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Die Streuung schneller Elektronen an Kernen
von J. M. Jauch, Zürich.

(26. X. 40.)

In dieser Arbeit soll gezeigt werden, dass es nicht möglich ist, die anomale
elastische Streuung von schnellen Elektronen an Atomkernen, wie sie z. B. für
den Stickstoffkern vorliegt, zu erklären, entweder durch die Annahme einer zur
Coulomb'schen Anziehung hinzukommenden statischen Zusatzkraft zwischen
schweren Teilchen und Elektronen, oder durch die magnetische Streuung der
Elektronen durch das magnetische Moment des Kernes. Die Möglichkeiten für
eine Zusatzkraft sind beschränkt durch die Bedingung, dass die Spektralterme
dadurch nahezu unbeobachtbar beeinflusst werden sollen.

§ 1. Einleitung.

Die Versuche über die Einzelstreuung schneller Elektronen
(d. h. mit Energien > 0,5 MV.) an Atomkernen zeigen fast durchwegs

Resultate, welche mit der bisherigen Theorie nicht
übereinstimmen. Die relativistisch-wellenmechanische Theorie für die
Streuung schneller Elektronen an Kernen stammt von Mott1).
Mott findet für die Streuung in einem Coulombfeld den differen-
tiellen Wirkungsquerschnitt

'Mäw^-^M'81"^)^! (1)

worin m, v die Ruhemasse bzw. Geschwindigkeit des Elektrons
bezeichnet und ß vjc gesetzt ist. In dieser Formel sind zwar
Grössen von der Ordnung <x (a =-r— ^^rorr) gegen 1 vernachlässigt,

doch beträgt der Fehler für die leichten Elemente, etwa
bis Aluminium weniger als 1 %. Bei schweren Elementen muss der
nächste Term in a noch mitberücksichtigt werden.

Klabmann und Bothe2) fanden aus Einzelstreuversuchen an
Xenon und Krypton etwa dieselbe Winkelverteilung, wie sie aus
der MoTT'schen Formel folgt. Dagegen finden sie für die Absolutwerte

der Streuung im Energiebereich 0,5—2,6 MV. bei Xenon

x) N. F. Mott, Proc. Roy. Soc. 124, 425 (1929); Proc. Roy. Soc. 135, 429
(1932). Siehe auch F. Sattteb, Ann. d. Phys. 18, 61 (1933).

2) Klabmann und Bothe, Zs. f. Phys. 101, 489 (1936).
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etwa fünfmal weniger und bei Krypton etwa sechsmal weniger
als nach Mott. Ahnliche Diskrepanzen finden Barber und Champion1)

an Hg, wo die Streuung für den Energiebereich 0,4—1,6 MV
etwa ein Sechstel des MoTT'schen Wertes betragen soll. Jod streut
nach denselben Autoren etwa 2/5 des theoretischen Wertes. Neuerdings

sind von Bothe und Ratzel2) sehr sorgfältige Versuche
über Elektronenstreuung an Aluminium- und Nickelfolien unter
konstantem Streuwinkel gemacht worden. Darnach streut z. B.
Aluminium 2,4 MV Elektronen zweimal so stark, wie nach der
Theorie zu erwarten wäre.

Bei weitem das krasseste Beispiel liefert jedoch der Stickstoff.

Im Jahre 1936 berichteten Skobelzyn und Stepanowa3)
zum ersten Male über Streuversuche an Stickstoff in der
Wilsonkammer. Nach diesen Autoren ist die Gesamtstreuung für
Elektronen des Bereiches 0,2—1,1 MV etwa 1,5 mal für 1,1—3,0 MV
etwa 30 mal die theoretische Streuung. Besonders stark ist die
Abweichung bei grossen Streuwinkeln. Im Widerspruch dazu
findet Champion4) die Streuung an Stickstoff im Energiebereich
0,4—1,1 MV. etwa entsprechend der Theorie5). Die Versuche an
Stickstoff sind von Bossiiarü6) mit der Wilsonkammermethode
wiederholt worden, und es ergab sich, dass der Stickstoffkern
tatsächlich eine starke Anomalie aufweist. Für kleinere Energien ist
die Streuung unternormal, während sie für grosse Energien und
grosse Streuwinkel bis zum 10—20fachen des theoretischen Wertes
ansteigt.

Ausser bei der elastischen Streuung zeigen sich auch noch
Anomalien bei der unelastischen Streuung und bei Doppelstreuung.
So fanden bereits Klarmann und Bothe7) eine sechsmal zu grosse
unelastische Streuung an Xenon und Krypton. Dieses Resultat
ist von andern Autoren bestätigt8) und auch bei andern Kernen
gefunden worden9). Dies ist besonders schwerwiegend, da die
überschüssige Energie nicht einfach in der Bremsstrahlung wieder-

') Barbeb und Champion, Proc. Roy. Soc 168, 159 (1938).
2) Bothe und Ratzel, Zs. f. Phys. 115, 497 (1940).
3) Skobelzyn und Stepanowa, Nature 137, 456 (1936); Phys. Zs. d. Sovjet-

union 12, 550 (1937).
4) Champion, Proc. Roy. Soc. 153, 353 (1936).
5) Die Ursache dieses Widerspruches ist uns nicht bekannt.
6) Bosshabd, Helv. Phys. Acta, in Vorbereitung.
') Klarmann und Bothe 1. c.
8) sen Gupta, Phys. Soc. Proc. 51, 355 (1939).
9) Skobelzyn und Stepanowa, Nature 137, 234 (1936). — Babber and

Champion, Proc. Roy. Soc. 168, 159 (1939). — Lepbince-Ringuet, Ann. de
phys. 7, 5 (1937). — Laslett und Htjbst, Phys. Rev. 52, 1035 (1937). — Ruhli»
and Cbane, Phys. Rev. 53, 618 (1938).
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gefunden wird. Vielmehr ist die Intensität der Bremsstrahlung
ungefähr nach der BETHE-HEiTLER'schen Formel gefunden
worden1).

Ebenfalls hierher gehört vielleicht die Abwesenheit einer
Asymmetrie bei Doppelstreuung infolge Elektronenpolarisation.
Nach der MoTT'schen Theorie sollte nämlich ein Elektronenstrahl
nach einer elastischen Streuung unter 90° teilweise polarisiert sein,
so dass bei einer zweiten Streuung die Streuintensität vom Azi-
muthwinkel abhängen würde. Experimente von Dymond2) und
Richter2) ergaben jedoch negative Resultate.

Alle diese Abweichungen deuten auf einen Einfluss des Kernes
auf die Bewegung der Elektronen, der von anderer Art ist als die
CouLOMß'sche Anziehungskraft. Es fragt sich nun, ob zwischen
Elektronen und schweren Teilchen eine statische Zusatzkraft von
kurzer Reichweite wirksam ist, etwa von der Art der Kernkräfte
zwischen Protonen und Protonen, wobei aber relativistische Effekte
mitberücksichtigt werden müssen, weil sie hier ganz wesentlich
sind. Als Ausgangspunkt dient die relativistische Wellengleichung
von Dirac, welche in der bekannten Weise in radiale und
Winkelbestandteile aufgespalten wird. Für das Zusatzpotential führen
wir die vereinfachende Annahme eines Kastenpotentials ein, mit
der Tiefe V0 pimc2 und der Reichweite r0 a—2 Ein anderes

Potential im Innern würde unsere Resultate quantitativ, jedoch
nicht qualitativ verändern. Insbesondere bleibt unsere
Schlussfolgerung über die Unzulänglichkeit eines Potentials mit kurzer
Reichweite zur Erklärung der Diskrepanz zwischen Theorie und
Experiment bestehen.

Da wir für unsere Untersuchung nur die elastische Streuung
an leichten Kernen ins Auge fassen wollen, werden wir im Laufe
der Rechnung alle Formeln nach Potenzen von a entwickeln und
nach der ersten Potenz abbrechen. Das entspricht der Genauigkeit
der Formel (1) und wir werden deshalb für unsere Resultate
denselben Gültigkeitsbereich erwarten wie für (1).

Ein ähnliches Problem ist vor kurzem von M. E. Rose4)
behandelt worden. Jedoch sind die dort erhaltenen Formeln für
unsern Fall nicht anwendbar (a2<^l), da der Ausdruck (20) bei
Rose für a —> 0 unendlich wird. Ausserdem sind bei Rose die

Stahel und Kippeb, Helv. Phys. Acta 8, 508 (1935); 9, 492 (1936).
2) Dymond, Proc. Roy. Soc. 136, 638 (1932); 145, 657 (1934).
3) H. Richtbb, Ann. d. Phys. 28, 533 (1937).
4) M. E. Rose, Phys. Rev. 57, 285 (1940).
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Funktionen % und ~% nicht richtig bestimmt, indem diese nicht
die Dirac'sehe Differentialgleichung erster Ordnung befriedigen1).

Im § 2 werden wir die radialen Eigenfunktionen und ihr
asymptotisches Verhalten für grosse und kleine r bestimmen. Im
§ 3 werden wir die Streuung berechnen und abschätzen. Der § 4
enthält die Berechnung der Energie für die 1 8- und 2 S-Zustände
im Coulombfeld mit Zusatzpotential. Der § 5 enthält die
Diskussion der Resultate. Schliesslich werden wir im § 6 noch die
Grösse der magnetischen Streuung berechnen.

§ 2. Die radialen Eigenfunktionen.

Wir führen die folgenden Abkürzungen ein:

E
£ >1, wobei E die gesamte Energie des Elektrons ist.

mc2

V
ju=—- V ist das Potential.

mc2

e
Q

Z_ (e2 __ 1)H
me hc X

e2 CHE

r X a : a
me2 (e2 — iy* ß

a
b

-(e^r)A a(-1-P2Y/i-> r<1' '*>1-

In den erwähnten Arbeiten hat Mott gezeigt, dass es eine
Lösung der DiRAc'schen Gleichung in einem Coulombfeld gibt,
deren dritte und vierte Komponente das asymptotische Verhalten

W (p &) ~ ei^e c°s*+«ln<l—cosö)e] _i_ _ j(ß.\ei(.Q+aln2g)
Q

Vi(Q>&) ~— g(&)ei^ + abx2e) e^
e

(2)

haben. Es entspricht dies dem asymptotischen Verhalten einer
einfallenden (durch das Coulombfeld gestörten) ebenen Welle und
einer ausgehenden gestreuten Kugelwelle. Der différentielle
Streuquerschnitt ist dann gegeben durch

I(&)=~{\f(&)\2 + \g(&)\2} (3)

Auf diesen Punkt hat mich Herr Prof. Pauli freundlichst aufmerksam
gemacht.
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worin k den Wellenzahlvektor bezeichnet. Die Lösung mit dem
asymptotischen Verhalten (2) wird dargestellt durch die Reihen

W»=i 2 (-l)"(*+l)ei,'*G!BPB(cos*)
X= —CO

f. - i 2 (-1)"«**" G*pl (cos *) •

K — 00

(4)

Die G„ sind die quadratisch integrierbaren Lösungen des Gleichungspaares

d x\ n e — /i + i r.
Cr„ — -—: 7TTT- f „dQ Q

> d 2 + x
\dQ Q

F

(e2~iy
e — pi — 1

(e2-l)^ tr„
(5)

mit dem asymptotischen Verhalten

1
Gx ~ — cos (p + a In 2 p + rj q ^> 1 (6)

wobei die Phasenverschiebung tjx für ein Coulombfeld gegeben
ist durch

-««». * + + *& ^(y« —*o)
»?«= e~

mit y„ [(* + l)2 — a2p.
Die Px (cos i?) sind die Legendre'sehen Polynome

(7)

Px (COS ff) :

2" \d (cos ff)
X^os2» — !)*

PI (cos #) sin & -= rr PJcos *)* v ; d (cos "v y

für x Sg 0

P P i

Pi _ m""1 für * < °
* X * — X—1 I

Der Wert des Bahndrehimpulses l und des totalen Drehimpulses
j — l Yz y2 für die verschiedenen Werte von x ergibt sich aus der
folgenden Tabelle.

s p d

l: 0 1 1 2 2

r- Vi Vi 3U 3/3 5/2

x : 0 — 2 + 1 -3 + 2
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Wir nennen diese durch (5) und (6) definierten Gx die reguläre

Lösung von (5). Wir nehmen nun an, der Einfluss des Kernes
auf das Elektron lasse sich durch folgendes Potential beschreiben :

Aussenraum: p(r) —— V — jfür r > r0

Innenraum: /*(r) pt konstant für r < r0.

Die Lösungen von (5) im Innenraum wollen wir mit fx bzw.
gx bezeichnen, während wir für die Lösung im Aussenraum die
Bezeichnung FJ und GJ einführen. Die Lösungen FJ, GJ sind
dann diejenigen irregulären Lösungen von (5), welche sich bei p0

stetig an /x, gx anschliessen. In der DiRAc'schen Theorie setzt
sich nämlich der Strom bilinear aus den Komponenten der
Wellenfunktion zusammen. Es ist nun physikalisch notwendig, einen
stetigen Strom zu verlangen. Das ist nur dann möglich, wenn
beide Komponentenfunktionen an der Stelle p0 stetig verlaufen.
Letzteres kann erreicht werden, wenn

fig F'/G' (9)

Dann können nämlich die innern Wellenfunktionen mit einem
gemeinsamen Faktor normiert werden, so dass sie sich bei p0

stetig anschliessen1).

x) Rose verwendet in seiner erwähnten Arbeit eine andere Grenzbedingung:

dg_/ __à_AAi mdg/g de G'
V '

sofern das Potential am kritischen Radius q0 stetig verläuft, sind beide Bedingungen
äquivalent. Es ist nämlich (Gl. 5):

*S-i =(A- E->*-+1)flg
dg g le (e*-iy/z)liy

dG'I ^{A-Az/*+±l\ wie
dQ:G' \q (e*-l)l/2 '

dabei haben wir mit ß_ und /i+ den Wert des Potentials innerhalb bzw. ausserhalb

des kritischen Radius bezeichnet. Falls nun fi_ und /i+ für q >- q0
denselben Grenzwert haben, das Potential also stetig verläuft, folgt aus (9') sofort
(9) und umgekehrt. Das ist jedoch nicht der Fall, wenn das Potential unstetig
verläuft. (9') hat in diesem Falle zur Folge, dass / und g nie beide gleichzeitig
stetig verlaufen können. Falls nämlich g stetig verläuft, dann ist wegen (9') auch
die erste Ableitung von g stetig. In der ersten Gleichung von (5) verläuft dann
die ganze linke Seite stetig, also muss auch die rechte Seite stetig sein. Nun
erleidet aber /i und infolgedessen auch / bei g0 einen Sprung, d. h. / muss notwendig
unstetig verlaufen*). Die Bedingung (9') ist deshalb in diesem Fall als physikalisch
sinnlos zu verwerfen.

*) Ganz analog schliesst man aus der Stetigkeit von / auf die Unstetigkeit
von g.
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Wir werden verlangen, dass das asymptotische Verhalten von
GJ für p ^> 1 gegeben ist durch

GJ cos (p + a In 2 p + r/x + >?,/). (6')

Der Phasenfaktor e*V muss dazu gefügt werden, damit die
Lösungen, die man formal mittels der Beziehung (4) aus den GJ
bildet, wieder dasselbe asymptotische Verhalten (2) zeigen.

y,
' fß) d) ~ el [s cos * + a ln (1 ~cos *>e] + — f (&) el (e + a ln 2 e>

6

Yi (ß. #) ~ - 9' (A) ei(» + aln2e) ë«
(2')

mit den neuen Funktionen /'(#) und <?'(#).
Es wird sich zeigen, dass wegen der kurzen Reichweite unserer

Kräfte (a ~ 1) nur r/^J und r/J wesentlich von Null verschieden
sind. Unter dieser Annahme lassen sich die f (ff) und gr' (i?) leicht
durch die rjj, rj_2' ausdrücken. Wir setzen :

(10)

(11)

r(») n»)+Y0f(») \
g'(&) g(») + $„(») J

und erhalten dann vermöge (4) für 0f und 0g:

0f(&)= e2**— - — e2*"'*- ^Y\ cosfl

0,(0) -e2i"-2 z-^r-r-àn» I

' 1 + *l-2 J

dabei ist |„ — tg rjj gesetzt. Für das Verhältnis B T/1 des

Streuquerschnittes zum MoTT'schen Wert findet man dann

Um die oben definierten irregulären Lösungen FJ,GJ zu
bestimmen, ist es nötig, zuerst die richtig normierten Lösungen Fx, Gx

für das Coulombfeld allein aufzustellen. Man setzt in bekannter
Weise1):

Ie — 1\ y*e~iQf n\y-+i) —A-^n-n)

G AT—-(<p2 + <Pi)
v Q

*) Vgl. z. B. Bethe, Handb. d. Phys., Bd. 24/1, S. 313.
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o2 das System

dcp.

dQ
dcp2

i + a)cp1

x + 1

X + 1

b) cp1 — acp2

<Pz

aQ \ Q

befriedigt. Die Lösungen sind:

<Pi= (y + ia)(2ipyF(y + ia + 1; 2 y
ç>2 (x 4- 1 —ib)(2ÌQ)YF(y + ia; 2 y

(14)

1; 2iQ)
1; 2iß)

(15)

y ist eine der beiden Wurzeln y +_ [(x + l)2 — oc2]1/2. F (et, ß, x)
steht für die konfluente hypergeometrische Funktion, definiert
durch die Reihe

F(ct,ß,x) 1+JX
1)

2I/JQS + 1)

Sie befriedigt die Differentialgleichung1)

d2F
d x2

ß)
dF
d x

«F 0

(16)

(17)

Die zur negativen Wurzel y gehörige Lösung schreiben wir dann
explizite, indem wir immer y > 0 festlegen :

?i (— y+ia)(2ÌQ)-y F(— y + ia+1; —2y + l; 2ìq)]
<p2 (x + 1 — ib)(2ÌQ)~y F(— y + ia; —2y + l; 2ìq)\

und

(15)

— _ /e. —1\ Y* e~ie

G A—(y2
IQ

Vi)

(13)

N und N sind Normierungsfaktoren, über die wir noch verfügen
können. Um sie zu bestimmen, untersuchen wir das asymptotische
Verhalten von F, G ; F, G. Das asymptotische Verhalten dieser
Funktionen ist bestimmt durch das Verhalten der Funktion
F(«.,ß,x). Nach Gordon2) ist

I (— as)-« exx'

F(«,ß,x)~r(ß){j^) + m+....<jm\x\>i (18)

') Whittakeb and Watson, Modern Analysis, 4th ed., p. 338.
2) Gordon, Zs. f. Phys. 48, 187 (1928).
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wenn wir setzen

r(l+y-ia)N

N

r(2y + l)
1

r(-2y + l)

ir"/ i e 2 a—%1

%v + i g2 «—*<

x + 1 — io
r(l—y — ia

x + 1 — ib

+„o* a(x + l)-yb - a(x + l)+yb
y(x + 1) + ab -y (x + 1) + ab

folgt aus (18)

F e_l\y2 i—— —sin(p + aln2p + »?x)
e + 1/ P

Gx cos (Q + a\n2 Q + rjJ)
Q

'e-l\M
£ + 1

sin (p + a ln 2 p + r/x

1
Gx cos (p + a In 2 g + »?„)

e

o- ¦ x + l + ib r(yx — ta)

yx + ia r(yx + ia)
„..- x + l + ib T(-yx-ia)e211« e%nyy- -——

—yx + ia r(-yx+ia)
Wenn wir einführen

4«= Vx~Vx

Gx cotg Ax ¦ Gx—~—— Gx
— sm A„

Fx cotg Ax ¦ Gx
1

F
sin ZL

so wird für | p | ^> 1

1
Gx sm (p + a ln 2 p + jyx)
— e

'£_1 \V4 1
F_~ — -1 — cos (p + aln2p + j?x)

Definieren wir nun

e + 1 / p

Gu'= *'*'• (GH-£HGJ |

459

(19)

(20)

(21)

(22)

(23)

(24)
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so haben die GJ das richtige asymptotische Verhalten (6'). r\J
bzw. ix= — tg tjj bestimmt sich dann vermöge (9) durch

S'=(lH~CfKrK) (25)
Vfj<— ix{fx/r=r0

wo Ck= — und fx, gK die noch anzugebenden Eigenfunktionen für
Qx

das Innengebiet sind.

§ 3. Berechnung der Streuung.

Mittelst der Gleichungen (12), (11) und (25) ist die Streuung

ausgedrückt durch f und den Wert der Funktionen F, G;
F, G am kritischen Radius r r0. Wir berechnen zuerst diese
Werte. Wegen âx T]x—rjx wären es komplizierte Funktionen
von ct. Wir werden deshalb an dieser Stelle die Entwicklung nach
a einführen und mit dem linearen Term abbrechen. Da yQ y^2 y
folgt aus (21) auch A0 A_2= A ; nach (21) ist nämlich

r(— y — ia)

Also

2 rj0 Tt + b — Tt + a + arg

2 rjQ= — Tt + b — a + arg

2 A 2a + Tt + arg

T(— y + ia)
r(y — ia)
r(y + ia)

r —y — ia)T(y+ia)
r(— y + ia) r(y — ia)

wobei y,a, et, ß die zu Beginn des § 2 angegebene Bedeutung
haben.

r(—y - ia)r (y+ia) „. „ „,.. »
arg r^TFr ~ 2 ar§ r(~~ 1+* a ~ia)P(l -J a2+ta)i (—y+ia) i (y — ia)

2 arc tg — 2 a tx — ctß — 2 a
c.2

A -Y*L+.... (26)

Die Entwicklung der regulären Funktionen für kleine
Kernabstände bietet keine Schwierigkeiten. Aus (13) (15) (16) und (19)
folgt für

g<l,a2<l N=l
Q

G0 ~ 1 G_2 ~ \ (a -b) +

r-A^n^A] "-'~Aa1
(27)
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Dagegen muss man für die irregulären Funktionen in N einen
Grenzübergang machen, da darin sowohl T(— 2 y + 1) als auch

F(l — y — ia) für a—>- 0 singular werden. Wir erhalten für

N ictß für
für

x

x ¦¦

0 l
(oc/? für x —2 ]

Vermöge (28) (16) (13) (22) ergibt sich

aß

(28)

G0

Fn

G_

F_

2q
1

£ + 1

a/5

2p2

e + 1

aß
Xg2

aß

(27)

Schliesslich berechnen wir noch daraus die Funktionen F G

vermöge Gleichungen (22) und (26)

1
Gn ~ —

Fn

G_

F_

E —

e -i
1

e-l
e + 1

a i

1/2JL

(27)

Wir haben darin nur die niedersten Potenzen von ct und p
beibehalten.

Wir wollen jetzt weiter den W^,t von £ berechnen. Zu dem
Zweck müssen wir diejenigen Lösungen der Gleichungen (5) für
das Innengebiet bestimmen, welche die Eigenschaft haben für,
p 0 regulär zu sein. Diese Lösungen sind

f0 (e-fj,- iyA Q-1A J% (q)
g0 (e - + 1)* Q'-y* Jy2 (p')

/_, (8-^-i)«6'-»Js(e')
ff-2 — v* - /« + l)54 e"'" «fy. (g')

(29)
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Also wird

Co UL,~U--a-l\K/J.;
fi Jx,Vi'e'

u u
9r-2/e'=e0-

fl 1VA/J
fl + 1 tß 3/7a /q/=q\

(30)

Die halbzahligen Besselfunktionen, welche hier auftreten, sind
elementare Funktionen. Wir schreiben

<. I \ 1 rj al (X)
C (x ctgx=—AL±

X Jy2 (X)
(31)

Wenn wir (27) (27) und (30) in (25) einsetzen, so wird schliesslich
nach einiger Umformung, solange | fi | ^> 1 ist :

So x2(e2-l)

-T2(e2-1)

b)+^(e2-l)^ + (gi)'/2C(^r)
Ì + (e + l)rC(/*T)

i(a-b) + ir(e2
(32)

l + (e-l)rC(^T)
Wenn wir in Gleichung (31) von dem Term 1/x absehen, so

verläuft f (x) periodisch mit der Periode n. Es folgt daraus, dass
auch £0 und f_2 für veränderliches /i und konstantes r periodisch
verlaufen, und zwar unabhängig vom Vorzeichen von /i. Wir werden

später sehen, dass die Streuung jedesmal für | fir | nn durch
ein ausgesprochenes Maximum geht. Dies ist anders als in der
unrelativistischen Theorie, wo sich die Streuung für unbegrenzt
wachsendes fi > 0 einem endlichen Grenzwert, nämlich der Streuung

durch eine kleine undurchdringliche Kugel nähert. Es ist
dies darauf zurückzuführen, dass für grosse fi die DiRAc'schen
Wellenfunktionen im Innengebiet nicht etwa exponentiell
abklingen, wie das bei den unrelativistischen Schrödingerfunktionen
der Fall ist, sondern wie man aus (29) ersieht, oszillatorisch
verlaufen. Nach dem Klein'sehen Paradoxon1) ist nämlich ein sehr
hoher Potentialsprung (fi > mc2) für ein Dirac'sches Elektron
nicht undurchdringlich, sondern es besteht eine endliche
Durchdringungswahrscheinlichkeit, wobei das Elektron dann im Innengebiet

in einem Zustand negativer Energie erscheint. Dass diese
Zustände zur Streuung wesentlich beitragen, ist ein interessantes
Resultat und gibt vielleicht eine prinzipielle Möglichkeit die
physikalische Realität solcher Zustände experimentell zu prüfen. Die
weitere Diskussion der Gleichungen (32) verschieben wir auf § 5.

O. Klein, Zs. f. Phys. 55, 157 (1929).
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§ <4. Die Eigenwerte der Energie für den 1 S- und 2 S-Zustand.

Die radialen Eigenfunktionen F, G im. Aussenraum (r > r0)
sind bestimmt durch die „Randbedingung", dass sie im Unendlichen

verschwinden sollen, damit sie quadratisch integrierbar werden.

Die Eigenart der Energie e tritt darin zunächst noch als
ein unbestimmter Parameter auf. Ohne Zusatzpotential ist dieser
Wert bestimmt durch die Forderung, dass die Funktionen für
r 0 regulär sein sollen. Diese Bedingung wird jetzt ersetzt durch

<-<! (33)

wobei wieder £ I —
_ gesetzt ist. Die Bedingung (33) gibt dann

die Bestimmungsgleichung für den Wert der Energie. Weil für
den gebundenen Zustand e < 1 ist, so setzen wir

r
¦ 2 — (1

X
v

p2V/2

Wir wollen uns im Folgenden auf die Betrachtung von /S-Zuständen
beschränken. Für P-,D- usw. Zustände ist nämlich die Störung
viel zu gering, um für die Spektren von Bedeutung zu sein. Die
Quantenzahl x hat dann den Wert 0. Ferner sei

K=l-ib
nr — y — ia y (1 — ct2)1^

Genau wie früher setzen wir

-£V*>
(cp2 — cp^j

G (cpo + cpt)

(34)

,1 +e/ p

G (<p2 + ipi)
e

?>!= — nrcpvF(— nr + 1; 2y + l; q)

cp2=KQvF(-nr; 2y + l; p)

Vi= — (nr+2y)Q-yF(— nr — 2y+l; — 2y+l; p)

9>2 Kq-*F(— nr — 2y; —2y + l; p.)

(34)

(35)

(35)
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Die überstrichene Lösung F, G geht aus der nicht überstrichenen
hervor durch Ersetzen von y durch — y.

Wir bilden jetzt
F F-£F G=G-m (36)

und benutzen die asymptotische Entwicklung der F, G und F, G
für Q^> 1 (siehe Formel 18) :

1 -e\* r(2y + l)K
1+e) ~fh»r)

r(2y + l)K
nr)

F

G

-y-2- 1r g 2 _|_

P(-

F

- r{-
G

1+e
-2y-\

y*r(-2y
r(-nr-

r ei

1)

2y)
—y-_2—nr

1)K r.-Y-2- »r g 2 _|_ -

(37)

r(-nr-2y)
Sollen in F, G die Glieder mit e+T verschwinden, so muss

h r(2y + l)r(-nr-2y)
r(-2y + l)r(-nr) sein. (38)

Lösen wir Gleichung (33) vermöge (36) nach | auf und
benutzen (38), so wird schliesslich

F(2 y + l)r(-n,
r(-2y + i)r'(

-2y)_F-£G
nr) ~F-W (39)

Diese Formel enthält schon die Abhängigkeit der Energie e von
der Reichweite und der Tiefe des Potentials. Der Parameter e

ist darin jedoch noch sehr verwickelt enthalten. Um die Formel
(39) praktisch brauchbar zu machen, müssen wir benutzen, dass
die Änderung der Energie durch den Einfluss der Störung sehr
gering ist, verglichen mit der Gesamtenergie. Für die ungestörten
Zustände ist nr eine ganze Zahl. Wir setzen also jetzt

nr nj + ô

wobei nj eine ganze Zahl und ô ^ 1 ist.
Ferner sei e e' + rj, worin e' die ungestörte Energie ist und

rj <^e' die Störung durch das Zusatzpotential darstellt. Die
Beziehung zwischen nr und e ist gegeben durch

nr -y — ict

ict e

'(!-> 2VA (40)
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Wenn wir nach e auflösen, erhalten wir die Feinstrukturformel.

1 +
-y,

(nr + y)2

Durch Differentiation nach nr wird

»?= oL2[*2 + (nr'+y)2]-al*
Im besondern wird

C
et2 ô für 1 S-Zustand

n
1 *t 4- ô für 2 S-Zustand

(nj 0) |

(nj 1)

(41)

(42)

(43)

Wir berechnen jetzt ô für den 1 8- und den 2 $-Zustand gesondert.
Es sei immer et2 <^ 1 vorausgesetzt.

a) 1 S-Zustand: Wir haben

x=0 y ~ 1 ~ J a2 nj 0

(1-a 2\V> (1 =.2\y2

Die F und G sind nach a und p zu entwickeln:

F V2 «e 2

F — 2 V2 e ~2~

G 2 V2 e 2

TS /- a2 -i
P2

Ferner entwickeln wir die .T-Funktionen in

t_ r(2y + l)r(-nr-2y)
r(-2y + l)r(-nr)

Wenn n eine ganze Zahl 2g 0 ist und è <^ 1, dann gilt
1 (-1)"r(-n + ò)

n\

(44)

(45)

(46)

(47)

Anwendung dieser Entwicklung in (46) liefert unter Benutzung
von (44) das einfache Resultat:

£ « <J. (48)

Durch Einsetzen von (45), (46), (48) in (39) wird endlich

V2+^£(/^t)
(49)

Dabei haben wir wiederum die Funktion £ (Formel 31) eingeführt.
30
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b) 2 S-Zustandf

x 0

y 1 -1 a2

e
a2 ¦

[ +(l+r2)]
-V-i

(50)

(l-e2)'/*
(1+y)

Eine analoge Rechnung wie für den 1 S-Zustand ergibt

1 „ V2« + 2V2CW
3

Vf V2 et Ç(fix)
(51)

Damit wir die Abhängigkeit von Z explizite studieren können,
ersetzen wir in den Formeln (49) und (51) wieder ct durch

137 \ hc

Ferner drücken wir die Reichweite und die Tiefe des Potentials
durch fi und a aus. Dann wird mit (43)

4Z**>o2 7^+V2£(*o^Vis'-

8
„ „ V2ZoL + 2V2Ç(acrfi)

%s= zz
ct*o2YYn

—Tjr+ V2Zct£(ct apt)

(52)

Wir unterscheiden die beiden Fälle | £ | < | und | a £ | ~ 1

und stellen für jeden eine Näherungsformel für die Energiestörung
durch das Zusatzpotential auf.

1. Fall, | £ | < 1. Das zweite Glied im Nenner ist dann sehr
viel kleiner als das erste.

Vis

Vis

2Z4a6o-2 1

Z4a6o-2

12
1

2 api
T~~z~l

2 a fi
¥ z

(52')

2. Fall, | ct £ | <«^ 1. In diesem Fall können wir in den Zählern
der Formel (52) das erste Glied neben dem zweiten vernachlässigen.
Die beiden Glieder im Nenner dagegen sind von derselben
Grössenordnung. Wenn wir aber von einem Faktor von der Grössenordnung

1 absehen, können wir auch das erste Glied in den Nennern
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weglassen, d. h. wir ersetzen den tatsächlichen Wert von rj für
| a £ j ~ 1 durch seinen Grenzwert für £ —> oo. Unter diesen
Voraussetzungen wir dann

rils sa 8Z2a4(T2
Z2a.ia2 \ (52")

%s~ -,

§ 5. Diskussion der Resultate.

Damit die Streuung durch das Zusatzpotential vergleichbar
wird mit der Coulombstreuung, müssen <Pf und 0g in (12) von
der Grössenordnung f(ff) oder g(ff) werden. Nun sind f(ff) und
g (ff) von der Grössenordnung a und wegen (11) müssen also auch
die | von der Grössenordnung a werden.

Wir unterscheiden nun auch bei der Streuung die beiden
Fälle \rÇ(fir) \ <A.l und |t£(/ut)|~1. e wollen wir von der
Grössenordnung 1 annehmen, d. h. die Energie soll höchstens
einige MV betragen.

Im ersten Fall können wir nach (32) schreiben :\

||| ~|T2£M|<a
da r -rr- a ~ a ist.

Im zw.eiten Fall dagegen kann einer der Nenner in (32) sehr
klein werden. Solche Resonanzen können aber nur dann auftreten,
wenn £(^t) < 0 also fi < 0 ist. Das bedeutet, dass dem Coulombfeld

ein anziehendes Kastenpotential überlagert werden musste.
Ein solches Potential hätte zur Folge, dass die Wasserstoffelektronen

fester gebunden wären als im reinen Coulombfeld. Die
Störung wäre natürlich für den 1 8- und den 2 S-Zustand am
grössten.

Nun ist von Pastbrnack1) bemerkt worden, dass die
experimentell gemessene Feinstrukturaufspaltung von H und D2) dann
erklärt werden kann, wenn man annimmt, dass der 2 S-Term um
einen Betrag 0,03 cm-1 nach oben verschoben wird. Dagegen wird
die Übereinstimmung des Experimentes mit der Theorie noch
schlechter, wenn man eine Verschiebung nach unten vornimmt.

Es wäre jetzt noch die Möglichkeit denkbar, dass Protonen
und Neutronen verschiedene Kräfte auf die Elektronen ausüben,
derart, dass beim Wasserstoff zum Beispiel die Störung positiv
ist (rj > 0), während sie dagegen beim Stickstoff und andern Ele-

1) Pasteknack, Phys. Rev. 54, 1113 (1938).
2) Williams, Phys. Rev. 54, 558 (1938).
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menten, bei welchen eine grosse Streuanomalie festgestellt wurde,
negativ ist, so dass die oben diskutierte Resonanz eintreten könnte.
Eine solche Möglichkeit wird jedoch ausgeschlossen durch die
Tatsache, dass gerade beim Deuteron, das ja dasselbe Verhältnis von
Neutronen zu Protonen aufweist wie der Stickstoff, die
Abweichungen der Feinstruktur von der Theorie besonders genau
gemessen sind und auf ein positives Zusatzpotential hinzuweisen
scheinen. Wir glauben deshalb die Annahme eines negativen
Potentials ausschliessen zu müssen.

Wenn die Nenner in (32) nicht klein sind, dann ist im zweiten
Fall £0 ~ £-2 ~ *, die Streuung also wirklich von derselben Grössenordnung

wie die CouLOMß'sche. Damit aber | t£(/*t) | ~1 sein
kann, muss fix sehr nahe bei einem ganzen Vielfachen von n liegen,
d. h. es muss gelten

nn — t sS fix < nn + x x <^ 1 /"^1
(n ganze Zahl 0).

Wir wollen zur Erleichterung der Diskussion die Werte von
fix modulo n in das Intervall von 0 bis n reduzieren. Jeder Kern
mit seinen individuellen /u- und x-Werten wird dann durch einen
Punkt in diesem Intervall representiert. Die Verteilung dieser
Punkte wird keiner besondern Gesetzmässigkeit gehorchen,
sondern ungeordnet sein. An den beiden Enden dieses Intervalls
grenzen wir die beiden Teilstrecken x nach innen a"b, wobei x
durch einen mittleren Wert ersetzt werden darf. Ein Punkt der
innerhalb einer dieser Bereiche fällt, wird einen Kern mit
anormaler Streuung darstellen. Nun kennt man unter den 80 Kernen
von Z=l bis Z 80 mindestens 8 Kerne, bei denen eine
Abweichung von mehr als 50% festgestellt wurde (N, A, Kr, Xe, I,
Al, Ni, Hg), t musste also im Mittel einen Wert von rund n/20 haben.
Wahrscheinlich ist x aber grösser, da die nicht untersuchten
Elemente vermutlich nicht alle normal streuen.

Wir behaupten nun, dass, wenn diese Deutung der
Streuanomalien richtig wäre, bei den gleichen Elementen, die eine
anomale Streuung aufweisen, auch beobachtbare Störungen der Rönt-
genlinienfrequenzen auftreten müssten. Denn bei diesen Elementen,

die durch | a £ | ~ 1 charakterisiert sind, ist nach (52") und
(52') die Energiestörung der K-Elektronen (1 S) etwa 100 mal
grösser als bei den normal streuenden Elementen (Fall 1) und die

relative Störung -A^-\ ist nach (52") von der Grössenordnung

16 a2a2 16 x2 also etwa 40%, wenn man für r den oben geschätzten

Minimalwert n/20 einsetzt. Im MosELEY-Diagramm der
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K-Linien müssten sich aber auch noch erheblich geringere
Abweichungen feststellen lassen, sofern sie nur bei einzelnen
Elementen oder Elementengruppen auftreten. Das tatsächliche
Fehlen solcher Abweichungen spricht also stark gegen die hier
diskutierte Theorie der Streuungsanomalien.

Im Hinblick auf die oben erwähnten Feinstruktur-Anomalien
der Balmerlinien von H und D haben wir noch die Störungen des
2 »S-Zustandes für Z 1 berechnet und in der Figur als Funktion
von fi und a dargestellt; die Kurven verbinden die Punkte rj2S
const. Die mittlere Kurve entspricht dem von Pasternack
vorgeschlagenen Wert6 s

j?2iS 0,03 cm"1.
ß

500

400

300

200

100

cm

03

cm

1 2 3 ff

Fig. 1.

Störung des 2 S-Termes durch ein abstossendes Kastenpotential von der

Höhe fi und Reichweite a (in Einheiten mc2 bzw. r)-

§ 8. Magnetische Streuung.1)

Durch den Einfluss des magnetischen Momentes des Kernes
erfahren die Elektronen eine ablenkende Kraft, welche der
Geschwindigkeit proportional ist.

Die Berechnung der Streuung durch das Kernmoment führen

*) Ich bin Herrn Stückelbeko für die Überlassung seiner Rechnung über
dasselbe Problem zu Dank verpflichtet. Es war mir dadurch möglich, in meiner
eigenen Rechnung einen Fehler zu berichtigen.
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wir mittelst der BoRN'schen Methode durch. Es wird sich zeigen,
dass die erste Näherung bei weitem ausreichend ist, da der Effekt
viel kleiner ist als die Streuung durch das Coulombfeld.

Die zeitabhängige Dirac'sehe Gleichung lautet

h dip

TJt Hxp 0

mit
H- ¦eV(r)

i=l
2«Mp*—j®* meß

(54)

Wir setzen:

H=H0 + HC + HM
- 3

H0=c y^ct1 pk + mcß
h l

Ze2
Hc=c7=" r

3

HM=-e ]>>* 0k-
k=i

l* Xr ^.

(55)

Ji ist das magnetische Moment des Kernes:

eh

(56)

+ i)mit fi AA— ; I ist der Kernspin mit den Eigenwerten (—v ¦

und g ein Zahlenfaktor, der Landefaktor für das Kernmoment.
Wir bezeichnen mit m (m — i, ¦ • • ¦ + i) die Zustände für den
Kernspin, mit (X, p) die Zustände der Dirac'sehen Wellenfunktionen,

wobei (X 1, • • ¦ -, 4) und p den Impuls der ebenen Welle
bezeichnet. •

Die ungestörten Zustände sind ebene Wellen

rpW (x a<;-> (p) e YLXTx-e « t) (57)

Die a(A) sind noch 4-komponentige Grössen. Wir normieren sie,
so dass

a*xX).a(M)=éill (58)

Das Matrixelement, das für die Streuung verantwortlich ist, ist
dann

(m'Xp' | HC + HM | mXp)

- àmm'^-a*^($')o« (p)Ze2-^P-a*^(p') (5 • [Jim'm Xq])a^(p)

(q |(p-p')) (59)
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Der différentielle Streuquerschnitt für die Streuung p —> p' ist

im 1 ßnm'A 2 | (m'A' p' \ HC+HM \ mXp) |2
^ ; 2 (2 i+1) l h2 )%% »= A(W)

Die Summation drückt die Mittelung aus über alle Orientierungen
des Kernspins und des Spins des einfallenden Elektrons. Die
Summation über XX' ist jedoch nur über die Zustände positiver
Energie auszuführen. Wir haben das durch die Klammer
angedeutet.

Bei der Summation über m, ra' fällt der aus erstem und
zweitem Glied von (32) gemischte Term weg, da ja £pimm— 0 ist.
Die Streuungen durch das Coulombfeld und durch das magnetische
Moment setzen sich also additiv zusammen. Wir schreiben daher

1(0) !.(*)+ !„(*).
Die Ausrechnung von Ic(ff) führt direkt auf Formel (l)1). IM{^)
wird dann

I (ff) (2"\2 (4jre)2 2 2 (rWmXg)i(/"4.'mXg)fc
mV ' \ h I 2(2i+l) fc*JJ;SJ |g|4

{(«*(A° (p') <*¦*aW (P)) X («* w(?) <Aa(>') (p'))}. (61)

Dieser Ausdruck lässt sich beträchtlich vereinfachen. Wir setzen

8a IS (a*(A° (P ')a* «(A) (P) (a*W (?)a* ffl(A° (P ') (62)
(A,A')

dann wird wegen

%*,./&.—Pif-f-f i{i + 1)^i + 1)
örs (63)

**(*) ~-^ j^i <(i+i) {(<h2+<Z22) s11+(g32+g12) s22+

(&2+222) #33 - 2 (2, & S12+q2 q3 S23+qs qx 831)} (64)

Zur Berechnung der Ausdrücke 8ik führt man zweckmässig den
„Vernichtungsoperator" ein, definiert durch

r(p)-i(i + ^M^l-). (65)

Er hat die Eigenschaft, dass

r W — I a(;> ^r Zustände positiver Energie
0 „ „ negativer Energie

x) Siehe F. Sauter, Lo.
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Der Vorteil dieses Operators besteht darin, dass man dadurch bei
der Summation über XX' die lästige Beschränkung auf Zustände
positiver Energie vermeiden und die Summation durch Spurenbildung

ersetzen kann.
Es wird z. B.

(A) X x T

Darauf folgt wegen (41)

Sik=sp(r(p')Ar(p)A) (66)

Diese Spuren lassen sich nun leicht berechnen. Es wird

&
Su ß2 sin2

S22 ß2 shr

8.33 ß2 COS2

^12 ~ 8S1 0

Ön
ß2

sin &.
(67)

Diese Grössen führen wir in (43) ein und benutzen ferner, dass

li 0 «2
\P\ sin & \P\
h h

Dann finden wir schliesslich nach einiger Rechnung

(1 — cos ff)

I, '<H-B?)'
e2g \2 i(i + l) 1 + i cotg2

#
6 r D 2

Für das Verhältnis E ^m/^c finden wir dann

B 3* m \ sin' 1 + I cotg2 y]
M; »(t + lJ^i-^Bin«^)^-/»")

(68)

(69)

Der wesentliche Term in dieser Gleichung ist der Term (m/M)2
2.5 x IO"7. Für Energien bis zu 3 mV ist (1 — ß2)-1 < 36, die
magnetische Streuung also verschwindend neben der Coulomb'
sehen. Die magnetische Streuung wird erst beträchtlich für Energien

von der Grössenordnung IO3 mV.

Ich bin den Herren Prof. Pauli und Prof. Wentzel für
fördernde Diskussionen über dieses Problem und wertvolle
Ratschläge zu Dank verpflichtet.

Zürich, Physikalisches Institut der E. T. H.
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