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Zum Problem des statischen Mesonfeldes
von Gregor Wentzel, Ziirich.
(21. VI. 40.)

Inhalt: Die Yukawa’sche Theorie der Wechselwirkung von Mesonen und
Kernpartikeln wird fiir den Fall starker Kopplung diskutiert, und zwar am Bei-
spiel des skalaren geladenen Mesonfeldes. Es wird ein Verfahren angegeben, die
Eigenwerte und Eigenfunktionen des statischen Problems in Form einer Ent-
wicklung nach fallenden Potenzen des Kopplungsparameters g zu bestimmen.
Eine kurze Diskussion der Ergebnisse im Hinblick auf aktuelle Probleme der
Mesontheorie findet sich im § 11.

§ 1. Problemstellung.

Gegenstand dieser Arbeit ist ein Mesonfeld in Wechselwirkung
mit ruhenden Protonen und Neutronen. Das Problem des stati-
schen Mesonfeldes 1st bekanntlich viel verwickelter als das ent-
sprechende elektromagnetische Problem: die exakte Aufspaltung
des Maxwell’schen Feldes in statische und nicht-statische Anteile
lasst sich beim Mesonfeld nicht nachahmen, und zwar beruht
dies, wie STUECKELBERG!) zuerst gezeigt hat, auf der Nichtver-
tauschbarkeit der im Wechselwirkungsoperator auftretenden Spin--
und isotopen Spinmatrizen. Diese Nichtvertauschbarkeit muss
aber, da auf ihr der Austauschcharakter ‘der Yukawa-Krifte
beruht, als ein durchaus wesentlicher Zug der Yukawa’schen
Theorie angesehen werden. Ein besonders charakteristischer Unter-
schied zwischen Meson- und Lichttheorie ist bekanntlich der, dass
die Mesonen, im Gegensatz zu den Lichtquanten, an ruhenden
(unendlich schweren) Teilchen gestreut werden konnen.

Als mathematische Methode zur Untersuchung des ,,meso-
statischen Feldes ist bisher neben der Stérungsmethode, welche
nur schlecht konvergierende Entwicklungen liefert, namentlich die
der Quanten-Elektrodynamik entlehnte Methode der kanonischen
Transformationen?) herangezogen worden; doch liessen sich auch
so Entwicklungen nach steigenden Potenzen des Kopplungspara-

1) Phys. Rev. 54, 889, 1938, C.R. 207, 387, 1938. _

%) STUECKELBERG, l.c.; STUECRELBERG und PaTry, Helv. Phys. Acta 12,
300, 1939; MoLLER und RosenreLD, Kgl. Danske Vidensk. S., Math.-fys. Medd.
XVII, 8.
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meters aus den genannten Griinden nicht ganz vermeiden, so dass
der Fortschritt gegeniiber dem Stérungsverfahren zweifelhaft er-
scheint!). Jedenfalls liegt ein Mangel der bisherigen Methoden
darin, dass ihre Anwendbarkeit prinzipiell auf den Fall schwacher
Kopplung zwischen Mesonen und Kernen beschrinkt ist. Es
schien daher wiinschenswert, auch den umgekehrten Grenzfall,
denjenigen starker Kopplung, zu untersuchen, zumal sich daraus
die Moglichkeit ergeben konnte, interpolatorisch iiber das Zwischen-
gebiet mittlerer Kopplungsstdrken einiges zu erfahren. Da die
elektrodynamische Analogie als Wegleitung hier ausser Betracht
fallt, erhebt sich zuniichst die Frage nach einer geeigneten Approxi-
mationsmethode fiir den Fall starker Kopplung. Eine solche
Methode soll im Folgenden entwickelt werden, und zwar am Bei-
spiel des geladenen skalaren Mesonfeldes (Ladung = + 1, Spin = 0).

§ 2. Bezeichnungen und Ansiitze.

Da die folgenden Rechnungen sich grossenteils im Raum der
Lagenkoordinaten abspielen — der Ubergang zum Impulsraum
erfolgt erst an spaterer Stelle —, empfiehlt es sich, den kontinuier-
lichen Koordinatenraum durch ein Punkigitter ersetzt zu denken,
und zwar wihlen wir ein kubisches Gitter mit der Gitterkonstanten
l, d. h. die kartesischen Koordinaten der Gitterpunkte sollen ganze
Vielfache von [ sein. Den die Gitterpunkte numerierenden Index
schreiben wir immer als unteren Index, so dass f, den Wert der
Funktion f am Punkte s bedeutet. Der Ubergang zum Impuls-
raum vollzieht sich gemiss der Formel

o fR) =2 foetR
8
wo kzxz, das skalare Produkt aus Wellenzahl- und Ortsvektor
bedeutet. Die Funktion f(k) ist im k-Raum periodisch; der Perio-
dizitatskubus hat das Volumen

2 m\?
()=

1) MorLER und RosENFELD (l. ¢.) vertreten die Meinung, dass zwischen den
rechnerischen Schwierigkeiten, die durch die erwihnte Nichtvertauschbarkeit
bedingt sind, und den prinzipiellen Divergenzschwierigkeiten der Quantentheorie
der Felder nicht klar unterschieden werden konne. Sie schlagen daher vor, iiber
die Eigenschaften der Mesonen und iiber den Wechselwirkungsansatz derart zu
verfiigen, dass gewisse von der Nichtvertauschbarkeit herrithrende Effekte mog-
lichst belanglos werden. Gegen diesen Gesichtspunkt kann eingewendet werden,
dass er auf eine kiinstliche Bagatellisierung der Unterschiede zwischen Meson-
theorie und Elektrodynamik hinauslduft, die unseres Erachtens dem Sinn der
Yukawa’schen Theorie widerspricht.
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Die Fourier-Entwicklung von f lautet dann:
1 :
fo=—3 [ AKf(H)eiFa,

wo dK das Volumelement des k-Raumes bedeutet und die Inte-
gration Uber einen Periodizititskubus V zu erstrecken ist. Wir
withlen hierfiir denjenigen Kubus, dessen Mittelpunkt mit dem
Ursprung des k-Raumes zusammenfillt, dessen Ecken also die
Koordinaten 4/l haben. Es sei ein fiir allemal verabredet, dass
simtliche im Folgenden vorkommenden k-Raum-Integrale iber
diesen speziellen Kubus V zu erstrecken sind. Fiir die Umrech-
nung von Impuls- auf Koordinatenraum und umgekehrt sind fol-
gende Formeln bequem:

1 . e,
7 ARt a =5, S EBa -k (D

dabei ist (k) im Kubus V gleich der 8-dimensionalen Dirac’schen
Deltafunktion, wihrend sie sich ausserhalb desselben periodisch
wiederholt.

Da alle Impulsraum-Integrale endlich sind, slolange man auf
den Grenziibergang ! -0, V' - oo verzichtet, eriibrigt sich eine
weitere Abschneide-Vorschrift.

Die Hamiltonfunktion des skalaren geladenen Mesonfeldes im
» vacuum®* (d. h. ohne Kopplung mit Kernpartikeln) lautet nach
Paurr und Wersskorr?), wenn ein kontinuierlicher Koordinaten-
raum zugrundegelegt wird:

de {n*n + y*(u2 — A) y}.
Hier ist 7 zu y und #* zu p* kanonisch konjugiert, d. h. es gilt:

[7(2), p(2')] = [n*(2), p*(2)] = —10(x —7),

wiahrend die anderen Funktionenpaare kommutieren. u ist die
Mesonmasse. (Massen und Energien seien in reziproken Léngen-
einheiten gemessen, derart, dass das Wirkungsquantum =2 wird.)
Zur Darstellung im Gitterraum setzen wir:

l3/2n(xs) = s, l3/2w(ms) = W
sodass

[77:,,, "/)8] = [ﬂ;‘k’ '/’?] = ?:67'9' : (2)
1) Helv. Phys. Acta 7, 709, 1934.
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In der Hamiltonfunktion ist Ay, genommen bei z,, ersetzbar
durch

1—3/221,0 Vde — k?) gik(z,—2)

da dieser Ausdruck im Limes [ -0,V - o0 In

2 madedeA’P( )ezk(ac %) = Ay(zx,)

iibergeht?). Folglich ist die obige Hamiltonfunktion zu ersetzen
durch

HO = S am, + S o 4 oy ®3)
mit ’
1 : '
Crs = 57 [ d K w} etk(@,— ), (4)
wi = p? 4+ K2 (5)

Wird nun das Mesonfeld mit ruhenden Proton-Neutronen
gekoppelt, die sich in gewissen Gitterpunkten z; befinden mogen,
so lautet die Hamiltonfunktion:

H—H'— G S {9 + i79) p, + (10 — i) p}}, (6)
()

wo 9, 700 die bekannten Matrizen des ,isotopen Spins“ sind:

01 0 —¢ 1 0
n=(f ) w9 m=l 1)
Den Koeffizienten G wihlen wir einfachheitshalber reell und posi-
tiv. Da er die Dimension [-*? hat, setzen wir

AT )
der Wert der reinen Zahl g kann als Mass fiir die Stirke der Kopp-

lung gelten.

Wir suchen nun fiir den Fall starker Kopplung (g > 1) Néhe-
rungslosungen des wellenmechanischen Problems

(H—E)F=0, - (8)

wo die Schrodingerfunktion F' als Funktion der u, und der v
gedacht ist und wo die =, n; die den Vertauschungsrelationen

1) Eine andere Moglichkeit bestinde darin, die Differentialquotienten in
Ay durch Differenzenquotienten zu ersetzen, wodurch das Spektrum der Eigen-
frequenzen von H°(3) in bekannter Weise abgeindert wird. Das hier gewahlte
Vorgehen empfiehlt sich durch gréssere Einfachheit der Schreibweise.
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entsprechenden Differentialoperatoren bedeuten. F hingt ausser-
dem von den isotopen Spinindices ab, entsprechend dem Umstand,
dass sich jede der schweren Partikeln 4 im Neutron- oder im Pro-
tonzustand befinden kann.

~ Fiir den zunsichst zu behandelnden Fall, dass das Mesonfeld
nur mit einer einzigen schweren Partikel (am Ortex,;) in Wechsel-
wirkung steht, kénnen wir die Gleichung (8) fir die zweikompo-
nentige Funktion F' ersetzen durch die simultanen Gleichungen

(H' - E)Fp—2Gy*Fy—0,

wo sich Fy auf den Neutron-, F'» auf den Protonzustand bezieht.

I. Ein einziges Proton-Neutron bei z,.

§ 3. Vorliufige Abschiitzung der Energie-Eigenwerte.

Wir nehmen vorldufig an, die Gitterkonstante 1 sei gross
~gegen die Comptonwellenlinge des Mesons: -

pl>1. (10)

Selbstverstandlich kann eine so starke ,,Abschneidung® nichts
physikalisch Interessantes liefern; trotzdem beginnen wir mit
diesem einfachen Sonderfall, weil wir daraus den Ausgangspunkt
fiir die spéteren allgemeineren Betrachtungen gewinnen werden.

Die durch (10) bedingte Vereinfachung des Problems besteht
darin, dass annidhernd
' Cps = /1'2 * Ops (11)

wird, weil in (4) k2 gegen u2im ganzen Integrationsbereich vernach-
lassigbar wird ; in dieser Néherung ist also die Hamiltonfunktion (8)
bzw. (6) in Beitrige der einzelnen Gitterpunkte separiert. (Die
Mesonen kinnen als in ihren Gitterpunkten ruhend angesehen
werden.) Die Losung der Gleichungen (9) ergibt sich durch den
Ansatz:
' E=E,+E,+E;+---
Fy = Fyy (w1, ¥1) - Fy (ya, v2) - Fa (5, ¥3) - -
Fp = Fpy (y1, 91) - Fy (2, ¥2) - Fs (s, v3) - -
(@imy + p2 eyt —Ey) Fyy —2G g, Fpy =0 }
(i, + pPyl 1 — Ey) Fpy —2 Gyl - Fy = 0
(75 75 + w2y, ys—H) Fs =0 (s+1).

(19

18
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Die Schrodingergleichungen fiir Iy, F, - - - sind einfach diejenigen
harmonischer Oszillatoren, so dass wir nur noch die auf den Punkt 1
beziiglichen Gleichungen (12) zu lésen haben.

In der komplexen y,-Ebene fithren wir Polarkoordinaten ein:
Y1=q €% yr=q-ei? (q, 9 reell, ¢ > 0).  (13)

Der Differentialoperator zf 7, ist, bis auf einen Faktor — 1/, (vgl.
hierzu § 4), der Laplace’sche Operator in der y-Ebene:

1(1 02, 1/0% 1y
Tmy=——|— — - —I)1. 14
Die Koordinate ¢ wird absepariert durch den Ansatz:
F 1 ’ T 1 "
Fy = étmthd. VE—F (q), Fpy=¢emBo. :/_q:p (@), (15)

wo m 4 % aus Stetigkeitsgrinden ganzzahlig sein muss. Da nach
Pauvrr und Wersskorr der Operator

es = 1 (9, 7 — g5 73) (16)
die Mesonladung am Punkte s darstellt, und vermdoge (13)
; 1 o
er =1 (p1 70— 1 7o) = )

wird, bedeutet m+3% bzw. m—3} die Mesonladung im Punkte 1,
je nachdem, ob sich die schwere Partikel im Neutron- oder Proton-
zustand befindet; d. h. m + } bedeutet die gesamte im Punkte 1
sitzende Ladung. Durch Einsetzen von (13), (14), (15) in (12)
kommt :

2 | |
{_1_(_ ddq2 +m(m+1))+M2q2__E1}F,_2GqF,,L_ 0

3 ) (17)
1 d*  m(m-1) 5.8 ” ,
— | — —E'\F"—2GqF' =0.

Zur Abschitzung der Eigenwerte E, setzen wir weiter (,, WKB-
Methode®“1)):

F’za-eifpdq—l—Konj. } (18)

F'=b- eifpdq + Konj.,

1) Vgl. den entsprechenden Ansatz zur Losung der 4-komponentigen Dirac-
schen Wellengleichung bei Pauli, Helv. Phys. Acta 5, 179, 1932.
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wo die q-Abhéingigkeitrvon a und b in erster Niherung vernach-
lissigt wird. Dies in (17) eingesetzt:

{%(p2+m(m2+1))+M2q2-——E’1}a—2Gq-b:0 ]
q

(19)
1 m (m—1) | J
A= s 242 _ _ i =
{4(214— e )—i—,u q. Eljb 2Gq-a=0.
Die Losbarkeitsbedingung dieser linear-homogenen Gleichungen
lautet: ' ‘

2 2
p2=_4E1-7;2—4M2q2:t V%+64G2q2. (20)
Entsprechend dem doppelten Vorzeichen der Wurzel in (20) er-
geben sich zwei Klassen von Losungen. In jedem Falle besitzt
p? als Funktion von ¢ ein Maximum; um die tiefsten Eigenwerte
jeder Klasse zu bestimmen, gentigt es, die Kurve p2(q) in der
Néhe des Maximums jeweils durch eine Parabel zu approximieren,
im Sinne einer Naherungslésung durch kleine Schwingungen?).
Als Bedingung fiir starke Kopplung gelte hier:

G2 o (21)
Nach (7) und (10) ist dann |

g*> (ul)*> 1. (22)

Diskutieren wir unter diesen Umstinden zunéchst die Losung mit
der positiven Wurzel in (20), so ist leicht zu sehen, dass in der
Nihe des Maximums von p? die m? enthaltenden Terme sehr
klein gegen die tibrigen sind, sofern nicht m >>1 ist. Schliessen
wir den letzteren Fall aus, so erhilt man demnach fiir diese Klasse
beil starker Kopplung:

| G* G\?
P @Ay — g + 260 4 (B oo wt(a— L) ).
17 Iz
Dieser harmonische Oszillator, dessen Ruhelage um Gfu? ver-
schoben 1st, hat die Energie-Eigenwerte:

2 /
B i+, won=0,1,2,---. (29
U

1) p? geht gegen — oo fiir ¢ ——> oo ; desgleichen fiir ¢ —> 0, ausgenommen
fur m = + % im Falle der positiven Wurzel, wo p%0) = + c«c. Das Verhalten
von p? bei kleinen ¢ ist aber fiir die hier interessierenden negativen Energie-Eigen-
werte (vgl. (23)) bedeutungslos, wie man daraus erkennt, dass (17) fiir kleine g
einer kraftfreien Bewegung entspricht, die nur positive Energie-Eigenwerte besitzt.
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Hier stellt der Term — G2/u? eine negative Selbstenergie des Pro-
ton-Neutrons dar, und dazu addiert sich die Energie von #n Mesonen
im Punkte z;. Nach (21) ist die Selbstenergie dem Betrage nach -
gross gegen die Mesonmasse p. Zu beachten ist, dass die Eigen-
werte in dieser Ndherung von der Ladungsquantenzahl m nicht
abhéngen, so dass jeder Zustand, auch der Grundzustand n = 0,
bei beliebiger ganzzahliger Ladung mit der gleichen Energie vor-
kommt. Offenbar heisst dies, dass durch Bindung geladener Me-
sonen an das Proton-Neutron Zustinde desselben entstehen kinnen,
die eine beliebig hohe ganzzahlige Ladung tragen und die alle die
gleiche bzw. fast die gleiche Masse besitzen. In hoherer Néaherung
wird natiirlich die m-Entartung aufgehoben; berticksichtigt man
die m? enthaltenden Terme in (20) in erster Ndherung, so ergibt
sich statt (23) die korrigierte Formel:
2 4

E1=—F+M(%+%)+4%°m2- (24)
Die Zusténde mit gleichem % (z. B. n = 0) erhalten somit eine
quadratische Abhangigkeit der Energie oder Masse von der Ladungs-
zahl: die kleinsten Massen haben Neutron und Proton (m = F });
die nichstbenachbarten Isobaren, ndmlich negatives Proton und
doppelt-positives Proton (m = 7+ %) haben bereits eine um u?/2 G*
hohere Masse, wobei dieser Massenzuwachs aber klein gegen die
Mesonmasse ist (vgl. hierzu § 11).

Was die Eigenfunktionen in diesem Fall (starke Kopplung,
positive Wurzel in (20)) anbetrifft, ist es fiir das Folgende wichtig
zu bemerken, dass sich aus (19) fir das Amplitudenverhéltnis bja
der Wert + 1 ergibt, bis auf Terme der Ordnung (x3/G?2 Bis
auf Fehler dieser Ordnung gilt also nach (18):

F" =F". (25)
Insbesondere folgt hieraus, dass in jedem der betrachteten statio-
niren Zustdnde die Kernpartikel als solche — ohne Mesonfeld —
mit gleicher Wahrscheinlichkeit im Proton- wie im Neutronzu-
stand anzutreffen ist. :

Die Diskussion der Losungen mit der negativer Wurzel in (20)
vereinfacht sich andererseits dadurch, dass bei starker Kopplung
der Term (—4 p2¢? in (20) in der N#ahe des Maximums von p?
vernachlédssigt werden kann. Es eriibrigt sich, auf diesen Fall
niher einzugehen, denn es zeigt sich, dass die Selbstenergie in
den betreffenden Zusténden positiv ist; ihre Grossenordnung ist
G*® (> u). Die Energieniveaus dieser Klasse liegen also um mehr
als u - G*u® hoher als die Niveaus (24), und sie konnen deshalb
tiir unsere Zwecke ausser Betracht bleiben.
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§ 4. Allgemeinere Methode.

Wir verzichten jetzt auf die vereinfachende Annahme (10):
die Gitterkonstante ! darf wieder beliebig klein gewahlt werden.
Dann muss natiirlich die k-Abhiingigkeit von @7 in (4) bertick-
sichtigt werden; die Matrix ¢,, ist jetzt nicht-diagonal, und folg-
lich 1st H nicht von vorneherein separiert.

Um zuniichst, wie in § 3, die Winkelkoordinate & abzusepa-
rieren, fithren wir die folgende kanonische Transformation durch:

Y= Q’leia: QPT = QIe_iﬁ5 ws = QSeiﬁﬂ /‘/): = q;ke_i& (8#1)
- v, : i,
W1=%3_w(291——p:9); ) = %ezﬁ(Pl‘]‘*pﬁ), (26)
s 41
7, =P, e’y =p; e’ (sx1),

WO
Py =Py —1 >, (¢ Ps — G DY) (27)

(der Akzent am Summenzeichen bedeutet, dass der Term s =1
' auszulassen ist).

Hier sind ¢y, #, py, ps reelle Variable bzw. Hermitische Ope-
ratoren. Entsprechend den Vertauschungsrelationen gilt fiir die
Kommutatoren kanonisch konjugierter Paare:

[ph QI] - [pﬂs 19'] = [pm q3] = [p;", q;k] = ‘—'i;

wahrend alle anderen Paare kommutieren. Man iiberzeugt sich
leicht, dass hieraus die richtigen Vertauschungsrelationen fiir die
Vs, Vi, s, 7wy folgen, wobei zu beachten ist, dass alle y,, %,
7, 7y, ausgenommen diejenigen mit s=1, mit p," (27) kommu-
tieren. Da 1 (v, — yial) = p,’, bedeutet p,” die Mesonladung
am Punkte 1; ferner ist

pﬁ:iz(wsns—wjn;"):Ees
s ‘ 8

die Gesamtladung des Mesonfeldes.
Durch Einsetzen von (26) in H°® (3) erhalt man:

1 i 1 s NV’ %
H* = %( = 0y Y (Paz—%)) + DV PPt DVl g, (28)
: '\/Q1 ) U5 8 r,8

wo ¢f = q. Da die Variable & in H? nicht vorkommt, befriedigt
man die Gleichungen (9) durch den zu (15) analogen Ansatz:
. 1 | | 1 '

Fy=édmbd. —_p Fo=¢m—dt. —_F" (29

" Vg, v VgL )
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wo F’ und F"’ nicht mehr von #, sondern nur noch von ¢q;, ¢, g5 * *
abhangen, und wo m + 4 wieder ganzzahlig ist. Wegen

PeFy=(m+ %) Fy, pgFp=(m—13%) Fp

bedeutet aber jetzt m + % bzw. m — % die gesamie Ladung des
Mesonfeldes fiir den Fall, dass die schwere Partikel sich im Neutron-
bzw. Protonzustand befindet; d.h. m 4 % ist die Gesamtladung
des Systems: Proton-Neutron plus ganzes Feld. Die Gleichungen
(9) lauten nach Einsetzen von (28) und (29):

rg
{%(plg +p 2 i) +Z’ p:ps_‘_zcrsq: qS—E!F’___Q qu Pwr:O l
. no. ! (30)
{%(plz + p q12 )-—i—g’ p;g ps+§,6rsq: qs_ E}F”_z GQIF.,: 0’]
mit
Pr=mtd) —i 2 (gep — G FY) }
rt i 8 Y 31)
p'=(m—H—i> (gps— &Py (

Es seil nun wieder ,,starke Kopplung* vorausgesetzt; was da-
mit genau gemeint ist, wird noch anzugeben sein. Um fiir diesen
Fall Naherungslésungen von (80) zu finden, werden wir im An-
schluss an § 3 versuchsweise annehmen, dass die Losungen auch
unter den jetzigen allgemeineren Bedingungen (I beliebig) in 2
Klassen zerfallen, von denen die eine wegen relativ hoher Selbst-
energie nicht interessiert, wihrend die andere dadurch charakteri-
stert ist, dass erstens die Terme (p'2— 1)/qy% und (p"'2—$)/q;% In
(30), welche den Termen m (m +1)/q? in (17) analog sind, in nieder-
ster Naherung vernachldssigbar sind, und dass zweitens geméiss
(25) in dieser Néherung F'' =F' gesetzt werden darf. Mit anderen
Worten: wir losen zunéchst die einfachere Gleichung

{3p®+ DVpips + D0 g, —2Gq, —E}F =0~ (32)

und werden zu zeigen haben, dass mit F' = F" = F Néherungs-
losungen von (30) erhalten werden, die in einem Verfahren suk-
zessiver Approximation als Ausgangslésungen dienen koénnen.
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§ 5. Erste Niherung.

Zur Losung von (32) fiihren wir eine kanonische Transforma-
tion durch, die einer Translation im ¢-Raum entspricht:

=@+ G- Y,, o =Q+ G- Yy,
Ps = Psa P;k == P::
Die Y, sind noch zu bestimmende Konstanten. Die Formeln (33)

sollen auch fiir s = 1 gelten, doch sind ¢),, P; wie auch Y, reell,
und es muss gelten:

(33)

= Q,+GI¥Y, = 0. (34)
Far Y, wihlen wir:
1 .
AK —— ik (s—=) 35
—r / T ° (85)
Dann gilt némlich nach (4) und (1):

14

; Crs Ys == W 6,«1 = l—3 (3,-1, (36)

und folglich mit (88) und (7):
Ecm ¢ —20Gq,
Ec,.s (QF + GIBYH (Q, + GIBY,) — 2 G(Q, + GI*Y)
ﬁzcrs@,, g7 (e, VI ¥, —2 ¥y
_s‘c'rsQr &i—g Y1

Die in den @, @), linearen Terme haben sich weggehoben. Somit
lautet jetzt die Schriodingergleichung (32):

—(E+¢*Y )} F =0, '
5 9 T4} (37)

£—1P2+2 P*P‘l‘ C?'sQrQs l
Y, ist nach (35) reell und positiv:
1 1 -
Y= [ dK —. 38
! (2775)3f w} (86)

Da der Fall I>1/p in § 3 bereits behandelt wurde, kénnen wir
hier 1=~ 1/u voraussetzen; dann ist Y, offenbar von der Grossen-
ordnung 1/l. Um die Gleichung (87) in #hnlicher Weise wie in
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§ 3 l6sen zu konnen, miissen wir nun fordern, dass die Ungleichung
(84) die Oszillatoramplitude ¢}, in ihrer Bewegungsfreiheit nicht
merklich einschrankt. Da der natiirliche Spielraum der Oszillator-
amplituden von der Gréssenordnung p—% ist, geniigt es also zu
fordern: GI?Y; ~ G1%2> u%, oder nach (7):

9:> ()12 1. (39)

Fir spiatere Zwecke sei bemerkt, dass fir |, — 2, | > 1 die
k-Integration in (35) statt iiber V ohne wesentlichen Fehler tiber
den ganzen k-Raum erstreckt werden kann, so dass Y, in das
Yukawa-Potential iibergeht:

1 e #lzs—al

XYy = fir | & — 2, | > 1. (40)

dr | x;— 2y |

Bei der Integration von (37) ist auf die Realitit von @, zu
achten. Wir setzen deshalb

Ql = QI’! Qs = Qs’ + Q:ana Q;‘ = Qs’ - i‘Qs” (S ¥ 1) (41)
Py,=P,, P=3%P/—iP/"), P;=31P/+iP/") (s+1), -
wo die gestrichenen und zweigestrichenen ¢, P hermitisch und
wo gleich indizierte ¢ und P zueinander kanonisch konjugiert
sind. Beachtet man, dass die durch (4) definierten ¢,; aus Sym-
metrie-Grinden reell sind, so erhilt man

H=H" +H",
H' = %Zpsfz + 2 cf.'sQr’Qs' ) (42)

ﬂ‘u _ % 2! Psnz 'Jr'" Z/ C’rg Qr” Qs”;
8 7,8

in #H"" fehlen die Summenterme r =1 und s = 1.

Es sind nun die Hauptachsentransformationen der quadrati-
schen Formen in &' und &' durchzufiihren. Was J#~ anbetrifft,
sind die Eigenschwingungen der betreffenden linear gekoppelten
Oszillatoren natiirlich ebene Wellen. Wir schreiben:

U, (k) = V-teites, (48)
dann gilt nach (4) und (1)
Zcrs Us, (k) = 0);5) Ur’ (k) ’ (44)
8

JARU* (k) U/ (K) = 8,0, DU () UL (k)= 8 (k—K).  (45)
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H' wird also separiert durch die Einfithrung von Normalkoordi-
naten gemiss

r__ 1 1 (1. ’ ' o 1% .;
Qs—ﬁdeUs (k) A’ (), PS—\/zdeUS (k) B’ (k), (46)

wo

A*(k) = A'(—K), B*(9) - B'(—k), 47
[B'(k), A" (k)] = —i0(k — k). (48)

In der Tat findet man mit (44) bis (47):
—} [AE {B*B' + o A* 4. (49)

Die Hauptachsentransformation von %'’ ist komplizierter
wegen des Fehlens des Freiheitsgrades s = 1. Als Eigenschwin-
gungen ergeben sich hier ebene Wellen plus Kugelwellen, die einer
Streuung der Mesonen am Gitterpunkte 1 entsprechen. Da sich
spater zeigen wird, dass zu dieser Streuung noch eine weitere,
stirkere Streuung hinzukommt, ist das genaue Aussehen der
Eigenschwingungen weniger wichtig, und wir stellen daher ihre
(approximative) Berechnung in den Anhang (Anhang 1) zuriick.
Das Spektrum der Eigenfrequenzen ist dasselbe wie in J, d.h.
es gilt |

Do U (k) = 02U (k) (r$1). (50)
Mit den zu (45) bis (48) analogen Formeln, wo nur iberall die
einfachen durch doppelte Akzente zu ersetzen sind (dabei ist
U,” =0), kommt dann:

H = %de (B"*B" +wj A"* 4"}, (51)

Wenn nun ausser dem z-Raum auch der k-Raum durch ein
Punktgitter ersetzt wird, etwa vermoge einer Periodizitatsforde-
rung fir den z-Raum, so ergeben sich die Eigenwerte der Schro-
dingergleichung (37) zu :

E=—g*Y; + Do (n +n + 1), (562)
p

wo n;', n; (= 0) die Mesonenzahlen in den verschiedenen Eigen-
schwingungen bedeuten. Auf die Eigenfunktionen F brauchen
wir hier nicht einzugehen. Nach (52) ist die Selbstenergie des
Proton-Neutrons = — ¢2Y,, also negativ und dem Betrage nach
von der Grossenordnung ¢%/l. Die Ladungsquantenzahl m kommt
in dieser Naherung iiberhaupt nicht vor.

*
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§ 6. Stérungsrechnung.

Wir kommen jetzt zu den Gleichungen (30) zuriick, wobei die
bisher vernachlissigten Terme

pfz T %z b’ — % — " (53)
' %

nunmehr mitgenommen werden sollen. Der durch (87) definierte

Operator % schreibt sich in den alten Koordinaten:

H=3p2+ D000+ D s GF G —2Gq + g2 Y ;
: 8

7,8

=

1
4

daher lauten die Gleichﬁngen (30) mit der Bezeichnung (53)
{H—(E+¢?Y,)) +2Gq + 9} F'—2Gq, F"=0
{H—(E+9?Y,)+2Gq, + @'} F"—2Gq F' =0,

oder, mit ,
F’ _[_Flf =F+, FI_FII =.F_’

(
PP+ D)= B, (P — D)= D (55
o {H—(B+g2Yy) + 9P+ & F- =0 (

{H—(E+g2Y,)+4Gq + O} F-+ &~ F+=0. (57

F+, F- entwickeln wir nach den Eigenfunktionen der Glei-
chung (37): '
\_ {H— (E,+¢?Y)}F,=0, (58)

F+=SaF, F-=3Sb,F, (59)
e e

Dabei sollen die F, orthogonal und auf 1 normiert sein. Einsetzen
in (56), (57) ergibt, wenn die Matrixelemente wie iblich durch
Doppelindices angezeigt werden:

a5 (B, — E) + > a, §F, + Db, D,, =0 ~ (60)
Y e
by(E,—E) + >\b,(4 Gqq,, + @F,) + > 0,2, = 0. (61)
e e :

Diese noch exakt giiltigen Gleichungen sollen nun zunéchst
nach einer Storungsmethode anniéhernd gelost werden. In nullter
Néherung soll natiirlich nach Obigem F' = F", also F~ = 0 sein,
wahrend F+ gleich einer bestimmten der Funktionen F, gesetzt
werden soll. Fir die erste Naherung setzen wir also an:

s = 6::-: + o, ba = 180: E= Er + &, (62)
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und man erhalt aus (60) in bekannter Weise:

1 o3

Sl o, (dEE). (63)
In (61) ist aber zu beachten, dass, im Gegensatz zu @+ und @-,
der Term Ggq, als gross zu gelten hat, da er schon in der nullten
Ngherung (§ 5) eine entscheidende Rolle spielte. In der Tat ist
nach (84) ¢; L GI3Y,, bis auf Terme der Ordnung | Q.| ~ p3,
die Wegen (39) klein sind. Setzen wir also in (61) zur Abschétzung
Ggy=9%Y;, Gq1,6=92Y, " 0,,, s0 ergibt sich mit (62):

1 -
S | LD,
ﬁo’ 4g2Y +E——'E TO

Nun ist aber nach 52) |E,—E,| ~w, =171 ~ Y, also wegen
9?>1: |E,—E,| <L¢%Y,. (Hohe Vielfache von «; kommen

nicht in Betracht, da die entsprechenden Matrixelemente von @-
erheblich kleiner sind.) Daher:

1 _
ﬁﬂ 4 g2 Yl @T g* |
Da iiberdies, wie sich sogleich zeigen wird, die Matrixelemente @,
klein sind gegen die wesentlichen Matrixelemente von @+, sind
die B, génzlich belanglos verglichen mit den «, (68), d. h. es gilt
auch in dieser Naherung I'—= 0, F" = F".

Zur Berechnung der Matrizen @+, @ nach (55) und (53)
schreiben wir die durch (31) definierten p’, p” auf Grund der
Transformationsformeln (83) und (41) neu an:

= @+

TT 9

o

(64)

’

Plamitd) —SV @/ P/ —Q" P)— GBS Y,P, (65)

re
§

Bei der Darstellung von @,"" und P, durch die Variablen 4", B”
waren hier streng genommen die durch (50) definierten Eigen-
schwingungen U” zu verwenden. Wir wollen hier eine gering-
fiigige Vernachldssigung in Kauf nehmen, die darin besteht, die
in U" enthaltene Streuwelle wegzulassen, d. h. U"" = U’ zu setzen;;
da nimlich die Amplitude dieser Streuwelle nach Anhang 1 zu [
proportional ist, verschwindet der damit begangene Fehler im
Limes I — 0. In dieser Niherung ist es auch gleichgiltig, ob bei
Summationen iiber die Gitterpunkte der Punkt 1 mltgenommen
oder weggelassen wird. Man erhilt dann:

v[f (Q P”—Qs” : @de {A B”—A”B’} (66)
GlaS‘ by BE ]/21 dK—1—2 e~ika B (k), - (67)

wy
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Der Operator (66) ist mit H = H' +H "' vertauschbar und kann
daher durch Wahl geeigneter Eigenfunktionen F', diagonal gemacht
werden ; seine Eigenwerte sind ganzzahlig. Zur Abkiirzung schrei-
ben wir: |

m— [AK{4'B"—4"B} =, (68)
wo m’ wie m halbzahlig ist; hiermit wird

b= >+g]/ dK Letn (k). (69)
Wi

Da m —m’, d.h. die Grosse (66), als die Ladung der ,freien*
Mesonen interpretiert werden kann, bedeutet m’ + 4 nach Obigem
(vgl. § 4) die Ladung des Proton-Neutrons einschliesslich seiner
gebundenen Mesonen. m' iibernimmt also hier die Rolle der Zahl m
des § 3.

Den Faktor g;% in (53) entmckeln wir gemdiss (34) nach
Potenzen von @);:

g7t = (B Yyt —2(glY )2 @ + - - -, (70)

wo @); = @," gemiss (46) als lineare Funktion der 4" auszudriicken
ist. Diese Entwicklung ist wegen (89) rasch konvergent.

Ordnet man die verschiedenen in (53) bzw. (55) auftretenden
Terme nach fallenden Potenzen von ¢, so ergibt sich folgendes
Bild: In @+ ist der hochste Term von der Ordnung ¢° némlich:

2
_ = p—ikx B = @O,
lsyz zﬂ /de e B(k)/ (71)

Als quadratische Form in den B’ liefert dieses @ einerseits
Diagonalelemente, welche geméss (63) zu den Energie-Eigenwerten
beitragen, andererseits nicht-diagonale Elemente, welche Streupro-
zesse beschreiben. Da die Terme der Ordnung ¢° im folgenden
§ 7 exakt, d. h. ohne die Fehler der stérungsméssigen N#éherung,
behandelt werden, kann hier auf die Berechnung der Matrixele-
mente von @O verzichtet werden. Es sei aber hier schon bemerkt,
dass der Beitrag von @ zur Selbstenergie des Proton-Neutrons
von der Grossenordnung 1/ ist, also dem Betrage nach klein gegen
die ,,Selbstenergie nullter Naherung — ¢g27Y, (vgl. (52), Y, ~1/l,
g*>1).

@+ enthilt ferner Terme der Ordnung g—!, die teils linear in
den B, teils dritten Grades in den 4’ und B’ sind; die linearen
Terme entsprechen (virtuellen) Emissions- und Absorptions-Pro-
zessen der Mesonen, die anderen entsprechen hoheren Prozessen,
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wie z. B. der Bildung eines Zweier-Schauers aus einem priméren
Meson. Die Wirkungsquerschnitte solcher Prozesse sind, da sie
den Faktor g—2 enthalten, klein gegen den Streuquerschnitt.
Von den Termen der Ordnung g—2 in @+ ist namentlich das
Diagonalelement
1

49213Y,%

bemerkenswert, da es den hochsten ladungsabhingigen Term in
der Selbstenergie darstellt, entsprechend dem zu m?2 proportionalen
Term in (24). Wir finden also auch hier wieder die quadratische
Abhingigkeit der Masse von der Ladungszahl: Neutron und Proton
(m" = F }) sind die stabilsten Zustinde, wogegen die Massen der
nichsten Naclrbarzustinde um (2 g212Y,%) - hoher liegen; dieser
Massenzuwachs ist von der Gréssenordnung ¢g—21-1, also nach (39)
klein gegen die Mesonmasse u.

In @- sind die héchsten Terme diejenigen der Ordnung g—!.
Damit werden die Koeffizienten 8, nach (64) von der Ordnung ¢—3
und, wie schon erwéhnt, fiir die hier diskutierten Effekte belanglos.

m' (72)

§ 7. Die Terme ~ g°.

Wir stellen uns jetzt die Aufgabe, die Eigenwerte und Eigen-
funktionen bis auf Terme der Ordnung ¢° hinunter exakt zu behan-
deln, was natiirlich mit der obigen ersten storungstheoretischen
Néherung noch nicht getan ist, da in hoheren Néherungen wie-
derum Terme ~ g¢° auftreten wiirden. Zur Erleichterung der Rech-
nung soll aber hier | <€ 1/u angenommen werden, d.h. wir ver-
nachldssigen alle Terme, die im Limes [ = 0 verschwinden. Dann
kann, wie in § 6, die in U"’ enthaltene Streuwelle ignoriert werden
(U"” = U’), und die in dieser Niherung oben erhaltenen Ausdriicke
fir @+ und @~ sind ohne weiteres verwendbar.

Entwickelt man in den exakten Gleichungen (60), (61) die
a@,, b, nach fallenden Potenzen von ¢, so ist dhnlich wie in § 6
leicht zu sehen, dass die hochsten Terme in a, von der Ordnung g°,
diejenigen in b, von der Ordnung ¢-2 sind. Behélt man also nur
die Terme hochster Ordnung bei, und ersetzt man in diesem Sinne
auch @+ durch @©® (71), so lauten die Gleichungen (60), (61):

t,(By—E) + Sa, @9 =0, b,—0,
[¢]

und entsprechend die Gleichungen (56), (57):
{H+ 09— (E +¢*Y,)} F+=0, F-=0. (73)
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Wir brauchen also nur die Hauptachsentransformation der quadra-
tischen Form &7+ @9 durchzufiihren.

Es ist zweckmaéssig, mit folgender kanonischen Transforma-
tlon zu beginnen:

EECE mwik by, A = — wikb“(k), ] 7
B'(k) =+ o' (k), B'(k) =+ oa’ (k). [
Nach (49), (51) und (71) wird dann:
H' =} [AE (b + opa*a’}
H' =} [ AE (> +opa *a"} 75)

2

PO = lF/deme—”’wla *) |

g | (76)

wo

Die eingestrichenen Freiheitsgrade sind bereits separiert. Das
Hauptachsenproblem von " + @@ fithrt auf folgendes lineare
Gleichungssystem: :

(wg —2%)a" (k)+— I g - de’ ! e @ g (k) =0. (7T7)
w kl &
Hieraus ist ersichtlich, dass fiir jede Eigenfrequenz » der Ausdruck
a”’ (k) - (w2 — v?) wie t % von k unabhingig ist. Setzt man dem-
gemass
a" (k) = a(v) - ! gk (78)

0y (0w — v?)

so ergibt sich durch Einsetzen in (77):

1+r-de’ 1 = 0,

w2 (wg — v?)

Zur Bestimmung der Eigenwerte » haben wir also die Gleichung

1 1
[4% e T ™

Um eine abzihlbare Schar von Eigenfrequenzen zu erhalten,
verwandeln wir wie iblich den kontinuierlichen k-Raum in ein
Punktgitter, indem wir im Koordinatenraum eine Periodizitéts-
forderung gestellt denken. Die Elementarzelle des k-Gitters habe
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das Volumen v, so dass das Symbol f dK -+ durch v-> -+ zu
%

ersetzen ist. Die den verschiedenen Gitterpunkten in V' zuzuord-
nenden w,-Werte mogen so gew#hlt sein, dass keine zwel unter
ithnen gleich sind; diese Wahl ist zulissig, da die Beziehung
o} = p? + k? erst im Limes v = 0 exakt zu gelten braucht. An
Stelle von (79) hat man jetzt:

1 _ 1 (80)

Hop (P —of) ol

wo die Summe iiber die Gitterpunkte in V' zu erstrecken ist. Lésst
man v In dem Intervall zwischen zwei benachbarten w;-Werten
variieren, so varilert die linke Seite von (80) monoton zwischen
+ oo und — o0, 80 dass ein und nur ein »-Wert in diesem Inter-
vall die Gleichung (80) befriedigt!). Es liegt also zwischen je
zwel konsekutiven w,-Werten gerade eine Figenfrequenz v,
ferner noch eine weitere oberhalb des héchsten w,-Wertes
(0pax L2 (82 + 3(w/)2}), da von dort aus die linke Seite von
(80) monoton von co auf 0 abfillt, Diese hichste Eigenfrequenz,
die v, heissen moge, ist, wie man leicht abschétzt, nicht wesentlich
grosser als .., d.h. von der Grossenordnung 1/I.

Die Energie-Eigenwerte der Gleichung (73) sind nun:
EF=—g*Y, + Z@k(“k, + 1) +Zv’_ﬂ(nﬂ” + 3. (81)
% | 7

Die Energie des Grundzustandes (n;', n,”” = 0) unterscheidet sich
von der Nullpunktsenergie des Vacuum-Mesonfeldes um

—g? Yﬁ%(Z%—;wk); (82)

diese Energiedifferenz kann als die Selbstenergie des Proton-Neu-
trons in unserer Ndherung interpretiert werden. Dazu liefert die
Eigenfrequenz v, einen Beitrag der Grossenordnung 1/I, wihrend
die anderen Summenterme in (82) hochstens einen Beitrag der
gleichen Ordnung geben konnen (wegen wp, ~ 1/1). Dieses
Resultat stimmt tibrigens, was die Grossenordnung -anlangt, mit
dem der stérungsmissigen Berechnung nach § 6 iiberein. Verglichen
mit dem Hauptterm ¢ Y, (~ ¢?/l) sind die Terme ~ ¢° unbedeutend.
Es sei daran erinnert, dass die Ladungsabhingigkeit der Selbst-
energie erst in den Termen ~ g—2 zutage trltt

1) Vgl. eine ahnliche Diskussion bei WIGNER, CRITCHFIELD und TELLER,
Phys Rev. 56, 530, 1939. .
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Die zu einer Eigenfrequenz v, gehorige Losung a” von (77)
nennen wir %,(k); also nach (78):

Uy ()= oy ——_gikm, (83)

o (0f —v7)

Da keine Entartung vorliegt, besteht Orthogonalitit, und durch
Wahl von «, kommt:

Zk_:l 'M; (k) % (k) = 62350’- (84)
Die Einfithrung der Normalkoordinaten durch
' (k) = D, (k) alp) , b (k) = Xu} (k) b(p) (85)
Vg »

bewirkt dann die Separation von J’" + ®© und gestattet die Eigen-
funktionen F+ von (73) in bekannter Weise zu bestimmen, worauf
hier nicht eingegangen zu werden braucht.

Bei der Diskussion wollen wir eine einschrinkende Voraus-
setzung machen, die, wie sich zeigen wird, hohe Frequenzen aus-
schliesst. Wir sahen oben, dass ausser », jede Eigenfrequenz v,
zwischen zwel Frequenzen w, liegt, sagen wir: zwischen w, und
®Wy1. s sel nun angenommen, dass », sehr viel ndher bei w,
liegt als bel w,,,:

| vo—w, | €| vy — w44 (86)

Dies wird allgemein der Fall sein, wenn | », — w,, | klein ist gegen
den mittleren Abstand zweier benachbarter w,-Werte, d.1. gegen

_
4w, |p|
(wo | p| = 4/wl — u2); wir fordern demnach:
1 v
; 1 87
4nw, [vp—wa,]>lpl (87)

Um zu sehen, unter welchen Umstdnden diese Bedingung erfillt
1st, spalten wir in der Summe in (80) den grossten Term (k = p)
ab und schreiben, unter Vernachlassigung von Termen, die nach
(86) klein sind:
' 1 1 _ , 1

S af 0 —ol) " 203, — o) +§ wf (0 — ©F)

p

Zur Abschitzung der %” kann man diese durch ein Integral tiber

den k-Raum ersetzen, wo eine schmale Kugelschale (w, —¢& < wy
< w, + ¢) auszulassen ist; dies ist gleichbedeutend damit, dass bei
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der Integration tiber den Pol des Integranden der Hauptwert
des Logarithmus zu nehmen ist; auf diese Weise ergibt sich:

: 1 272 u
v 'Z’ 2 P N
T of (0 —of) &y,

*k+p)
Durch Einsetzen in (80) erhdlt man:

1 v w?2

. — y4
dnw, v,— w, 2al

+au. (88)

Dieser Ausdruck soll nun nach (87) gross gegen | p | sein, was fiir

FARY? (89)

offenbar erfillt ist; dagegen ist |p| = # unzuldssig, da dann
lp| ~ wp, und w}/I' ~ w21 T o, ist. Die Bedingung (87) lasst also
nur Meson-Geschwindigkeiten zu, die klein gegen die Lichtge-
schwindigkeit sind. Dann ist tbrigens in (88) der erste Term
rechterhand klein gegen den zweiten (wegen 1/I" ~1<L1/u), so
dass man setzen kann:

=4l (90)

Von den zur Eigenfrequenz », gehorigen Eigenschwingungs-
komponenten u, (k) (83) ist dann diejenige mit k = p die bei weitem
grosste: '

1 . 2md .
: L R S R — . ipxy » 91
2 (w0, — 1) SORER A

Uy (P) = Up

fiir die tibrigen Komponenten kann man angen#hert schreiben:
1 .
() =, - din (k). (92)

(0§ — wﬁ)

Die dieser Eigenschwingung im Koordinatenraum entspre-
chende Ortsfunktion ist

Ugys = 0 > Uy (K) €% (98)
k

Spalten wir hier wieder den grossten Term k = p ab, und ersetzen
wir die restliche Summe durch ein Integral, so kommt mit (91), (92):

1

(wf — w?)

e-ik(zy— ) | .

Upo = oty |—2 722 e~ip (2,— %)+de .
k

19
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Das k-Integral stellt bekanntlich eine Kugelwelle mit dem Punkt
x; als Zentrum dar, und zwar eine Superposition von auslaufen-
der und einlaufender Kugelwelle, wenn wie oben bei der Inte-
gration tiber den Pol des Integranden der Hauptwert des Loga-
- rithmus genommen wird. Eine auslaufende Kugelwelle allein er-
hilt man, wie bekannt, indem man dem Pol nach emner Seite

ausweicht; dann ergibt sich fir |z, — z,|> 1/|p]:
gy = — D oy lemintag— oy 4 L P AL g

- | s — 4 |

Hier 1st gemiss (89) w, = u gesetzt.

Dass die Eigenschwingungen nicht reine ebene Wellen, son-
dern ebene plus Kugelwellen sind, heisst natiirlich, dass die Me-
sonen durch das Proton-Neutron gestreut werden. Die Amplitude
der Streuwelle entspricht einem Wirkungsquerschnitt der Grosse
4 7fpu?. Da 1/u > l vorausgesetzt wurde, ist diese Streuung wesent-
lich stiirker als die in § 5 erwihnte Streuung, deren Wirkungs-
querschnitt nach der im Anhang 1 mitgeteilten Rechnung von
der Gréssenordnung {2 ist.

Ferner ist zu beachten — dies gilt tibrigens fiir beide Arten
von Streuung —, dass nur die Kigenschwingungen der zweige-
strichenen Freiheitsgrade Streuwellen enthalten, wihrend die ein-
gestrichenen Eigenschwingungen reine ebene Wellen sind. Be-
rechnet man nun fir irgendeinen Zustand des Mesonfeldes die
Ladung e, in einem Punkte s +1:

e = 1(q:ps — @Fpy) = (@ + GIBBY )P — Q" P/,

s0 treten in e, keine Terme auf, welche die Amplitudenquadrate der
Kugelwellen enthalten (d.h. welche zu |z, — ;-2 proportional
sind); wohl gibt es Interferenzterme zwischen ebenen und Streu-
wellen, doch liefern diese im Mittel aber gentigend grosse Raum-
bereiche keinen Beitrag zur Ladung. Dies kann aber nur bedeuten,
dass die Strewwellen im DMittel ungeladen sind, also gleichuviel
positive und negative Mesonen enthalten, gleichgiiltig, welche Ladung
dive Primirwelle trigt. Wenn also ein positives Meson auf ein
Proton oder Neutron auftrifft, ist das gestreute Meson mit gleicher
Wahrscheinlichkeit positiv oder negativ geladen. Diese Moglich-
keit der Streuung unter Ladungswechsel héingt mit der Existenz
der 1sobaren Protonzusténde beliebiger Ladung zusammen: wenn
ein positives Meson sich in ein negatives umwandelt, nimmt die
Kernpartikel zwei Ladungseinheiten auf. Dass die Streuprozesse
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mit und ohne Ladungswechsel sich als gleichwahrscheinlich er-
geben, beruht natiirlich auf der Vernachlissigung des Massenunter-
schiedes der beiden isobaren Endzustinde; wenn dieser Massen-
unterschied mit (w, — u) vergleichbar ist, werden sich quantita-
tive Unterschiede in der Streuwahrscheinlichkeit ergeben.

Man kann den Streuvorgang noch néher untersuchen, mmdem
man solche Zustinde des Mesonfeldes betrachtet, in denen eine
bestimmte Eigenschwingung, die als Superposition einer einge-
strichenen und einer zweigestrichenen Komponente gewonnen wird,
einfach besetzt ist. Wihrend diesen Komponenten einzeln die
Streuquerschnitte 0 bzw. 4 #/u? zukommen, ergibt sich fiir die
Streuung eines positiven oder eines negativen langsamen Mesons der
Wairkungsquerschnitt 2 s/u?, wovon je die Hilfte auf die Streuung
mat und ohne Ladungswechsel entfdllt.

Wie weit sich die Eigenschwingungen mit [p| = u , berechnen
lassen, ohne dass willkiirliche Annahmen iber die Gitterstruktur
des z- und des k-Raumes wesentlich eingehen, miisste eine beson-
dere Untersuchung lehren, auf die hier verzichtet werden soll.
Es sel nur bemerkt, dass die storungsméssige Berechnung nach
§ 6 in der ersten N&herung einen Streuquerschnitt von der Grossen-
ordnung 1/l2w} liefert, was fiir kleine Energien w, nach Obigem
sicher zu hooh liegt; immerhin deutet dieses Ergebnis darauf hin,
dass der Streuquerschnitt mit wachsender Energie abnimmt, und
und zwar bei den héochsten Energien (w, ~ 1/l) vermutlich bis
zur Grossenordnung [2.

II. Die Kernkriiite.
§ 8. Verallgemeinerung der Ansiitze des § 4.

Es mogen jetzt N ruhende Proton-Neutronen vorhanden sein;
ihre Orte, die beliebig wihlbar sind, nennen wir #;, Ty, - * * Ty;
die Gitterpunkte s > N sind von Kernpartikeln frei. Somit
schreiben wir statt (6):

H=H—GY {9 +iz®) p, + (9 —i1®) 9f}.  (95)

s=N .

Die Schrﬁdingerfunktion I, die jetzt 2% Komponenten hat, be-
stimmt sich durch

(H—E)F — 0. L (96)

In Verallgemeinemng der kanonischen Transformation (26),
(27) fithren wir jeweils fiir s < N in der komplexen wy,-Ebene



292 Gregor Wentzel.

Polarkoordinaten ¢,, #; ein. Die neuen Lagenkoordinaten seien:

fir s < N : ¢,, & (hermitisch), fiirs > N :¢,, ¢; (nicht-hermitisch),
und die dazu kanonisch konjugierten Impulse:

fir s< N : py, py, (hermitisch), fiir s> N : p,, p; (nicht-hermitisch).
Die Transformationsformeln lauten:

P, = qseit‘}s , * — qse—iﬂs,
) ) g ) 7
n5=%e'“93(p q Py, yF n::%e%ﬂs(fpS"’q—pﬁs)’ (97)
s . k1
s > N: Ys = Gs giﬁ, wS = (s e_@ﬁ: 7"Csz'pse_iﬁ: ”:zp::e?’.ﬁa

s< N:

WO

; 1.
Po,=Po,— 47 2 (&P —4PY) (s = N), (98)

r>N

'9‘=—Z*9- (99)

S<N

Die Vertauschungsrelationen der alten und neuen Variablen folgen
auseinander; dabei ist wieder wesentlich, dass p,'(s = N) mit den
Vr» Wy, Ty, 7, (r > N) kommutiert. py = ¢ (s s — 9§ 7;) bedeutet
die Mesonladung e, am Punkte s; folglich gilt nach (98):

D\ Po,= e+Ze—Ze / (100)

SN s<N r>N

= (esamtladung des Mesonfeldes.

In den neuen Variablen lautet H° (3):

. 1
H0=1- ( - ’ "’_l) s s
i Vi P Vg, + > 5P

s<N s>N
v ]
+ 2650, ¢ (101)
T8
wo qf = q, fir » < N, und wo

bpg= Cpg€ Is—0r) wenn r = N,s < N,
érs — Crse’i(ﬁ_'ar)= é:?‘, wenn 7 é N’ S > N, (102)
Crs = Cpss wenn r > N,s > N,

H, hangt also jetzt von den Azimutwinkeln &, ab, aber, genauer
gesagt, nur von den Differenzen &, — &,: es besteht Invarianz
gegeniiber der Substitution &, > &; + ¢, # > & + ¢, entsprechend
dem Erhaltungssatz fiir die Gesamtladung.
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In Verallgemeinerung des Ansatzes (29) setzen wir:

F=U(e@'(ms+%fs(s))?5‘s. L )F (103)

s=N q.

Vqs

mit ganzzahligen m, 4 %, wo die 27 Komponenten von F’ nur
noch von den ¢,,q; und von den relativen Azimuten &, — 9,
abhéingen sollen. Dann bedeutet

DV (mg + 17,

$=N
wie aus (100) ersichtlich, die Gesamtladung des Mesonfeldes, und
> (ms + )
sSN
bedeutet die Ladung des Gesamtsystems: Mesonen plus Proton-
Neutronen.

In Berticksichtigung der fiir die isotopen Spinmatrizen giil-
tigen Relationen

(8) 7(8) — ¢ 7(5) ( ) = — 7076 — 97
7070 = 70, 7@ = — 7070 = — i1
findet man durch elementare Rechnung:

o _ _ L@, Lo,
{(# + i19) s + (7O — i1D) 1%} - ¢ = @ < g,
Somit ergibt sich durch Einsetzen von (103) in (96), (95) die fol-
gende Schrodingergleichung fiir F’, welche den fritheren Glei-
chungen (30) entspricht:

te 1
{%Z(P? +fﬂ;—£)+2p2‘ps+26”qqu
8N 45 s>N 7,8
—2G D\t q,—EF'=0, (104)
sSN
wo

/ 1.
P = (Mo + 3 79) + po,— =1 3 (g, p, — g7p}).  (105)

>N

Nach seinem Ursprung entspricht p, der Mesonladung am Punkte
s( = N). _

Wir interessieren uns nun, starke Kopplung voraussetzend,
wieder nur fiir die Losungen mit negativer Selbstenergie, und nach
dem Vorangegangenen werden wir erwarten, eine gute erste Néahe-
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rung zu erhalten, wenn wir alle 28 Komponenten von I einander
gleich setzen und die Terme (p3 — 1)/q% in (104) vernachléssigen:

{1> Npsszchf,sqqu 2G> ¢g—E}F+=0, (106)

s<~N §> s<N

wo F'* eine einkomponentige Funktion ist.

8§ 9. Die Kernkriifte in erster Niherung (Terme ~ g?).

Die zu (33) analoge Translation im ¢-Raume sei jetzt:
¢ = Qs+ G- Z,, q=0F +GIZ,

107
p, — P, pt = P, L)

wOo

Q=9 Py=P},Z,=Z} fors=N. (108)
Zur Beseitigung der linearen Glieder in (106) fordern wir:

SUEsZs + &, Z7) = 2173 fir r < N,

109
St Ze=0 fiir » > N. (109)
Dann wird nédmlich
Zérsqrqs_2GEqs* chsQr Qs_g ENZ (110)
7,8 SN <

Anstelle von (109) schreiben wir nach (102) und (108):
N6 €08 (Fy—) Zo+ Dy § (EPINZ 4 et P 7¥) = [-3

Wal
s=N : s>N
fir r = N, (111)
D s NZ + D Zy =0 fir »r > N. (112)
sSN s>N

Um zundchst die Z, mit s > N zu eliminieren, setzen wir:

Zy=Sa, d9—NZ, (> N) (118)

SN

und fordern, um (112) zu geniigen:

ZC”OC%=——-C¢S fﬁl‘ T>N,S§N. (114)

>N

Die hierdurch definierten «y bestimmen sich wie folgt: Sei

Y, 2% f dK emxs ar) | (115)
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wo Yy, mit dem fritheren Y, (35) tibereinstimmt, so gilt nach (4)
und (1):
26"'3 Y,rls = l_aamﬁ/. (116)

Ferner se1 4 die N-rethige Determinante:
DETR ETRRRRD £7Y
Ao | YuYe Yoy | (117)

.............

und ihre (N — 1)-reihigen Unterdeterminanten seien A,:

0 A
Apgmm ——— 118
Y. (118)
Dann lautet die Losung von (114):
1
Uet = z—rg—;{rde” (8 =N,t> N) : (119)
In der Tat kommt hiermit wegen (116):
- 1
Z Cry Agy = Z Z Ar’s (l~3 67-?’ — Z Cry Y’r’t)
>N r<N t<N
oder wegen >\ 4, Y,, = A -8, (fir t < Ny:
r’<N
— Cpg fir »r > N,
;LVCTt Kgy = ___CT$_|_l_3.. AATS fir r < N, (120)

was fir r > N mit (114) iibereinstimmt. Die o sind wie die Y
reell. Eliminiert man nun mit Hilfe von (113) die Z, (t > N) aus
(111), so kommt:

D\ Zycos (8, — ) - (crs + ) e 0te)) = 178 (r = N),

sEN >N
oder mit (120): ,
N Z,cos ($,— ) A=A (r=N). (121)
S=N -

Diese N linearen Gleichungen dienen zur Bestimmung von

Zy,Zy, -+ Zy, und damit zur Berechnung des konstanten Terms
i (110):
- 92 Z Zs = EO: (122)
SSN

welcher fir.den tiefsten KEigenwert K der Niaherungsgleichung
(106) massgebend ist. Zur Berechnung der hoheren Eigenwerte
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hétte man noch die Hauptachsentransformation der quadratischen
Form in (110) durchzufiihren, was mit derselben Methode wie
fir N =1 (Anhang 1) geschehen kann. Da fiir die Diskussion
der Kernkrafte die Kenntnis des tiefsten Energie-Eigenwertes ge-
niigt, gehen wir darauf nicht ein. Es sei aber bemerkt, dass bel
Vernachlassigung der Mesonstreuung, die im Limes [ = 0 ver-
schwindet (vgl. Anhang 1), die Eigenfunktionen der Gleichung (106)
wie 1m Falle N =1 mit den Vacuum-Eigenfunktionen identisch
werden; insbesondere sind sie in dieser Néherung von den rela-
tiven Azimuten &, — &, unabhingig.

Dagegen ergeben sich die Energie-,,Eigenwerte vermoge (122)
und (121) als Funktionen von cos (#, — &) (r,s=1---N), was
den Austauschcharakter der Kernkrafte bekundet. In der Tat ist
nach (103)

i (Bp—D _
6("' S)le."mf"'ms"'mN—le'"mr+1..-m3—l..-mN’

d. h. der Operator e'®—?% verwandelt die Eigenfunktion F' in
eine andere, deren Ladungsquantenzahlen m,, m; um 1 grosser
bzw. kleiner sind. Dieser ,,Austauschoperator’ wirkt also nicht
etwa auf die i1sotopen Spinindices der Kernpartikel; vielmehr
handelt es sich um einen Ladungsaustausch, der als direkter Uber-
gang eines gebundenen Mesons vom Teilchen r zum Teilchen s
oder umgekehrt gedeutet werden kann. Man bestétigt dies leicht
durch Anwendung der Operatoren p;_, ps, (98), die nach § 8 die
Mesonladungen in den Punkten r,s darstellen; es gilt nédmlich:

i (Dr—08) F — i (Or—,
Py, € Pr=0%) F = @2 (p; 1) F,
ph, 6= [ — ¢ =99 (p, — 1) F.

Die weitere Aufgabe, die Energie als Matrix beztiglich der Ladungs-
quantenzahlen auf Diagonalform zu transformieren, braucht hier
nicht behandelt zu werden. |

Fir die folgende Diskussion bemerken wir noch, dass nach
(115) die Y, fiir » = s alle einander gleich und gleich dem in
§8 5 bis 7 verwendeten Y; (38) sind: :

w

1
— —
¥or— ¥y @nﬁde

wihrend sich fir | @, — z,| > | geméss (40) das Yukawa-Potential
ergibt: '

(128)

1
2
k

1 e—H| zs—2r|

Y, = fir |z, — o, | > 1. (124)

T Az [z,—a
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Fir den Fall, dass N (die Anzahl der anwesenden Proton-
Neutronen) gleich 2 ist, ergibt die Auflosung der Gleichungen (121):
Y 2—Y2 ) (Y, + Yy cos (& —By)

- :( 1 12 1 12 1 2 . 125

ot Y 2 — Y2, cos? (8, — &) )

Die Energie E, = —¢%-2 Z, geht fiir |z, — @3] = 0, Y, =0 In

das Doppelte der frither berechneten Selbstenergie eines Proton-

Neutrons (— g?7Y,) tiber; zieht man die Selbstenergie der beiden

Partikeln von E, ab, so entspricht der Rest ihrer potentiellen
Energie:

Epot =—2 g2 (Zl - Yl)

— Yfz) Yy, cos (9 — ) — Y, Y2, sin? (3 — &)
| Y? — Y, cos? (9, — &)

Fir Abstéande |2; — x,| > 1 (wobei durchaus |z, — 2,| = 1/u sein
darf, sofern 1 <€ 1/u) wird '

Y, 15'31‘—5”2!7_

2
g gy . (126)

und man erhilt aus (126) angenihert:
Epi=—2¢2Y 15 c05 (3 —8y) = — g2 ¥, (68 = + & (=) (127)

Im Limes I = 0 gilt dies sogar exakt, wenigstens was die Terme
~ g% anlangt. Obwohl hier das negative Yukawa-Potential als
Faktor auftritt, weicht unser Ergebnis doch von dem Bekannten
insofern ab, als in (127) die Summe zweier Austausch-Operatoren
auftritt; so wird beispielsweise das Paar ,,Neutron-Proton** durch
den Operator (127) nicht nur in das Paar ,,Proton-Neutron®, son-
dern auch in das Paar ,,negatives Proton-doppeltpositives Proton*
verwandelt. In sehr kleinen Abstianden (|z; —a,| ~1) ist der
Austauschcharakter nach (126) noch komplizierter.

Will man also z. B. die stationdren Zustdnde eines Zwei-
korperproblems (etwa des Deuterons) in tiblicher Weise berechnen,
so fithrt dieses Problem auf unendlich viele Differentialgleichungen
fiir ebenso viele Schrodingerfunktionen, da ja alle Zusténde gleicher
Gesamtladung (m; + my, = m = const.) direkt oder indirekt mit-
einander gekoppelt sind. Dabei ist der Charakter der Differential-
gleichungen von m ganz unabhéngig, da E, in unserer Naherung
von m,, m, nicht abhingt: die Krifte sind ,,]Jadungsunabhéangig®;
fir alle m-Werte ergibt sich das gleiche (kontinuierliche) Energie-
Spektrum der stationdiren Zustdnde. Allerdings gilt dies nur bei
konsequenter Vernachlissigung aller Terme niederer Ordnung in g,
was In praxi unzulissig ist, da zum mindesten die Abh#ngigkeit

*e
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“der Teilchenmasse von der Ladungszahl beriicksichtigt werden
sollte, welche nach (72) in den Termen der Ordnung g—2 zutage
tritt. Die hier erhaltene Ladungsunabhingigkeit der Krafte be-
ruht also ganz wesentlich auf der Annahme ¢> 1. Wiirde man
versuchsweise den Kraftansatz (127) auch auf den Fall ¢ = 1 an-
wenden (obwohl er nur fiir g > 1 abgeleitet ist) und E, als klein
gegen den Massenunterschied von Proton und doppeltpositivem
Proton betrachten, so wiirde sich die Kopplung mit den hoheren
Isobaren als belanglos erweisen, d. h. (127) wire praktisch gleich-
bedeutend mit einem nur zwischen Proton und Neutron wirken-
den Austauschpotential, wie es auch die Yukawa’sche Theorie fiir
geladene Mesonen (ohne ,,Neutretto‘‘-Feld) fir g <1 in erster
storungsmissiger Naherung liefert. :

Fir den Fall, dass die Partikelzahl N > 2 1st, nechmen wir
einfachheitshalber an, dass die Partikelabstinde r alle > [ seien,
und entwickeln nach Potenzen von Ilfr. Da dann nach (123), (124)
die Ausserdiagonalglieder der Determinante A (117) wie l/r klein
gegen die Diagonalelemente sind, ergeben sich fiir 4 und fir die
Unterdeterminanten 4,; folgende Entwicklungen:
4 =Y¥(1-Y? Z’Ys?s, + e
Ayp=Y¥1(1 Y 2> Y2 +--9)

’ e T ; (128)

(8,8 1)
A, = Y"f—z =Xt ¥72 E Y. Yoo +--9) (r + ).
(8’2;1', s)
Hier laufen alle Summationsindices nur zwischen 1 und N. Ent-
wickeln wir entsprechend auch Z,:
Zi=Z20+4+Z/ +Z2)" +---, (129)

so ergibt sich aus den Termen hichster Ordnung (~ YY) in den
Gleichungen (121):

Z = Y,, (130)
und durch schrittweises Weitergehen zu héheren Naherungen:
Bl = 2 Y. cos (&, —3), (131)

(ss- T)
erf . 1 "“'Z st + Z yyrs Yss’ CO8 ('&, — 19'3) COS (19'3 == 19'5,')
}71 § §, &

(=1 (s 8 %8

— Z Yrs Yss’} g TER (182)

s, 8
(8F7,8 37,8 +5)

Fir N = 2 stimmt dies mit der Entwicklung von (125) iiberein.
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In der Energie E, (122) entsprechen die Terme hichster Ordnung
im I/r der Selbstenergie der N Partikeln; zieht man diese ab, so
bleibt fiir die potentielle Energie:

Epw=V'+V"4---

VI - 922 ZT’ I g2 2 Y'rs COS (79'7- — 19'3) , ? (133)
’ A

V”:_gzzzr”; e

V' 1st die Summe der Wechselwirkungsenergien der einzelnen Par-
tikelpaare geméss (127). 7’ enthilt (in den dreifachen Summen)
Terme, die von den Koordinaten dreier Partikel abhiingen; diese
stellen ,,Dreikorperkrafte’* dar. In V' treten auch Vierkorper-
krafte auf, usf., Diese n-Korperkrifte sind aber, verglichen mit
den Zweikorperkraften, klein wie (I/r)»~2; im Limes [ = 0 bleibt
V' allein iibrig.

§ 10. Die Selbstenergie von N Kernpartikeln; Terme ~ g°.

Die Berechnung der Energie-Eigenwerte bis zur Ordnung g°
kann im Prinzip ebenso durchgefiihrt werden, wie dies in § 7 fiir
den Fall N = 1 geschah. Beziiglich der abstandsabhingigen Terme
ergibt sich dabei nichts wesentlich Neues: zu (133) treten nur
Potentialterme #hnlichen Charakters hinzu, die aber gréssenord-
nungsmissig um den Faktor ¢g—2 kleiner sind; wir gehen hierauf
nicht ein. Merkwiirdig ist aber, dass die Selbstenergie, wenn man
die Abstéande aller Partikelpaare unendlich gross werden lasst,
im Limes nicht proportional der Partikelzahl N wird. Die Giiltig-
keit dieser Aussage diirfte kaum auf den Fall starker Kopplung
beschrénkt sein. Da es sich hier um eine Frage handelt, die trotz
des problematischen Charakters aller Selbstenergie-Betrachtungen
von prinzipieller Bedeutung sein konnte, sei der Sachverhalt kurz
geschildert.

Fithrt man fiir den Fall N > 1 die gleichen Uberlegungen
durch, die in § 7 zu den Formeln (73) bis (80) fiihrten, und zwar
fiir so grosse Partikelabstédnde, dass alle nicht-diagonalen Y, ver-
nachlassigt werden kénnen, so erhilt man als Gleichung fiir die
Bestimmung der Eigenfrequenzen v, anstelle von (80):

1 1 1
;w;j(vz;wg) T ol sz

mit der gleichen Bedeutung von I" (vgl. (76)). Der neue Faktor
1/N? stammt daher, dass das in @©® (75) quadratisch auftretende

(184)
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Integral jetzt eine Summe von N Termen an Stelle eines einzigen
enthilt, so dass nach Vernachlassigung der Interferenzterme
(Y, mit r+s) ' mit N2 multipliziert erscheint.

Fir die Losungen der Gleichung (134) gilt qualitativ wieder
das in § 7 Gesagte: zwischen zwel benachbarten w,-Werten gibt
es eine und nur eine Lésung »,, und eine letzte v, liegt oberhalb
des hiochsten w,-Wertes (w,,,,). In quantitativer Hinsicht ist aber
die Abhéngigkeit der », von N offenbar eine komplizierte, nament-
lich fiir p = 0. Bildet man nun, in Verallgemeinerung von (81)
und (82), die Energie des Grundzustandes des mit N Proton-
Neutronen gekoppelten Mesonfeldes, bzw. ihren Uberschuss iiber
die Nullpunktsenergie des Vacuumfeldes:

Fo(N) = —¢2Y, - N + 1 S’v,, 2% (185) -

so wird der hier erhaltene Term der Ordnung g0 kemeswegs zu N
proportional sein. Kine rohe Abschitzung fiir N =1 und N = 2
ergibt, dass F,(2) kleiner als das Doppelte von K (1) ist, und
zwar ist 2 Ey(1) — E,(2) von der Grossenordnung 1/I. Sofern also
Ey(1) als die wirkliche Selbstenergie des Protons gelten darf,
wiirde dies heissen, dass das Wechselwirkungspotential zweier Par-
tikel mit wachsendem Abstand nicht gegen Null geht, sondern
einem negativen Wert der Ordnung 1/l zustrebt. Bei Vorgingen,
in denen sich die Partikelzahl dndert, wie bei der Paar-Erzeugung,
miisste sich eine derartige Nicht-Additivitat der Selbstenergie be-
merkbar machen.

Diese Schwierigkeit besteht indessen nur, solange man nur
wenige Kernpartikeln als existent annimmt. Im Limes N - oo
ndhern sich ndmlich die », mit p + 0 asymptotisch den Losungen
der Gleichung _

> 1 _ o, (136)

7 op (v — of)

d. h. sie streben gegen konstante Grenzwerte; andererseits wichst
vy liber alle Grenzen, wie daraus zu ersehen ist, dass die entspre-
chende Losung der Gleichung (186) » = oo 1st; sobald aber v¢>> @y,
‘kann man statt (134) schreiben:

1 1 1 1

Wy wf ol W

— ‘
Yoo B W

oder:

§
nea- N, wo a=(ToS—Y= (@) T¥y)h= ¥y} ~ 1.
r Dk

Dies gilt, wie man leicht sieht, bis auf Terme, die fir N = oo
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verschwinden. Somit geht Ey(N) fiir grosse N asymptotisch in
eine lineare Funktion von N iiber: ‘

o

E, (N) = — (g2 Y, — 5) N + const.Y). (187)

Die additive Konstante kann man durch eine Subtraktionsvor-
schrift beseitigt denken. Somit entspricht die Theorie, was die
Terme ~ g¢° anlangt, wenigstens im Limes N - oo den gewohnten
Vorstellungen.

§ 11. Diskussion.

Bevor wir daran gehen, die Hauptergebnisse der vorstehenden
Rechnungen im Hinblick auf die aktuellen Probleme der Meson-
theorie kurz zu diskutieren, sei nochmals an die zugrunde gelegten
Voraussetzungen erinnert. Neben der Beschrinkung auf geladene
Mesonen mit Spin 0 war wesentlich die Annahme ,,starker Kop-
plung® zwischen Mesonen und Kernpartikeln, was — in dem
hauptsédchlich interessierenden Fall ,,Gitterkonstante ! < Meson-
Comptonwellenlénge 1/u¢“ — bedeutete, dass der Kopplungspara-
meter g= G1# gross gegen (ul)—% sein sollte (vgl. (39)). Ubrigens
1st es diese Voraussetzung in erster Linie, die uns hindert, in den
obigen Formeln die Gitterkonstante I, die die Rolle einer Ab-
schneideléange spielt, gegen null gehen zu lassen, es sei denn, dass
man gleichzeitig g wie I-% gegen oo gehen liesse, was aber zu
unendlich grossen Kernkréften filhren wiirde. Da jedoch das Pro-
blem des Grenziibergangs !> 0 mit dem speziellen Ziel dieser
Arbeit nichts zu tun hat, betrachten wir die Lénge [ hier als eine
gegebene, nicht verschwindende Konstante.

Obwohl dem Proton-Neutron a priori nur zwei Zusténde mit
den Ladungen 0 und + 1 zugeschrieben wurden, besitzt es, wie
wir gezeigt haben, bei starker Kopplung mit dem Mesonfeld sta-
tiondre Zustinde mit beliebigen Ladungszahlen Z=0, 41, £+2,---.
Dies ist so zu verstehen, dass das Proton-Neutron imstande ist,
Mesonen dauernd an sich zu binden, und zwar ohne dass damit
notwendig die Anwesenheit freier Mesonen verkntipft wire. Die
Masse bzw. die Selbstenergie der verschiedenen ,,Proton-Isobaren
ergab sich ndherungsweise als eine quadratische Funktion der

Ladungszahl Z : E — const. + ¢(Z — 3)%,
wo £ ~g~2[71 1m Falle l = 1/u (vgl. (72)).

1) Setzt man diese Entwicklung nach fallenden Potenzen von N fort, so
lautet der néchste Term: «/4N. Die Reihe bricht also keineswegs beim konstanten
Glied ab.
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Trotz oberflachlicher Ahnlichkeit darf man diese aus der
Yukawa’schen Theorie abgeleiteten Aussagen nicht verwechseln
mit der kiirzlich von HerrLer?) veroffentlichten Hypothese, nach
welcher den Kernpartikeln a priori, d.h. unabhéngig von der
Kopplung mit dem Mesonfeld, energetisch hohere Zustdnde mit
den Ladungswerten — 1 und + 2 zugeschrieben werden. Kine
solche Hypothese greift tief in die Grundlagen der Yukawa’schen
Theorie ein und fithrt dementsprechend auch zu ganz anderen
Folgerungen, so z. B. hinsichtlich der Mesonstreuung, die sich viel
kleiner ergibt infolge gewisser, aus der Theorie der Lichtstreuung
bekannter Interferenz-Effekte. Gerade dieser Umstand hat IErr-
LER zur Aufstellung seiner Hypothese veranlasst, da der grosse
Streuquerschnitt der urspriinglichen Yukawa-Theorie mit den Ex-
perimenten nicht vertriglich war. Die Unterschiede der Heitler’
schen gegeniiber der Yukawa’schen Theorie treten am deutlichsten
zatage, wenn man dem Proton unendlich viele A-priori-Zusténde
zuschreibt, derart dass alle ganzzahligen Ladungen vorkommen
und die Masse von der Ladungszahl unabhéngig ist (was natiirlich
nur nidherungsweise zutreffen konnte); koppelt man das skalare
Mesonfeld mit einem so beschaffenen ,,Proton‘’, so lidsst sich, wie
wir im Anhang zeigen (vgl. Anhang 2), das statische Mesonfeld
exakt abseparieren, und die Mesonstreuung am ruhenden (unend-
lich schweren) Proton verschwindet identisch (bei beliebiger Kopp-
lungsstarke, nicht nur in stérungsmissiger Naherung)?).

Wenn unsere auf Grund der urspriinglichen Yukawa- Theorie
fir den Fall starker Kopplung gewonnenen Aussagen, trotz des
Auftretens hoherer isobarer Zustéinde, ganz anders lauten, so beruht
dies natiirlich auf den andersartigen Eigenschaften dieser Isobaren,
die aus je einem Proton-Neutron und gebundenen Mesonen zu-
sammengesetzt sind. Freilich wird eine qualitative Ubereinstim-
mung zwischen beiden Theorien bestehen hinsichtlich solcher Fol-
gerungen, die wesentlich nur auf der Ezistenz der isobaren Zu-
stdnde beruhen. Dies gilt beispielsweise von der f-Instabilitét der
hoheren Isobaren, wobei zu bemerken ist, dass die Lebensdauer
unserer zusammengesetzten Isobaren durch diejenige des Mesons
eindeutig bestimmt ist. Was den Austauschcharakter der Kern-
krifte anlangt, treten in beiden Theorien Austauschoperatoren
auf, die der Moglichkeit der Umwandlung in héhere Isobare Rech-
nung tragen (vgl. § 9). Auch gehen beide Theorien darin einig,
dass ein Meson bei der Kernstreuung seine Ladung umkehren

1) Nature 145, 29, 1940.
2) Auf die Verallgemeinerung fiir vektorielle Mesonen gehen wir hier
nicht ein.



Zum Problem des statischen Mesonfeldes. 303

kann, indem die Kernpartikel zwei Ladungseinheiten aufnimmt
oder abgibt (§ 7). Diese Ubereinstimmung erstreckt sich aber
keineswegs auf die quantitativen Verhiltnisse.

Die hier fiir starke Kopplung (¢ > 1) erhaltenen Aussagen
konnen natiirlich nicht unmittelbar mit Erfahrungsdaten ver-
glichen werden. Dies gilt namentlich von den Kernkriften, von
denen wir gezeigt haben (§ 9), dass sie bei zunehmendem ¢ asymp-
totisch wie g% anwachsen. Anders der Streuquerschnitt, der nach
§ 7 nicht iber alle Grenzen anwichst, sondern einem konstanten
Grenzwert zustrebt, nimlich dem Wert 2 7/u? im Falle langsamer
Mesonen (wovon je die Hilfte auf die Streuung mit und ohne
Ladungswechsel entfillt, falls der Massenunterschied der betel-
ligten Proton-Isobaren vernachlissigbar ist). Dieser Grenzwert des
Streuquerschnitts liegt jedoch sehr hoch, mindestens 2 Zehner-
- potenzen iber dem fir mittlere Energien (~ u) beobachteten
Querschnitt?), und es wire daher fiir die Beurteilung der Yukawa-
schen Theorie wichtig, zu untersuchen, etwa durch Fortsetzung
der Entwicklung nach fallenden Potenzen von g, ob die Theorie
eine geniigend starke Abnahme des Streuquerschnitts beim Uber-
gang von hohen zu mittleren Kopplungsstéirken erwarten ldsst.
Auch miissten Mesonen mit Spin 1 und mit Spinkopplung in
Rechnung gesetzt werden. Indessen ist zuzugeben, dass wir keinen
Anhaltspunkt gefunden haben, der eine einfache Erklirung der
schwachen Streuung auf Grund der unmodifizierten Yukawa’schen
Theorie erhoffen ldsst?), so dass in dieser Hinsicht eine Hypothese
wie die oben erwidhnte Heitler’sche einen grossen Vorzug besitzt.

Anhang 1 (zu § 5).
Die Eigenschwingungen U .

Die Hauptachsentransformation von F" (42) erfordert die
Auflésung der Gleichungen:

zr Cre Usrt — 92 [TT’»’ =) | (’r = ], g 1). (138)

Wegen des Fehlens des Freiheitsgrades s =1 sind die Losungen
nicht exakt ebene Wellen; wir schreiben sie als Fourier-Integrale:

U/ = V4 [aKy(k) et | (189)

1) J. G. WiLsoN, Proc. Roy. Soc. 174, 73, 1940.

%) Der Heisenberg’sche Einwand gegen die Storungstheorie der Streuung,
dass sie die Riickwirkung der Streuwelle auf das streuende Teilchen ausser acht
lasst (ZS. f. Phys. 113, 61, 1939), kann gegen unsere Rechnung nicht erhoben
werden.
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Beachtet man, dass ‘nach (1) und (4)
Z' Crs€ik % = — c,q €k L )2 ik
so erhdlt man durch ]%insetzen von (139) in (138):
[AK y(k) {— ¢,y étn+ (0 —v?)eiter} = 0

far alle » £ 1- Multiplikation mit e-**% und Summation nach r,

unter Ausschluss von r = 1, ergibt bei nochmaliger Verwendung
von (1) und (4): . ‘

[aK y (k) {ey~(of + 03—v9) Y E 1L Vo () (0f—v2) = 0. (140)

- Der hier auftretende Koeffizient ¢’ = ¢;; — (0@ + wf — v?) enthilt
nur Terme, die durch das Fehlen des Freiheitsgrades 1 bedingt
sind; es liegt daher nfuhe, ihn als kleine Grésse zu behandeln.
Ware er null (wie im Falle der Eigenschwingungen U’ in § 5),
so wiren die Losungen von (140): » = w,, y (k') = 6(k' — p), wo
p ein beliebiger Wellenzahlvektor im Periodizitatsbereich V' ist.
Wir versuchen daher den Nidherungsansatz:

=g, ()= o(k —p) +y'(k), (141)
wo y' wie ¢ klein ist, derart dass Terme ~y’c¢" vernachlassigt
werden koénnen. Dann folgt aus (140) fir k' £ p:

Y (k) = — - AL ot
v w — w?

) »
und mit (141) und (139):

T - y 1 C 2
U, (p) = V-1leipas— etpxl.__I_/__ [dK ‘11 wL2 el (s11). (142)

Die Eigenschwingung U," besteht also aus einer ebenen und einer
Streuwelle mit Zentrum in z;. Durch die Ausfiihrung der Inte-
gration nach |k| (Umgehung des Pols [k| = |p| in der komplexen
Ebene) kann bekanntlich erreicht werden, dass die Streuwelle nur
eine auslaufende Kugelwelle enthdlt. Fir |p| < #/l (die Kugel
|p| = const liegt ganz im Periodizitidtsbereich ¥) erhilt man in
bekannter Weise, sofern |z, — 2;|> 1/|p|:

U (p) =V~ |eivss — i - (148)

etinl lzg—z1] 9 52 ]
— (e — ®2)}.
Ifs— Jf'll V ( 11 p)l
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Die Amplitude der Streuwelle entspricht einem Wirkungsquer-
schnitt

2 2

0= 42T o= Ca—opr (44

(Vgl. hierzu aber § 7: der Streuquerschnitt eines positiven oder
eines negativen Mesons ist = @/2.) Fir ¢;; ergibt sich aus der
Definitionsgleichung (4) durch Ausfiihrung der Integration tiber
den Periodizititskubus V:

2 2
0y = (—7—;—) + u?  also ¢, — o) = (?—) — p2.

Hiermit wird
Q=T [1— (nip)] (1p1<5). (145)

Der Streuquerschnitt ist also von der Grossenordnung [2.

- Es bleibt noch zu beweisen, dass je zwel Eigenschwingungen
(142) aufeinander orthogonal sind, auch wenn sie zur gleichen
Eigenfrequenz w, gehéren. In der Tat ergibt sich aus (142), wenn
entsprechend unserer Rechengenauigkeit die in den Streuwellen-
Amplituden quadratischen Terme vernachlissigt werden, mit Hilfe
von (1):

X US*p)US () —d(p—p) =

8

1 . c 0
— gW-na .| _11___________de L5 )
14 o { +(w2—w wf — 0k
(Cu"w ___de 1 — Wf )]
wp?‘,-wwp wk—wg

Der hier iibrigbleibende Ausdruck muss aber, da fir w, f w, die
Orthogonalitit aus den Definitionsgleichungen der Eigenschwin-
gungen folgt, die Grossenordnung der vernachlidssigten Terme
haben, und dies gilt offenbar auch im Limes o, = w,, was zu
beweisen war,

20
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Anhang 2 (zu § 11).
Zur Hypothese der Zustinde hoherer Ladung.

Wir beschrinken uns wieder auf den Fall des skalaren gela-
denen Mesonfeldes und benutzen zu seiner Beschreibung dieselben
Bezeichnungen wie bisher (vgl. § 2). Es befinde sich wiederum
eine (unendlich schwere) Kernpartikel am Orte x,, doch soll diese
jetzt — ohne Mesonen — nicht nur 2, sondern unendlich viele
Ladungszustidnde gleicher Masse besitzen; die Ladungszahl n
durchléuft also alle ganzen Zahlen. Ferner sei angenommen, dass
hinsichtlich der Wechselwirkung mit dem Mesonfeld alle Ladungs-
zusténde gleichberechtigt sind: der Kopplungsparameter soll von
der Ladungszahl » unabhéngig sein. An Stelle von (9) hat man
dann die Gleichungen:

(H*—E)F,—G (1P1Fn+1+’4”ana1) =0 (n =0,+£1,-), (146)
wo I, die Schrodingerfunktion des Mesonfeldes bedeutet fiir den

Fall, dass sich die Kernpartikel im Ladungszustand » befindet.
Zur Losung der Gleichungen (145) benutzen wir den Operator:

2n " .
1 ' —GBY Y, (n e Pt a et
- An=_[d<pe'”"‘pe A AR YT o

2xm .

0

Die Y, haben hier dieselbe Bedeutung wie in § 5, d.h. es gilt
gemdss (36):
>y Y= 138,4,

Hieraus folgt, bei Verwendung der Hamiltonfunktion (8):
[HY, E Y,z ]=1 Z Cray Yo=11"3y}.
§ T8

Auf Grund dieser Formel beweist man leicht die Identitét:
HO - Ay — G(py Aniy + ¥i A y) = A, (HO— g2 Yy),  (148)
wo gemdss (7) g% = G2%I3. Mit dem Ansatz |
F,=F®™=A4, .+f (m = ganze Zahl) (149)
kommt demnach: |

(HO — B) B — G (w, By + vf Fyo)

n+1

= Ay {HO—(B+ g Y1)} £ = 0,

womit die Zurtckfihrung auf das bekannte Problem des unge-
koppelten Mesonfeldes:

{H°*— (E+g2Y)}f=0 (150)
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erreicht ist. Wird also auf irgendeine Eigenfunktion f des ,,Va-
cuumfeldes’* der Operator 4,_,, angewendet, wo m eine beliebige
ganze Zahl ist, so resultiert daraus eine Figenfunktion des Pro-
blems (146). Alle Energie-Eigenwerte liegen um g?Y; tiefer als
im Vacuumfalle. Wird diese Selbstenergie — ¢2Y,(Y, ~ 1/I) sub-
trahiert, so kann man auch ohne weiteres den Grenziibergang
I > 0 vollziehen. Ferner_beweist man leicht:

Z_/l it == Oigigrs oy g = Oty (151)
woraus die Orthogonahtat und die Vollstindigkeit der angegebenen
Eigenfunktionen folgt.

Der Operator A, lisst sich durch eine Besselfunktion vom
Index n darstellen, worauf aber nicht eingegangen werden soll.
Dagegen benutzen wir eine bekannte Rekursionsformel der Bessel-
funktionen, die sich durch partielle Integration nach ¢ in (147)
ergibt:

iGBSY (4, — 7 A, — —nd,. (152)

Kommutiert man néamlich den Operator der totalen Mesonladung
€= @E (Wsﬂs - "/"j ﬂ:)
8

mit 4,, so ergibt sich gerade der Ausdruck linkerhand in (152);
man erhilt demnach:

e, 4,] = —nAd,. | (153)

Wendet man also den Operator e auf eine der Eigenfunktionen
(149) an, so kommt: -

eF™ = e A, o f= Ay_m(—n+ m+ &)f,

und unter Hinzufiigung des der Kernladung n entsprechenden
Terms:

(e+mn)F™ = A, ., (m+e)f. (154)

Wiahlt man nun fir f solche Vacuum-Eigenfunktionen, welche die
Mesonladung e diagonal machen, so ist offenbar im Schema der
Eigenfunktionen I die Gesamtladung e + n (Meson- plus Kern-
ladung) diagonal, und ihre Eigenwerte sind gleich den Eigenwerten e
des Vacuumfeldes, vermehrt um die ganze Zahl m. Somit bedeutet:
m offenbar die Ladung des Kerns einschliesslich seiner gebun-
denen Mesonen.

Der Operator A,_, bringt die Verzerrung zum Ausdruck,
wealche das Vacuumfeld durch die Anwesenheit der Kernpartikel
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erfahrt. Die rdumliche Abhéingigkeit dieser Verzerrung wird durch
die Koeffizienten Y bestimmt, die nach (40), ausser in der nich-
sten Umgebung des Kerns (|x, — 2;| ~ 1), die Ortsabhingigkeit
des Yukawa-Potentials aufweisen. Dieses nimmt aber mit wachsen-
dem Abstand exponentiell ab und verschwindet praktisch fiir
|2 — 2| > 1/u, so dass dort auch die Verzerrung des Feldes auf-
hort :

Ay 26y, FWof-d,, fir |z,— 2> 1u.  (155)

Betrachtet man beispielsweise eine Vacuum-Eigenfunktion f,
welche der Anwesenheit eines einzigen Mesons vom Impuls k ent-
spricht, so stimmt das durch die Funktion F™ (mit beliebigem )
beschriebene Mesonfeld in grossen Abstdnden vollig mit dem ent-
sprechenden Vacuumfeld iiberein, und das heisst natiirlich, dass
das Meson an einem Kern der hier betrachteten Art nicht gestreut
werden kann. Damit ist der Beweis fiir die im § 11 angefiihrte
Behauptung erbracht.

Falls N Protonen der betrachteten Art anwesend sind, ist der
Operator 4,_,, in (149) durch ein Produkt von N entsprechenden
Operatoren zu ersetzen. Fiir die Energie des Grundzustandes
ergibt sich dann:

E0= _Ngzyl_gzzyrsors, (156) :
(r+5) :

wo Y,, die gleiche Bedeutung wie in § 9 hat (vgl. (115)), und wo
0,; den Austauschoperator bedeutet, der die Ladungsquanten-
zahlen eines Partikelpaars m,, m, in m, + 1, m; — 1 verwandelt
{r, s beziehen sich hier nur auf Proton-besetzte Gitterpunkte). Die
Kriafte entsprechen also hinsichtlich ihrer Ortsabhingigkeit exakt
den Yukawakriften, wihrend ihr Austauschcharakter den beiden

Moglichkeiten der Umwandlung in benachbarte Isobarenpaa,re
Rechnung triagt (vgl. §§ 9 und 11).

Ziirich, Physikalisches Institut der Universitit.
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