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Die Streuung schneller Elektronen an Kernen
von J. M. Jaueh, Ziirich.
(26. X. 40.)

In dieser Arbeit soll gezeigt werden, dass es nicht méglich ist, die anomale
elastische Streuung von schnellen Elektronen an Atomkernen, wie sie z. B. fiir
den Stickstoffkern vorliegt, zu erkldren, entweder durch die Annahme einer zur
Coulomb’schen Anziehung hinzukommenden statischen Zusatzkraft zwischen
schweren Teilchen und Elektronen, oder durch die magnetische Streuung der
Elektronen durch das magnetische Moment des Kernes. Die Moglichkeiten fiir
eine Zusatzkraft sind beschrinkt durch die Bedingung, dass die Spektralterme
dadurch nahezu unbeobachtbar beeinflusst werden sollen.

§ 1. Einleitung.

Die Versuche iiber die Einzelstreuung schneller Elektronen
(d. h. mit Energien > 0,5 MV.) an Atomkernen zeigen fast durch-
wegs Resultate, welche mit der bisherigen Theorie nicht itiber-
einstimmen. Die relativistisch-wellenmechanische Theorie fiir die
Streuung schneller Elektronen an Kernen stammt von MoTt?).
Mot findet fir die Streuung in einem Coulombfeld den differen-
tiellen Wirkungsquerschnitt

10)- (o ya—py (1—prsint ) — @)

2 }
2mo 2 sind =

worin m, v die Ruhemasse bzw. Geschwindigkeit des Elektrons
bezeichnet und g = vfc gesetzt ist. In dieser Formel sind zwar
Z e*

he 137
lassigt, doch betrigt der Fehler fiir die leichten Elemente, etwa
bis Aluminium weniger als 19%,. Bel schweren Elementen muss dér
néchste Term in « noch mitberlicksichtigt werden.

KrarmManN und Borne?) fanden aus Einzelstreuversuchen an
Xenon und Krypton etwa dieselbe Winkelverteillung, wie sie aus
der Morr’schen Formel folgt. Dagegen finden sie fiir die Absolut-
werte der Streuung im Energiebereich 0,5—2,6 MV, bei Xenon

Grossen von der Ordnung o (ocz gegen 1 vernach-

1) N. F. MotT, Proc. Roy. Soc. 124, 425 (1929); Proc. Roy. Soc. 135, 429
(1932). Siehe auch F. SauTer, Ann. d. Phys. 18, 61 (1933).
%) KLarMANN und BoreE, Zs. f. Phys. 101, 489 (1936).
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etwa fiinfmal weniger und bei Krypton etwa sechsmal weniger
als nach Morr. Ahnliche Diskrepanzen finden BArBER und Cuam-
prox') an Hg, wo die Streuung fiir den Energiebereich 0,4—1,6 MV
etwa ein Sechstel des Mort’schen Wertes betragen soll. Jod streut
nach denselben Autoren etwa 2/, des theoretischen Wertes. Neuer-
dings sind von BotuE und RaTtzrL2) sehr sorgfaltige Versuche
iiber Elektronenstreuung an Aluminium- und Nickelfolien unter
konstantem Streuwinkel gemacht worden. Darnach streut z. B.
Aluminium 2,4 MV Elektronen zweimal so stark, wie nach der
Theorie zu erwarten wire.

Bei weitem das krasseste Beispiel liefert jedoch der Stick-
stoff. Im Jahre 1936 berichteten SKOBELZYN und STEPANOWA?)
zum ersten Male-iiber Streuversuche an Stickstoff in der Wilson-
kammer. Nach diesen Autoren ist die Gesamtstreuung fiir Elek-
tronen des Bereiches 0,2—1,1 MV etwa 1,5 mal fur 1,1—3,0 MV
etwa 30mal die theoretische Streuung. Besonders stark ist die
Abweichung bei grossen Streuwinkeln. Im Widerspruch dazu
findet Cuampron?) die Streuung an Stickstoff im Energiebereich
0,4—1,1 MV. etwa entsprechend der Theorie®). Die Versuche an
Stickstoff sind von Bossmarp®) mit der Wilsonkammermethode
wiederholt worden, und es ergab sich, dass der Stickstoffkern tat-
sdchlich eine starke Anomalie aufweist. Fir kleinere Energien ist
die Streuung unternormal, wéhrend sie fur grosse Energien und
grosse Streuwinkel bis zum 10—20fachen des theoretischen Wertes
ansteigt.

Ausser bei der elastischen Streuung zeigen sich auch noch
Anomalien bei der unelastischen Streuung und bei Doppelstreuung.
So fanden bereits KnarManN und BoTHE?) eine sechsmal zu grosse
unelastische Streuung an Xenon und Krypton. Dieses Resultat
1st von andern Autoren bestétigt®) und auch bei andern Kernen
gefunden worden®). Dies 1st besonders schwerwiegend, da die
tiberschiissige Energie nicht einfach in der Bremsstrahlung wieder-

1) BarBeErR und CHAMPION, Proc. Roy. Soc 168, 159 (1938).

2) BorHE und RaTzEL, Zs. f. Phys. 115, 497 (1940).

3) SKoBELzYN und STEPANOWA, Nature 137, 456 (1936); Phys. Zs. d. Sovjet-
union 12, 550 (1937).

4) CHaMPION, Proc. Roy. Soc. 153, 353 (1936).

%) Die Ursache dieses Widerspruches ist uns nicht bekannt.

8) BossHarD, Helv. Phys. Acta, in Vorbereitung.

?) KrarmMany und BoTHE 1. c.

8) sEN GupTa, Phys. Soc. Proc. 51, 355 (1939).

%) SkoBELzYN und STEPANOwWA, Nature 137, 234 (1936). — BARBER and
CuampioN, Proc. Roy. Soc. 168, 159 (1939). — LEPRINCE-RINGUET, Ann. de
phys. 7, 5 (1937). — LasveErT und Hurst, Phys. Rev. 52, 1035 (1937). — RuHLI1G
and CrANE, Phys. Rev. 53, 618 (1938).
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gefunden wird. Vielmehr ist die Intensitédt der Bremsstrahlung
ungefdhr nach der Berae-HeirLer’schen Formel gefunden wor-
den®).

Ebenfalls hierher gehort wvielleicht die Abwesenhelt elner
Asymmetrie bei Doppelstreuung infolge Elektronenpolarisation.
Nach der Mort’schen Theorie sollte nimlich ein Elektronenstrahl
nach einer elastischen Streuung unter 90° teilweise polarisiert sein,
so dass bel einer zweiten Streuung die Streuintensitdt vom Azi-
muthwinkel abhéngen wiirde. Experimente von Dymonp2) und
RicuTER?) ergaben jedoch negative Resultate.

Alle diese Abweichungen deuten auf einen Einfluss des Kernes
auf die Bewegung der Elektronen, der von anderer Art ist als die
CouromB’sche Anziehungskraft. Ks fragt sich nun, ob zwischen
Elektronen und schweren Teilchen eine statische Zusatzkraft von
kurzer Reichweite wirksam ist, etwa von der Art der Kernkrifte
zwischen Protonen und Protonen, wobei aber relativistische Effekte
mitberiicksichtigt werden miissen, weil sie hier ganz wesentlich
sind. Als Ausgangspunkt dient die relativistische Wellengleichung
von Dirac, welche in der bekannten Weise in radiale und Winkel-
bestandteﬂe aufgespalten wird. Fir das Zusatzpotential fithren

wir die vereinfachende Annahme eines Kastenpotentials ein, mit
2

der Tiefe Vo= umc?® und der Reichweite r, = a:{{—ﬁ . Ein anderes
Potential im Innern wiirde unsere Resultate quantitativ, jedoch
nicht qualitativ veréindern. Insbesondere bleibt unsere Schluss-
folgerung tiber die Unzuldnglichkeit eines Potentials mit kurzer
Reichweite zur Erklirung der Diskrepanz zwischen Theorie und
Experiment bestehen.

Da wir fiir unsere Untersuchung nur die elastische Streuung
an leichten Kernen ins Auge fassen wollen, werden wir im Laufe
der Rechnung alle Formeln nach Potenzen von « entwickeln und
nach der ersten Potenz abbrechen. Das entspricht der Genauigkeit
der Formel (1) und wir werden deshalb fiir unsere Resultate den-
selben Giiltigkeitsbereich erwarten wie fir (1).

Ein #hnliches Problem ist vor kurzem von M. E. Rosg%)
behandelt worden. Jedoch sind die dort erhaltenen Formeln fiir
unsern Fall nicht anwendbar (x?<€1), da der Ausdruck (20) bel
Rose fir « —> 0 unendlich wird. Ausserdem sind bei Rose die

1) StanEL und KiprER, Helv. Phys. Acta 8, 508 (1935); 9, 492 (1936).
?) DymoxnDp, Proc. Roy. Soc. 136, 638 (1932); 145, 657 (1934).

%) H. RicHTER, Ann. d. Phys. 28, 533 (1937).

1) M. E. RosE, Phys. Rev. 57, 285 (1940).
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Funktionen y und % nicht richtig bestimmt, indem diese nicht
die Dirac’sche Differentialgleichung erster Ordnung befriedigen?).

Im §2 werden wir die radialen Eigenfunktionen und 1hr
asymptotisches Verhalten fiir grosse und kleine r bestimmen. Im
§ 3 werden wir die Streuung berechnen und abschétzen. Der §4
enthélt die Berechnung der Energie fiir die 1 S- und 2 S-Zusténde
im Coulombfeld mit Zusatzpotential. Der § 5 enthilt die Dis-
kussion der Resultate. Schliesslich werden wir im § 6 noch die
Grosse der magnetischen Streuung berechnen.

§ 2. Die radialen Eigenfunktionen.

Wir fithren die folgenden Abkiirzungen ein:

&= E2 >1, wobei E die gesamte Energie des Elektrons ist.
me
V . .
fi== ey V 1st das Potential.
me
h Ze? 7
1= - == ; = (e2 —1\%
mce * he 77 (e )
e? wE o
7‘0 =T }L =0 9 * = =
me (e2—1)% B
e 1
Z‘(Ez_—l)l/z:“(l—ﬁz)/z; L1, p>1.

In den erwihnten Arbeiten hat Morr gezeigt, dass es eine
Losung der Dirac’schen Gleichung in einem Coulombfeld gibt,
deren dritte und vierte Komponente das asymptotische Verhalten

Py (9’ ,9.) ~ gt le cos ¥+aln (1—cos 9) o] ol _1_ f(ﬁ») ¢iletaln2e) ]
g

1 @)
wale®) ~ L g(@)eiteranzo oo |
0

haben. Es entspricht dies dem asymptotischen Verhalten einer
einfallenden (durch das Coulombfeld gestorten) ebenen Welle und
einer ausgehenden gestreuten Kugelwelle. Der differentielle Streu-
querschnitt ist dann gegeben durch

1

‘W{ll‘(ﬂ)izﬂg(ﬁ‘)[z} (3)
1) Auf diesen Punkt hat mich Herr Prof. Pauvri freundlichst aufmerksam

gemacht.

I(9)
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worin k den Wellenzahlvektor bezeichnet. Die Losung mit dem
asymptotischen Verhalten (2) wird dargestellt durch die Reihen

o= i S (— 1) (x+1) e”nGP(cosﬁ)l
= @)
Ya=—1 > (—1)*"= G, P} (cos ). ]

H=—00

Die G, sind die quadratisch integrierbaren Losungen des Gleichungs-

paares ) .
x £ = i+
('Tg_ E) T - 1)%-1F" l (5)
et )
mit dem asymptotischen Verhalten
Gwv% cos(e+aln20+7,) o>1 (6)

wobel die Phasenverschiebung 7, fiir ein Coulombfeld gegeben
ist, durch
x+1+tb I'(y,—ia)

. : )
vtia Iy, +1ia)

’)7% = “—iﬂ‘yx -

mit y, = [( + 1)2 — «?]%.
Die P, (cos #) sind die LEceEnpRE’schen Polynome

1 d B
P, (cos &) = - (—m—) (cos?d—1)*
2% \d (cos &) fiir %> 0

d
P! (cos?)=sind - - P,(cos &)

d (cos &)
Px = P—»x-—l .
Pl PpL_. } fiir » <0

Der ‘Wert des Bahndrehimpulses ! und des totalen Drehimpulses
9 =14+ Y fir die verschiedenen Werte von x ergibt sich aus der
folgenden Tabelle.

8 P - d

j: Y Y 3, 35 Bfgeees
x: 0 — B +1 —3 +2-:---
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Wir nennen diese durch (5) und (6) definierten G, die regu-
lare Losung von (5). Wir nehmen nun an, der Einfluss des Kernes
auf das Elektron lasse sich durch folgendes Potential beschreiben:

: A Ze
Aussenraum: u(r) = 0; (V = **T) fir r > 7
Innenraum:  u(r) = u = konstant fir r < r,.

Die Losungen von (5) im Innenraum wollen wir mit f, bzw.
g, bezeichnen, wihrend wir fiir die Losung im Aussenraum die
Bezeichnung F,” und G, einfihren. Die Losungen F,, G, sind
dann diejenigen irreguliren Losungen von (5), welche sich bei g,
stetig an f,, g, anschliessen. In der Dirac’schen Theorie setzt
sich namlich der Strom bilinear aus den Komponenten der Wellen-
funktion zusammen. Es ist nun physikalisch notwendig, einen
stetigen Strom zu verlangen. Das ist nur dann moglich, wenn
beide Komponentenfunktionen an der Stelle g, stetig verlaufen.
Letzteres kann erreicht werden, wenn

flg = F'IG’ 9)

Dann koénnen ndmlich die innern Wellenfunktionen mit einem
gemeinsamen Faktor normiert werden, so dass sie sich bei g,
stetig anschliessen?).

1) Roske verwendet in seiner erwahnten Arbeit eine andere Grenzbedingung:

/ g dil G’ ®3

sofern das Potential am kritischen Radius g, stetig verlduft, sind beide Bedingungen
dquivalent. Es ist namlich (Gl. 5):

dg (=  e—p +1
%‘g‘(e (e2 1)%)”9

aG’ % 41
/ s L lu’—|- ) ek
el =\ T

dabei haben wir mit x_ und u , den Wert des Potentials innerhalb bzw. ausser-
halb des kritischen Radius bezeichnet. Falls nun u_ und u, fir o — g, den-
selben Grenzwert haben, das Potential also stetig verlduft, folgt aus (9’) sofort
(9) und umgekehrt. Das ist jedoch nicht der Fall, wenn das Potential unstetig
verlauft. (9”) hat in diesem Falle zur Folge, dass f{ und g nie beide gleichzeitig
stetig verlaufen kénnen. Falls namlich ¢ stetig verlauft, dann ist wegen (9’) auch
die erste Ableitung von ¢ stetig. In der ersten Gleichung von (5) verliuft dann
die ganze linke Seite stetig, also muss auch die rechte Seite stetig sein. Nun
erleidet aber 1 und infolgedessen auch f bei g, einen Sprung, d. h. f muss notwendig
unstetig verlaufen*). Die Bedingung (9’) ist deshalb in diesem Fall als physikalisch
sinnlos zu verwerfen.

*) Ganz analog schliesst man aus der Stetigkeit von f auf die Unstetigkeit
von 4.
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Wir werden verlangen, dass das asymptotische Verhalten von
G, fur 9> 1 gegeben ist durch

eimd

G, ~ . cos (e +aln2po + 7, + 7). (6")

Der Phasenfaktor e muss dazu gefiigt werden, damit die Lo-
sungen, die man formal mittels der Beziehung (4) aus den G,
bildet, wieder dasselbe asymptotische Verhalten (2) zeigen.

1/)3’(9:(1) ~ gtlecos®+aln(l-cos?)e] + ,1_ ff (19,) gt e +cxin29)]
, . (2)
v (e, B~ g (9) eremeo gio T
0
mit den neuen Funktionen (&) und ¢’ ().
Es wird sich zeigen, dass wegen der kurzen Reichweite unserer
Krifte (0 ~1) nur #_," und 7, wesentlich von Null verschieden

sind. Unter dieser Annahme lassen sich die f'(#) und ¢’ (&) leicht
durch die #,’, _y" ausdriicken. Wir setzen:

I'(@) = {(F) + &,(9)
g () = g(d) + P, (9) |

und erhalten dann vermoge (4) fir @, und @,:

(10)

. &o ,

b, (8 = e2im ,,,,_}2171‘—2_%_

P = e T T e
o i  Bs .

D, (F) = — e2in- T %25_—2 sin & |
dabei ist &, = —tg 5, gesetzt. Fir das Verhdltnis R = I'/I des
Streuquerschnittes zum MoTt’schen Wert findet man dann

F+ QP+ ]9+ P
B[] = == e 12
D= g 12
Um die oben definierten irreguliren Lisungen F,',G,’ zu be-
stimmen, ist es notig, zuerst die richtig normierten Losungen ¥, G,

fiir das Coulombfeld allein aufzustellen. Man setzt in bekannter
Weise?): ’

e — 1\ %eie
=N (1)
B <l ¢ (13)
a-N"" |
= i (@2 + @1)

1) Vgl. z. B. BEraE, Handb. d. Phys., Bd. 24/1, S. 313.
Wi
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wobel ¢, ¢, das System

d : +1
s (®+a)¢1+(% +b) ‘le
de. 0 " (14)
d @, (% +1 b) I
—_—— frar s e ._._a
do 0 %1 P2
befriedigt. Die Lésungen sind:
1= +i0@iPFly +iat1; 2y +1; 2i9 )
@o=(2x+1—12b)(210)’F(y +1a; 29 +1; 219) |

y 1st eine der beiden Wurzeln y = + [(x + 1)2 — a2]%. F(a, 8, )
steht fir die konfluente hypergeometrische Funktion, definiert
durch die Reihe

a a(oe + 1)
FOL, B =1+—04+—— 224+ 16
@00 =1+ o a7 1) 16
Sie befriedigt die Differentialgleichung?)
| a:F dF
P PO _ .
e (z B)dm+°{F‘O (1Ty

Die zur negativen Wurzel y gehorige Losung schreiben wir dann
explizite, iIndem wir immer y > 0 festlegen:

Pr= (—y+ia)(2iQ) 7 F(—y+ia+1; —2y+1; 24g))

Gam (x+1—ib)@i0)7 Fl—y+ia; —2y+1; 2ig))
und
— —fe—1\ %" e-ie
F-N(7q) G, |
A e (i3)
G~ N (@t 9 |

N und N sind Normierungsfaktoren, iiber die wir noch verfiigen
kénnen. Um sie zu bestimmen, untersuchen wir das asymptotische
Verhalten von F, G; F, . Das asymptotische Verhalten dieser
Funktionen ist bestimmt durch das Verhalten der Funktion
F(x,B,x). Nach Gorpon?) ist

(_ m)—oc et mo&ﬂ

Flabon) ~ L) \ g0 T

1) WHITTAKER and WaTsoN, Modern Ana,l.ysis, 4th ed., p. 338.
2) GorDON, Zs.f. Phys. 48, 187 (1928).

+oeeelir ) >>1 0 (18)
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wenn wir setzen

1 e, = |1 +y—ia)
S —— e o ! a—id
N=TFe, vt "¢ x+1—1b
— 1 : 2 | IM(l—y—1ia)

s y+1 a—i 6 )
N=Fio, v 7 e P, g e
a(x +1)—yb — a(x+1)+yb

tg 26— : =
B = s T Jab B2 T 1)+ ob
folgt aus (18)
— 12 1
Fx~(8 1) L sin (g 4 1o 2 el
e+1/) o
G,‘N——I—COS(Q—I-GJIHZQ—I—W,{)
¢ (20)

- —1\%
F,,~(8 1) L nlodnlngs+ 7y
e+1/ p

@u,..,i cos(¢p+aln2p+7,)
0

x+1+1b I'(y,—1a)
v, +1a I'(y,+1a) @1
%x+1+1b I'(—y,—10)
—y%+'i,a I'(— ynﬂL‘l’a’)

e2iny — gy,

e2i My — giny,

Wenn wir einfiihren

Ax:an_nu
1 I
G,=cotg A, -G, — G
hiiaheb S Y (22)
1 —
.PT == t AR'Gx—_'._ Fx
sl sin 4,
so wird fir |o|> 1
GKNVLSin(Q—f—aln2Q+n%) ]
- £, 23
F el %lcos( +aln2eo+ )J =
—xN_(S‘f“l) Q Q' Q ”7::
Definieren wir nun
G, =én - (G,—E&.G,
( ) 24)

I = gind (F,—¢&F)) ]
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so haben die G, das richtige asymptotische Verhalten (6'). #,

bzw. &, = —tgn,” bestimmt sich dann vermoge (9) durch
F,—.G
gx:( - ) ") 25
B~ 2.6, b >

WO (= —g% und f,, ¢, die noch anzugebenden Eigenfunktionen fiir
das Innengebiet sind.

§ 3. Berechnung der Streuung.

Mittelst der Gleichungen (12), (11) und (25) i1st die Streu-
ung ausgedriickt durch ¢ und den Wert der I'unktionen F, G;
I', G am kritischen Radius r = r,. Wir berechnen zuerst diese
Werte. Wegen 4, = 7,—, wiren es komplizierte Funktionen
von «. Wir werden deshalb an dieser Stelle die Entwicklung nach
a einfiithren und mit dem linearen Term abbrechen. Da yy = y_, =y
folgt aus (21) auch Ay,= A_,= 4 ; nach (21) ist namlich

_ I'(—y—1a)

B, = b— -
Mo = 7T+ T+ a+ arg F(—y—l—ia)
Iy —1a)

2ny=—m+b—a+arg— (v + ia)

Also '
I''(—y—ia)I'(y+ia)
F(=y +ia) 'y —1a)
wobel v, a,a, B die zu Beginn des §2 angegebene Bedeutung
haben.
urg T =0 D i

F(—y+ia) I'(y —ia)

24=2a+ n+ arg

= Qarg I'(—1+4a2—ia) I'(1 — % a®+10)

:2arctgig—w2a:ﬁ—-aﬁ—2a
ed

| :_i[i+
2
Die Entwicklung der reguliren Funktionen fiir kleine Kern-

abstinde bietet keine Schwierigkeiten. Aus (18) (15) (16) und (19)
folgt fiir

(26)

ekLl, 2L | N=1
Gy~ 1 G~} (a—b)+2

3
—1\% e—1\%
o (2T \ 1 p e )l ~_( )
0 (8+1> {2(+a)+3’ 2 et 1




Die Streuung schneller Elektronen an Kernen. 461

Dagegen muss man fiir die irreguliren Funktionen imm N einen
Grenziibergang machen, da darin sowohl I'(— 2y + 1) als auch
I'(1 —y —1a) fiir « —» 0 singulér werden. Wir erhalten fir

Nl 1o f fl?r 2 =10 (28)
af fir s =—2]
Vermoge (28) (16) (13) (22) ergibt sich
Gy ~ _*f iy
2¢

_ —1\% af
oo~ Lo

0 (s—i—l) 2 o2 v, .
o @)
iy T 279*"}"
[ A 2 af 9

: (8+1) {29 i )

‘Schliesslich berechnen wir noch daraus die Funktionen F G ver-
moge Gleichungen (22) und (26)

1
Qo "‘*’_é‘
P (8—1)1/‘ 1
fo ~— (1) '
2
1 0
Ga~—'a /
e—11\"21
(A

Wir haben darin nur die niedersten Potenzen von o und g bei-
behalten.

Wir wollen ]etzt welter den W.a;t von { berechnen. Zu dem
Zweck miissen wir diejenigen Losungen der Gleichungen (5) fiir
das Innengebiet bestimmen, welche die Kigenschaft haben fiir,
o = 0 reguliir zu sein. Diese Losungen sind

g = (e—p— 1% R ()
Jo — (e—p+1)% g% Jy (@)

0
fe=(—p—1)% g% Jy () (29)
go=—(e—u+1)%g ““Jw( )

¢ = [(e— p)? _1]1,2
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Also wird
b (ﬁ) _ (i:’zﬁ:l)%(ﬂ) l
9 S\ G0 Je=ey e—p+1 Jy, Jor—ets (30)
con ()G )
®T 9—2/¢ =0’ €—p+ 1 ~J“/a o'=0"

Die halbzahligen Besselfunktionen, welche hier auftreten, sind ele-
mentare Funktionen. Wir schreiben

1 Jyy, ()

£ (x) - ctg x T2

Wenn wir (27) (27) und (30) in (25) einsetzen, so wird schliesslich
nach einiger Umformung, solange | u|> 1 ist:

Ba+b) + e —1%+ ()t (uo)

1+ e+ 1)7E (p) |

Ha—b)+ v — 1%+ (Sg) (w)

14+ (—1)zl(u7)

Wenn wir in Gleichung (31) von dem Term 1/x absehen, so
verlduft £(z) periodisch mit der Periode n. Es folgt daraus, dass
auch &, und &_, fiir verinderliches ¢ und konstantes v periodisch
verlaufen, und zwar unabhiingig vom Vorzeichen von p. Wir wer-
den spater sehen, dass die Streuung jedesmal fiir | w7 | = nz durch
ein ausgesprochenes Maximum geht. Dies ist anders als in der
unrelativistischen Theorie, wo sich die Streuung fiir unbegrenzt
wachsendes u > 0 einem endlichen Grenzwert, ndmlich der Streu-
ung durch eine kleine undurchdringliche Kugel ndhert. Es ist
dies darauf zurtickzufiihren, dass fiir grosse u die Dirac’schen
Wellenfunktionen im Innengebiet nicht etwa exponentiell ab-
klingen, wie das bei den unrelativistischen Schrodingerfunktionen
der Fall ist, sondern wie man-aus (29) ersieht, oszillatorisch ver-
laufen. Nach dem Kvirin’schen Paradoxon?) ist ndmlich ein sehr
hoher Potentialsprung (# > mc?) fir ein Dirac’sches Elektron
nicht undurchdringlich, sondern es besteht eine endliche Durch-
dringungswahrscheinlichkeit, wobei das Elektron dann im Innen-
gebiet In einem Zustand negativer Energie erscheint. Dass diese
Zuustédnde zur Streuung wesentlich beitragen, ist ein interessantes
Resultat und gibt vielleicht eine prinzipielle Moglichkeit die physi-
kalische Realitit solcher Zustdnde experimentell zu priifen. Die
weitere Diskussion der Gleichungen (82) verschieben wir auf § 5.

1) O. KiEIN, Zs. f. Phys. 55, 157 (1929).

(31)

&= —12(e2—1)

(32)

Ey=—12(e2—1)
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§ 4. Die Eigenwerte der Energie fiir den 1S- und 2S-Zustand.

Die radialen Eigenfunktionen F', G im Aussenraum (r > r,)
sind bestimmt durch die ,,Randbedmgung dass sie im Unend-
lichen verschwinden sollen, damit sie quadramsch integrierbar wer-
den. Die Eigenart der Energie ¢ tritt darin zunéchst noch als
ein unbestimmter Parameter auf. Ohne Zusatzpotential ist dieser
Wert bestimmt durch die Forderung, dass die Funktionen fiir
r = 0 regulér sein sollen. Diese Bedingung wird jetzt ersetzt durch

C:(glﬂ 89

wobei wieder ¢ = (—;—) _gesetzt ist. Die Bedingung (33) gibt dann

die Bestimmungsgleichung fiir den Wert der Energie. Weil fiir
den gebundenen Zustand & < 1 ist, so setzen wir

[]

Q=2% (1—e?)% .

Wir wollen uns im Folgenden auf die Betrachtung von S-Zusténden
beschrinken. Fir P-, D- usw. Zustinde ist namlich die Storung
viel zu gering, um fiir die Spektren von Bedeutung zu sein. Die
Quantenzahl » hat dann den Wert 0. Ferner sei

K=1-—-1b
Ny =—y—1ia y= (1 —a?)%

Genau wie friither setzen wir

P-(17e) | s

S

(34)
_ e
P— 2 . .
G=" (ps+¢1)
@1:—"’1’(]9?1‘?(—7%4“13 2y +1; Q)} (35)
po=KgF(—n,; 2y +1; o |

o1=—(m+29) 0 "F(—n, —2y+1; —2p+1; @) (35)
Po=Kog"F(—n,—2y; —2y+1; g
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Die iiberstrichene Liosung F, G geht aus der nicht tberstrichenen
hervor durch Ersetzen von y durch —y.
Wir bilden jetzt
F=F—¢F G=G—-§@ (36)
und benutzen die asymptotische Entwicklung der F', G und F G
fir > 1 (siehe Formel 18):

—y—2—n, e 2 4o

FN_(l—s)ﬂF(Q‘y—!—l)K o

1+¢
2 y+1)K

“~rew)

P 1—e\ %
N__(l-ks)

r—

r (_ nr)

Q

Q—y—2—n,~ 8? NP
I'(—
I'(—n, —2y)

2y+1)K e

2y+1)

GN___

Q——'y—2~—n,,- e? 4.

—y—2—ny + -

e (37)

I'(—n,—27y) J
Sollen 1 F', G die Glieder mit Vaas verschwinden, so muss

I'@y+1) I'—n,—29)
I'—2y+1)I'(—n,)

Losen wir Gleichung (33) vermoge (86) nach & auf und
benutzen (38), so wird schliesslich

I'y+1)I'(—n—2y) F-(G
I'—2y+1)I'(—n) F—(G

Diese Formel enthilt schon die Abhingigkeit der Energie & von
der Reichweite und der Tiefe des Potentials. Der Parameter &
1st darin jedoch noch sehr verwickelt enthalten. Um die Formel
(89) praktisch brauchbar zu machen, miissen wir benutzen, dass
die Anderung der Energie durch den Einfluss der Stérung sehr
gering 1st, verglichen mit der Gesamtenergie. Fir die ungestorten
Zustéande ist n, eine ganze Zahl. Wir setzen also jetzt

n,=n, + 0

selin.

&= (38)

(39)

wobel n,” eine ganze Zahl und 6 <1 ist.
Ferner sel ¢ = ¢’ + #, worin ¢ die ungestorte Energie ist und

n << &' die Storung durch das Zusatzpotential darstellt. Die Be-
ziehung zwischen 7, und ¢ ist gegeben durch

n,=— y——'itx

g PE (40)

(1—e
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Wenn wir nach ¢ auflésen, erhalten wir die Feinstrukturformel.

o2 =¥z
o []+ (nr+y72] | “
Durch Differentiation nach n, wird
n=o?[a?+(n,' +y)?]-"" (42)
Im besondern wird '
[z «2d fir 1 S-Zustand = (n,” = l
& l %f 6  fir 2 S-Zustand = [ (43)

Wir berechnen jetzt 6 fiir den 1 S- und den 2 S-Zustand gesondert
Es sel immer a? <€ 1 vorausgesetzt.

a) 1 S-Zustand: Wir haben

=10 y~1—1%a n, =0
= (1 — a?)% (1—e%)% = a. (44)
Die F' und G sind nach « und p zu entwickeln:
- [ o
F=4/2a0e 2 G=24/2¢ 2
. o e _ a2 _ e (45)
F=é—2'\/23 2 G = 2“"2—6 2]
Ferner entwickeln wir die I-Funktionen in
E— I'2y+1)I'(—n—2y) (46)
r'—2y+1)I(—mn,)
Wenn n eine ganze Zahl = 0 ist und 6 <1, dann gilt
T(—ntd) ~1 1" (47)
0 n!

Anwendung dieser Entwicklung in (46) liefert unter Benutzung
von (44) das einfache Resultat:

, Ead. (48)
Durch Einsetzen von (45), (46), (48) in (89) wird endlich

1 _
=+ /2 (ur)
1 92 '\/2 - # . (49)
\/va‘fz:i(ﬂf)

Dabei haben wir wiederum die Funktion ¢ (Formel 31) eingefiihrt.
30
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b) 2 S-Zustand,

%x=20 . [1 i o2 ]—V
y=1—}a2 (1+%) (50)
_ ny =1 (A—ef)?= (13:7’)'
Eine analoge Rechnung wie fiir den 1 S-Zustand ergibt
6:—1-92 V2 «+24/2 {(u7) (51)

* pVE el

Damit wir die Abhéngigkeit von Z explizite studieren konnen,
ersetzen wir in den Formeln (49) und (51) wieder a durch

2
Za=—Z— (oc = L) .
187 he

Ferner driicken wir die Reichweite und die Tiefe des Potentials
durch # und ¢ aus. Dann wird mit (43)

Z _
o= AZ8asgr vz 2t V2T
S VA
s 8 gt V2 Zo+24/2 (oo )
: i
25 et VA Zal(aow)

Wir unterscheiden die beiden Fille || < | und |a«l]|~1
und stellen fiir jeden eine Niherungsformel fiir die Energiestorung
durch das Zusatzpotential auf.

1. Fall, | { | <1. Das zweite Glied im Nenner ist dann sehr

viel kleiner als das erste. '
2 ou

The &~ 2 Z4abg? {1 = § -—Z—’l

(52)

12 3 Z

2. Fall, |« | <€1. In diesem Fall konnen wir in den Zéhlern

der Formel (52) das erste Glied neben dem zweiten vernachlassigen.
Die beiden Glieder im Nenner dagegen sind von derselben Grossen-

ordnung. Wenn wir aber von einem Faktor von der Grossenord-
nung 1 absehen, konnen wir auch das erste Glied in den Nennern

Z46 2 2
o P 1, 2 o)



Die Streuung schneller Elektronen an Kernen. 467

Wegla,ssen d. h. wir ersetzen den tatsdchlichen Wert von # fiir
| & | ~1 durch seinen Grenzwert fiir £ —> co. Unter diesen Vor-
aussetzungen wir dann
N s~ 8 Z%ato? l
VAL A
4

52!'
Mo g & ( ' )

§ 5. Diskussion der Resultate.

Damit die Streuung durch das Zusatzpotential vergleichbar
wird mit der Coulombstreuung, missen @, und @, in (12) von
der Grossenordnung f(#) oder g(#) werden. Nun sind f(¢#) und
g(?#) von der Grossenordnung a und wegen (11) miissen also a.uch
die & von der Grossenordnung a werden. :

Wir unterscheiden nun auch bei der Streuung die belden
Falle |7C(u7) | €1 und |7¢(ut)| ~1. & wollen wir von der
Grossenordnung 1 annehmen, d.h. die Energie soll hochstens
einige MV betragen.

Im ersten Fall konnen wir nach (32) schreiben

& ~] 72 (pr) | Lo
da r:-ﬁzganva 1st.

Im zweiten Fall dagegen kann einer der Nenner in (32) sehr
klein werden. Solche Resonanzen kénnen aber nur dann auftreten,
wenn {(ut) < 0also g < 01st. Das bedeutet, dass dem Coulomb-
feld ein anziehendes Kastenpotential tiberlagert werden miisste.
Emn solches Potential hitte zur Folge, dass die Wasserstoffelek-
tronen fester gebunden wiren als im reinen Coulombfeld. Die
Storung wére natiirhich fir den 1 S- und den 2 S-Zustand am
grossten.

Nun ist von PasTtErNack?!) bemerkt worden, dass die experi-
mentell gemessene Feinstrukturaufspaltung von H und D?%) dann
erklart werden kann, wenn man annimmt, dass der 2 S-Term um
einen Betrag 0,08 cm—! nach oben verschoben wird. Dagegen wird
die Ubereinstimmung des Experimentes mit der Theorie noch
schlechter, wenn man eine Verschiebung nach unten vornimmt.

Es ware jetzt noch die Moglichkeit denkbar, dass Protonen
und Neutronen verschiedene Krifte auf die Elektronen ausiiben,
derart, dass beim Wasserstoff zum Beispiel die Stérung positiv
1st (n > 0), wahrend sie dagegen beim Stickstoff und andern Ele-

1) PASTERNACK, Phys. Rev. 54, 1113 1938)
2) WiLLiams, Phys. Rev. 54, 558 (1938).
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menten, bei welchen eine grosse Streuanomalie festgestellt wurde,
negativ ist, so dass die oben diskutierte Resonanz eintreten kénnte.
Eine solche Moglichkeit wird jedoch ausgeschlossen durch die Tat-
sache, dass gerade beim Deuteron, das ja dasselbe Verhiltnis von
Neutronen zu Protonen aufweist wie der Stickstoff, die Abwei-
chungen der Feinstruktur von der Theorie besonders genau ge-
messen sind und auf ein positives Zusatzpotential hinzuweisen
scheinen. Wir glauben deshalb die Annahme eines negativen
Potentials ausschliessen zu miissen.

Wenn die Nenner in (32) nicht klein sind, dann ist im zweiten
Fall §; ~ &_, ~ 7, die Streuung also wirklich von derselben Grossen-
ordnung wie die Courome’sche. Damit aber | 7{(u7) | ~1 sein
kann, muss p7 sehr nahe bei einem ganzen Vielfachen von & liegen,
d. h. es muss gelten

nT—7T = ut < nw + 1 L1 p>1
(n = ganze Zahl = 0).

Wir wollen zur Erleichterung der Diskussion die Werte von
ut modulo 7 1n das Intervall von 0 bis & reduzieren. Jeder Kern
mit seinen individuellen g- und 7-Werten wird dann durch einen
Punkt in diesem Intervall representiert. Die Vertellung dieser
Punkte wird keiner besondern Gesetzmissigkeit gehorchen, son-
dern ungeordnet sein. An den beiden Enden dieses Intervalls
grenzen wir die beiden Teilstrecken 7 nach innen &b, wobei 7
durch einen mittleren Wert ersetzt werden darf. Ein Punkt der
innerhalb einer dieser Bereiche fillt, wird einen Kern mit anor-
maler Streuung darstellen. Nun kennt man unter den 80 Kernen
von Z =1 bis Z = 80 mindestens 8 Kerne, bei denen eine Ab-
weichung von mehr als 509 festgestellt wurde (N, A, Kr, Xe, I,
Al,Ni, Hg). v miisste also im Mittel einen Wert von rund =/20 haben.
Wahrscheinlich 1st = aber grosser, da die nicht untersuchten Ele-
mente vermutlich nicht alle normal streuen.

Wir behaupten nun, dass, wenn diese Deutung der Streu-
anomalien richtig wére, beil den gleichen Elementen, die eine ano-
male Streuung aufwelsen, auch beobachtbare Stérungen der Ront-
genlinienfrequenzen auftreten missten. Denn bei diesen Elemen-
ten, die durch | «{ | ~1 charakterisiert sind, ist nach (52"") und
(52") die Energiestorung der K-Elektronen (1.S) etwa 100mal
grosser als bei den normal streuenden Elementen (Fall 1) und die

le “Z ‘ 1st nach (52") von der Grossenordnung
|
16 x2¢% = 16 72 also etwa 409, wenn man fiir 7 den oben geschétz-

ten Minimalwert #/20 einsetzt. Im MoseLEy-Diagramm der

relative Storung ’
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K-Linien miissten sich aber auch noch erheblich geringere Ab--
welchungen feststellen lassen, sofern sie nur bei einzelnen Ele-
menten oder Elementengruppen auftreten. Das tatséchliche
Fehlen solcher Abweichungen spricht also stark gegen die hier
diskutierte Theorie der Streuungsanomalien.

Im Hinblick auf die oben erwidhnten Feinstruktur-Anomalien
der Balmerlinien von H und D haben wir noch die Stérungen des
2 S-Zustandes fiir Z = 1 berechnet und in der Figur als Funktion
von u und o dargestellt; die Kurven verbinden die Punkte 7, =
const. Die mittlere Kurve entspricht dem von PASTEBNACK vor-

geschlagenen Wert My — 0,08 cmL,

. “
500;

400
300
200¢

100

Fig. 1.
Storung des 2 S-Termes durch ein abstossendes Kastenpotential von der

2
Hohe p und Reichweite o (in Einheiten m ¢? bzw. — )

me?

§ 6. Magnetische Streuung.?)

Durch den Einfluss des magnetischen Momentes des Kernes
erfahren die Elektronen eine ablenkende Kraft, welche der Ge-
schwindigkeit proportional ist.

Die Berechnung der Streuung durch das Kernmoment fithren

1) Ich bin Herrn STiicKELBERG fiir die Uberlassung seiner Rechnung iiber

dasselbe Problem zu Dank verpflichtet. Es war mir dadurch moglich, in meiner
eigenen Rechnung einen Fehler zu berichtigen.
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wir mittelst der BorN’schen Methode durch. Es wird sich zeigen,
dass die erste Naherung bei weitem ausreichend ist, da der Effekt
viel kleiner i1st als die Streuung durch das Coulombfeld.

Die zeitabhéngige Dirac’sche Gleichung lautet

h 01/)
i ot

H = +6V(?‘)+C[i oc’“(pk—i@k) + mcﬁ}
k=1 ¢

Wir setzen:

+H1p 0

mit

- 54)
|

H=H,+H,+H,
3

Ho=¢ lZa’“ pk+mc,8]

 Ze? (55)
r

H=c¢V=—

. 1
k=1

u ist das magnetische Moment des Kernes:

w=p-g-I (56)
mit p = ;I—hc; I ist der Kernspin mit den Eigenwerten (—i- - -+ 1)
und ¢ ein Zahlenfaktor, der Landéfaktor fiir das Kernmoment.
Wir bezeichnen mit m (m = —a4, - - -+ + 1) die Zustdnde fiir den
Kernspin, mit (4, p) die Zustinde der Dirac’schen Wellenfunk-
tionen, wobei (A =1, -, 4) und p den Impuls der ebenen Welle

bezeichnet.
Die ungestorten Zustinde sind ebene Wellen

¥ (&) = a® (p) ¢ 3 BFE (57

Die a® sind noch 4-komponentige Grossen. Wir normieren sie,

so dass
a*® - g =9, (58)

Das Matrixelement, das fiir die Streuung verantwortlich ist, ist
dann

m' Ap'| H, —{—Hulmlp

1
G=, 65 (59)

@ (B @ [’ XTDIF)
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Der differentielle Streuquerschnitt fiir die Streuung p —> P’ ist

1’ (an 2| (m' AP | H +HM| mip) |2
2 (2i+1) \ h? ):2‘,-’:’3 9= (@P)
Die Summation driickt die Mittelung aus iiber alle Orientierungen
des Kernspins und des Spins des einfallenden Elektrons. Die
Summation dber A4’ ist jedoch nur iiber die Zustinde positiver
Energie auszuftihren. Wir haben das durch die Klammer ange-
deutet.

Bei der Summation itiber m,m’ fallt der aus erstem und
zweltem Glied von (32) gemischte Term weg, da ja E i = 0188,

Die Streuungen durch das Coulombfeld und durch das magnetische
Moment setzen sich also additiv zusammen. Wir schreiben daher

I(%) = I,(9) + Iy,(P).

Die Ausrechnung von I (19) fithrt direkt auf Formel (1)Y). I,,(9)
wird dann

I (-3) e (2 i m)Z (4 77:6)2 Z Z (}’—l’m’mxa)z (?l';fz’mXQ)Ic
. ho) 2@2i+1) PR g
{(a® @) of a® (p)) x (a*P(p) a*a®™ (p7))}.  (61)

" Dieser Ausdruck lasst sich betrachtlich vereinfachen. Wir setzen

Sa =3 > (a*® (p) ata® (P)) (@*@ (p)a*a® (B)) (62)

(3 #)

I1(9) = (60)

dann wird wegen i
| (e +1) (21+1
2 i Pt = S (7 p* = o2 : )3( D, (63)

16 Z3¢2 u?2 .
Iy (9) = X I’; L 3 (1+1) {(‘EI12+Q22) S11+(g5%+¢1?) Saat
(124722 Sss — 2 (4,92 S12+ 9293 Sas+ a0 831)} (64)

Zur Berechnung der Ausdriicke S;, fiihrt man zweckmaissig den
,, Vernichtungsoperator* ein, definiert durch

me 4 cop+mc?p _
r(p)—g(wr i ) (65)

Er hat die Eigenschaft, dass

T — a® fir Zustinde positiver Energie
T p negativer Energie

1) Siehe F. SAUTER, l.c.
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Der Vorteil dieses Operators besteht darin, dass man dadurch bel
der Summation iiber A4 die lastige Beschrankung auf Zustéinde
positiver Energie vermeiden und die Summation durch Spuren-

bildung ersetzen kann.
Es wird z. B.

%_)‘Jaff’ a e Z S‘ a® (I, a®)* Z‘ 5, I
Darauf folgt wegen (41)
o Sa = sp(L'(p") i I'(p) o) (66)
" Diese ‘Spuren lassen sich nun leicht berechnen. Es wird

.Sll — ﬁzsiHZ*Z SIZ = 331 — 0
2 67
2 2

Diese Grossen fithren wir in (43) ein und benutzen ferner, dass

|p| sin ¢ Gy = 7] (1 —cos 9).
h h

Dann finden wir schliesslich nach einiger Rechnung

Iy (9) = (1‘232)2 %(%; L

Fir das Verhidltnis R = I,/I, finden wir dann

q =0 e = —

{1 + } cotg? %} (68)

g my: sin4%li+%cotg2%} |
= (M) 11 +1) (1———[)’251112 )(1-—/3) o

Der wesentliche Term in dieser Gleichung ist der Term (m/M)? =
2.5 x 10-?. Fir Energien bis zu 8 mV ist (1 — %)~ < 86, die
magnetische Streuung also verschwindend neben der CourLowms’
schen. Die magnetische Streuung wird erst betréchtlich fiir Ener-
gien von der Grossenordnung 103 mV.

Ich bin den Herren Prof. Paurt und Prof. WeNTzEL fiir for-
dernde Diskussionen tiiber dieses Problem und wertvolle Rat-
schlige zu Dank verpflichtet.

Ziirich, Physikalisches Institut der E.T. H.



	Die Streuung schneller Elektronen an Kernen

