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Zum Temperaturproblem der Seen

von R. Emden f.
(27. VIII. 40.)

Über die Temperaturverhältnisse in unseren Seen liegen
zahlreiche zuverlässige Messungen vor, deren Ergebnisse aber nur durch
mehr oder minder allgemein gehaltene Betrachtungen mit dem
Einstrahlungsprozess in Verbindung gebracht werden. Die
unvermeidlich auftretenden Konvektionsströme scheinen eine exaktere
Behandlung auszuschalten. Die theoretische Untersuchung
beschränkt sich, die Bilanz zwischen Einstrahlung und Temperaturgewinn

zu ziehen1). Die vorliegende Arbeit versucht, diese Lücke
zu schliessen. Denn erst, wenn die Vorbedingungen für das
Antreten dieser Konvektionsströme ermittelt sind, lässt sich ihre
Wirkung einigermassen beurteilen.

Wir denken uns das Seebecken erfüllt mit einer starren Masse,
aber ausgestattet mit den gleichen physikalischen Eigenschaften
wie das Wasser; also gleicher Dichte, gleicher spezifischer Wärme,
gleichem Vermögen für Wärmeleitung und gleichen Absorptions-
Verhältnissen gegenüber eindringender Strahlung. Aus
Bequemlichkeitsgründen werden wir dies Gebilde weiterhin einfach den
„Glassee" nennen. Allein selbst die Temperaturvorgänge im Glassee

lassen sich nur unter wesentlich vereinfachten Annahmen
behandeln. Dass Abkühlung der Oberfläche durch Verdampfen nicht
eintreten kann, ist selbstverständlich. Ausgeschlossen wird, dass
die Sonnenstrahlung unter mit der Zeit veränderlichen Winkeln
einfällt; gleichen Weglängen des eindringenden Strahles würden
sonst mit der Zeit veränderliche Seetiefen entsprechen. Die
Strahlungsquelle soll deshalb stets im Zenithe stehen.
Selbstverständlich können die so wechselnden meteorologischen
Bedingungen nicht berücksichtigt werden. Abgesehen wird von dem
einfallenden zerstreuten Sonnenlichte und der von der Seeoberfläche

reflektierte Betrag von rund 2% einfallender Strahlung sei
bereits im Werte der Solarkonstanten berücksichtigt. Von
fundamentaler Bedeutung sind die Absorptionsverhältnisse für
eindringende Strahlung. Schon oberflächliche Betrachtung zeigt,

1) W. Schmidt. Absorption der Sonnenstrahlung im Wasser. Wiener
Sitzungsberichte. 117. IIa. S. 237. 1908.
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dass diese von See zu See ausserordentlich verschieden sein können ;

doch liegen keine brauchbaren Messungen vor. Hinlänglich genaue
Absorptionskoeffizienten sind nur für destilliertes Wasser bekannt.
So ist man leider genötigt, destilliertes Wasser anzunehmen und
den Einfluss vermehrter Absorption abzuschätzen. Der
theoretischen Behandlung liegt somit ein ausserordentlich vereinfachtes
Modell zugrunde ; trotzdem dürften die Ergebnisse für die Thermik
der wirklichen Seen von Bedeutung sein.

§ 1. Exkurs über Wärmeleitung.

Nach weit verbreiteter Meinung spielt beim Temperaturproblem
der Seen die Wärmeleitung keine Rolle. Der leitende

Gedanke, auf die einfachste Form gebracht, ist folgender. Wir behandeln

ein ebenes Wärmeleitungsproblem und legen die a;-Achse
vertikal nach unten. Die Differentialgleichung der Wärmeleitung
lautet bekanntlich

—— a2 - a2 für Wasser 0,0014 cm2 sec-1
Ox ox2

und soll unter folgenden Bedingungen gelöst werden:
a) Zur Zeit t 0 sei die ganze Wassermasse auf der

konstanten Temperatur u0.
b) Die Oberfläche werde auf der konstanten Temperatur û

gehalten.
Um Konvektionsströme auszuschliessen sei ü > u0. Dann ist

nach bekannter Lösung die Temperatur u in der Tiefe x zur Zeit t
durch die Bedingung gegeben:

n 2a\/t
(ö-«„)--. f e-ß'dfi. (1)

¦\/n
o

Aus dieser Form der Gleichung ist ersichtlich, dass homologe
Zeiten mit dem Quadrate der Tiefe x anwachsen, was bei
zunehmender Tiefe zu ausserordentlich grossen Zeiten führt. Zur
Zeit i 0 sei die Temperaturdifferenz Oberfläche — Tiefe x

ü — u ü — u0.

Fragen wir nach der Zeit, die verstreichen muss bis diese Tempera-
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turdifferenz auf die Hälfte abgenommen hat, so sind x und t so

zu wählen, dass

2aVt

V™ J e-i>'dß=l wird.

Aus den Tabellen entnehmen wir, dass dann

2 a V*
0,4769; t= 785,1 " x2.

Es ergeben sich so notwendige Zeiten:

Für x 1 cm t 785,1" 13m5"
10 „ 21h48m

1 m 90d21h
10 „ 24,9 Jahre

Solche Zeiten sind bei den in Betracht kommenden Tiefen
selbstverständlich ausgeschlossen, und da sich auch bei anderen,
üblicher Weise behandelten Leitungsproblemen Zeiten von gleicher
Grössenordnung ergeben, wird gefolgert, dass von Wärmetransport

durch Leitung abgesehen werden kann. Dass dieser Schluss
nicht haltbar ist, zeigt z. B. die Überlegung, dass eine in die Tiefe
absteigende Temperaturwelle durch Leitung ihr Profil ändern muss ;

ihr Einfluss in einigen andern Fällen wird in der vorliegenden
Untersuchung dargelegt werden.

Das Integral x

2aVt

V*/ dß

wird weiterhin mit A bezeichnet. Wir stellen die Werte des Integrals

A für die in vorliegender Untersuchung in erster Linie in
Betracht kommenden x- und t-Werte zusammen.

Werte des Integrals A.

X 1 10 20 50 100 500 1000 00 cm

i= lh 0,247 0,996 1 1 1 1 1

12 h 0,072 0,637 0,931 1 1 1 1

24 h 0,052 0,480 0,802 0,999 1 1 1

30-24 h 0,009 0,093 0,186 0,443 0,760 1 1

90-24 h 0,004 0,054 0,108 0,265 0,502 0,991 1

180-24 h 0,002 0,038 0,077 0,189 0,368 0,983 1
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Wir notieren ferner:

2»Vl

Vtz J ''dß 0,1 ergibt t 2,2595 10* x2

0,2 „ t 5,561 103a;2

0,4 „ t 1,298 IO3*2
0,6 „ t 5,042 102x2
0,8 „ t 2,179 102a;2

0,9 „ t 1,32 102z2

uo „ t 0,000

§ 2. Zahlenwerle.

Die Sonnenstrahlung ändert mit Eindringen in die Seetiefe,
da das Absorptionsvermögen des Wassers Funktion der Wellenlänge

ist, ihre Zusammensetzung und ihre erwärmende Wirkung
pro Wegeinheit. Die vorliegende Untersuchung musste deshalb in
jeder Wellenlänge einzeln mit nachfolgender Summation durchgeführt

werden. Man erhält jedoch genügend genaue Werte, wenn
man das Sonnen-Spektrum in hinreichend enge Wellenlänge-
Bereiche von der Breite AX einteilt, denen ein mittlerer
Absorptionskoeffizient zukommt. Spalte 1 der Tabelle I gibt diese Ein¬

Tabelle 1.

TransAX{ß) v (cm-1) h
cal/cm3 min

hAx
cal/cm2 min

missions-
koeffizient

P,

hAx'Px
cal/cm2 min

0,00—0,45 0,0002 — 0,120 0,530 0,0636

0,45—0,50 0,0002 1,733 0,087 0,674 0,0586
0,50—0,55 0,00025 1,584 0,079 0,719 0,0566

0,55—0,60 0,0006 1,469 0,073 0,746 0,0544
0,60—0,65 0,0021 1,308 0,065 0,781 0,0508
0,65—0,70 0,0036 1,129 0,056 0,820 0,0459

0,70—0,75 0,015 0,990 0,049 0,848 0,0415
0,75—0,80 0,023 0,887 0,044 0,860 0,0377

0,80—0,85 0,032 0,775 0,038 0,870 0,0331

0,85—0,90 0,052 0,659 0,033 0,888 0,0284
0,90—1,00 0,24 0,548 0,055 0,893 0,0491
1,00—1,15 0,28 0,414 0,062 0,906 0,0561
1,15—1,35 1,17 0,297 0,059 0,915 0,0540
1,35—1,85 23,0 0,182 0,091 0,902 0,0820
1,85—2,5 67,0 0,059 ' 0,033 0,900 0,0297
2,5 —3,5
3,5—00

1000
500 ] 0,057 0,900 0,0513

1,000 0,7928
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teilung in Wellenlänge-Bereiche, Spalte 2 den zugehörigen
Absorptionskoeffizienten v cm-1 gemittelt aus den umfangreichen
Messungsreihen von Aschkinass1). Diese Messungen beziehen sich auf
destilliertes Wasser. Brauchbare Messungen an Seewasser liegen
nicht vor; Wasser verschiedener Seen würde sicher sehr verschiedene

Werte liefern, und im einzelnen See können sich die
Absorptionsverhältnisse mit dem Gehalt an suspendierten Teilchen von
Schicht zu Schicht ändern. So ist man leider auf die Behandlung
eines idealisierten Sees aus destilliertem Wasser und Schätzung
des Einflusses zunehmender Trübung angewiesen.

Die Angaben über Sonnenstrahlung und atmosphärische
Verhältnisse sind den bekannten Veröffentlichungen des Smithonian
Institution entnommen2). Die der Flächeneinheit in Erdentfernung

zugestrahlte Energiemenge wird, wie üblich, gemessen in
cal/cm2min; bei Umrechnung in C.G.S.-System ist deshalb mit
60 zu dividieren. In diesen Einheiten hat die Solarkonstante den
Wert 2. Spalte 3 enthält ix cal/cm3min3), die Intensität der
betr. Wellenlängegruppe, Spalte 4 i}.Ax cal/cm2min, ihren Energiebeitrag,

beide bezogen auf Sonnenstrahlung von der Intensität 1.

Spalte 5 enthält den Transmissionskoeffizienten px der Atmosphäre4)
und Spalte 6 den Energiebeitrag, in welchem die Wellenlängegruppe

nach Durchlaufen der Atmosphäre die Seeoberfläche
erreicht. Der Transmissionskoeffizient der Atmosphäre ergibt sich
so zu 0,7928, genügend genau zu 0,8. Zu beachten ist, dass sich
diese Werte auf das ausgeglichene" Sonnenspektrum beziehen,
d. h. die im langwelligen Teile des Sonnenspektrums auftretenden
Absorptionsbanden des Wasserdampfes und der Kohlensäure sind
durch einen kontinuierlichen Linienzug ausgeglichen. Die Wirk-
kung dieser Bänder wird an geeigneter Stelle berücksichtigt werden.

Die Solarkonstante, die Intensität der Sonnenstrahlung in
Erdentfernung, beträgt rund 2 cal/cm2min. Durch eine Wolkendecke

wird dieser Energiestrom abgeschnitten und scheidet für
die Erwärmung der Seen aus. In den Veröffentlichungen des
Smithonian Institution (loc. cit.) wird die Anzahl von Tagen mit
bedecktem Himmel, über die ganze Erde mitgeteilt, zu 48%
angegeben, doch wechselt diese Zahl stark von Ort zu Ort. Die
jährlichen Sonnenscheindauern in Wien und Zürich werden zu 1843

') E. Aschkinass. Untersuchung des Absorptionsspektrum von Wasser.
Wied. Annal., Bd. 55, S. 401, 1895.

2) Annales of the Astrophysical Observatory of the Smithonian Institution;
by C. G. Abbot, F. P. Powle and L. B. Aldrian. Washington 1900, 1908, 1913.

3) Loc. cit. Bd. I. Table 16.
4) Bd. II, p. 112, 113 u. Bd. Ill, p. 135.
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und 1600 St. angegeben; dies sind 42% resp. 37% der möglichen
Sonnenscheindauer. Diese Verhältnisse wechseln wieder stark mit
der Jahreszeit. In Wien bemisst sich die Sonnenscheindauer im
Winter zu 25 % im Sommer zu 53 % ; in Zürich sind die Zahlen
23% und 50 %1). Da die Sonnenstrahlung im Sommer ungleich
stärker zur Geltung kommt, werden wir mit Werten rechnen, die
gegen 50% hinliegen. Nun schwächen Wasserdampf und Kohlensäure

durch Absorption die auffallende Sonnensstrahlung um rund
12%, während anderseits der Erdoberfläche durch diffuse Strahlung

rund 9% zugeführt werden, wobei die letztere Zahl sehr
unsicher ist (Smith. Inst.). Wir werden also keinen grossen Fehler
machen, wenn wir für den Erwärmungsprozess der Seen 50% der
an der Grenze der Atmosphäre eindringenden Strahlung ansetzen
und erreichen dies am einfachsten, wenn wir die Solarkonstante
mit halbem Werte, also 1 cal/cm2min, einführen. Dadurch kann
man leicht zu anderen Werten übergehen, da die berechneten
Temperaturen und Wärmemengen der Solarkonstanten direkt
proportional sind.

§ 3. Die Differentialgleichung und der stationäre Zustand.

Wir bestimmen wie üblich das Wärmeleitungsvermögen durch
einen Koeffizienten k cal/cm sec, die Temperaturleitung durch den

kKoeffizienten — a2 cm2/sec. Für Wasser haben beide denselben

Zahlenwert 0,0014; er wird unabhängig von der Temperatur
angenommen. Die Temperatur absolut werde mit T, in Celsiusgraden
mit u bezeichnet; AT A u. Die x-Achse geht von der Seeoberfläche

senkrecht nach unten.
In der Theorie der Wärmeleitung wird gezeigt, dass in Folge

des Leitungsvorganges die Temperatur eines Volumelementes im
Zeitraum A t gegeben ist durch die Beziehung

dT k d2T .t à2T .tAt= — At a2 At.
at QC dx2 dx2

Beträgt die Sonnenstrahlung i cal/cm2min, so fällt auf die
Seeoberfläche in Wellenlänge 1 der Energiebetrag ixVxAx i/Ax,
von dem der Bruchteil ïAle~vxx das Niveau x erreicht. Auf dem
weiteren Wege A x wird der Bruchteil vK A x absorbiert, so dass
ein Volumelement in dieser Tiefe eine Temperatursteigerung

dT, vAY A,—~±At= ¦•*•* x-e-"x*At
dt QC

J. Hann, Lehrbuch der Meteorologie, 3. Aufl., p. 299. Leipzig 1915.



402 R. Emden.

erfährt. Summation beider Grössen gibt die Temperatursteigerung
in Folge von Leitung und Einstrahrang und wir erhalten

die Differentialgleichung

àlx _
à2T, vxix'Axe-n*

_ a ———- -\
òt dx2 ce

Die Gleichung ist linear und wir erhalten durch Summation über
alle Wellenlänge die den Vorgang regelnde Differentialgleichung:

dT ^ d2T Sv^'A^e-n*
-ôT~aTx^ + q~c

• (2)

Dauert der Einstrahlungsprozess genügend lange Zeit an, so wird
ein stationärer Zustand erreicht, bedingt durch die Beziehung:

dt
Bezeichnen wir die Temperatur, die sich nach oo langer Zeit
einstellt, mit Tœ, so ergibt sich

d2Tx Znix'Ax<>-v'x
dx2 k

(3)

und integriert unter der Bedingung, dass oo hohe Temperaturen
ausgeschlossen sind:

dTœ ZiA'Axe-n*
dx k

(4)

Während nach weit verbreiteter Anschauung die Temperatur mit
der Tiefe abnimmt, weil die Strahlung in den obersten Schichten
am stärksten absorbiert wird, namentlich durch Wegfiltrieren der
langwelligen Strahlung, zeigt sich, dass mit Berücksichtigung der
Leitung bei genügend langer Einstrahlung gerade das Entgegengesetzte

eintritt: in jeder Tiefe, auch an der Oberfläche, nimmt
im Glassee, also bei Ausschluss von Konvektionsströmen, die
Temperatur mit der Tiefe zu. Dabei zeigt sich, dass an der Oberfläche,
x 0, der Temperaturgradient unabhängig von der Wellenlänge,
einzig durch die Wärmeleitung k bedingt ist. Je schlechter die
Wärmeleitung, desto grösser die Temperaturgradienten. Wir
bezeichnen weiterhin Grössen, die sich auf die Oberfläche beziehen,
durch einen aufgesetzten Querstrich. Dann erhalten wir für die
Oberfläche für

i 1 cal/cm2sec, Zix'Ax 0,7928

AT^ 0,7928_ 438o/cm
dx 60-0,0014 '
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in Folge der Kleinheit von k ein ausserordentlich hoher Betrag.
Bei Temperaturen u > 4° werden Konvektionsströme diese
Temperaturzunahme mit der Tiefe ausgleichen. Festzuhalten aber ist
das Ergebnis, dass bei dauernder konstanter Einstrahlung der See

nicht von der Oberfläche, sondern von der Tiefe aus erwärmt wird.
Dies scheinbar widersinnige Resultat wird sich gleich als
selbstverständlich herausstellen. Wie der in der Regel beobachtete negative

Temperaturgradient resultiert, wird sich in § 6 ergeben.
Bei nochmaliger Integration ergibt sich die Temperaturverteilung

des stationären Zustandes

T^T^ + ^^A-e-n*). (5)
k ^ vx

Tœ-Tœ uœ -S«, + |V %-YAy (i -e-*-).k *-> Vx

Die Werte der Tabelle 1 gestatten die Ausrechnung und wir
erhalten für den Glassee (die Solarkonstante 1 cal/cm2min
gesetzt) :

x=0,01 0,1 1 10 20 50 100 500 1000 oo cm
^oo-"a, 0,094 0,94 7,80 58,9 109,5 244 454 1646 2876 11560°

Diese hohen Temperaturen in der Tiefe erscheinen auf den
ersten Blick widersinnig. Sie werden sofort selbstverständlich durch
die Überlegung, dass bei vollständigem Fehlen der Wärmeleitung
(fc 0) sich an jeder Stelle bei dauernder Einstrahlung durch
Absorption stetig wachsende Wärmemengen ansammeln und sich
schliesslich co hohe Temperaturen einstellen müssten. Die
Leitfähigkeit hat zur Folge, dass im stationären Zustande die
absorbierten Wärmemengen nach der Oberfläche abfliessen können.
Dazu müssen sich die positiven Temperaturgradienten, mit der
Tiefe wachsende Temperaturen, ausbilden. Die berechneten höchsten

Temperaturen können sich aber aus einem anderen Grunde
nicht einstellen. Die Sonnenstrahlung hat eine effektive Temperatur

von 6000° und bei Ausschluss anderer Energiequellen kann
nach dem 2. Hauptsatze damit keine höhere Temperatur erzielt
werden. Der Widerspruch löst sich dadurch, dass bei wachsenden
Temperaturen die Wärmeabgabe durch Strahlung nicht mehr
ausser acht gelassen werden darf. Bei dem Temperaturproblem
der Seen, mit dem wir uns zu beschäftigen haben, treten aber nur
Temperaturdifferenzen auf, so dass wir innerhalb der Flüssigkeit
von Wärmetransport durch gegenseitige Zustrahlung absehen, was
um so gerechtfertigter erscheint, als Wasser für Strahlung dieser
Temperaturen höchst wahrscheinlich ausserordentlich undurch-
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lässig ist. Musste die innere Strahlung eines ungleich temperierten
Mediums zur Geltung kommen, so musste die auf der
Grundannahme von Fourier entwickelte Theorie der Wärmeleitung
vollständig umgebaut werden. Transport durch Leitung bleibt aber
von fundamentaler Bedeutung.

Die massgebende Differentialgleichung würde zu ihrer strengen
Lösung erfordern, dass die schliessliche numerische Ausrechnung
für jedes x in den 15 ausgewählten Wellenlängen separat durchgeführt

und dann summiert wird. Um diese allzu mühsame Rechenarbeit

zu umgehen, ist man auf eine weitere Mittelwertbildung
mit all ihrer Unsicherheit angewiesen. Mittelwerte können nach
verschiedenen Überlegungen gebildet werden. Wir bilden einen
Mittelwert |j»| gemäss der Bedingung

Zvxix' Ax- e-"x*= \v\e~y-* Zix'Ax= 0,7928 \v\eY>,*. (6)

Die physikalische Bedeutung dieses Mittelwertes ist klar. Für
die weiterhin in Betracht kommenden x-Werte berechnet sich1) :

x= 0,01 0,1 1 10 20 50 100 500
|v|: (1) (0,9) 0,3400 0,0580 0,0385 0,0161 0,00923 0,00251

1000 oo cm
0,00147 0,00082 cm-1

Und nun schlagen wir zur weiteren Behandlung des Problems
notgedrungen ein überaus gewaltsames Verfahren ein. Wir nehmen
an, dass auch bei anderen, physikalisch in Betracht kommenden
Mittelwertsbildungen sich genügend genau dieselben | v | ergeben
würden, so dass jedem x ein besonderer, ausgezeichneter Mittelwert

| v | zukommt. Führen wir weiterhin statt | v | wieder die
einfachere Schreibweise v ein und mit i den Betrag der
Sonnenstrahlung, welcher die Seeoberfläche erreicht, so nimmt Gl. (2)
die Form an:

dT d2T ive-**
lH=aT^ + ~QC-> (7)

Obwohl v Funktion von x ist, wird bei der Integration v als
Konstante behandelt, bei der numerischen Auswertung aber für jedes x
der zugehörige Wert v angesetzt. Vom rein mathematischen
Standpunkte aus ist dies Verfahren gänzlich unstatthaft; in Wirklichkeit

werden solche Bedenken wesentlich herabgesetzt durch den

x) Aus den von Schmidt (loe. cit.) berechneten absorbierten Wärmemengen
können folgende \v\ abgeleitet werden

x 0,01 0,1 1 10 100 1000 10000 cm
H 0,95 0,85 0,32 0,06 0,0103 0,0018 0,00067
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Umstand, dass die weiterhin entwickelten Formeln strenge gelten,
falls in einzelnen Wellenlängen mit dem zugehörigen konstanten vx

gerechnet wird. Durch nachfolgende Summation können dann
beliebig exakte Temperaturwerte ermittelt werden. In jedem Falle
könnte so für jede Tiefe ein neuer Wittelwert | v | abgeleitet werden,

der dasselbe leistet. An Stelle dieses unbekannten | v [ wird
nun der oben berechnete Mittelwert v benutzt, dessen Anwendung
durch seinen physikalischen Sinn gestützt wird. Stichproben
ergaben für die in Betracht kommenden x- und t-Werte annehmbare

Übereinstimmung. Auch kommt es bei den folgenden
Untersuchungen weniger darauf an, Zahlenwerte als einen Überblick
über den Ablauf der Temperaturänderungen zu gewinnen.

(Anmerkung. Mit Rücksicht auf die unsicheren Absorptionsverhältnisse

im langwelligen Teile des Spektrums wurden die den
Werten x 0,01 und 0,1 cm zugehörigen | v\-Werte durch graphische
Extrapolation gewonnen. Für x co wurde der Mittelwert

1 — e-\'\x _ i — e-'A*
¦—¦ Zix Ax Six" Ax für x co
I"! '

n
ermittelt.)

§ 4. Konstant gehaltene Oberflächentemperatur.

Der Temperaturverlauf im See, bedingt durch Einstrahlung
und Wärmeleitung, ist durch Gl. (7) geregelt. Die Gleichung ist
vom 2. Grade, eine eindeutige Lösung erfordert 2
Bedingungsgleichungen. Die einfachsten Verhältnisse liegen vor, wenn sich
zur Zeit t 0 die ganze Wassermasse auf konstanter Temperatur
befindet und die Oberfläche weiterhin auf einer andern konstanten
Temperatur gehalten wird. Diese Bedingungen sind in Wirklichkeit

nicht erfüllt; trotzdem gibt die Lösung Einblick in den
tatsächlichen Temperaturgang.

Zu lösen ist die Gleichung

dT 9 d2T iv
a2 —— + e-*- (7)

dt dx2 Qc

mit den Bedingungen

a) £ 0 z>0 T const T0
b) a; 0 t> 0 T const T

Wir haben oben gezeigt, dass die Temperatur Tœ des stationären
Zustandes durch

Tœ Tx + J- (1 - e—) ; jetzt Tœ=T (5)
KV

gegeben ist.
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Wir führen eine neue Variable ein

y= T-Tx
und erhalten nach leichter Umformung

-^=a2^- (8)
dt dx2

v '

a') t=0 x>0 y=T0-Tœ=(T0-T-~)+-^e-**=p + qe-**\ kv! kv
b') x=0 t>0 y=f—T=0

(8) ist die gewöhnliche Differentialgleichung der Wärmeleitung
und mit Berücksichtigung der Nebenbedingungen ergibt sich die
bekannte Lösung1) :

2oV2 2r a r l <*-*>' fa±^!\
y p—- e~^'dß-\ ?—= e-v*\e *<*'t — e a>'t Ida.

Vtt J 2 a \/n t J
y

o o

Setzen wir für p und q ihre Werte und für y wieder T — Tœ ein,
so ergibt sich schliesslich nach leichter Umformung:

u-u0= T-T0=o (T-T0) (1-A) + 4- (1 - er" -A + B)
kv

n 2a\/ï
A ^Y= f e-ß'dß (9)

V* J
o

(a— x)s (a+x)

— I p.-v* \p.

2av.
13 1—= f e-** [e ' "'( - e 4fl"( / d

'¦¦VTttJ

-=L [ e-»'dß —&'''*+". -A— fe-^dß
«»VI ;= a»V* + -

2 fflV* 2 aV«

oder anders geschrieben

m — m= (m0—m) ^4 + —— [1 — e-**—4 +B]. (9a)
fco*

Setzt man i 0, so erhält man die bereits in § 1 gegebene Lösung
eines reinen Wärmeleitungsproblems. Dies reine Leitungsglied ver-

*) H. Weber. Die partiellen Differentialgleichungen der Physik. Bd. II,
§ 37. Braunschweig 1901.
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schwindet, wenn während des Einstrahlungsprozesses die
Oberfläche auf ihrer anfänglichen Temperatur gehalten wird, ü u0 ;

die Wirkung der Einstrahlung i ist aber immer noch durch die
Wärmeleitung bedingt. Je geringer die Wärmeleitung, desto höhere
Temperaturen werden sich im Laufe der Zeit einstellen. Für a2 0

würden schon aus der Differentialgleichung co hohe Temperaturen
hervorgehen. Je besser leitend das Material, desto leichter können
die absorbierten Wärmemengen nach der Oberfläche abfliessen.

Tabelle 2.

t 0,1 0,5 1 12 24 48 96 oo h

x 0,01 cm 0,055 0,086 0,088 0,111 0,113 0,115 0,116 0,119
0,1 0,52 0,74 0,85 1,04 1,072 1,091 1,10 1,19
1 1,19 3,23 4,16 8,42 8,94 9,12 9,42 9,88

10 0,22 0,96 3,28 17,46 28,20 37,40 47,82 74,6
20 0,00 0,49 1,08 12,85 23,90 39,57 57,75 138,4
50 0,00 0,22 0,44 5,16 10,87 21,46 40,97 309,0

100 0,00 0,16 0,22 2,64 5,29 8,41 16,72 575,8
500 0,000 0,000 0,047 0,522 1,04 2,09 4,17 2090

1000 0,000 0,000 0,020 0,242 0,485 0,969 1,939 3635
oo 14640

Werte -— (1 - e~
k v

A+ B) für 4 1 cal/cm2 min.

Wir stellen in Tab. 2 für einige x und t-Werte die nach Gl. (9)
berechneten Temperaturen zusammen, die sich bei konstanter (bei
ü u0) Einstrahlung im Betrage von i 1 cal/cm2min ergeben.
Würde die Sonne dauernd im Zenite stehend mit einer Solarkonstante

1 cal/cm2sec strahlen, so wäre bei einem Transmissionskoeffizienten

p 0,8 anzusetzen i 0,8 cal/cm 2min.
Um Überblick zu gewinnen, veranschaulichen wir den Inhalt

der Tabelle in 2 Diagrammen; in beiden wird die Temperatur
durch die Ordinate gemessen.

Diagramm 1. Auf der Abszissenachse werden die Zeiten
aufgetragen, zu jeder Zeit die berechnete Temperatur als Ordinate
mit angeschriebenen aü-Werte und dann Kurven x konst. gezogen.
Jede dieser Kurven gestattet, die Temperatur in der Tiefe x als
Funktion der Zeit zu verfolgen. Die Kurven liegen scheinbar regellos.

An jeder #-Kurve ist rechts aussen die Temperatur
angeschrieben, die sich in dieser Tiefe nach oo langer Zeit (stationärer
Zustand) einstellt. (Da i die Strahlung misst, welche die Seeoberfläche

erreicht, sind die Seite 403 angeführten stationären
Temperaturen im Verhältnis

0,7928 zu vergrössern.) In Reihenfolge
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dieser Temperaturen würden die «-Kurven gehörig verlängert sich
anordnen. Dies ist nur möglich, wenn die x-Kurven sich schneiden
und eine Anzahl solcher Schnittpunkte ist im Diagramm sichtbar.
Wir gewinnen aber überraschende Einsicht, wenn wir eine andere
Art der Darstellung wählen.

Diagramm 2: Auf der Abszissenachse tragen wir die Tiefen x
auf und konstruieren die Kurven t const. Jede Kurve gestattet,
zu ihrer Zeit die Temperaturen in der Tiefe x abzulesen. Die
Kurven ordnen sich nach zunehmenden t-Werten. Auf jeder Kurve
liegt eine Maximaltemperatur, deren genauer Wert rechnerisch nur
äusserst mühsam festzustellen wäre; doch können, um Überblick
zu gewinnen, die Kurven gefühlsmässig ergänzt werden. Unter
Ausschluss von Konvektionsströmen würde die Temperatur mit
der Tiefe bis zu einem Maximalwerte zunehmen. Im Laufe der
Zeit wächst dieser Maximalwert und findet sich in immer grösserer
Tiefe vor, um nach co langer Zeit den Maximalwert wœ für x co

anzunehmen. Schnittpunkte der Horizontalen u const mit den
Kurven t const bestimmen die Schnittpunkte der x-Kurven im
Diagramm 1. In Wirklichkeit hindern Konvektionsströme den
aufsteigenden Ast der Kurven; es bildet sich eine genähert
isotherme Schicht in zunehmender Mächtigkeit aus, an welche sich
rasche, dann langsam abklingende Temperaturabnahme anschliesst.
So bildet sich durch zunehmende Erwärmung der Tiefe eine Sprungschicht

aus. Wie sich in der warmen Schicht auch schwache negative

Temperaturgradienten ausbilden können, wird sich in § 6

ergeben.

§ 5. Erzwungene Oberflächen-Temperatur.

In den Ausführungen des vorigen Paragraphen wurde der
Oberfläche des Sees eine bestimmte, konstant bleibende Temperatur
vorgeschrieben. In Wirklichkeit aber wird diese Oberflächentemperatur

durch Einstrahlung und Wärmeleitung bestimmt und muss
rechnerisch ermittelt werden. So besteht äussere Ähnlichkeit mit
einem Probleme, das in der Theorie der Wärmeleitung als
„Abkühlung durch Wärmeleitung nach aussen" bekannt ist. Doch
liegen hier die Verhältnisse wesentlich anders. Es kann nicht, wie
dort, angenommen werden, dass ein äusseres Medium von konstant
bleibender Temperatur der Seeoberfläche die Temperatur
aufzwingt, vielmehr liegen die Verhältnisse wie bei den andern
meteorologischen Prozessen, wo bei ruhender Atmosphäre die Erdtemperatur

die Lufttemperatur bestimmt. Das vorliegende Problem nimmt
vielmehr seine einfachste Form an, wenn bei Abwesenheit einer
Atmosphäre die Seeoberfläche Wärme durch Ausstrahlung abgibt.
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Die in Betracht kommende Oberflächenbedingung ist
prinzipiell einfach. Bildet sich an der Oberfläche ein Temperatur¬

en T
gradient -5— aus, so muss ein Energiebetrag S durch Strahlung

abgegeben werden :

dT
fc —= S (10)

dx

S sei sekundlich abgegebene Wärmemenge pro Flächeneinheit, und
im stationären Zustande muss S gleich der sekundlich zugestrahlten
Energiemenge sein.

In den bisherigen Untersuchung haben wir von der Zustrahlung
der Atmosphäre abgesehen und ihren Betrag in i einbezogen. Ihre
Wellenlänge ist im Sonnenspektrum nicht mehr messbar vertreten,
und ihr Absorptionskoeffizient ist unbekannt. Nehmen wir an,
dass er zum mindesten nicht kleiner ist wie im langwelligen Teile
des Sonnenspektrums, wo er ausserordentlich hohe Werte erreicht,
so wird sich deren Absorption nur in einer sehr dünnen Oberflächenschicht

bemerkbar machen und die oben berechneten | v\ nur wenig
beeinflussen. Die Bedeutung der atmosphärischen Zustrahlung für
die Oberflächentemperatur wird am Ende dieses Paragraphen
dargelegt werden.

In erster Linie ist zu bestimmen, bei welcher Oberflächentemperatur

die Strahlung S abgegeben wird. Von der auf die
Seeoberfläche auffallenden Strahlung werde in der Wellenlänge 1

der Bruchteil ax absorbiert, der Bruchteil rx reflektiert und der
Bruchteil dx durchgelassen, ax + rx + dx 1. Für einen See, eventuell

mit seinem Untergrunde, ist offenbar dx 0 und bei sek-
rechter Inzidenz werden bekanntlich von einer Wasseroberfläche
nur rund 2% der einfallenden Strahlung reflektiert, rx 0,02, so
dass wir mit hinreichender Genauigkeit rx= 0 setzen können.
(Ein Fehler von 1 % in a würde für das daraus folgende T einen
Fehler von 1/i% ergeben.) Wir setzen deshalb mit genügender
Genauigkeit für die in Betracht kommenden Wellenlängen ax 1

mit der Folge, dass die Oberfläche eines Sees schwarze Strahlung
aussendet, in der Beziehung:
S s T* ; s= 1,369 • IO-12 cal/cm2 sec 8,21 • IO-11 cal/cm2 min.

Wir erhalten so die Oberflächenbedingung
à TS=Jc—= sT4. (10)
dx

Diese Temperatur ist genau genommen eine „effektive"
Temperatur. Da aber Wasser für die ausgesandte überaus kurzwellige
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Strahlung überaus starke Absorption besitzt, sie demnach
einfallend bereits in den obersten Schichten absorbiert würde, können
wir mit genügender Genauigkeit dieser die Temperatur T
zuschreiben. Zur Orientierung seien einige Temperaturen angegeben,
bei welchen ein schwarzer Strahler die Energiemengen i liefert:

*= 0,1 0,2 0,4 0,6 0,8 1 1,2 1,5 cal/cm2min
T 186,8 222,1 264,2 292,3 314,3 332,6 348 367

Die Oberflächenbedingung (10) ist überaus durchsichtig, aber
nicht linear und deshalb in Verbindung mit der Differentialgleichung
nicht ohne weiteres brauchbar. Wir sind zu einer angenäherten,
linearen Umformung gezwungen. Wir führen für die in Wirklichkeit

zu erwartenden Temperaturen T eine mittlere Temperatur Tm
ein, gegeben durch die Bedingung

T=Tm + u'°

Für die in Wirklichkeit vorkommenden Wassertemperaturen ist
das Intervall nicht gross, so dass u' klein gegen Tm angenommen
werden kann. Wir können deshalb setzen:

sT*=s(Tm + u'A 4sTl(^+u^ H&;

H=4sTl cal/cm2sec, #° -?-=- + u'°. (11)

Wir setzen, der Wirklichkeit angepasst, Tm 295 und erhalten so
für eine neue Konstante h einen bequemen Zahlenwert, nämlich

H 0,0001405 cal/cm2 sec und h —
0>0001405

0,1 Cm-1.' k 0,0014

(Wir notieren noch 273 + u° 295 + u'°.) Wir haben so weiterhin
3 Temperaturen zu berücksichtigen: T, u, &. Handelt es sich um
Temperaturen, die nicht zu weit von 295 abliegen, so können wir
mit genügender Genauigkeit AT Au Ad- ansetzen, für weiter
abliegende Temperaturen wird die Temperatur T aus der Beziehung
sTA=H& berechnet. Durch Einführung der neuen Konstanten
erhalten wir die lineare Oberflächenbedingung

^=h&, (12)
dx

Formal gleich der Oberflächenbedingung bei „Wärmeabgabe durch
Leitung nach aussen", doch hat jetzt h einen theoretisch begründeten

Wert.
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Wir befassen uns nun mit der Lösung der Differentialgleichung
d& „ d2& iva2—- + — e"* (7)
dt dx2 QC

mit den Nebenbedingungen

a) t 0 & #0

b) x=0 —=h&.dx

Der stationäre Zustand ergibt sich zu

fcj> ri wfc

Die nicht ganz einfache mathematische Aufgabe kann auf
2 Arten gelöst werden.

I. Wir führen ein
n i

v #H e-"
fci>

mit der Folge
dv o d2v

a*
df dx2

a') (=0, v ê0 + — e-v*
kv

- dv 1 i t h
b' x=0, hv — —- 1+ —

öx fc \ 1'

und weiter

mit der Folge

w —— — /i-u
da;

dw
2

d2«;

An=a Acx2

a") *=0 w —h&0—-fi +A\e-* p + oe-
fc V r

b") ic o w -Jl/i+A
fc V v

Wir erhalten so ein Problem, das wir oben (§ 4) bereits gelöst
haben. Aus dem so ermittelten w ergibt sich für v mit sinngemäss
bestimmter Integrationskonstanten

CO

v — e+hx / e~hx wdx+ hx j ß—hx,
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und damit unmittelbar der Wert von &. Die Lösung erscheint
so in sehr kompakter Form, allein als Doppelintegral, das sich
für die numerische Ausrechnung zu spröde erweist.

II. Wir benützen ein Lösungsverfahren, das H. Weber1)
entwickelt hat. Wir führen ein

und erhalten
&-&.

dz 9d2z
— — a2

dt dx2

a) <=0 z= (& -JL--JL.) +-^e-**=p + qe-™
\ kh kv kv

b) x=0 l^--hz=0.
dx

Zur direkten Bestimmung von z ohne 2. Integration betrachten
wir mit Weber einen Körper, der sich von — co bis + co erstreckt.
Ist für diesen zur Zeit t 0 im ganzen Intervall z 0(a), so ist
die bekannte Lösung der Differentialgleichung:

1
GO (<x—x)

c) z f 0(a) e

— GO

ia2t da
2 a^nt

die wir auch schreiben können:

1
GO t (OL—Xy (ttH-iC)'

c) z= ^/((f(a)e iaH-0(—a)e iaH)d~.
2 a-An t -I v '

o

Im Intervall von 0—oo ist nach a) z p+qe~vx zu setzen
und 0(— oc) ist so zu bestimmen, dass für x 0 die Bedingung b)
erfüllt ist. Weber erhält für 0 (— oc) eine Differentialgleichung
1. Ordnung mit der Lösung

a

0(—a) 0(a) — 2he-h« f 0(a)eÄO[da.
o

In vorliegendem Problem ergibt sich

^.r -, ,r. x rs \ V + h 2 h
0(—a) p(2e~ha — Vl

'

-h v — h

H. Weber, loc. cit. Bd. II, S. 37.
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und in c) eingesetzt, folgt nach einfacher Ausrechnung die Lösung :

z=pAh + qBh (12)

2aVt
Ah

\Ytc
e-e'dß aa2h2t + ha

-\A
e-i>' dß (12a)

ahVt + 2«Vl

Bh=\ ^!°-dß+^e«
v — h

2
'dß

av\/t
2«Vl

av\/t + 2a\/t

2h
v — h

fiazhz t + kx
V>

00

ahAt

'dß

2aAt

(12b)

Setzt man für z, p und q ihre Werte ein und beachtet, dass
A u A &, so erhält man nach leichter Umformung

U — Un u0)(l-Ah)+-A-[l-Ah + Bh-e-"]; (13)

u — u.o-T-T0
kv

U r^ U.0 T-1- rr Tn

also äusserlich denselben Ausdruck, wie für konstant gehaltene
Oberflachentemperatur, doch haben Ah und Bh andere Werte.
Namentlich ist zu beachten, dass Ah nicht mehr ein reines
Leitungsintegral ist, sondern den Strahlungskoeffizienten h enthält.
Um die Temperatur der Oberfläche zu erhalten ist in (13) x 0

zu setzen, mit der Folge:

An pa*h* t

¦\/t,
fe-P'dß (14a)

ahVt

Bn
¦h \/tì

'dß
av\/t

h
ea'h't__^r fe-ß'dß. (14b)

\Ytt J i-v ah\/t

(Es mag überraschen, dass an der Oberfläche ein v, genauer
geschrieben! v\ auftritt; da für die Fläche x 0 der Begriff Ab-,
sorption hinfällig ist. Allein, hätten wir die Untersuchung in den
einzelnen Wellenlängen durchgeführt, so ist klar, dass wir vx, also
eine Materialkonstante anzuschreiben hätten. Wir setzen deshalb
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für v den Wert v 1 ein, der sich für die der Oberfläche
möglichst nahe liegenden Schicht x 0,01 cm ergab.)

Nach hinreichend langer Zeit wird

Bh - Ah
ah^/t

(14c)

Ein negativer Wert war zu erwarten. Nehmen wir an, dass sich
zur Zeit t 0 die ganze Wassermasse auf der Temperatur uœ

befand, also der Temperatur, welche die Oberfläche im stationären
Zustande wieder erreicht, so stellen sich hier in der Zwischenzeit
tiefere Temperaturen ein. Denn zur Zeit f 0 ist noch kein

Temperaturgradient -t— vorhanden, welcher der Oberfläche die

ausgestrahlte Wärmemenge zuführt. Die Temperaturen der Oberfläche
und der benachbarten Schichten werden deshalb sinken, bis sich
entsprechende Gradienten ausgebildet haben, um von da ab bis
zu den Temperaturen des stationären Zustandes anzusteigen.

Entsprechend der Untersuchung des vorigen Paragraphen
nehmen wir jetzt die ganze Wassermasse auf der Temperatur ü^
an und erhalten so den von der Einstrahlung i abhängigen
Temperaturverlauf. Wir geben in Tabelle 3 die Temperaturen

u ¦

kv (1-Ah + Bh

für dieselben x und t-Werte und i 1 und konstruieren wie dort
die Kurven x const (Diagramm 3) und t const (Diagramm 4).
Für kleine Werte von x ergeben sich kleinere Werte wie oben;

Tabelle 3.

t 0,1 0,5 1 12 24 48 96 h 36d iJahr
1
2

Jahr
1

Jahr 00

x=0,00 cm - 5,06 - 7,09 - 7,37 - 5,62 - 4,63 - 3,67 - 2,53° 0,119°
0,1 - 4,50 - 6,93 - 7,12 - 5,14 - 4,15 - 2,97j- 2,11 1,19
1 - 0,49 - 4,05 - 5,89 - 5,65 - 3,84 - 1,05 + 2,23

1

9,88
10 + 0,23 + 0,98 + 1,77 + 4,50 + 6,35+10,57 18,48 74,6
20 0,11 0,53 1,05 10,12 15,68 22,01 33,15 138,4
50 0,04 0,19 0,42 5,25 10,21 20,11 35,13 309,0

100 0,00 0,12 0,22 2,64 5,29 10,64Ì 21,09 161,1 282 379 473° 575,8
500 0,00 0,00 0,04 0,52 1,04 2,09' 4,17 98 201 396 2090

1000 0,00 0,00 0,02 0,24 0,49 0,97Î 1,94 41,0 88,9 183 3635

00 14640

Werte von z— 1-
k v

¦Ah+Bh) für al/cm2 min.
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selbstverständlich, da die Oberfläche durch Ausstrahlung sich
abkühlt. Mit wachsender Tiefe nimmt der Einfluss der Oberflächenbedingung

ab und die Temperaturen stimmen immer mehr überein.

Wiederum findet die maximale Erwärmung nicht in der
obersten Schicht, sondern in einer Tiefe von einigen dm statt.
Wie zu erwarten war, ist die maximale Erwärmung geringer und
scheinen die gezeichneten Maxima nach der Tiefe verschoben. Von
der Einstrahlung hängt die Form der Kurven x const nur so
ab, dass sich ihre Ordinate proportional i ändern.

Wir untersuchen an Hand der Gl. (13) die nächtliche Abkühlung

einer Wasseroberfläche und notieren, dass sich für einige
Ah folgende Werte ergeben:

t 1 4 12 24 h
An 0,79 0,64 0,50 0,38

1— An =0,21 0,36 0,50 0,62

Unter der Annahme, dass mit Sonnenuntergang i 0 wird, wird
das zugehörige Tœ ebenfalls 0 und ergibt sich die Abkühlung

AT= T-T0=o-T0(l-An)
und für die Oberfläche

AT^T-T0=-T0(l-Äh)
Setzen wir der Grössenordnung nach T0 290, (u0 17°), so

erhalten wir
A~T — 290- 0,21 — 60° für

— 290 • 0,36 -104» „
1 Stunde nach Sonnenuntergang
4

also überraschend starke Abkühlung der obersten Schichten.
Allein wir haben zu beachten, dass mit Sonnenuntergang i nicht

0 wird, sondern ein ia bestehen bleibt gleich der Gegenstrahlung

der Atmosphäre. Diese Strahlungsverhältnisse der
Atmosphäre habe ich an anderer Stelle1) eingehend behandelt und
gezeigt, dass sie in erster Linie durch den Gehalt an Wasserdampf
bedingt sind. Ich habe diese Gegenstrahlung unter verschiedenen
Verhältnissen berechnet in genügender Übereinstimmung mit
beobachteten Werten. Eine eingehende Diskussion dieser Verhältnisse
liegt ausserhalb des Rahmens dieser Untersuchung; doch sollen
einige typische Fälle herausgegriffen werden.
In Zürich, h=440 m ergab sich (Lufttemp. 15°) ia 0,37 cal/cm2min
In Wien, h=220 m 19°) ia 0,41 cal/cm2min

*) R. Emden. Über Strahiungsgleichgewicht und atmosphärische Strahlung.
Sitzungsber. d. Kgl. Bayr. Akad. der Wissensch. Math.-Phys. Klasse, pag. 55,
1912.

27
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Nehmen wir im Mittel ia 0,4, so wird das zugehörige Tœ 264,
und bei einer Wassertemperatur u0 20° wird

AAT — 29 • 0,21 — 6° für t 1 h
=-29-0,36 —11 für«=4h

welche Werte infolge von Konvektionsströmen nicht vollständig
in Erscheinung treten. Im Gebirge nimmt mit zunehmender Höhe
die Gegenstrahlung stark ab. In Bauris, fe=950 m, u0 6°, wurde
ia 0,21 gemessen. Zu ia 0,20 gehört ein ~Tœ 232 und wird
die Wassertemperatur zu 7° (T0 280) angenommen, so ergibt
sich:

2TT — 48 • 0,21 — 10° für t 1 h

— 48 • 0,36 - 17,4° für t 4 h

Mit zunehmender Höhe nimmt der Wasserdampfgehalt der
Atmosphäre und damit deren Zustrahlung stark ab; die Wasserlöcher
der Gletscher werden sich deshalb durch Ausstrahlung, nicht durch
„äussere Wärmeleitung", bald nach Sonnenuntergang mit einer
Eisschicht überziehen. Auch über hoch gelegenen Steppen und
Wüsten nimmt die Gegenstrahlung der Atmosphäre so kleine
Werte an, dass trotz hoher Lufttemperatur bei Tage sich Wassertümpel

bei Nacht mit einer Eiskruste überziehen können.
Diesbezügliches Beobachtungsmaterial findet sich bei Hann1).

Die Zustrahlung ia der Atmosphäre kann leicht in Gl. (13)
einbezogen werden, da wir annehmen dürfen, dass diese überaus
langwellige Strahlung bereits in den obersten Wasserschichten ab-

sorbiert wird. Die Oberflächenbedingung -x h & 0 wird
dadurch nicht beeinflusst, Tœ aber vergrössert sich um den Betrag

-Ar. Wir haben also dem nach Gl. (12) berechneten u einfach -—-

(1 — Ah) zu addieren.

§ 6. Einstrahlung mit jährlicher und täglicher Periode.

Eine mit der Zeit veränderliche Einstrahlung kann durch
eine Sinusreihe dargestellt werden. Es ist deshalb in erster Linie
der Temperaturverlauf bei sinusförmiger Einstrahlung zu bestimmen.

Dabei kann die Sonnenstrahlung nicht in der einfachen Form

x) J. Hann. Lehrbuch der Meteorologie. 1. Buch. Kap. II. Braunschweig,
1915.
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i - sin Nt angesetzt werden, da negative i selbstverständlich
ausgeschlossen sind. Wir setzen deshalb an

i ix + i2 sin Nt; it> i2 (15)
und notieren

N 2tt/t 7,269 • IO-5 sec-1 für x 1 Tag
1,991 • IO-7 sec-1 für t 1 Jahr.

Um den Gang der folgenden Untersuchung nicht zu
unterbrechen, erledigen wir erst eine Hilfsaufgabe, indem wir eine
Zeitfunktion w f(t) entsprechend der Bedingung

dw
a2v2 w+ ^--sin (Nt) (16)

dt QC

bestimmen. Wir finden

w P sin Nt + Q cos Nt + CeQt, q a2v2

Um co hohe Temperaturen zu vermeiden, ist die Konstante (7=0
zu setzen. Damit wird

w (P sin Nt + Q cos Nt) B sin (Nt — cp) (17)

¦N
tg 9? ^y

t, Lv 1 NB —— • ——===¦ ; sm cp +
Q-c VA^ + a4"2 ' VN2+a*A

Lv N a2v2
w0 (wt=0) + • ——-—— ; cos cp

QC N2 + aivi T VN2 + aivi
Wir behandeln nun das Gleichungssystem

d& d2& i,v Lv rT, iHn.—— a2——- + -±- e-"*-)--2— smJVie-" (18)
dt da;2 oc oc

a) t 0 ; i? #0

dd
b) x=0; — — h&=0.

dx
Wir setzen

wobei
&=¦&!+&,2

dt?, à2&x Lv—-1 a2~—-± + ^-e-vx
dt dx2 Qc

a) i 0 i?! &0

b) rc=0 4^-^^i 0.
dx
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Dieses System haben wir in § 5 behandelt und die Lösung
gefunden :

u-u0= (ûx-u0)(l-Ah) + ^-(l-Ah+Bn-e-*x). (a) (13)
kv

Es bleibt also zu behandeln

d&o „d2i?o Lv ,T,—2- a2 + -A- sm Nte-vx
àt dx2 qc

a) t=0 #2=0

b) x=0 ^A-h&^O.
d x

Wir setzen
#2 v + we-".

Für w ergibt sich die Gl. (17) mit der Lösung

w= Bsin(Nt — cp) (ß)

und v ist zu bestimmen gemäss

dv „ d2v
a2

dt dx2

dv
b) x 0 h x (v + h) w.dx

Wir zerlegen v v-, + v2

àvt _ „a d2^
— t*

di dx2

a) t= 0 Vx — M^e-"* b) a; 0 % 0

dv2 d2t>2

d<
a dx2

a) i 0 v2 0

b) x 0 —— — hv2= (v + h)w= (v + h)B sin (JV< — cp).

Die Lösung für vx ist durch Gl. (9) gegeben, doch haben wir in
y p A + qB zu setzen p 0 und g — w0. Dann wird

m — u0= — w0B. (y)

Um v2 zu bestimmen, setzen wir

hv, 2
dx
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und erhalten
d ^— a2
dt dx2

a)f=0 z=0 b)x=0 z (v+h) B sin (Nt — cp)

Ist z ermittelt, so ergibt sich mit sinngemässer Integrationskonstanten

(vgl. oben § 5) „
v2 ehx / e~hxzdx.

X

Ist ganz allgemein z F(t) für x 0 bekannt, so ergibt sich1)

2 œ

z=v-J'-""('-j^)^
X '

2 aVT
und auf den vorliegenden Fall spezialisiert

\/n h)B
Nx2

sin (Nt— cp) fe-e'cos^YY—dß

2oVt

- cos (Nt - cp) j e-f* sin J^Ldß
X

2aVt
Um v2 zu erhalten, muss nochmals über x integriert werden. Das
auftretende Gebilde liesse sich aber nicht mehr sinngemäss
überblicken, geschweige denn numerisch auswerten. Um wenigstens
einigermassen Einblick in die tatsächlichen Verhältnisse zu
erlangen, bleibt nichts anderes übrig, als sich auf so grosse Zeiten

zu beschränken, dass mit hinreichender Genauigkeit 7= 06 2a\/t
gesetzt werden kann, so dass wir uns dem stationären Zustande

hinreichend genähert haben (—-7= <1, x < 4, 5\YtÄ genügt))
\2a\/t I

Dann ergibt sich mit Hilfe bekannter Integrale2)

z=(v + h)Be a V 2sin/^-~]/-^-<p).
*) H. E. Weber, loc. cit., Bd. II, § 41.

00
7,2 1—

2) f er** sin -A dx AAL e-bVz sin i V2 ;

0

8
&2

/ e~x' cos —xdx
J x2
0

V^e-&V2 cos ì -y/2
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und damit1)

R. Emden.

(v + h) B~ -V-a \ 2

*+m+m y-
cos (Nt

2

x -,/JV

N\ ¦ l-x-r. x -.IN. \smiNt \ +cp\
a r 2 j

f, 9 (*>

Fassen wir die berechneten Teilglieder (oc) (ß) (y) (ô) zusammen,
so ergibt sich die gesuchte Lösung:

u — u uA(l-Ah)kh

— w0Bh

+ Be~vxsin (Nt — cp)

v + h

kv [l-An + Bn-e-**]

-litiy 2

~n™(»<-An+*)
h+-

B loV 1

QC ^N2 + hiA tg cp

Lv

N

N
wn

QC N2 + aivi (19)

Die beiden periodischen Glieder ergaben sich für so grosse Zeiten,

dass wir
2ayY vernachlässigen konnten, während die andern

Glieder für beliebige Zeiten gelten. Führen wir auch die gleichen
grossen Zeiten ein, so werden Ah und Bh 0. Dann liefern sie
stationäre Verhältnisse und wir erhalten im Glassee

u u stationär + 2 periodische Glieder.

a sin bx— b cos bx

a cos bx+b sin bx

i) f eai sin- bx-dx eflx
0,2+b2

/ tf" eos bx-dx eax ¦
aa+*2
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Das 2. periodische Glied können wir nach leichter Umformung
auch schreiben

v + k --ifÂ- i x FW
,-,0-Be « M sinlNt-YY-y* „ + „

1 t/N

y — 31°40' rund — 2h für t 1 Tag
y> — 4° 15' rund — lh für r 1 Jahr

Zum Vergleiche sei auf ein analoges Problem hingewiesen.
Die Temperatur der Erdoberfläche sei u u0 sin Nt. Dann pflanzen

sich bekanntlich in die Tiefe Temperaturwellen fort von der
Form

X -.[W

- W„c a,,2sin(^-|l/-2
a2 das Temperaturleitvermögen des Erdbodens. Der Unterschied
ist bedingt durch die verschiedenen Oberflächenbedingungen und
den Umstand, dass beim See erwärmende Strahlung in die Tiefe
eindringt.

Für den See ergibt sich (X die Wellenlänge, V die Geschwindigkeit
der Welle)

JL i/C 0,1612 cm-1 X 39,11 cm V 4,51 • 10-4 cm/sec
a y 2 für r 1 Tag

0,0084 „ 745 „ 2,36 • IO-5 cm/sec
für t 1 Jahr

Ist die Welle in die Tiefe um X cm vorgedrungen, so hat die Expo-
nentialgrösse um den Betrag e-2 " 0,00195 abgenommen. In
grösserer Tiefe kommt deshalb nur die jährliche Welle zur Geltung.

Über die fortschreitende Welle lagert sich die stehende Schwingung

Ee-^sin- (Nt—cp)
Dabei ist zu beachten, dass nach unseren Festsetzungen cp von v,
also auch von x abhängt. Die verschiedenen Niveaus schwingen
deshalb nicht synchron. Aus der Beziehung

*g 9 —rr Œ tg (w — cp)

berechnet sich
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V (Tag) cp (Jahr)

x 0,01 cm 2,97° 0,00°
0,1 3,59 0,00
1 24,19 0,07

10 86,23 2,42
20 88,36 5,48
50 89,72 29,31

100 89,91 59,24
500 89,93 89,99

1000 90-s 90-s

Das Maximum der Erwärmung stellt sich demnach in jeder
Schicht um so später ein (und zunehmend), je tiefer sie liegt.
Bei der jährlichen Periode stellt sich dasselbe schliesslich 6 Monate
nach Frühlingsanfang ein. Dies Herabsteigen der maximalen
Erwärmung mit zunehmender Amplitude kommt in der Isoplethen-
Darstellung von Atjfsess1) mit einem Maximum Anfang
September klar zum Ausdruck. Auch bei der täglichen Schwankung
tritt in tieferen Schichten die maximale Erwärmung nicht zur
Zeit höchsten Sonnenstandes, sondern in Übereinstimmung mit
der Erfahrung im Laufe des Nachmittags ein. In Tiefen 5 m bei
der jährlichen und 10 cm bei der täglichen Periode können wir

mit einer synchronen Schwingung von der Phasendifferenz
errechnen.

Wir befassen uns in erster Linie mit der jährlichen Periode.
Aufgabe ist, die wirksame Sonnenstrahlung in die beiden
Komponenten ix und i2 zu zerlegen. Dazu halten wir uns an die
bekannten Tabellen von Angot, gut und praktisch wiedergegeben
bei Milankowitch2). Seine Tabelle III ist berechnet für einen
Transmissionskoeffizienten 0,8, genügend genau mit dem oben
ermittelten Werte 0,7928 übereinstimmend. Sie enthält für die
Solarkonstante 1 cal/cm2min für eine Reihe geographischer Breiten

e und Sonnendeklinationen ò die tägliche Strahlungsmenge
i cal/cm2min, welche den Erdboden erreicht. Aus den gegebenen
Zahlwerten berechnet sich die wirksame Sonnenstrahlung durch
Division mit 1000 n. Wir notieren für unsere Zwecke den Wert
i cal/cm2min.

x) O. von v. zv Aufsess. Die physikalischen Eigenschaften der Seen, pag. 107,
Braunschweig 1905.

2) M. Milankowitch. Théorie mathématique des phénomènes thermiques
produits par la radiation solaire. Paris 1920.
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Sonnengeogr. Breite s

deklination ò 0° 40° 50°

+ 23° 27' 22. VI. 0,207 0,262 0,254
22 l.VI. 0,210 0,257 0,246
20 26. V. 0,213 0,248 0,235
16 4.v: 0,220 0,232 0,213
12 22. IV. 0,225 0,216 0,191

8 10. IV. 0,229 0,199 0,170
4 31. III. 0,231 0,180 0,148
0 21. III. 0,232 0,162 0,126

- 4 10. III. 0,231 0,144 0,106

- 8 29 III. 0,229 0,125 0,085
-12 18. II. 0,225 0,106 0,067

-16 6. II. 0,220 0,094 0,049

-20 21.1. 0,213 0,071 0,034
-22 10.1. 0,210 0,063 0,027

- 23° 27' 21. XII. 0,207 0,057 0,022

Trägt man diese Werte graphisch auf, so erhält man namentlich

für die grösseren, in erster Linie wirksamen Werten, eine
sehr sinusähnliche Kurve, so dass bei einer Fourier-Analyse das
erste Glied stark überwiegen würde. Da es sich nicht um genaue
Zahlenwerte handelt, sondern der Gang der Erscheinung
überblickt werden soll, genügt es, nur das erste Glied in Betracht
zu ziehen und die einfallende Strahlung in der Form

ix + i2 sin 2 tx t/x

darzustellen. Dabei ist die Periode für die äquatorialen Gebiete
nicht gleich 12, sondern gleich 6 Monaten anzusetzen. Wir
erhalten so

0,254 + 0,022
50° 0,138 cal/cm2 min

40°

L.
0,254—0,022

2

0,262 + 0,057

0,116 cal/cm2 min

0,160 cal/cm2 min

0,262-0,057 ,inQ%2 0,103 cal/cm2 mm

0°
0,232 + 0,207 noon 2

^1 0,220 cal/cm2 mm

0,232-0,207
0,013 cal/cm2min
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Die Kenntnis von i2 gestattet, den Wärmeumsatz während
einer Periode r zu berechnen. Für die massgebende Solarkonstante

1 cal/cm2sec kommen während einer Periode r zum Umsatz :

t/2 2 •
'

2 • i2 /sin Ntdt= — cal/cm2
J TC

a

und speziell
' 3,88 • IO4 cal/cm2 3,88 • IO5 Cal/m2 für e 50°

3,44 • 10* „ 3,44 • 10s „ „ e 40°

2,18 • IO3 „ 2,18 • IO4 „ „ e= 0°

Auf Grund vorliegender Temperaturmessungen im Sommer
und Winter berechnete Hann1) den jährlichen Wärmeumsatz im
Genfersee zu 3,70 • IO5 Cal/m2 (bis 60 m Tiefe), im Bqdensee zu
3,20 • IO5 und Schubert im Hintersteinersee (West-Preussen) zu
2,80 • IO5. Die Übereinstimmung ist überraschend gut. Dies ist
um so beachtenswerter, als sich weiterhin ein unüberbrückbarer
Gegensatz zwischen Rechnung und Messung ergeben wird.

Diese Wärmebilanz bezieht sich auf den Glassee; bei dem
wirklichen See muss der Verdunstung Rechnung getragen werden.
Das für diesen Zweck zur Verfügung stehende Beobachtungsmaterial

ist äusserst dürftig. Für die heisse, trockene Periode vom
5. August bis 14. September 1911 fand Maurer bei einer
Lufttemperatur von 24° die tägliche Verdampfung auf dem Greifensee
und Zürichersee zu 4,3 mm und 4,2 mm. Für den Zugersee und
den Aegerisee ergaben sich in dem kalten Jahre 1912 die
Jahressummen von 775 und 735 mm, das sind 2,1 und 2,0 mm täglich2).
Wir nehmen deshalb schätzungsweise eine mittlere tägliche
Verdunstung von 3 mm an, welche eine Wärmezufuhr von 0,017
cal/cm2min erfordert. Die mittlere Wärmezufuhr it bestimmten
wir oben zu 0,138 und 0,160 cal/cm2min für mittlere Breiten. Wir
können deshalb der Verdunstung annähernd Rechnung tragen,
indem wir für den Erwärmungsprozess von der zugestrahlten Energiemenge

10% abziehen. Die berechneten jährlichen Wärmeumsätze
sind dann um 10% zu verkleinern, wodurch die Übereinstimmung
Rechnung/Messung noch vollständiger würde.

In den äquatorialen Gegenden ergaben sich für i2
ausserordentlich kleine Werte; die tropischen Ozeane zeigen deshalb nur
sehr geringe jährliche Temperaturschwankungen.

x) J. Hann, Handbuch der Klimatologie, Bd. I, pag. 122. Stuttgart 1908.
2) J. Hann, Lehrbuch der Meteorologie. S. 218. 1915.
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spiel dafür, dass Wärmeleitung nicht ausser acht gelassen werden
darf. Die stehende Schwingung wirkt in einer Tiefe von 10 m
noch mit einer Amplitude von rund 3°, was eine Jahresschwankung
der Temperatur von 6° bewirkt. Wenn wir aber lesen: „Die jährliche

Temperaturschwankung dringt in den Boden bis 15—25 m
(rund) ein, dagegen in unseren Seen bis zu und über 100 m, im

Tabelle 6.

Werte von Re~vx sin (Nt-tp); i 1 cal/cm2 min.

t 0 ll2T
2

l2r
3

-5fT
4

l2-T
5

12"T 1*
x Ocm 0 5,95 10,30 11,90 10,3 5,95 0,00°

10 - 4,70 51,9 94,8 113,2 104,0 60,00 4,70
20 - 13,70 59,2 115,2 141,0 129,5 95,2 19,7
50 - 141,9 3,49 150,5 253,0 290,2 249,7 141,9

100 - 226,6 -128,2 3,58 134,5 230,2 263,8 226,6
500 - 59,80 - 51,9 - 29,91 0,00 29,91 51,8 59,8

1000 - 28,26 - 24,48 - 14,17 0,00 14,17 24,5 28,26

Werte von Re~

Tabelle 7.

¦\fS x -,/~NVj sin (N+- — y—-<p+w); ¦¦ lcal/cm2 min.

t 0 l 2

l2T
3

l2T
4

l2r
5 6

12T

x=0 cm - 0,88 5,16 9,83 11,86 10,71 0,75 + 0,88°
10 - 36,2 57,1 138,4 180,6 174,5 121,8 + 36,2
20 - 77,35 43,7 153,4 221,9 230,8 178,2 + 77,35
50 - 358,1 -196,4 18,27 228,2 376,8 424,5 + 35,8

100 - 264,1 - 280,4 - 222,3 -104,2 42,05 176,6 264,1
500 + 1,39 2,665 3,18 2,925 1,833 0,259 - 1,39

1000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

Tabelle 8.

Summe der Werte der Tabellen 6 und 7, reduziert auf i2 ™ 0,11 cal/cm2 min.

-< 0 lYÏT
2

l2-T £* 4
T2-T

5

T2"T
6

l2"T

x 0 - 0,97 1,22 2,21 2,61 2,32 1,36 + 0,97
10 - 4,5 12,0 25,63 32,3 30,4 20,0 + 4,5
20 -10,0 11,3 29,55 39,9 39,6 30,1 + 10,0
50 -55,0 -21,2 18,57 52,9 73,4 74,1 + 55,0

100 -54,0 -45,0 -24,1 3,33 29,9 48,4 + 54,0
500 - 6,52 - 5,42 - 2,94 0,32 3,5 5,7 + 6,52

1000 - 3,11 - 2,69 - 1,56 0,00 1,56 2,69 + 3,11



Zum Temperaturproblem der Seen. 429

Mittelmeer vielleicht bis zu 150 m", so stössen wir auf einen schreienden

Widerspruch zu unserer Rechnung. Rechnen wir mit einem
mittleren Absorptionskoeffizienten von rund 0,0012 cm-1, wie er
sich für destilliertes Wasser in diesen Tiefen ergibt, so wird die
Exponentialgrösse e~xv 6 • 10"B in 100 und 1,5 • 10"8 in 150 m
Tiefe, und eine Temperaturamplitude von 6 • 10~50 in 100 m Tiefe
würde sich der Beobachtung vollständig entziehen. Da das
Seewasser aber sicher bedeutend stärkeres Absorptionsvermögen hat

60-

30-

30

80

10 11 12

Diagramm 5.

wie destilliertes Wasser, würde sich die Temperaturschwankung
noch um einige Zehnerpotenzen vermindern. Dieser Gegensatz ist
um so auffälliger, als, wie oben gezeigt, in bezug auf Wärmeumsatz

Rechnung und Beobachtung übereinstimmen. Das berechnete

Temperaturdefizit in grösserer Tiefe wird ausgeglichen durch
Temperaturzunähme in 50—100 cm Tiefe. Da aber das vorliegende
Beobachtungsmaterial hinreichend gesichert erscheint, die direkt
eindringende Sonnenstrahlung aber viel zu geschwächt wird, um
wirksam in Erscheinung zu treten, haben wir uns nach einer
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andern, bisher unbekannten Temperaturquelle umzusehen, die in
grösseren Tiefen noch hinreichend kräftig wirksam ist.
Konvektionsströme in vertikaler Richtung scheiden selbstverständlich aus.
Diese unbekannte Temperaturquelle wird weiterhin nochmals in
Erscheinung treten.

Beide periodischen Glieder haben ihre maximalen Amplituden
nicht, wie man vermuten könnte, bei x 0, sondern in tieferen
Schichten. Um Überblick über diese Verhältnisse zu gewinnen,
habe ich für einige in Betracht kommende x- und t-Werte die
beiden periodischen Glieder berechnet und in Tabellen 6 und 7

zusammengestellt. Das Zeitintervall ist das Jahr, eingeteilt in
12 Intervalle (Monate), beginnend mit Frühlingsanfang. Sie sind
berechnet für i 1 cal/cm2min, so dass unmittelbar zu anderen
Werten der Einstrahlung übergegangen werden kann. Durch
Summation ergibt sich die ganze jährliche Temperaturschwankung.
Sie ist wiedergegeben in Tabelle 8, jedoch, der Wirklichkeit ange-
passt, berechnet für i 2=0,11 cal/cm2min, dem Mittelwerte für die
geographischen Breiten 40° und 50°. Um Überblick zu gewinnen,
ist ihr Inhalt in Diagramm 5 graphisch zur Darstellung gebracht.
Abszissenachse ist die Zeit, gezeichnet sind die Kurven x const.
Wir entnehmen ihm:

1) Jede Schicht erhält ihr Temperaturmaximum um so später,
mit einer Maximalverspätung von 6 Monaten, je tiefer sie liegt.

2) Die raschesten Temperaturanstiege erfolgen in den Monaten
Mai und Juni.

Beide Gesetzmässigkeiten treten in der oben erwähnten Iso-
plethen-Darstellung von Aufsess klar in Erscheinung. Doch tritt
auch hier wieder die bereits erwähnte Unstimmigkeit auf, dass
die Beobachtung sich in tieferen Schichten abspielt wie die Rechnung.

Für die tropischen Ozeane sind diese Temperaturwerte mit
10 zu dividieren (i2 0,013), was die beobachteten geringen
Temperaturschwankungen liefert.

Die berechneten Temperaturen beziehen sich auf den Glassee ;
beim wirklichen See muss der Verdunstung Rechnung getragen
werden. Wie oben Seite 426 dargelegt, erreichen wir dies, indem
die zugeführte Strahlung um 10% verkleinert wird. Die
Temperaturen sind dann um 10% zu erniedrigen. Sie können stehen
bleiben, wenn die Solarkonstante zu ] ,1 statt 1 cal/cm2min
angenommen wird. Die Gesetzmässigkeiten bleiben ungeändert.

Die tief unter dem Gefrierpunkt liegenden, berechneten
Temperaturen dürfen nicht stutzig machen, denn die Temperaturschwankung

lagert sich über die durch die konstante Einstrahlung ix



Zum Temperaturproblem der Seen. 431

resultierende Temperatur (Tabelle 7). Wir haben, wie schon oben
bemerkt, für hinreichend lange Zeiten, praktisch also für den
stationären Zustand zu bilden:

u<» -h + -ÌrO-e-vx) (21)
kh hv

Sie sind dort berechnet für die Einstrahlung i — 1 cal/cm2min;
jetzt ist zu setzen:

i % 0,15 für mittlere Breiten
0,22 „ äquatoriale Gegenden.

Erfolgt diese Einstrahlung während der Dauer einer Periode
(ein Jahr), so stellen sich in Tiefen 1, 5 und 10 m Temperaturen
von 71°, 59° und 27° ein, welche die tiefen, negativen Temperaturen

überwiegen. Dadurch werden die in § 4 besprochenen
Konvektionsströme verstärkt und es würde sich eine annähernd
isotherme Schicht ausbilden, wenn nicht die in die Tiefe absteigende
Temperaturwelle eingreifen würde. Wie die Zahlen der Tabelle
zeigen, liefert diese in den obersten Schichten mit der Höhe
zunehmende Temperaturen. Wir erhalten so das typische Bild einer
Sprungschicht: Eine warme Oberflächenschicht mit langsam
abnehmender Temperatur, an welche sich unvermittelt erst rasche,
dann langsam werdende Temperaturabnahme anschliesst.
Wiederum aber zeigt sich die Unstimmigkeit, dass sich das beobachtete
Phänomen in ungleich tiefern Schichten abspielt, als die Rechnung

ergibt.
Für die Oberfläche x — 0 ist zu ix noch die Einstrahlung der

Atmosphäre ia hinzuzufügen. Ich habe (wie schon oben, S. 417)
dieses ia in guter Übereinstimmung mit der Beobachtung berechnet
und erhalten:

Bodentemperatur der Atmosphäre t — 20 — 10 0 15 20°
Niveau von Zürich 0,38
Meeresniveau 0,26 0,30 0,34 0,45

Damit können wir setzen:
Für den Sommer im Meeresniveau

il + ia= 0,15 + 0,45 0,60; gibt uœ 19°

Für den Winter im Meeresniveau
t= 0°, -H + ia= 0,15 + 0,34= 0,49; ü =4 5°1, W00 ot)U

t -10°, i1 + ia 0,15 + 0,30= 0,45; „ ö00 -l,5°
t - 20°, h + ia= 0,15 + 0,26 0,41 ; „ ö„ -7,5»

Für Zürich
t 15°, i1 + ia= 0,15 + 0,38 0,53; „ ûœ + 13°
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Die Jahresschwankung erhöht diese Temperaturen um rund 2,3°
und vermindert sie im Winter um denselben Betrag. Dies sind
durchaus annehmbare Werte, bedingt durch Strahlung und Wärmeleitung,

unter Ausschluss sogenannter „äusserer Wärmeleitung".
Die tägliche Periode des Temperaturganges bietet in

Anbetracht der viel kleineren umgesetzten Wärmemengen weniger
Interesse wie die jährliche Periode. Ihre theoretische Behandlung
aber stellt sich ungleich schwieriger. Während der jährliche Gang
der Einstrahlung angenähert durch eine Sinuskurve dargestellt
werden kann, ist diese Kurve bei der täglichen Periode
diskontinuierlich: bei Tage Erhebungen von der Form A + Bu 2 ti—

getrennt durch Stücke der Abszissenachse bei Nacht, analytisch
darstellbar durch eine überaus schlecht konvergierende Fourier -

sche Reihe. Einblick in die tatsächlichen Verhältnisse gestattet
der Umstand, dass das N -AY cm-1 der beiden Perioden von

T

verschiedener Grössenordnung ist: N (Jahr) 1,99 • 10~7, N (Tag)
7,27 • 10~5. Das hat zur Folge, dass im Ausdruck

_ül/Z
e « 2

bei der täglichen Welle der Exponent bei gleichem x 20 mal kleiner
ist. Die absteigende Temperaturwelle erlischt deshalb bereits in
einer Tiefe von rund 50 cm, nachdem sie in einer Tiefe von rund
1 cm ihren Maximalwert erreicht hat. Dieser ist bei den praktisch
vorliegenden Messungen bereits in der ,,Oberflächentemperatur"
enthalten. Die stehende Temperaturwelle wird, wenn die Einstrahlung

durch eine Fourierreihe dargestellt wird, durch einen
Ausdruck von der Form

SB*.«-"
gegeben. Dabei werden die Nlf N2... immer von gleicher Grössenordnung

gegenüber den JV(Jahr) sein. Das hat zur Folge, dass die
NPhase cp, tg cp p-j- bereits in der geringen Tiefe von rund 20

cm ihren Maximalwert -~- erreicht. Mit zunehmender Tiefe stellt sich

die Maximaltemperatur nicht immer später, sondern gleichzeitig
im Laufe des Nachmittags ein, in Übereinstimmung mit der Erfahrung.

Nehmen wir aber bis 1 cm Tiefe eine tägliche Temperatur-
11 78 + 22 72

Schwankung von (Tabelle) —'-—~—'-— 17° an, so hat diese

schon in einer Tiefe von 5 m auf 0,16°, also:™ ihres Wertes

abgenommen. Eine Schwankung von 2° hätte in 5 m Tiefe auf den
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unmessbar kleinen Wert 0,02° abgenommen. Nun liegen für die
tägliche Temperaturschwankung ausgezeichnete Messungen von
Gribsingbr am Weissensee vor, deren Ergebnisse aber mit der
Rechnung in krassem Widerspruch stehen. Denn wir lesen bei
Gribsinger: „Nehmen wir z. B. die Temperaturschwankung am
5. September, so finden wir an der Oberfläche des Sees eine
Schwankung von 2°; von 2—16 m Tiefe beträgt dieselbe
durchschnittlich 0,4°, hierauf von 18—35 m stets 0,1° und schliesslich
bei 40 m Tiefe ist keine Temperaturschwankung mehr zu konstatieren.

Ähnliche Verhältnisse ergaben sich bei Temperaturmessungen
von Exnbr am Wolfgangsee. Ermittelt wurden folgende

Schwankungen (mittlere Extreme) :

in 24 cm Tiefe gemessen 0,88°, 149 cm 0,35°, 524 cm 0,24°
in 87 cm „ „ 0,52°, 274 cm 0,24°,

Diese viel zu hohen Temperaturen in der Tiefe sind ohne andere
Temperaturquelle nicht erklärbar, und ebensowenig die Griesinger'sche
Angabe, dass im Intervalle 2—16 m eine mittlere Temperatur 0,4°
und im Intervalle 18—35 m stets von 0,1 vorhanden ist, da doch
die Einstrahlung proportional der Exponentialgrösse e~vx abnimmt.
Und die Wisconsin Geological and Natural History Survey, welche
eine Untersuchung über den Betrag der Energie der in das Wasser
eindringenden Sonnenstrahlen von mehr als 25 Seen durchführte
(Schwarzkugel-Thermometer im Vakuum) kommt auf Grund ihrer
Energie- (nicht Temperatur-)Messungen zu dem Schlüsse: „Es ist
ganz unmöglich, dass ein nennenswerter täglicher Gang der
Temperatur in den Seen in der Tiefe von 5 m gefunden werden kann"1).

Zusammenfassung.

Die vorstehenden Ausführungen dürften gezeigt haben, dass
im Gegensatz zu hergebrachter Ansicht die Wärmeleitung im
Temperaturproblem der Seen eine wesentliche Rolle spielt. Die
Einstrahlung nimmt nach dem Gesetze ie~vx mit der Tiefe ab
und in der Zeiteinheit wird die absorbierte Energiemenge vie~vx
in Wärme umgesetzt. Dadurch würde sich die Tatsache erklären,
dass die Wassertemperatur mit der Tiefe abnimmt. Man beachtet
dabei aber nicht, dass, um die so unbegrenzt ansteigenden
Temperaturen zu verhüten, diese sich ansammelnden Wärmemengen
nach der Wärme abgebenden Oberfläche abgeführt werden müssen.
Da Konvektionsströme bei den negativen Temperaturgradienten
nicht auftreten können, und bei den vorkommenden Temperaturen
innere Strahlung keine Rolle spielen kann, bleibt zur Überführung

x) Die Absorption der Sonnenenergie in den Seen, Meteorol. ZS. S. 300,1914.
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nur Leitung übrig. Die Temperaturzunahme ohne Leitung würde
durch die Gleichung

du iv
a) T7 e~vx'dt QC

mit der Folge
% v

u — e~vx. t + const
oc

du
ndx QC

geregelt, und die Temperatur würde, bei negativem Gefälle,
proportional der Zeit ansteigen. Mit Berücksichtigung der Leitung
aber ist statt a) anzusetzen

du „ d2u iv
h)T a TS + e~vx

dt dx* QC

Dauert der Einstrahlungsprozess hinreichend lange Zeit an, so dass
du
AT
d W

sich annähernd stationäre Verhältnisse, -tt 0, ausbilden, so folgt
du i— +— e-v*dx k

also Umkehrung des Vorzeichens, Temperaturzunahme nach der
Tiefe, wodurch Leitung nach der Oberfläche ermöglicht ist. Wie
in §§ 4 und 5 auseinandergesetzt, beginnt diese Schicht mit
Temperaturzunahme nach unten, im Laufe der Zeit an Mächtigkeit
zunehmend, sich schon mit beginnender Einstrahlung auszubilden.
Konvektionsströme machen diese Schicht annähernd isotherm und
nach unten nimmt die Temperatur erst rasch, dann immer
langsamer ab. Wie weiter in § 6 auseinandergesetzt, bildet sich bei
periodischer Einstrahlung durch Wärmeleitung, und nur dann, eine
Temperaturwelle aus, die »mit abnehmender Amplitude in die
Tiefe absteigt. (Ähnlich der bekannten Temperaturwelle im festen
Erdboden.) Dadurch erhöht sich die Temperatur der isothermen
Schicht nach oben zu und wir erhalten so das Phänomen der
Sprungschicht. Qualitativ werden so die beobachteten
Temperaturverhältnisse treffend wiedergegeben, quantitativ aber besteht
ein unüberbrückbarer Gegensatz zwischen Rechnung und
Beobachtung, indem letztere die geschilderten Vorgänge in ungleich
tiefere Schichten verlegt wie die Rechnung. Die direkte Messung
liefert noch Temperaturschwankungen in Tiefen, die durch
einfache Absorption eindringender Strahlung völlig unerklärbar ist.
Es muss noch eine völlig unbekannte Temperatur- (nicht Wärme-)-
quelle wirksam sein, deren Entdeckung für das Temperaturproblem

der Seen von fundamentaler Bedeutung sein dürfte.
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