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Un génerateur a temps de transit, utilisant un seul resonateur
de volume ‘
par J. J. Milller et E. Rostas.
(19. X. 40.)

Introduction.

- L’objet du présent travail est I’étude théorique d’'un généra-
teur constitué par 'ensemble d’un faisceau électronique F' et d'un
circuit résonant K, formé de préférence par un résonateur de
volume (fig. 1). Le faisceau est accéléré avant de pénétrer dans
le résonateur par une source de tension continue ¥,. Nous allons
montrer que pour un choix judicieux des parametres ce systéme
peut présenter une instabilité, de sorte qu’il se crée dans le résona-

e~ — — ]

F

=

Fig. 1.

k

teur un champ électrique oscillant K sin wt de direction parallele
au faisceau.

Il existe une suite discréte de wvaleurs de la longueur [,
pour V, donné, pour lesquelles le fonctionnement de ce: généra-
teur est optimum. Ces valeurs sont telles que le temps de transit -
des électrons, calculé en l’absence de champ oscillant, soit égal
4 un nombre entier de périodes d’oscillation plus environ .

Le rendement, c’est-a-dire le rapport entre la puissance que
peut fournir le faisceau d’électrons au résonateur sous forme
d’énergie électromagnétique et la puissance totale fournie au
faisceau, est dans le cas optimum égal &4 229,. Le maximum du
rendement s’obtient pour une tension alternative égale & environ

4 fois la tension continue.
7 *
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Le probleme qui se pose est analogue & celui de la diode &
laquelle on applique une tension alternative. Mais dans le cas
présent c’est avant de pénétrer dans le champ oscillant que les
électrons regoivent leur énergie cinétique de la part de la source
de tension continue. Il s’agit donc en somme d’une diode ou les
électrons auraient de grandes vitesses initiales.

Nous ne nous limitons pas, comme le font en général les travaux
traitant la diode’), au cas d’amplitudes infiniment petites. Si
dans une diode normale la tension alternative venait & dépasser
la tension continue, I’émission serait supprimée pendant une frac-
tion de la période. Ici rien de pareil ne se produit, et la tension
alternative peut dépasser de plusieurs fois la tension continue
sans que pour cela les électrons ne fassent demi-tour. Ceci dis-
tingue aussi le présent générateur de ceux du type Klystron ou
Triode ordinaire.

Py P,
l E sin wt
e - it
| I'e
[ |
| | _ X
=== |y —— ! _
——————— P
Fig. 2.
Nomenclature.
¥ Abscisse d’'un électron mesurée a partir de P,.
v Vitesse instantanée de 1’électron.
¥y Vitesse initiale.
E sin ot Intensité du champ électrique entre P, et P,.
P,
V=El Valeur maxima de l'intégrale instantanée f eds ou tension maxima.
P,
vV, Tension continue.
1, Courant continu transporté par le faisceau.
w, T Pulsation, période de P'oscillation.
e, m Charge, masse de I’électron.

¢=w! Variable mesurant le temps en angles.

1) J. MurLEr, Hochfrequenztechnik und Elektroakustik 41, 1933, p. 156.
— A. G. CraviEr, Bulletin de la Société francaise des Electriciens, Janvier 1939.
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®o> 1  Angles d’entrée et de sortie.

w Energie fournie 4 un électron.

Wy Energie déwattée relative au trajet d’un électron.
0, 04 Rendement en puissance wattée et déwattée.

Rp Résistance de démarrage.

R,C Résistance, capacité équivalentes au faisceau.

S Résistance shunt du circuit.

R) Inconnue auxiliaire.

I(t) Courant instantané dans le circuit extérieur.

k Rapport de la tension oscillante & la tension continue.
o Rapport du temps de transit & la période.

R, Rayon de convergence de la solution.

p Ordre de 1'oscillation.

1. Etude qualitative du fonctionnement.

Nous supposons que le systéme oscille et montrons que ces
oscillations sont capables de s’entretenir. Nous négligeons le
champ dit aux charges d’espace et étudions le mouvement des
¢lectrons dans un champ électrique de valeur instantanée E sin wf,
limité & deux plans P,, P, perpendiculaires au faisceau et per-
méables aux électrons (Fig. 2). Les électrons sont alternativement
accélérés et freinés par le champ et mettant pour franchir 'espace
P, P; = [ un temps plus ou moins long. Le temps de transit d’un
électron dépend de l'instant ¢, de son entrée dans le champ. Au
cours de son déplacement de P; & P,, ’électron recoit du champ
I{ un travail positif ou négatif suivant que sa vitesse de sortie
est supérieure ou inférieure & sa vitesse d’entrée. Nous calculons
ce travail pour chaque électron, puis faisons la somme des tra-
vaux fournis aux électrons «nés» dans l'intervalle d’une période.
Si cette somme est positive le champ F fournit en moyenne de
I'énergie aux électrons. Si elle est négative c’est le faisceau qui
abandonne de I’énergie au champ. Dans ce dernier cas, si I'amor-
tissement du circuit oscillant est tel que pour I'amplitude consi-
dérée 1l absorbe exactement la puissance abandonnée par les élec-
trons dans le champ FE, loscillation sera capable de s’entretenir
a cette amplitude. '

2. Calcul de I'énergie fournie aux éleetrons,

Les coordonnées et les grandeurs utilisées sont définies par
la Fig. 2 et la nomenclature adjointe. Nous caractérisons le fonc-
tionnement par deux parameétres sans dimensions. L’un
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désigne le rapport de la tension alternative de créte a la tension
continue et caractérise I'amplitude de l'oscillation. L’autre
!
v T

oL =

représente le rapport du temps de transit l/v, calculé en 1’absence
d’oscillation, a la période T, et caractérise les dimensions de 1’oscilla-
teur de volume. On intégre I’équation du mouvement d’un élec-
tron né a l'instant {,
d?zx
dt?

m

= ¢ — sin wt

!

et détermine sa vitesse v et son abscisse z a l'instant t. En intro-
duisant les angles ¢ = wt, ¢, = wt, et les paramétres o et k il
vient:

(cos @y — cos @) (1)

o " 4aa
et

x k
2 e =3 — 1
L l | ((P (pO)( +47‘60€.

koo
cos %) + y (sin @o—sin @).

Cette derniére équation permet de calculer l'instant ¢; ot I'élec-
tron né & t, atteint le plan P,. En posant z =1 et ¢; = wt; elle
s’écrit:

k
2 == - 1
o= (@ (Po)( e Do

k : .

cos %) + o (Bingo—sing) (2)
T

1’équation transcendante (2) définit ¢; comme fonction implicite

de ¢o. Elle doit donner une valeur unique de ¢, pour chaque ¢,

& condition que
k< 2ma. (3)

En effet dans ce cas I’équation (1) montre que la vitesse des élec-
trons est toujours positive. Aucun d’entre eux ne peut faire demi-
tour, Nous nous maintiendrons dans les limites définies par (3).

Energie wattée.

L’énergie dW fournie & un électron par le champ dans le
temps dt est égale au produit de la force el sin wt par le déplace-
ment élémentaire dx:

AW = e

Tl/ sin wt v dt. (4)
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L’énergie totale fournie dans le trajet de P; & P, est:

t

W = feTVsin wt v dt.

to
Soit » le nombre d’électrons débités & la seconde par le faisceau
initial. L’énergie fournie au faisceau en une période par le champ
est la somme W, des énergies fournies dans le trajet complet de
P, & P, aux électrons nés dans l'intervalle d’une période, soit

T oy
W1=nfdt0fe sin wt v dt. (5)
0 to l
Nous appelons rendement o le rapport de la puissance moyenne
fournie aux électrons par le champ, & la puissance fournie au
faisceau par la source continue. Il est égal a
e T fmog

et se déduit de (5). En introduisant dans (5) les parametres «, k,
les angles ¢ = wt, et 'expression de v tirée de (1) on obtient:

- 8 2”(008 cos @) |1 + i
S cxof it ¥L 87
Dans cette expression ¢, doit étre considéré comme une fonction
de ¢, définie par (2). Si le rendement ainsi calculé est négatif,
les électrons cédent de 1’énergie au champ.

(cos @o— cos cpl)] do,. (6)

ev
1= -5

j ~—

o q;

Circuit

> e = = & oy
A ]

q;

Fig. 3.

Energie déwattée.

L’expression (4) du travail élémentaire est susceptible d’une
interprétation différente de celle que nous avons donnée. Lors-
qu’un électron se déplace entre 2 plans conducteurs reliés par un
circuit (Fig. 3), 1l passe dans ce circuit un courant

. ev
fb —_ .

!
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dt & la variation des charges d’influence ¢, ¢; qui apparaissent
sur les 2 plans en raison de la présence de I’électron. Nous avons
supposé qu’il existait entre les deux plans une tension V sin wt.
La source qui crée cette tension, c¢’est-a-dire le circuit, devra donc
céder dans le temps dt une énergie wattée

iVsinwidt ou %Vsinmtdt

qui n’est autre que l’expression (4), et une énergie déwattée
—elﬁ V cos wtdt

qui se déduit de (4) en changeant sin wt en cos wt. On a donc
le moyen de calculer ’énergie déwattée abandonnée par le circuit.
La méthode est identique & celle qui a été employée pour 1’énergie
wattée. On calcule I'énergie déwattée correspondant au déplace-
ment d’un électron de P; a P,, puis on fait la somme des énergies
relatives aux électrons nés dans un intervalle T. Si on appelle
rendement déwatté o, le rapport de la puissance moyenne dé-
wattée abandonnée au faisceau a la puissance fournie par la source
continue on trouve:

2n

k k i k -
Qa = 5 j (po— @1)+sin @ |1+ —— (2 cos @a—cos @) |{d@,. (6a)
4 m2¢g y 8o

S8na

On pourrait effectuer ces calculs d’énergies en faisant la somme
I(t) = 2'iv des courants 4 circulant & 'instant ¢ et intégrant dans
une période les expressions IV sin wt et IV cos wt. Mais il est
plus simple et il revient au méme de considérer les courants élé-
mentaires relatifs & chaque électron, et de calculer séparément
les travaux relatifs & chacun de ces courants. Remarquons que
le courant I(f) contient des harmoniques mais que la tension
reste sinusoidale, le circuit oscillant étant supposé trés sélectif.

3. Solution et convergence.

L’étude du probléme est ramenée & la résolution des équations
(2) et (6) par rapport & ¢; et p. On va montrer que le rendement
peut étre donné sous la forme d’'un développement en série par
rapport au parametre

k

4o

1 =

(7)
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qui est mis en évidence dans l’équation (2). % est infiniment
petit dans deux cas, soit pour de petites amplitudes (k- 0), soit
pour de grands angles de transit (e- c0). Au lieu de calculer
directement ¢, 1l est logique d’étudier la différence entre 'angle de
transit ¢; — @, et 'angle de transit 2 m « calculé en ’'absence d’oscilla-
tion. Cette différence apparait dans I’équation (2) transformée ainsi:

k k
(1 — @o—2 7o) (1+——COS %) + — COS @,
4o 2 -
k

47a

+ (SIn @y — sIn @) =

et elle prend pour =0 la valeur — k/2 cos ¢,. On est donc con-
duit & considérer une inconnue { définie par

k ,
(}91—'(}7():27'5&%*?005@0“]—3- : o (8)

En introduisant # et § dans les équations (2) et (6) il vient:

k : . k
F =1 [—— cos2 gy --sin @, — F cos gy+-sin (tpo——§ cos @o+2 o + 3)]

2
0 (9)
nof k
0= "—;./.cos ((po—?cos ¢0+Zna+3) d g,
0
7’]2 2n k 2
+—2—;f [cos @Yo — COS (%_“2_ cos (p0+2na+8)] de,. (10)
d |

Il s’agit de tirer § de (9) et de le porter dans (10). I’équation
implicite (9) est de la forme '
' 8 - f(’f/, 3)

avec § = 0 pour # = 0. La fonction f est développable par rapport
a 7 et § en une série de Taylor absolument convergente quels que
soient 7 et §. Il suffit en effet de faire apparaitre sin § et cos §
dans (9) d’ou le développement: '

ko, : : ki
g: n —2—COS @ — SIN Qg + 81N (%-Ecos (po—f—anc)
/ f
—I-S[-— cOS gvo—i—cos(cpo———-é-cos 990:—2:101)}

2
H%Sin((pﬂ —% cos gy +2 7 oc))

3 k
—%COS((}JO—-—?GOS 990—|—2na)+----l __ (11)
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De plus, la dérivée

?jﬁ%@: ] [— cos (p0+cos(%——g—005 ‘Po+2”°‘)]

est en valeur absolue inférieure &4 1. Cela résulte de I'hypothése
faite sur # dans I’équation (8) qui peut s’écrire 1 < 4. Dans ces
conditions on sait que I’équation (9) a une solution § unique,
développable en une série de Taylor absolument convergente a
Iintérieur d’un intervalle non nul. Le rayon de convergence R,
séra précisé (15). On est donc en droit de poser

=07+ agn® + -+ . (12)

de porter (12) dans (11) et d’identifier terme & terme. Il vient
ainsi:
k

] . k
a, ='Ecos2 ®o — SIN @, + SIn (% g cos @o+ 2 nof.) ‘

L)

cos —I~2noc)
2 Po . jl

Pour porter § dans (10) on transforme cette équation. Elle peut
s’écrire

2n
=~ [ 9(p0, 1, B) A
TCO

La fonction g ne contient § que par le sinus et le cosinus. Elle
est donc développable par rapport & % et § en une série absolu-
ment convergente & rayon de convergence infini. Dans cette
série on est en droit de substituer & § le développement absolu-
ment convergent (12) et le rayon de convergence de la série obtenue
est égal & celul de (12). On obtient ainsi

glpo, 1, 3(n) 1= by +byy+bgn?+ -+~ (13)
avec

b, = ——cos(%_—g— Ccos cpo—l—Qnm)

; k
b, = a, sin ((po Y cOS Po+2 noc)
k 2
+ % |cos gy — cos (%—E cos @y + 237:oc) :

La convergence de la série (13) dans I'intervalle 0 < n < R, est
établie quel que soit @,. Si on considére alors cette série comme
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une série de fonctions de ¢, il y a convergence uniforme, et 1'on
est en droit d’intégrer terme & terme. Toutes ces intégrales con-
duisent & des fonctions de Bessel. On a par exemple pour le pre-
mier terme:

2xn ; ‘ k
fbld%z ~27£sin2nmIl(E).
0

On obtient ainsi la solution sous la forme:

o=10C1N+ CenP (14)
avec

¢y = — 2sin 2wal, (_g_)

=2+ }cosdmal,(k)
: k 3k k k k
—cos 2ma [2 I°(§)+—4_ I (“2"_)__41_-13 (E)]

I, (&) désignant la fonction de Bessel d’ordre n et d’argument &,
et n étant défini par (7).

Convergence de la solution.

Les séries (12) et (14) ont méme rayon de convergence. Nous
appliquons & (12) la méthode des majorantes de Caucmy. On
remplace la série qui est au second membre de (11) par une série
dont chaque terme est supérieur & la valeur absolue du terme
correspondant de (11). On peut vérifier que pour k¥ > 1 une majo-
rante de (11) est: '

k 1 2 3
hin, 8)=n (5 + 5 +1+28+ 5+ S0+ )

et une autre, qui majore encore h:

k 1 2 1
== vl o 2 — -

a condition que § < 8. Si on considére alors la fonction y de #
définie par |
y=rn,y)

cette fonction y est une majorante de §. Si y converge, a for-
tiori § converge. Or y se calcule sous forme explicite par une



444 J. J. Miiller et E. Rostas.

equation du second degré, pourvu que cette équation ait des ra-
cines réelles, d’ou la condition suivante pour #%:

n < R,
avec
F(6+8) —9/28 o1 -
B, = . = k>1
“T B _64 136 P=gtgp tlrourkrl
f =2 pour k<1

Done, lorsque « est donné, la série converge si k est intérieur a
une valeur donnée par (15). Si on porte cette valeur en fonction
de « dans le plan des o, k (Fig. 5), on obtient une courbe C et la
série converge dans le domaine compris entre la courbe C et 'axe
des o, c’est-a-dire sensiblement dans tout le domaine intéressant.

4. Cas des amplitudes infiniment petites. Condition de démarrage.

Si k est infiniment petit ¢ est infiniment petit, et sa partie
principale se déduit de la série (14) en remplagant

k k k
Il (—E‘) par Z 5 IO (-—2--)

par 1 et négligeant les autres termes, d’ou:

k2 /sin 2@xa sin?zm o
- ptme s

. (16

2ma 2 o

Pour qu’il y ait oscillation, p doit étre négatif. Ceci détermine
les domaines suivants pour o (fig. 5):

1<a<o, <143, 2<a<a, <241, -+ -, p<a<o,<p+i,----
les o, %y, * &, étant des nombres voisins de 1 + 3%, 2+ 4,---
p + %--- Lorsqu’en outre « est trés grand le rendement se ré-
duit a:

I? sin 27 «

17
4 2moa ol

Q —
d’ou 1l résulte que «, tend vers p + % quand p croit indéfiniment.
Nous appellerons le nombre p 'ordre de l'oscillation. On peut
remarquer que ces domaines sont identiques & ceux que lon
obtient dans I’étude de la diode aux tensions infiniment petites?).

La formule (16) indique que la puissance fournie au faisceau
est proportionnelle a k2%, c’est-a-dire & V2 Du point de vue éner-

1) A. G. CLAVIER, ibid.
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gétique on peut donc dire que le faisceau se comporte pour la

V =
tension V' comme une résistance définie par g—= e Iy ¥, o I

désigne le courant continu débité par le faisceau. Cette équation

r * inf . Tf . y " .
s'écrit en introduisant k et By = " qui est la résistance continue
A |

du faisceau

k2
R,=R,— (18)
20
Mais ¢ est donné par (16), donc
: -
i _ M_} (Sjn Qma _ sin®ma ) (19)
R, 2Ry, \ 27« 2ol

R sera désigné sous le nom de résistance de démarrage ou résis-

tance équivalente au faisceau. Pour que le systéme oscille 1l faut
= :

2R, 4ue le faisceau

Ve

peut céder au circuit oscillant doit étre supérieure a la puissance 5—

que R soit négatif. En outre la puissance

absorbée par le circuit. D’ou la condition
| Ry | < 8 (20)

La résistance de démarrage doit étre en valeur absolue inférieure
4 la résistance shunt S du circuit.

Dans chaque domaine d’excitation il existe un minimum de
BEp atteint pour une valeur de « voisine de p + 1/,, comme le
montre la formule (19). Pour les trois premiers ordres les valeurs
successives des minimas sont:

RD1 = 19,6 RO o = 1,20
R, =33 R, o224
R, =445 R, a=825

La plus faible valeur de R s’obtient pour 'ordre 1 et la résistance
de démarrage croit si 'ordre croit. Pour un circuit d’impédance
donnée S, il faudra choisir R; assez faible pour que (20) soit
réalisé. On a par 1a un moyen de mesurer I'impédance d’un réso-
nateur de volume.

Le calcul donné ici montre que, en ce qui concerne 1’énergie
wattée, le faisceau est équivalent & une résistance R;. On peut
effectuer un calcul analogue pour I’énergie déwattée. En éliminant
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¢, entre les équations (2) et (6a) on obtient le rendement déwatté
sous forme d’une série dont la partie principale pour k- 0 est

k2

Qa= —

2ma

sin2noc)
4ma

(0082 7T o —-

La puissance déwattée est donc elle aussi proportionnelle & k2, et
le faisceau se comporte en ce qui concerne I’énergie déwattée comme
une capacité définie par

| %
wC—é—:QdIovo
ou
O _ 1 _iw (cosznaw sm27toi)
oR, 27« 27ma

En résumé le faisceau est équivalent pour les échanges d’énergie
aux amplitudes infiniment petites &4 une résistance B, et une
capacité C en paralléle (fig. 4).

-

Ro —— Circuit
|

|
1

Fig. 4.

5. Cas des amplitudes finies. Résultats numériques.

La série (14) s’applique au cas des amplitudes finies. Elle
permet de délimiter dans le plan des «, k (fig. 5) un ensemble de
régions hachurées & 'intérieur desquelles p est négatif et 1’oscil-
lation possible. Ce diagramme présente 'aspect d’'un carrelage.
On se rend compte qu’il doit en étre ainsi en considérant l'ex-
pression de p pour les grandes valeurs de «, fournie par le premier
terme de la série (14):

k1, (ﬁ) _ 21)

sin 2 ma

e="- 9

Cette expression est négative dans deux cas; soit pourp < a < p+4
et I, (§)> 0; soit pour p + 3 < a < p et I, (’2“)< 0. Ceci définit

une suite de rectangles délimités par les verticales « = p, p + %,
p+1,--+ et par les horizontales correspondant aux racines de

I, (%), soit ‘120‘""' 3,83; 7,01;---. Aux petites valeurs de « le dia-

2o
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gramme garde approximativement la méme allure, avec cette diffé-
rence que p + 4 est remplacé par «,. Les domaines contigus a
I'axe k= 0 sont limités sur cet axe aux régions p < a < a,, ou
la condition de démarrage est vérifiée: les régimes correspondant
aux différents points de ces domaines sont donc réalisables &
partir d’oscillations infiniment petites. Les autres domaines n’ont
aucun point commun avec l’axe, ils correspondent & des régimes
de fonctionnement qu’il est impossible d’atteindre & partir d'une
oscillation-infiniment petite. De tels régimes peuvent présenter un
intérét pratique. |

La formule (21) montre qu’aux grandes valeurs de o le rende-
ment atteint un maximum dans chaque domaine pour o voisin
de p + 1/,. Ce résultat reste sensiblement vrai aux valeurs faibles
de «, et en outre le rendement croit si « décroit. C’est pourquoi
nous donnons (fig. 6) les courbes du rendement en fonction de
Pamplitude pour les oscillations d’ordre 1,2,3 et les valeurs
a=1+%, 24+ %, 3+ % Le calcul est effectué au moyen des
trois premiers termes de la série (14) qui converge rapidement.
Pour les ordres 1 et 2 on a calculé quelques points directement
par approximations successives dans les régions extérieures au
domaine de convergence de la série.

Le maximum de rendement est 14,59%,. Il est atteint pour
Poscillation d’ordre 1 avec k = 4. La tension alternative est donc
bien supérieure & la tension continue. Cela ne présente pas d’in-
convénient puisque d’aprés ’équation (3) les électrons ne font pas
demi-tour. “

On peut toujours associer & g une résistance définie par la
formule 2

R=R
° 9%
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semblable & la formule (18) mais valable pour la tension finie V.
R permet de représenter le faisceau du point de vue énergétique.
Nous P'appelons la résistance du faisceau pour I'amplitude 7. On
peut porter en regard de la courbe de rendement une courbe (fig. 7):

1 B 1 2| QJ
|R| B, k2

Elle part d’un point D représentant la résistance de démarrage
1/RE; et s’arréte au point de rendement nul. Ce diagramme per-
met de déterminer le régime de fonctionnement optimum et de

90/01
16

a=35fy4

L~

12 £ ;9"\\
/ =\

| /// AN
11 WL

résoudre le probléeme de 'adaptation (Anpassung). Supposons un
circuit donné, d’impédance shunt S. Pour que le systéme oscille
il faut

S > | Ry

et 'amplitude de l'oscillation qui s’établit est donnée par
S=[R] |

c’est-a-dire par I'intersection F' de I’horizontale 1/S avec la courbe
1/B. Pour que le rendement au point de fonctionnement soit
maximum: il faut que le k correspondant & F' soit de 4, ce qui donne
S « 50 Ry,. Inversement s’il s’agit de tirer d’un générateur le
maximum de puissance, c’est S qu’il faut varier pour amener I' au
point d’abscisse k = 4. Cela est possible pour un circuit oscillant
donné en variant le couplage entre ce circuit et le circuit de charge.

On peut élever le rendement & 229, en récupérant 1’énergie
des électrons sortant du résonateur au moyen d’une tension de
freinage égale a la vitesse en volts du plus lent des électrons sor-
- tants.
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6. Discussion.

- Le choix des paramétres «, k, Ry, S, dépend du probléme &
résoudre.
Si 'on veut obtenir un maximum de puissance il faudra
choisir 'oscillation d’ordre 1 avec

a=5/4, k=4, S=50R,

Cela conduit pour des rhumbatrons ordinaires & des valeurs rela-
tivement faibles, mais acceptables de R. Par exemple:

S =210802; R=4104Q; V = 4000 Volts; I,= 100 mA.

!

=T| 1l

s
Rp

1%

Fig. 7.

Si 'on veut obtenir des ondes aussi courtes que possible, on
peut avoir intérét & choisir une oscillation d’ordre supérieur a 1,
malgré I'augmentation de la résistance de démarrage que cela en-
traine — parce que dans certaines limites I'impédance du circuit
croit plus vite avec « que la résistance de démarrage. On peut s’en
rendre compte par exemple pour un résonateur en forme de cy-
lindre circulaire de rayon a et de hauteur I. La formule qui donne
Pimpédance shunt s’écrit?) :

S=p

A 4 . r * l IU
ou u désigne un facteur numérique, Or on a 5= 0—“ avec A= 2,61 a,

A étant la longueur d’onde et ¢ la vitesse de la lumiére. Prenons
par ex. vy/c = 1/10. Si 'on passe de 'ordre 1 & l'ordre 2, « passe
de 5/4 a 9/4, la résistance de démarrage croit dans le rapport
83/19,6 = 1,7, et la résistance shunt croit dans le rapport S,/ S, = 2,46.

') J. HaNsgN, Journal of applied Physics, Oct. 1938, p. 655.
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Les impédances croitraient-elles proportionnellement qu’il y aurait
encore avantage a choisir une oscillation d’ordre supérieur parce
que la construction du circuit devient plus facile avec des «
croissants.

L’avantage de 'oscillateur considéré ici par rapport & la diode
est que le rhumbatron peut étre construit d’une seule piéce puis-
que le champ d’accélération continue est rejeté a 'extérieur. Cela
permet d’obtenir de meilleurs facteurs de surtension et de meil-
leures 1mpédances.

Les avantages par rapport aux oscillateurs du genre Klystron
sont les suivants: On est libéré des difficultés d’accord, puisqu’il
n'y a qu'un circuit. En outre on est libéré de la condition imposée
au temps de transit d’étre voisin de 1'/4 qui limite les circuits
acceptables pour le Klystron & « =< 1/4. Cela permet d’améliorer
notablement le facteur de surtension et la résistance shunt. On
pourrait par exemple utiliser comme circuit une sphére ou un
cube, chose 1mpossible dans le Klystront). Pour le cube la condi-

’ 5 ; ; oo B s ; 1 5
tion d’excitation se déduirait de la relation % =2V Puisque o

doit &tre compris dans les domaines p < a < a, on conclut que
Pexcitation du cube ou de la sphére est possible pour des domaines
de tension bien déterminés, indépendants des dimensions des oscil-
lateurs.

Nous remercions Monsieur Cravier (Les Laboratoires L.M.T.,
Paris) des critiques fort utiles qu’il a formulées & propos de ce
travail, et Monsieur Taxk, Professeur & I'E.P.F. Zurich, qui a
donné & l'un de nous l'occasion d’étudier ces questions.

Paris/Lyon, juin/septembre 1940.

1) HaxseEN and RIcHTMYER, Resonators suitable for Klystron oscillators
Journal of applied Physics, Mars 1939, p. 189.
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