
semble que le reproche (discret) que je fais & la relativité générale
revient & un manque de cette théorie a satisfaire au « principe de
beauté mathématique » énoncé récemment par Dirac?); si le prin-
cipe de covariance satisfait au principe de Dirac, la suite de la
théorie ne me semble pas y satisfaire indubitablement.

Pour la cosmologie, cela est d’autant plus pénible, que la
méthode de la cosmologie relativiste consiste & deviner des modeles
de I'univers satisfaisant aux principes de la relativité générale.

On ne peut pas faire ces reproches-ci & la théorie cinématique
de MiLNE. Mais on peut lui en faire d’autres (voir en particulier )
et 4)). La théorie de MiLNE ne semble entre autres pas expliquer
facilement la gravitation. Mais on constatera qu’alors que le pro-
cédé employé en relativité générale fait de la relativité restreinte
un cas limite ol les effets gravifiques sont négligeables — cas
limite qu’il faut de plus connaitre avant de passer a l'exposé
général, — la théorie cinématique, elle, considére la relativité
restreinte tout simplement comme le cas particulier se rapportant
a4 ceux des observateurs qui sont doués de certains mouvements
relatifs.
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4. Sur la « Structure de I’ Univers » d’aprés Milne. — Revenons
alors & la discussion de la théorie cinématique et & sa signification
pour la cosmologie. Pour développer sa cosmologie, MILNE re-
marque, aprés un exposé que nous avons précisé par les propo-
sitions (A) & (P), qu’il n’est pas possible de définir un univers
«universellement » homogéne, et il se fait une image de la répar-
tition des galaxies en imaginant que celles-ci satisfont & ce qu’il
appelle le principe cosmologique d’ Einstein. Toutefois, cela ne lui
suffit pas, et, 8’1l n’introduit pas de postulat appartenant & une
mecanique proprement dite, il admet tout au moins qu’il y a
conservation de quelque chose lorsqu’il déclare que:

(Q) Postulat. Le nombre des particules est conservé.

Ce postulat n’appartient pas & la relativité restreinte. On
pourrait le lul ajouter, mais ce serait malencontreux, puisqu’on
s'interdirait par 14 de considérer des phénomenes tels que la créa-
tion des paires d’électrons. Le postulat (Q) appartient donc & la
cosmologie de MILNE proprement dite.

Pour préciser ce qu’il entend par «principe cosmologique
d’Einstein », MiLNE a besoin de deux définitions, celle de 1’équi-
valence de deux particules 4 et B, équivalence qu’il écrit 4 = B,
et celle dune propriété analogue qu’il écrit 4 = B. La relation
A = B est trés bien définie, la seconde 4 = B l’est moins bien.

Indiquons ces définitions. Nous 'avons déja fait pratique-
ment pour la premiére & la lettre (I). Nous généralisons tout
d’abord la définition (I) en indiquant qu’elle est indépendante de
la maniére particuliere selon laquelle un observateur 4 attribue
des époques, mesurées 4 son horloge, aux événements qui se pro-
duisent en B. Soit done, indépendemment de la définition parti-
culiere (G), Ky un événement quelconque en @ (@4, B, ...).
Soit t§ (P—> A4, B, ...) une époque mesurée par P & son horloge
et attribuée & I'événement E,. Soit R} la distance de P a ¢,
mesurée par P & 1’époque tg (mesurée par @) & laquelle ¢ renvoie
un signal re¢cu de P. Soit 4 et B deux observateurs:

tf,} - fAB (t%)
R% = CfPAB(t}%) )
tﬁ = fBA (tg)

B =copa(t]) .

A étudie les fonctions {

B étudie les fonctions {

(I) Définition de l'équivalence: Si

fa(tg) =1(5),  fra(t)) = F(tD) (méme fonction f)
et

pan(ty) =@ (13), @pa(th) = @ (th) (méme fonction @),
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on dit que 4 et B sont équivalents, et on écrit
A = B'.

Nous indiquerons ci-dessous, en (R), la définition de la pro-
priété 4 = B. Au paravant, indiquons quelle signification elle doit
avoir. 4 = B est censé vouloir dire que la description, par A4,
des événements se produisant en tous les autres observateurs que
A, est superposable & la description, par B, des événements se
produisant en tous les autres observateurs que B.

Convenons alors de quelques notations. L’observateur 4 énu-
mere tous les observateurs (entre autres un certain observateur
B), et il les désigne d’une maniére générale par P;. A4 désigne
par t4 le temps mesuré & son horloge, et en particulier pa,r t4. le
temps fixant, & son horloge, I’époque des événements qui se suc-
cédent en P,. Soit y une grandeur physique, qui peut &tre en
général tensorielle. Tl est possible d’étudier la variation de cette
grandeur & l'endroit de toutes les particules-observateurs. 4 fait
cette étude, et peut indiquer y en chaque P, sous la forme d’une
fonction

Y= gA(Pi? téz)

L’observateur B énumeére tous les observateurs (entre autres
A), et 1l les désigne d’une maniére générale par P;,. B appelle t&
le temps mesuré a son horloge. Il étudie la méme grandeur en
chaque particule P, et en fonction de t2, et l'indique sous la
forme d’une fonction

y = gp (P, t8).

(R) Définition de la propriété A= B. S'il est possible de
faire COrrebpondre d’une maniére biunivoque les P; énumérés par
A4 et les P, énumeérés par B sous forme de paires P; <> P, d’une
maniere telle que

01 (Pr 1) — Gilth) )
95 (Pd ) = G.(tE) \J

ou g,(t) est la méme fonction pour une paire donnée, on dit alors

que
4 =B.

- Remarquons qu’en général 4 = B n’implique 4 = B, et que
4 = B n’implique pas non plus 4 = B.

Les grandeurs qui entrent en jeu dans la théorie de MiLNE
sont toutes d’ordre cinématique (Théorie « cinématique»). Consi-
dérons toujours les fonctions g, (P, t3) et gz(P,', t§,) indiquées

#
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par A (ou B) en tous les points P; (ou P;). 4 indique d’ailleurs
la position de P; par des coordonnées que nous symboliserons par

«un vecteur de position » 13_’;?{ qui est fixé & chaque époque #4,.
B en fait autant en se servant par exemple d’un vecteur P,3
fixé & chaque époque t§,. Admettons que 4 et B soient des obser-
vateurs équivalents. Alors, grdce aux relations (m) de la trans-

formation de LooreNTzZ-MILNE, on salt comment passer de t8, P38

4 t4, P4, et inversement. Nous pouvons symboliser cette trans-
formation en écrivant

[t4, PA) = T, [t8, PE]
[t8, PB] = Ty, [t4, PA].

Considérons pour un instant celui des points P, qui est le
méme que P;, et considérons la fonction correspondante indiquée

par B: .
9s(P:, t3,).

Dans cette fonction nous pouvons effectuer la transformation
T, des coordonnées de B & celles de 4. On trouve une relation
que nous pouvons symboliser en écrivant

9B (1:_)?, t{ii) = S5 Y4 (1—3?, t}%i) . (Z45)

La signification de (£,5) est la suivante: €, est la trans-
formation particuliere qu’il faut faire subir & g, pour qu’on ob-
tienne exactement gz pour le méme P,.

Considérons alors ’ensemble 2 de tous les observateurs 4, B. ..
de l'univers. Puis considérons les sous-ensembles de £ dont les
éléments sont équivalents entre eux; nous les désignons par (=),.
Les observateurs qui font partie d’un sous-ensemble (=); sont
équivalents entre eux. Envisageons d’autre part les sous-ensembles
de £ dont les éléments sont reliés entre eux par un signe =; soit
(£); un tel sous-ensemble. Les observateurs qui font partie d’un
(£); sont tels que, si @ et b sont deux quelconques d’entre eux,
a=b; a et b décrivent les événements se produisant en toutes
les particules de (); de maniére telle, que dans la description de
b il y ait un observateur ¢ et un seul qui soit décrit par b exacte-
ment comme a décrit un observateur P, et inversement (de maniére
que la correspondance entre P et () soit biunivoque). Lorsque
a=b, 1 n’est pas nécessaire que a décrive b comme b décrit a.

Soit donc un sous-ensemble (=); et un sous-ensemble (=),
et leur partie commune qu’on écrit comme leur produit:

partie commune a (=); et a (£); = (=); X (&);.
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(S) Définition. Les observateurs qui font partie d’un (=), x
(=); forment un systéme dont on dit qu’il satisfait au principe
cosmologique d’Einstein.

D’aprés le postulat de MiLNE (J), tous les observateurs sont
équivalents, on a alors un seul (=), et (=) x &); = &);.

La cosmologie de MiLNE est fondée sur les énoncés (A) a (S)
ainsl que sur celui du postulat suivant:

(T) Les galaxies peuvent étre considérées comme formant un
systeme (=) x (5);. ‘

C’est le dernier postulat. Autrement dit, le principe cos-
mologique de la théorie cinématique remplace lé prin-
cipe de covariance de la cosmologie einsteinienne (cf.%),
p. 97). On peut dire que la théorie cinématique fournit, de la
relativité restreinte, une généralisation différente de celle connue
sous le nom de relativité générale. Ces deux généralisations
suggérent des modéles cosmologiques convenables de 'univers, car
il est aujourd’hui requis de tels modéles qu’ils expliquent le dé-
placement des raies vers le rouge, et les deux théories satisfont
4 cette condition (pour 'explication de la récession des nébuleuses
par la théorie cinématique, on consultera®) ou %); pour l'explica-
tion par la théorie de la relativité générale, on consultera n’im-
porte quel traité sur ce sujet).

Cependant, la théorie cinématique n’a pas résolu le probléme
de la gravitation d’une facon satisfaisante comme 1’a fait la rela-
tivité générale, de sorte que pour le moment c’est cette derniére
qui me semble avoir la priorité.

Posons-nous la question de savoir ce que le principe cosmo-
logique permet de calculer. Si deux particules-observateurs 4 et
B font partie d’'un (=) x (), 1l faut qu’on ait a la fois (T ,4)
et (9). La définition d’une grandeur y est fixée indépendemment
du principe cosmologique. En exigeant que 4 et B fassent partie
d'un (=) x (), c’est-a-dire en posant les relations (T,5) et (g)
comme conditions, on fixe la forme particuliere de g;(f), et de la
sorte on a, pour y, une formule que soit A4, soit B, soit un obser-
vateur quelconque O qui fait partie du sous-ensemble (=) x (&)
peut vérifier expérimentalement en remplagant ¢ par 3 (ou par
tp,, ou par t9), et en comparant les nombres ainsi obtenus pour
g; & des résultats d’expérience. Le probléme mathématique posé
par 'adoption du principe cosmologique consiste donc & trowver
les fonctions g, des diverses grandeurs y envisagées dans la théorie,
ces fonctions ,; étant fixées par (T z) et (¢9) et la correspondance
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P; <> P;/. 1l en résulte que g, est colution d’une équation fonec-
tionnelle, dont on trouvera deux exemples dans?).

Le procédé que nous venons d’indiquer appelle la remarque
suivante. Si ’on admet, comme on le fait en (T), que les galaxies
peuvent étre assimilées aux éléments d'un (=) x (=), c’est que
A,B, -0, - sont chacun a l'endroit d’'une galaxie. Or il n'y
a qu’une seule galaxie de laquelle nous puissions obtenir des résul-
tats d’expérience, & savoir notre propre galaxie, et méme si les
étoiles pouvaient séparément faire partie dun (=) x (2), il n’y
aurait jamais que le systéme solaire d’ou l'on puisse vérifier la
Justesse d’une hypothése pareille a (T). Il n’y aurait donc qu’un

seul «observateur», — appelons-le 4, — dont on puisse connaitre
les expériences, et la vérification de 'exactitude de g, ne se ferait que
sur g,, mais sur aucun autre gp,- ‘- gy, . De la résulte un

mandque considérable de points d’appui dans la théorie cinéma-
tique: il est impossible de s’assurer que le principe cosmologique
puisse étre mis en défaut ou qu'il puisse étre confirmé par 1’étude
de diverses fonctions g4, g5, etc. Il se trouve donc qu’on ne peut
justifier la théorie que par I’étude que peut faire un seul 4 de
I'image de I'univers (World-picture) telle que la propose la théorie,
ou bien par des arguments épistémologiques.

. Mais il reste entendu que ’on pourrait fort bien prendre, au
lieu d’une axiomatique telle que celle de Reichenbach, I’ensemble
des énoncés (A) jusqu’a (P) comme base de la relativité restreinte.

Séminaire de physique théorique de 1'Université de Berne.
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