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Sur l'axiomatique de la théorie cinématique de Milne

par André Mercier (Berne).

(28. X. 40.)

Sommaire. — Cet article est un exposé systématique des propositions
(postulats et définitions) qui forment la base de la théorie cinématique de Milhe. Il
précise son axiomatique, et insiste sur le fait qu'on pourrait la mettre à la base de
la théorie de la relativité restreinte aussi bien que l'une des axiomatiques existantes.
L'article se termine par une comparaison entre la cosmologie de Milne et celle
de la relativité; cela permet de relever certains défauts de la première.

1. Bemarques préliminaires. — Il y a premièrement dans
toute théorie physique des notions primordiales que l'on admet
sans même les définir. Ce sont des entités que notre intelligence
est censée comprendre grâce à une expérience journalière, grâce
à une intuition, ou en vertu d'un facteur quelconque. De plus,
dans toute théorie, on fait des définitions, qui n'ont besoin d'aucun

commentaire Enfin toute théorie est fondée sur des relations
qu'on appelle tantôt principe, tantôt axiome, tantôt postulat.
Nous dirons axiome pour suivre Reichenbach dans l'exposé des
«axiomes de la lumière»; ailleurs, nous dirons postulat.

Nous commencerons par un bref rappel de l'axiomatique déjà
connue de la relativité restreinte.

H. Reichenbach6) 7) 8) et Carathéodory1) ont, indépen-
demment l'un de l'autre, proposé des systèmes d'axiomes pouvant
servir de base à la théorie de la relativité. Les notions a priori,
grâce auxquelles leur énoncé est possible, sont la suite des nombres
réels et la notion d'un ensemble e de points ayant la puissance du
continu, la notion de signaux, celle de leur émission et de leur
réception; puis celle d'événement en un point de l'ensemble e, ce

qui suppose qu'en ce point il puisse exister un point matériel
distinct du point mathématique. Reichenbach énonce des axiomes,
dits de la lumière, qu'on peut résumer comme suit: A chaque
point de e correspond une suite d'événements qu'on peut ordonner
selon la suite des nombres réels; le nombre réel s'appelle temps,
et toute coupure définit l'époque d'un événement. On peut
toujours en un point de e émettre un signal à l'époque d'un certain
événement. A chaque point de e correspond un dispositif capable,
lorsqu'il reçoit un signal, d'en émettre un simultanément. Il faut
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préciser qu'à chaque émission d'un signal en un point de e correspond
la réception d'un et d'un seul signal, appelé premier signal. La
succession de deux premiers signaux, à la réception en un point P',
est la même qu'à leur émission en un point P. La comparaison
des temps mesurés en deux points se fait grâce à une définition
que nous reprendrons plus loin. Vient l'axiome, dit de Fermât,
selon lequel les (premiers) signaux consistent en lumière. Puis
on énonce deux axiomes qui reviennent à affirmer l'existence d'un
ensemble dense de points liés entre eux d'une manière invariable
(la liaison invariable est définie sans qu'il soit fait appel à la notion
de distance). On définit alors la distance entre deux points. Enfin
un dernier axiome fixe la métrique de l'espace des points appartenant

à l'ensemble dense qui vient d'être cité, en déclarant qu'elle
est euclidienne et qu'elle a trois dimensions, la lumière s'y
propageant en ligne droite. Un pareil système s'appelle inertial.
Suivant comment on définit la manière de mesurer les longueurs
dans des systèmes en mouvement uniforme l'un par rapport à

l'autre, on est conduit à employer la transformation de Galilée
ou celle de Lorentz. Supposons définie la transformation de

Lorentz, on peut alors postuler que c'est elle qui préside à la
réalité des corps matériels. C'est ce que propose Reichenbach.

Il est très instructif de comparer pas à pas les énoncés de
Reichenbach à ceux qui forment le fondement de la Théorie
Cinématique et que nous exposons au paragraphe suivant.

2. Enoncés (A) à (P) de l'axiomatique de la Théorie Cinématique.

— Milne a émis des idées fort intéressantes sur le
cinématique générale (cf. 5) et 4)). Si en certains points il suit un
chemin qui coïncide à peu près avec celui des auteurs de
l'axiomatique relativiste que nous avons cités plus haut, il s'écarte
toutefois de leur méthode et il établit surtout les bases d'une
cinématique moins restreinte que celle de la relativité restreinte.
Nous allons exposer systématiquement, comme l'a fait par exemple
Reichenbach pour la relativité, les postulats et les définitions
qui forment la base de cette théorie.

(A). Notions primordiales*). Citons tout d'abord, parmi les

notions primordiales de cette théorie la suite des nombres réels,
notion mathématique qui sera utilisée à peu près comme dans

l'axiomatique résumée au § 1. Mais ensuite, en théorie cinématique,

il n'est pas question d'un ensemble de points, mais bien

*) Les lettres (A), (B), etc., qui suivent servent à numéroter soit les désignations

des notions primordiales, soit les énoncés d'axiomes, soit ceux de postulats,
soit ceux de définitions.
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d'une notion de caractère absolument physique, un ensemble de

particules. Cet ensemble est évidemment dénombrable, ce qui fait
qu'on ne pourra pas introduire dans cette théorie une métrique
euclidienne de la même manière que dans l'énoncé du dernier
axiome de la lumière de Reichenbach. De plus, on admet la
notion d'observateur, c'est-à-dire non seulement de mécanisme,
mais d'être intelligent capable d'intentions; en particulier les
observateurs communiquent entre eux. La notion d'observateur
est plus compliquée que celles adoptées par Reichenbach ou
Carathéodory, mais on peut à peu près la réduire à ces dernières.
En effet, les observateurs doivent pouvoir communiquer entre
eux, ce qui n'est rien d'autre que l'envoi des signaux et leur réception,

et l'on pourrait énoncer de nouveau les axiomes selon
lesquels à toute émission due à l'un des observateurs correspond
la réception d'un signal par tous les autres. Pour ne pas allonger
nous n'introduisons pas d'exposé détaillé de ces axiomes. De plus
les observateurs sont censés avoir la notion d'événements et celle
des adjectifs antérieur, simultané et postérieur. Ces notions sont
aussi parmi celles que Carathéodory adopte; par contre,
Reichenbach les définit à partir des notions de signal, d'émission
et de réception, ainsi que celle d'événement. Il vaut la peine de

rappeler ici la définition de Reichenbach. « De deux événements
E± et E2 arrivés en un point P, E2 est dit postérieur à Ex (et E±
antérieur à E2) lorsqu'il est possible de choisir un signal dont
l'émission coïncide avec E-l et le retour (la réception en P) avec
E2». Il ne serait pas possible de traduire cette définition
dans la cinématique de Milne, car comme nous le verrons
en (B), le nombre des observateurs est le même que celui des

particules, et l'on n'est pas assuré que pour deux événements Ex
et E2 quelconques observés par un observateur, celui-ci puisse
trouver un signal dont l'émission coïncide avec E1, et la réception,
au retour, avec E2. Il faut donc nécessairement compter les
adjectifs antérieur, simultané et postérieur parmi les notions
primordiales.

Les premiers postulats de la théorie cinématique sont les
suivants :

(B) A chaque particule est associé un observateur.

(C) En chaque particule se produisent des événements, dont les
observateurs font l'expérience. Comme nous l'avons vu, cette
expérience est temporelle (succession ou simultanéité). De plus
cette expérience temporelle est supposé telle, qu'étant donné deux
événements non simultanés arrivés à l'endroit de la même parti-
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cule, l'observateur associé puisse toujours discerner un troisième
événement qui serait postérieur au premier et antérieur au second.

(D) On postule que l'expérience de tout observateur est continue,
c'est-à-dire qu'en chaque particule il y a une suite continue d'événements

qu'on peut ordonner selon la suite des nombres réels*).
L'exposé de Milne coïncide avec celui de Reichenbach quant

à la définition d'une horloge:
(E) La correlation entre les nombres réels et les événements

qui constituent l'expérience temporelle d'un observateur est une
horloge.

Comme on le voit, la différence essentielle entre la théorie
cinématique et l'axiomatique indiquée plus haut réside dans
l'ensemble des particules de l'une et celui des points de l'autre, et
nous pouvons indiquer dès maintenant que ce n'est pas tellement
à propos du temps et de sa mesure, mais bien plus à propos de
la manière et de la possibilité de comparer des mesures que la
théorie cinématqiue se distingue (cf. surtout (J)).

Vient la comparaison des époques d'événements qui se
produisent en des particules différentes. Pour cela il faut postuler que

(F) L'ordre d'émission des signaux est le même que celui de la
réception.

Milne définit l'époque d'un événement en B mesurée par A
et la distance entre A et B. Ces définitions ne sont rien d'autre
que celles de l'axiomatique de Reichenbach, mais elles sont
accompagnées dans l'exposé de Milne d'un commentaire très intéressant:

(G) Définitions. L'époque T^ étant celle de la réflexion en
B d'un signal envoyé par A. à l'époque tx et retourné en A à l'époque
t3 (toutes époques mesurées par A), Tjj est définie par les conditions

de tomber entre tx et t3, et d'être telle que si on ajoute une
constante au temps mesuré en A, elle augmente aussi d'autant.
Quant à la distance B^ de A à B, mesurée par A, elle doit être
définie de manière que si B est en A, elle soit nulle; de plus elle

ne doit pas dépendre de l'origine du temps. Il résulte de ces
conditions que l'expression de l'époque T^ (cp. à t2 dans 7)) doit
être de la forme

~~ + Wi(h-k) avec Vi(0) 0

et celle de la distance Bjj
V>2 (h — *i) avec V2 (0) 0.

*) Pour traduire l'expression «at a particle», nous disons «en une particule

», comme on dit « en un point ».
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Sur quoi Milne choisit les formes particulières

xPl=0; donc T|=A±A.
et

v>2 (h - h) y (k — *i) Ri

où c est une constante positive arbitraire. La forme générale de

l'expression de l'époque:-^— + ^(£3 — tx) est une généralisation
de l'expression proposée par Reichenbach dans sa définition N° 27),
qui est elle-même une généralisation de la définition d'Einstein
(qu'il numérote 8 dans7)).

B envoie à A, en même temps qu'il renvoie le signal,
l'indication £| de son horloge à l'époque de cette réflexion. De la sorte,
A peut étudier en fonction de l'époque T^ de cette réflexion fixée
par la dernière définition à sa propre horloge, l'époque £| mesurée
à l'horloge de B, ainsi que la distance B^ qui le sépare de B :

tß 'AB +b)

tti ccpAB(Ti).

Réciproquement, B peut en faire autant:

ti-fBA(TÎ)
m=c<pBA(Tî).

(H) Postulat. A et B (en général tous les observateurs)
conviennent de poser c' c.

(I) Définition. Deux observateurs A et B sont dits équivalents
s'ils peuvent graduer leur horloge de manière que

9AB <PbA <P> et ÌaB ÌbA Ì-

Pour que la relativité restreinte apparaisse comme un cas
particulier de la théorie cinématique, il faut exiger ceci:

(J) Postulat. Les observateurs associés aux particules sont
équivalents entre eux.

J'appellerai cet énoncé J) le « postulat de Milne », et je
souhaiterais qu'on en fasse la pierre de coin de l'axiomatique de la
théorie cinématique. Car c'est en vertu de (J) qu'on montre que
c'est grâce à une transformation identique à celle de Lorentz
que l'on passe de la description de l'univers faite par un observateur

à celle faite par un autre en mouvement relatif rectiligne et
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uniforme par rapport au premier. Avant d'en arriver là, on a
besoin de quelques énoncés. Mais nous pouvons tout de suite

remarquer que c'est donc (J) qui constitue l'une des idées
fondamentales de l'exposé de Milne. Cette idée est particulièrement

originale. Elle appelle deux remarques. Pour qu'un
observateur A puisse étudier les fonctions £| fAB(tjj) et B^ ccpAB(TB)
d'une manière très précise, il faut qu'il puisse envoyer des signaux
à B d'une manière continue, ce qui est une idéalisation permise.
Il est plus difficile par contre de s'assurer qu'au cours du temps
(qui dure infiniment) A et B restent toujours équivalents. Il faut
donc comprendre ce dernier point dans le postulat de Milne.

(K) On définit alors la vitesse « extérieure » d'un signal par le

quotient entre la distance B^ parcourue entre l'émetteur A et le

récepteur B, et le temps T^ — tx mis par ce signal pour atteindre B,
ces grandeurs étant mesurées par A, et

(L) la vitesse « intérieure » du même signal par le quotient entre
la distance B^ et le temps t3 — T^ mesuré par A et mis par le

signal pour revenir de B en i.
Le calcul montre que la vitesse intérieure et la vitesse

extérieure sont toutes deux égales à c, ce qui est très
remarquable, d'autant plus que ce résultat est vrai indépendemment
d'un mouvement relatif possible de i et B (il n'est même pas
question un seul instant d'un pareil mouvement relatif). De plus,
ce résultat est encore vrai si l'on intervertit A et B. Maintenant
on postule que

(M) la vitesse des signaux s'appelle vitesse de la lumière.
La signification de (M) est exactement celle de l'axiome de

Fermât.
La transformation de Lorentz rentre dans le cadre de la

cinématique de Milne d'une manière très élégante. Il faut dire
clairement dans quelles circonstances on l'établit. Dans
l'axiomatique de Reichenbach, on l'obtient en définissant convenablement

le mouvement relatif uniforme sans l'aide de barres rigides
(cp. àce propos5), p. 59, au début du troisième alinéa du sommaire!).

Milne (5) § 27) définit tout d'abord la vitesse radiale :

(N) La vitesse radiale V d'un observateur B mesurée par un
observateur A est définie par le nombre

dTi '

où cp est défini en (G) et (I).
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Si l'on imagine alors qu'un signal envoyé par un observateur
A à un observateur P «touche en passant» l'observateur B*),
on peut établir les formules qui relient entre elles la distance
AP X et l'époque T à laquelle le signal arrive en P, mesurées

par A, la distance BP X' et l'époque T' du même événement
mais mesurées par B, et la vitesse radiale (instantanée) V. Ce

sont les formules (33) de la page 41 de 5) que nous reproduisons:

t' + ^=pJt+X), T+x p21(r + ^
c \ c c \ c

2"-—-pJt--\, T-X pJr-*)
(m)

c J.

où p12 est l'opérateur qui fait passer de f(T~£) à f(T-J), et p21
l'opérateur inverse. Il est inutile de commenter la forme des équations
(m). Ces équations méritent d'être appelées formules de transformation

de Lorentz-Milne. Elles sont valables quelle que soit la
vitesse radiale V qui est en général variable en fonction de TB.

Si V est constant, on déduit de (m) les formules de la
transformation de Lorentz:

T — VXIc2T' ^_oooAaAA etc. (V const.)
Vl - V2/c2

La transformation (ra) est valable si A, B et P sont alignés
sur la trajectoire d'un rayon lumineux. Pour pouvoir suivre les
raisonnements de Milne qui permettent d'établir les formules de
transformation de Lorentz « en trois dimensions », il faut énoncer
deux postulats. Or Milne imagine simplement que A, B et P
ne soient pas alignés, et que A et B essayent de comparer entre elles
leurs mesures relatives et celles qu'ils font de la position et de l'époque
de P, au moyen de diagrammes dessinés dans une géométrie
euclidienne, quittes à ce que ce procédé se révèle impossible. Il se

trouve que ce procédé est possible lorsque V est constant, sinon pas.
Si donc on veut exposer la théorie de la relativité restreinte au

moyen du langage de Milne, il faut premièrement spécifier par
un postulat que

(O) Les observateurs équivalents dont les comptes-rendus
d'observation constituent l'ensemble de la théorie de la relativité
restreinte sont tels que V const, pour deux quelconques i et B
d'entre eux. Appelons-les observateurs galiléens.

*) Ce qui veut dire qu'un signal envoyé par A à P, puis instantanément
par P à B, et retourné en A par le même chemin, revient en A au même instant
qu'un signal direct de A à B et retour. On peut dire alors que A, P et B sont
alignés.
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Chaque observateur galiléen peut, selon Milne, convenir
d'employer une géométrie euclidienne pour traduire ses observations,
mais il faut deuxièmement postuler que

(P) Lorsqu'un observateur galiléen décide d'employer une
géométrie euclidienne à trois dimensions*) pour la description de ses

expériences, les rayons lumineux lui apparaissent comme des lignes
droites.

On peut alors faire suivre l'axiomatique (A), (B), (P) de
la cinématique de Milne par les énoncés des postulats de la
relativité restreinte (dynamique, électromagnétisme, etc.). On obtient
ainsi un exposé complet et original de la relativité restreinte.
Bien entendu, cela n'est possible que dans la supposition de l'existence

de particules, et non pas de répartitions continues de matière.
Un pareil exposé servirait admirablement la physique atomique.

Ce n'est d'ailleurs pas là le but de Milne, qui a développé
cette cinématique avec l'idée d'en faire une théorie cosmologique,
que l'on désigne sous le nom de théorie cinématique de l'Univers.

3. Belativité générale. — On peut considérer ce paragraphe
comme faisant directement suite au § 1.

La théorie de la relativité générale repose sur l'idée
fondamentale que tous les systèmes de coordonnées imaginables sont
également justifiés pour la description de la nature. Einstein3)
traduit cette idée par le postulat appelé principe de covariance:
Les lois générales de la nature doivent être exprimées par des

équations de forme covariante vis-à-vis de substitutions
quelconques de coordonnées.

Il faut préciser par un postulat ce que l'on entend par
coordonnées : Les coordonnées permises en physique sont des paramètres
quelconques qui caractérisent d'une manière univoque et continue
les points de l'univers.

La relativité restreinte ne peut tenir compte d'effets gravi -
fiques sous forme newtonienne, puisque celle-ci autorise l'envoi de

signaux à vitesse infinie, he postulat appelé principe d'équivalence
rétablit la possibilité d'énoncer une loi de gravitation dans la théorie :

Il est toujours possible, en un point de l'univers, de passer à un
système local de coordonnées tel que les effets gravifiques
disparaissent dans un domaine infiniment petit entourant ce point,
le domaine étant choisi suffisamment petit pour que les variations
(dans l'espace et dans le temps) de la gravitation puissent y être
négligées.

*) Rien ne prouve, dans la théorie de Milne, qu'on ne puisse imaginer un
nombre de dimensions d'espace différent de trois.
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On postule une espèce de condition aux limites: Dans le
système local de coordonnées du domaine infinitésimal dont il est
question dans l'énoncé du principe d'équivalence, la relativité
restreinte est valable; c'est-à-dire que la forme des équations des lois
de la physique dans ce système est la même que dans un certain
système galiléen x, y, z, ct, duquel d'ailleurs on peut passer à un
autre x', y' z', et', par une transformation de Lorentz.

On fait alors des définitions. Tous les systèmes galiléens de
coordonnées qui correspondent au système local s'appellent
systèmes de coordonnées naturelles, et si un objet est au repos dans
l'un d'eux, celui-ci est appelé système des coordonnées propres de

l'objet.
Nous n'irons pas plus loin dans l'exposé de la théorie de la

relativité dite générale; il existe des traités fondamentaux là-dessus.
Nous ferons la remarque suivante: Le principe de covariance mis
à part, la relativité générale' procède par généralisation d'une
théorie restreinte. En particulier on postule qu'en coordonnées
naturelles on doit retrouver la relativité restreinte. C'est là un
procédé possible. Une théorie exposant des postulats ou des axiomes
fondamentaux sans qu'il soit fait appel à une théorie d'ordre
moins élevé et déjà connue me semblerait encore plus élégante.
Cela me paraîtrait particulièrement désirable aussitôt qu'il s'agit
d'une théorie dont la portée est d'ordre cosmologique, et il me
semble que le reproche (discret) que je fais à la relativité générale
revient à un manque de cette théorie à satisfaire au « principe de
beauté mathématique » énoncé récemment par Dirac2); si le principe

de covariance satisfait au principe de Dirac, la suite de la
théorie ne me semble pas y satisfaire indubitablement.

Pour la cosmologie, cela est d'autant plus pénible, que la
méthode de la cosmologie relativiste consiste à deviner des modèles
de l'univers satisfaisant aux principes de la relativité générale.

On ne peut pas faire ces reproches-ci à la théorie cinématique
de Milne. Mais on peut lui en faire d'autres (voir en particulier 2)

et *)). La théorie de Milne ne semble entre autres pas expliquer
facilement la gravitation. Mais on constatera qu'alors que le
procédé employé en relativité générale fait de la relativité restreinte
un cas limite où les effets gravifiques sont négligeables — cas
limite qu'il faut de plus connaître avant de passer à l'exposé
général, — la théorie cinématique, elle, considère la relativité
restreinte tout simplement comme le cas particulier se rapportant
à ceux des observateurs qui sont doués de certains mouvements
relatifs.
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4. Sur la « Structure de l'Univers » d'après Milne. — Revenons
alors à la discussion de la théorie cinématique et à sa signification
pour la cosmologie. Pour développer sa cosmologie, Milne
remarque, après un exposé que nous avons précisé par les propositions

(A) à (P), qu'il n'est pas possible de définir un univers
« universellement » homogène, et il se fait une image de la répartition

des galaxies en imaginant que celles-ci satisfont à ce qu'il
appelle le principe cosmologique d'Einstein. Toutefois, cela ne lui
suffit pas, et, s'il n'introduit pas de postulat appartenant à une
mécanique proprement dite, il admet tout au moins qu'il y a
conservation de quelque chose lorsqu'il déclare que:

(Q) Postulat. Le nombre des particules est conservé.
Ce postulat n'appartient pas à la relativité restreinte. On

pourrait le lui ajouter, mais ce serait malencontreux, puisqu'on
s'interdirait par là de considérer des phénomènes tels que la création

des paires d'électrons. Le postulat (Q) appartient donc à la
cosmologie de Milne proprement dite.

Pour préciser ce qu'il entend par « principe cosmologique
d'Einstein», Milne a besoin de deux définitions, celle de
l'équivalence de deux particules A et B, équivalence qu'il écrit A B,
et celle d'une propriété analogue qu'il écrit A B. La relation
A B est très bien définie, la seconde A B l'est moins bien.

Indiquons ces définitions. Nous l'avons déjà fait pratiquement

pour la première à la lettre (I). Nous généralisons tout
d'abord la définition (I) en indiquant qu'elle est indépendante de
la manière particulière selon laquelle un observateur A attribue
des époques, mesurées à son horloge, aux événements qui se
produisent en B. Soit donc, indépendemment de la définition
particulière (G), Eq un événement quelconque en Q (Q->- A, B,
Soit t^ (P-> A, B, une époque mesurée par P à son horloge
et attribuée à l'événement Eq. Soit B^ la distance de P à Q,
mesurée par P à l'époque t^ (mesurée par Q) à laquelle Q renvoie
un signal reçu de P. Soit i et B deux observateurs:

tß lABvAA étudie les fonctions
«1 ccpAÈ(ti),

et

B étudie les fonctions % ^BA ^„\Bi ccpBA(tf).

(I) Définition de l'équivalence: Si

Îab (ti) f (ti), fBA (tî) / (ti) (même fonction /)

<Pab (ti) <P (ti), cpBA (t\) =<p(t%) (même fonction cp),
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on dit que A et B sont équivalents, et on écrit

A B.

Nous indiquerons ci-dessous, en (R), la définition de la
propriété A B. Au paravant, indiquons quelle signification elle doit
avoir. A B est censé vouloir dire que la description, par A,
des événements se produisant en tous les autres observateurs que
A, est superposable à la description, par B, des événements se

produisant en tous les autres observateurs que B.
Convenons alors de quelques notations. L'observateur A énu-

mère tous les observateurs (entre autres un certain observateur
B), et il les désigne d'une manière générale par Pt, A désigne
par tA le temps mesuré à son horloge, et en particulier par tB. le
temps fixant, à son horloge, l'époque des événements qui se
succèdent en Pf. Soit y une grandeur physique, qui peut être en
général tensorielle. Il est possible d'étudier la variation de cette
grandeur à l'endroit de toutes les particules-observateurs. A fait
cette étude, et peut indiquer y en chaque Pt sous la forme d'une
fonction

7 9a(PìAÌ)-
L'observateur B énumère tous les observateurs (entre autres

A), et il les désigne d'une manière générale par P/. B appelle tB
le temps mesuré à son horloge. Il étudie la même grandeur en
chaque particule P/ et en fonction de tB, et l'indique sous la
forme d'une fonction

y-9b (Pi, %,). '

(R) Définition de la propriété Am B. S'il est possible de
faire correspondre d'une manière biunivoque les Pt énumérés par
A et les P/ énumérés par B sous forme de paires P, -<->- P/ d'une
manière telle que

9a(Pu ti) =g{(tt}
9B(P/A§i,) gAtfi>)

où ~ài(t) est la même fonction pour une paire donnée, on dit alors
que

A B.

Remarquons qu'en général A B n'implique Am B, et que
A B n'implique pas non plus A B.

Les grandeurs qui entrent en jeu dans1 la théorie de Milne
sont toutes d'ordre cinématique (Théorie «cinématique»).
Considérons toujours les fonctions gA (P<( tp) et gB(P/, tj,.,) indiquées
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par A (ou B) en tous les points Pt (ou P/). A indique d'ailleurs
la position de P2 par des coordonnées que nous symboliserons par
« un vecteur de position » Pf qui est fixé à chaque époque tpi.
B en fait autant en se servant par exemple d'un vecteur P/B
fixé à chaque époque tp.r. Admettons que A et B soient des
observateurs équivalents. Alors, grâce aux relations (m) de la
transformation de Lorentz-Milne, on sait comment passer de tjt, PB

à ti, PA, et inversement. Nous pouvons symboliser cette
transformation en écrivant

[^-P1] T^[t|,PS]
[<|,PS] T^[^,P^].

Considérons pour un instant celui des points P/ qui est le
même que P,, et considérons la fonction correspondante indiquée
par B :

9b(Px, tl).
Dans cette fonction nous pouvons effectuer la transformation

TAB des coordonnées de B à celles de A. On trouve une relation
que nous pouvons symboliser en écrivant

gB(P*, t^^ZABgA(Pf, AP). (<ZAB)

La signification de i^-AB) est la suivante: <S.AB est la
transformation particulière qu'il faut faire subir à gA pour qu'on
obtienne exactement gB pour le même P<.

Considérons alors l'ensemble Q de tous les observateurs A, B...
de l'univers. Puis considérons les sous-ensembles de Q dont les
éléments sont équivalents entre eux; nous les désignons par
Les observateurs qui font partie d'un sous-ensemble (s)j sont
équivalents entre eux. Envisageons d'autre part les sous-ensembles
de Q dont les éléments sont reliés entre eux par un signe m. ; soit

un tel sous-ensemble. Les observateurs qui font partie d'un
(=),• sont tels que, si a et b sont deux quelconques d'entre eux,
a b ; a et b décrivent les événements se produisant en toutes
les particules de (=),• de manière telle, que dans la description de
b il y ait un observateur Q et un seul qui soit décrit par b exactement

comme a décrit un observateur P, et inversement (de manière

que la correspondance entre P et Q soit biunivoque). Lorsque
a==b, il n'est pas nécessaire que a décrive b comme b décrit a.

Soit donc un sous-ensemble (=)< et un sous-ensemble (=)j,
et leur partie commune qu'on écrit comme leur produit:

partie commune à (=); et à (=),¦ (=),¦ X (=),-.
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(S) Définition. Les observateurs qui font partie d'un (=)* x
(=)j forment un système dont on dit qu'il satisfait au principe
cosmologique d'Einstein.

D'après le postulat de Milne (J), tous les observateurs sont
équivalents, on a alors un seul et x (=)3- (=),-.

La cosmologie de Milne est fondée sur les énoncés (A) à (S)
ainsi que sur celui du postulat suivant:

(T) Les galaxies peuvent être considérées comme formant un
système x (=)j.

C'est le dernier postulat. Autrement dit, le principe
cosmologique de la théorie cinématique remplace le principe

de covariance de la cosmologie einsteinienne (cf.4),
p. 97). On peut dire que la théorie cinématique fournit, de la
relativité restreinte, une généralisation différente de celle connue
sous le nom de relativité générale. Ces deux généralisations
suggèrent des modèles cosmologiques convenables de l'univers, car
il est aujourd'hui requis de tels modèles qu'ils expliquent le
déplacement des raies vers le rouge, et les deux théories satisfont
à cette condition (pour l'explication de la récession des nébuleuses

par la théorie cinématique, on consultera5) ou 4) ; pour l'explication

par la théorie de la relativité générale, on consultera n'importe

quel traité sur ce sujet).

Cependant, la théorie cinématique n'a pas résolu le problème
de la gravitation d'une façon satisfaisante comme l'a fait la
relativité générale, de sorte que pour le moment c'est cette dernière
qui me semble avoir la priorité.

Posons-nous la question de savoir ce que le principe
cosmologique permet de calculer. Si deux particules-observateurs A et
B font partie d'un (A) x il faut qu'on ait à la fois (£AB)
et (g). La définition d'une grandeur y est fixée indépendemment
du principe cosmologique. En exigeant que A et B fassent partie
d'un x c'est-à-dire en posant les relations (%AB) et (g)

comme conditions, on fixe la forme particulière de g((t), et de la
sorte on a, pour y, une formule que soit A, soit B, soit un
observateur quelconque O qui fait partie du sous-ensemble (s) x
peut vérifier expérimentalement en remplaçant t par ip. (ou par
tp,. ou par tp), et en comparant les nombres ainsi obtenus pour
g{ à des résultats d'expérience. Le problème mathématique posé
par l'adoption du principe cosmologique consiste donc à trouver
les fonctions gt des diverses grandeurs y envisagées dans la théorie,
ces fonctions ~t étant fixées par (XAB) et (g) et la correspondance



486 André Mercier.

Pi -*-> P/. Il en résulte que gt est solution d'une équation
fonctionnelle, dont on trouvera deux exemples dans5).

Le procédé que nous venons d'indiquer appelle la remarque
suivante. Si l'on admet, comme on le fait en (T), que les galaxies
peuvent être assimilées aux éléments d'un (s) x c'est que
A, B, ¦ ¦ ¦ O, • • • sont chacun à l'endroit d'une galaxie. Or il n'y
a qu'une seule galaxie de laquelle nous puissions obtenir des résultats

d'expérience, à savoir notre propre galaxie, et même si les
étoiles pouvaient séparément faire partie d'un x il n'y
aurait jamais que le système solaire d'où l'on puisse vérifier la
justesse d'une hypothèse pareille à (T). Il n'y aurait donc qu'un
seul «observateur», — appelons-le A, — dont on puisse connaître
les expériences, et la vérification de l'exactitude de gt ne se ferait que
sur gA, mais sur aucun autre gB, • • • g0, • • ¦. De là résulte un
manque considérable de points d'appui dans la théorie cinématique:

il est impossible de s'assurer que le principe cosmologique
puisse être mis en défaut ou qu'il puisse être confirmé par l'étude
de diverses fonctions gA, gB, etc. Il se trouve donc qu'on ne peut
justifier la théorie que par l'étude que peut faire un seul A de

l'image de l'univers (World-picture) telle que la propose la théorie,
ou bien par des arguments épistémologiques.

Mais il reste entendu que l'on pourrait fort bien prendre, au
lieu d'une axiomatique telle que celle de Reichenbach, l'ensemble
des énoncés (A) jusqu'à (P) comme base de la relativité restreinte.

Séminaire de physique théorique de l'Université de Berne.
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