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Zum Problem des statischen Mesonfeldes

von Gregor Wentzel, Zürich.

(21. VI. 40.)

Inhalt: Die Yukawa'sche Theorie der Wechselwirkung von Mesonen und
Kernpartikeln wird für den Fall starker Kopplung diskutiert, und zwar am
Beispiel des skalaren geladenen Mesonfeldes. Es wird ein Verfahren angegeben, die
Eigenwerte und Eigenfunktionen des statischen Problems in Form einer
Entwicklung nach fallenden Potenzen des Kopplungsparameters g zu bestimmen.
Eine kurze Diskussion der Ergebnisse im Hinblick auf aktuelle Probleme der
Mesontheorie findet sich im § 11.

§ 1. Problemstellung.

Gegenstand dieser Arbeit ist ein Mesonfeld in Wechselwirkung
mit ruhenden Protonen und Neutronen. Das Problem des
statischen Mesonfeldes ist bekanntlich viel verwickelter als das
entsprechende elektromagnetische Problem: die exakte Aufspaltung
des Maxwell'schen Feldes in statische und nicht-statische Anteile
lässt sich beim Mesonfeld nicht nachahmen, und zwar beruht
dies, wie Stueckelberg1) zuerst gezeigt hat, auf der Nichtver-
tauschbarkeit der im Wechselwirkungsoperator auftretenden Spin-
und isotopen Spinmatrizen. Diese Nichtvertauschbarkeit muss
aber, da auf ihr der Austauschcharakter 'der Yukawa-Kräfte
beruht, als ein durchaus wesentlicher Zug der Yukawa'schen
Theorie angesehen werden. Ein besonders charakteristischer Unterschied

zwischen Meson- und Lichttheorie ist bekanntlich der, dass
die Mesonen, im Gegensatz zu den Lichtquanten, an ruhenden
(unendlich schweren) Teilchen gestreut werden können.

Als mathematische Methode zur Untersuchung des „meso-
statischen" Feldes ist bisher neben der Störungsmethode, welche
nur schlecht konvergierende Entwicklungen liefert, namentlich die
der Quanten-Elektrodynamik entlehnte Methode der kanonischen
Transformationen2) herangezogen worden; doch liessen sich auch
so Entwicklungen nach steigenden Potenzen des Kopplungspara-

Phys. Rev. 54, 889, 1938, CR. 207, 387, 1938.
2) Stueckelberg, I.e.; Stueckelberg und Patry, Helv. Phys. Acta 12,

300, 1939; Moller und Roseneeld, Kgl. Danske Vidensk. S., Math.-fys. Medd.
XVII, 8.
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meters aus den genannten Gründen nicht ganz vermeiden, so dass
der Fortschritt gegenüber dem Störungsverfahren zweifelhaft
erscheint1). Jedenfalls liegt ein Mangel der bisherigen Methoden
darin, dass ihre Anwendbarkeit prinzipiell auf den Fall schwacher
Kopplung zwischen Mesonen und Kernen beschränkt ist. Es
schien daher wünschenswert, auch den umgekehrten Grenzfall,
denjenigen starker Kopplung, zu untersuchen, zumal sich daraus
die Möglichkeit ergeben könnte, interpolatorisch über das Zwischengebiet

mittlerer Kopplungsstärken einiges zu erfahren. Da die
elektrodynamische Analogie als Wegleitung hier ausser Betracht
fällt, erhebt sich zunächst die Frage nach einer geeigneten
Approximationsmethode für den Fall starker Kopplung. Eine solche
Methode soll im Folgenden entwickelt werden, und zwar am
Beispiel des geladenen skalaren Mesonfeldes (Ladung ± 1, Spin 0).

§ 2. Bezeichnungen und Ansätze.

Da die folgenden Rechnungen sich grossenteils im Raum der
Lagenkoordinaten abspielen — der Übergang zum Impulsraum
erfolgt erst an späterer Stelle —, empfiehlt es sich, den kontinuierlichen

Koordinatenraum durch ein Punktgitter ersetzt zu denken,
und zwar wählen wir ein kubisches Gitter mit der Gitterkonstanten
l, d. h. die kartesischen Koordinaten der Gitterpunkte sollen ganze
Vielfache von l sein. Den die Gitterpunkte numerierenden Index
schreiben wir immer als unteren Index, so dass fs den Wert der
Funktion / am Punkte s bedeutet. Der Übergang zum Impulsraum

vollzieht sich gemäss der Formel

/(fc) 2/fe-***.
s

wo kxs das skalare Produkt aus Wellenzahl- und Ortsvektor
bedeutet. Die Funktion f(k) ist im fe-Raum periodisch; der Perio-
dizitätskubus hat das Volumen

» 3

V.
I

*) M0LLER und Roseneeld (1. c.) vertreten die Meinung, dass zwischen den
rechnerischen Schwierigkeiten, die durch die erwähnte Nichtvertauschbarkeit
bedingt sind, und den prinzipiellen Divergenzschwierigkeiten der Quantentheorie
der Felder nicht klar unterschieden werden könne. Sie schlagen daher vor, über
die Eigenschaften der Mesonen und über den Wechselwirkungsansatz derart zu
verfügen, dass gewisse von der Nichtvertauschbarkeit herrührende Effekte
möglichst belanglos werden. Gegen diesen Gesichtspunkt kann eingewendet werden,
dass er auf eine künstliche Bagatellisierung der Unterschiede zwischen Mesontheorie

und Elektrodynamik hinausläuft, die unseres Erachtens dem Sinn der
Yukawa'schen Theorie widerspricht.
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Die Fourier-Entwicklung von / lautet dann:

fs=~fdKf(k)Àv
wo dK das Volumelement des fc-Raumes bedeutet und die
Integration über einen Periodizitätskubus V zu erstrecken ist. Wir
wählen hierfür denjenigen Kubus, dessen Mittelpunkt mit dem
Ursprung des /c-Raumes zusammenfällt, dessen Ecken also die
Koordinaten ±jifl haben. Es sei ein für allemal verabredet, dass
sämtliche im Folgenden vorkommenden /c-Raum-Integrale über
diesen speziellen Kubus V zu erstrecken sind. Für die Umrechnung

von Impuls- auf Koordinatenraum und umgekehrt sind
folgende Formeln bequem:

~JdKeih^s-xr)=òrs, I^<'(i'-4)ï)=^_i'); (1)

dabei ist ò(k) im Kubus V gleich der 3-dimensionalen Dirac'schen
Deltafunktion, während sie sich ausserhalb desselben periodisch
wiederholt.

Da alle Impulsraum-Integrale endlich sind, solange man auf
den Grenzübergang l -> 0, V -> oo verzichtet, erübrigt sich eine
weitere Abschneide-Vorschrift.

Die Hamiltonfunktion des skalaren geladenen Mesonfeldes im
„Vacuum" (d. h. ohne Kopplung mit Kernpartikeln) lautet nach
Pauli und Weisskopf1), wenn ein kontinuierlicher Koordinatenraum

zugrundegelegt wird:

fdX{7i*7i + ip*(fi2 — A) xp}.

Hier ist ti zu xp und n* zu y* kanonisch konjugiert, d. h. es gilt :

\n (x), xp (x')] [n* (x), xp* (x')] —iô(x-x'),
während die anderen Funktionenpaare kommutieren. (i ist die
Mesonmasse. (Massen und Energien seien in reziproken
Längeneinheiten gemessen, derart, dass das Wirkungsquantum 2 n wird.)
Zur Darstellung im Gitterraum setzen wir:

l3l27t(xs) n„ l3l2xp(xs) xps,
sodass

[nr, xps] [n*, xp*] — idrs. (2)

Helv. Phys. Acta 7, 709, 1934.
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In der Hamiltonfunktion ist Axp, genommen bei xr, ersetzbar
durch

H/2 2 V» • -rr f dK (- k2) eik<xr- Xs)

da dieser Ausdruck im Limes l -> 0, V -> oo in

——3fdKjdXAxp(x)ei1c(xr-A Axp(xr)

übergeht1). Folglich ist die obige Hamiltonfunktion zu ersetzen
durch

H° 2 n*ns Y- S Crs V* Ws, (3)

mit

r,„„
V
1 /•

-y j dKa>leiklxT-*.), (4)

cal (jl2 + k2. (5)

Wird nun das Mesonfeld mit ruhenden Proton-Neutronen
gekoppelt, die sich in gewissen Gitterpunkten Xj befinden mögen,
so lautet die Hamiltonfunktion:

H=H«-G?i {(r« + »t») xp, + (tW - ir(|)) ^), (6)
ö)

wo rto, tö) die bekannten Matrizen des „isotopen Spins" sind :

Ti (l o) ' T2 (» o) ' T3 (o -1) '

Den Koeffizienten G wählen wir einfachheitshalber reell und positiv.

Da er die Dimension i_3/2 hat, setzen wir

G=t*l2g; (7)

der Wert der reinen Zahl g kann als Mass für die Stärke der Kopplung

gelten.
Wir suchen nun für den Fall starker Kopplung (g ^> 1)

Näherungslösungen des wellenmechanischen Problems

(H-E)F=0, (8)

wo die Schrödingerfunktion F als Funktion der xps und der xp*

gedacht ist und wo die na, n* die den Vertauschungsrelationen

x) Eine andere Möglichkeit bestände darin, die Differentialquotienten in
Aif durch Differenzenquotienten zu ersetzen, wodurch das Spektrum der
Eigenfrequenzen von H" (3) in bekannter Weise abgeändert wird. Das hier gewählte
Vorgehen empfiehlt sich durch grössere Einfachheit der Schreibweise.
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entsprechenden Differentialoperatoren bedeuten. F hängt ausserdem

von den isotopen Spinindices ab, entsprechend dem Umstand,
dass sich jede der schweren Partikeln / im Neutron- oder im
Protonzustand befinden kann.

Für den zunächst zu behandelnden Fall, dass das Mesonfeld
nur mit einer einzigen schweren Partikel (am Ortea^) in Wechselwirkung

steht, können wir die Gleichung (8) für die zweikompo-
nentige Funktion F ersetzen durch die simultanen Gleichungen

(H»-E)FN-2GxpxFP 0 1

(H°-E)Fp-2GxptFs= 0,| W

wo sich FN auf den Neutron-, FP auf den Protonzustand bezieht.

I. Ein einziges Proton-Neutron bei xx.

§ 3. Vorläufige Abschätzung der Energie-Eigenwerte.

Wir nehmen vorläufig an, die Gitterkonstante l sei gross
gegen die ComptonWellenlänge des Mesons:

^>1. (10)

Selbstverständlich kann eine so starke „Abschneidung" nichts
physikalisch Interessantes liefern; trotzdem beginnen wir mit
diesem einfachen Sonderfall, weil wir daraus den Ausgangspunkt
für die späteren allgemeineren Betrachtungen gewinnen werden.

Die durch (10) bedingte Vereinfachung des Problems besteht
darin, dass annähernd

crs fl2 ¦ ò„ (11)

wird, weil in (4) k2 gegen /j,2 im ganzen Integrationsbereich
vernachlässigbar wird ; in dieser Näherung ist also die Hamiltonfunktion (3)
bzw. (6) in Beiträge der einzelnen Gitterpunkte separiert. (Die
Mesonen können als in ihren Gitterpunkten ruhend angesehen
werden.) Die Lösung der Gleichungen (9) ergibt sich durch den
Ansatz :

E Ex + E2 + E3 + ¦ ¦ ¦

Fn FNX (xpx, ft) ¦ F2 (xp2, xp*) ¦ Fs (xps, xp*) ¦ ¦ ¦

FP FPX (xpx, xp*) ¦ F2 (xp2, xp*) ¦ Fs (xp3, xpt) ¦ ¦ ¦

(n*Tix + n2xptxpx-Ex)FNX-2Gxpx-FPX= 0 1

(%X*ix + fjAxpl xpx - Ex) FPX-2Gxp*-FNX=0 J

(ti*tis + [i.2W*y>s-Es)Fs=0 (**1).

(12)

18
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Die Schrödingergleichungen für F2,FZ, • • ¦ sind einfach diejenigen
harmonischer Oszillatoren, so dass wir nur noch die auf den Punkt 1

bezüglichen Gleichungen (12) zu lösen haben.

In der komplexen y^-Ebene führen wir Polarkoordinaten ein:

Vl q.eii>! y,* q e-i » (g> 0 reell, g > 0). (13)

Der Differentialoperator n* nx ist, bis auf einen Faktor — 1/. (vgl.
hierzu § 4), der Laplace'sche Operator in der xpx-Ebene:

* 1 f 1 d2 _ 1 / d2 1\|

Die Koordinate # wird absepariert durch den Ansatz:

FNX ei <»+*> * • -L. F' (g), FP1 e< <m-« '•4rF' (ö), (15)
Vq Vi

wo»ij:| aus Stetigkeitsgründen ganzzahlig sein muss. Da nach
Pauli und Weisskopp der Operator

es i (xps 7is — xp* rc*) (16)

die Mesonladung am Punkte s darstellt, und vermöge (13)

1 0
ex= i (xpx 7ix — xpt ti*) i d&

wird, bedeutet m+\ bzw. m—\ die Mesonladung im Punkte 1,

je nachdem, ob sich die schwere Partikel im Neutron- oder
Protonzustand befindet; d. h. m + \ bedeutet die gesamte im Punkte 1

sitzende Ladung. Durch Einsetzen von (13), (14), (15) in (12)
kommt :

1 / d2 m (m+1)
2 + fi2 q2 - Ex F' - 2 Gq F" 0

4 V dq2 q

1 f d2 +fn{m-l^+/itqt_E,F„_2GqF,= Q

(17)
Al\ + ll2n2_-p]AF" — QGnF'=().4\ dq2 q2

Zur Abschätzung der Eigenwerte Ex setzen wir weiter („WKB-
Methode"1)):

I a ¦ e J + Konj.
/pd

(18)

F"=b-e'J"^ + KoTij.,

l) Vgl. den entsprechenden Ansatz zur Lösung der 4-komponentigen Dirac-
schen Wellengleichung bei Pauli, Helv. Phys. Acta 5, 179, 1932.
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wo die q-Abhängigkeit von a und b in erster Näherung vernachlässigt

wird. Dies in (17) eingesetzt:

l(P>+n^) + ,2q2~Exy-2Gq-b~04

1

4 V '

q2

m(m+iy

m(m-Ay
p2 + ""v" -) + ci2 q2 - E^b - 2 Gq ¦ a 0.

(19)

Die Lösbarkeitsbedingung dieser linear-homogenen Gleichungen
lautet :

,2
p2 4Ex-niYr-4[a2q2±-\/fn^ + 64G2q2. (20)

Entsprechend dem doppelten Vorzeichen der Wurzel in (20)
ergeben sich zwei Klassen von Lösungen. In jedem Falle besitzt
p2 als Funktion von q ein Maximum; um die tiefsten Eigenwerte
jeder Klasse zu bestimmen, genügt es, die Kurve p2(q) in der
Nähe des Maximums jeweils durch eine Parabel zu approximieren,
im Sinne einer Näherungslösung durch kleine Schwingungen1).

Als Bedingung für starke Kopplung gelte hier:

G2^>fA. (21)

Nach (7) und (10) ist dann

Diskutieren wir unter diesen Umständen zunächst die Lösung mit
der positiven Wurzel in (20), so ist leicht zu sehen, dass in der
Nähe des Maximums von p2 die m2 enthaltenden Terme sehr
klein gegen die übrigen sind, sofern nicht m ^> 1 ist. Schliessen
wir den letzteren Fall aus, so erhält man demnach für diese Klasse
bei starker Kopplung:

G2 2/ G-2
p2 m 4(EX - p2 q2 + 2 Gq) 4 (ex + aL - ^

\ F2 ii2

Dieser harmonische Oszillator, dessen Ruhelage um G/(i2
verschoben ist, hat die Energie-Eigenwerte :

Ex —®L+/l(n + i), wo n= 0,1,2, •¦•. (23)
lai

i) p2 geht gegen — oo für q >- oo ; desgleichen für q —>- 0, ausgenommen
für m +j J im Falle der positiven Wurzel, wo p2(0) + oo. Das Verhalten
von p2 bei kleinen q ist aber für die hier interessierenden negativen Energie-Eigenwerte

(vgl. (23)) bedeutungslos, wie man daraus erkennt, dass (17) für kleine q
einer kraftfreien Bewegung entspricht, die nur positive Energie-Eigenwerte besitzt.
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Hier stellt der Term — G2/fi2 eine negative Selbstenergie des
Proton-Neutrons dar, und dazu addiert sich die Energie von n Mesonen
im Punkte xx. Nach (21) ist die Selbstenergie dem Betrage nach
gross gegen die Mesonmasse fi. Zu beachten ist, dass die Eigenwerte

in dieser Näherung von der Ladungsquantenzahl m nicht
abhängen, so dass jeder Zustand, auch der Grundzustand n 0,
bei beliebiger ganzzahliger Ladung mit der gleichen Energie
vorkommt. Offenbar heisst dies, dass durch Bindung geladener
Mesonen an das Proton-Neutron Zustände desselben entstehen können,
die eine beliebig hohe ganzzahlige Ladung tragen und die alle die
gleiche bzw. fast die gleiche Masse besitzen. In höherer Näherung
wird natürlich die m-Entartung aufgehoben; berücksichtigt man
die m2 enthaltenden Terme in (20) in erster Näherung, so ergibt
sich statt (23) die korrigierte Formel:

Ei —% + li (n + i)+-f~-m2. (24)

Die Zustände mit gleichem n (z. B. n 0) erhalten somit eine
quadratische Abhängigkeit der Energie oder Masse von der Ladungszahl:

die kleinsten Massen haben Neutron und Proton (ni A- i);
die nächstbenachbarten Isobaren, nämlich negatives Proton und
doppelt-positives Proton (m ^= f haben bereits eine um ^4/2 G2

höhere Masse, wobei dieser Massenzuwachs aber klein gegen die
Mesonmasse ist (vgl. hierzu § 11).

Was die Eigenfunktionen in diesem Fall (starke Kopplung,
positive Wurzel in (20)) anbetrifft, ist es für das Folgende wichtig
zu bemerken, dass sich aus (19) für das Amplitudenverhältnis b/a
der Wert + 1 ergibt, bis auf Terme der Ordnung (fis/G2)2. Bis
auf Fehler dieser Ordnung gilt also nach (18) :

F" F'. (25)

Insbesondere folgt hieraus, dass in jedem der betrachteten stationären

Zustände die Kernpartikel als solche — ohne Mesonfeld —
mit gleicher Wahrscheinlichkeit im Proton- wie im Neutronzustand

anzutreffen ist.
Die Diskussion der Lösungen mit der negativen Wurzel in (20)

vereinfacht sich andererseits dadurch, dass bei starker Kopplung
der Term (— 4(i2q2) in (20) in der Nähe des Maximums von p2
vernachlässigt werden kann. Es erübrigt sich, auf diesen Fall
näher einzugehen, denn es zeigt sich, dass die Selbstenergie in
den betreffenden Zuständen positiv ist; ihre Grössenordnung ist
672/3 Ç^/A- Die Energieniveaus dieser Klasse liegen also um mehr
als p • G2/(iz höher als die Niveaus (24), und sie können deshalb
für unsere Zwecke ausser Betracht bleiben.
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§ 4. Allgemeinere Methode.

Wir verzichten jetzt auf die vereinfachende Annahme (10) :

die Gitterkonstante l darf wieder beliebig klein gewählt werden.
Dann muss natürlich die fe-Abhängigkeit von col m (4) berücksichtigt

werden; die Matrix crs ist jetzt nicht-diagonal, und folglich

ist H nicht von vorneherein separiert.
Um zunächst, wie in § 3, die Winkelkoordinate & abzusepa-

rieren, führen wir die folgende kanonische Transformation durch:

Wi qxeiê, f* qxe~iê, xps qsei0, xp* q*e~^ (s* 1) ]

nx \er^(px -pA, 7i*=\ei6(px+~p
\ 2i ¦ I \ qx

7is pse-iê, a* p*é* (S+-1),

(26)

wo
Ps-i^'dsPs-qtpt) (27)

(der Akzent am Summenzeichen bedeutet, dass der Term s 1

auszulassen ist).
Hier sind qx,&,px,p9 reelle Variable bzw. Hermitische
Operatoren. Entsprechend den Vertauschungsrelationen gilt für die
Kommutatoren kanonisch konjugierter Paare:

[Pi, 2i] [P»> #] [p.. 3.1 [vt, iti — *,

während alle anderen Paare kommutieren. Man überzeugt sich
leicht, dass hieraus die richtigen Vertauschungsrelationen für die
xps, xp*, 7is, ti* folgen, wobei zu beachten ist, dass alle xps, xp*,

tcs, ti*, ausgenommen diejenigen mit s=l, mit p# (27) kommutieren.

Da i (xpx7ix — xp*7t*) Pq', bedeutet p^' die Mesonladung
am Punkte 1; ferner ist

Pn * 2 (Ws ™s — W*™t) 2 e>
s s

die Gesamtladung des Mesonfeldes.
Durch Einsetzen von (26) in H° (3) erhält man:

H°==i(^rPl2V5i + ^W2-i)) + 2>*ps + 2^2?2s; (28)
Wïl Hl I * r,t

wo qf qx. Da die Variable & in H° nicht vorkommt, befriedigt
man die Gleichungen (9) durch den zu (15) analogen Ansatz:

2?
•

e<G»+i)#. J—F', FP=ei(-m~i'>9-^=F", (29)
V3i V2i
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wo F' und F" nicht mehr von &, sondern nur noch von qx, q2, q* ¦ ¦

abhängen, und wo m + 1 wieder ganzzahlig ist. Wegen

P»FN =(m+i) FN, pêFp =(m-\) FP

bedeutet aber jetzt m + \ bzw. ro — \ die gesamte Ladung des
Mesonfeldes für den Fall, dass die schwere Partikel sich im Neutronbzw.

Protonzustand befindet; d.h. m + \ ist die Gesamtladung
des Systems: Proton-Neutron plus ganzes Feld. Die Gleichungen
(9) lauten nach Einsetzen von (28) und (29) :

[i(ft, + ~TÌ)+2' PtPs+^crsq:qs-E\F'-2 GqxF"=0
I \ 2l / s r,s I

k(px2 +V^) +%p*ps+Zcrsq;qs-E\F''-2GqxF'=0,
(30)

mit

p' (m + i) - i2' (qsPs - qt P.
S

p" (m — |) — i 2' (qs Ps - qtP.,*m*\
(31)

Es sei nun wieder „starke Kopplung" vorausgesetzt; was
damit genau gemeint ist, wird noch anzugeben sein. Um für diesen
Fall Näherungslösungen von (30) zu finden, werden wir im
Anschluss an § 3 versuchsweise annehmen, dass die Lösungen auch
unter den jetzigen allgemeineren Bedingungen (l beliebig) in 2

Klassen zerfallen, von denen die eine wegen relativ hoher
Selbstenergie nicht interessiert, während die andere dadurch charakterisiert

ist, dass erstens die Terme (p'2—i)/qx2 und (p"2 — i)/qx2 in
(30), welche den Termen m(m Yz 1)/(Z2 in (17) analog sind, in niederster

Näherung vernachlässigbar sind, und dass zweitens gemäss
(25) in dieser Näherung F" F' gesetzt werden darf. Mit anderen
Worten: wir lösen zunächst die einfachere Gleichung

{iPi2 + YlPtPs Y- y,crs q*qs -2Gqx-E}F=0 (32)
s r,s

und werden zu zeigen haben, dass mit F' F" F Näherungslösungen

von (30) erhalten werden, die in einem Verfahren
sukzessiver Approximation als Ausgangslösungen dienen können.
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§ 5. Erste Näherung.

Zur Lösung von (32) führen wir eine kanonische Transformation

durch, die einer Translation im g-Raum entspricht:

qs=Qs + GP-Ys, q* Q* + Gl* ¦ Y* j

Die Ys sind noch zu bestimmende Konstanten. Die Formeln
sollen auch für s 1 gelten, doch sind Qx, Px wie auch Yx reell,
und es muss gelten:

qx=Qx + GPYx^0. (34)

Für Ys wählen wir:

(2tc)sJ coi

Dann gilt nämlich nach (4) und (1) :

21crsYa=-^-ÔrX=l-sôn, (36)

und folglich mit (33) und (7):

^,crsq*qs — 2 Gqx
r,s

=^crAQ* + GlsY:)(Qs + GPYs)-2G(Qx + GPYx)
r,s

=^icrsQÏQs + g2(PyicrsY:Ys-2Yx)
r,s r,s

-yicrsQ:Qs-g2Yx.
r, s

Die in den Q*, Qs linearen Terme haben sich weggehoben. Somit
lautet jetzt die Schrödingergleichung (32) :

{Yff-(E + g2Yx)}F Q, Ì

M= ïPx2+^P*sPs + YiCrsQ*rQ,. I

« r s '

(37)

r, s

Yx ist nach (35) reell und positiv

Yx
(2\t[dK-\: (38)

A)6 J col

Da der Fall l ^>l/ß in § 3 bereits behandelt wurde, können wir
hier l~l/,u voraussetzen; dann ist Yx offenbar von der Grössenordnung

lß. Um die Gleichung (37) in ähnlicher Weise wie in
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§ 3 lösen zu können, müssen wir nun fordern, dass die Ungleichung
(34) die Oszillatoramplitude Qx in ihrer Bewegungsfreiheit nicht
merklich einschränkt. Da der natürliche Spielraum der
Oszillatoramplituden von der Grössenordnung /j,-i ist, genügt es also zu
fordern: GlaYx ~ Gl2^> p-i, oder nach (7):

^X^)-1^!. (39)

Für spätere Zwecke sei bemerkt, dass für | xs — xx | ^> l die
/c-Integration in (35) statt über V ohne wesentlichen Fehler über
den ganzen fc-Raum erstreckt werden kann, so dass Ys in das
Yukawa-Potential übergeht :

1 0-P I xs-x,\
Ys —— für | xs — xx | > l. (40)

~t JX Xg 3C-1

Bei der Integration von (37) ist auf die Realität von Qx zu
achten. Wir setzen deshalb

Qi=Qi, Qs=Qs' + iQs", Qt Qs'-iQs" (**i)l (m
PX=PX', P.=HP;-iP."), Pt HPs'+iPs") (**i),| [ '

wo die gestrichenen und zweigestrichenen Q, P hermitisch und
wo gleich indizierte Q und P zueinander kanonisch konjugiert
sind. Beachtet man, dass die durch (4) definierten crs aus
Symmetrie-Gründen reell sind, so erhält man

(42)

9£ Of' + Of",
xH j 2_j rr s T 2j ^rs Vr Vs

s r, s

Jl 4 Z-i s
~^~ 2-1 Crs ^r Vs '

s r,s

in fff" fehlen die Summenterme r 1 und s 1.

Es sind nun die Hauptachsentransformationen der quadratischen

Formen in Of' und Of" durchzuführen. Was Of' anbetrifft,
sind die Eigenschwingungen der betreffenden linear gekoppelten
Oszillatoren natürlich ebene Wellen. Wir schreiben:

XJs'(k) V-iëk**; (43)

dann gilt nach (4) und (1)

2)crs<J/(fc) ft>!<J/(fc), (44)
S

fdKUr'*(k)Us'(k) òrs, yiüs'"(k)Us'(k')^a(k-k'). (45)
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fff' wird also separiert durch die Einführung von Normalkoordinaten

gemäss

Qs'=^T=-fdKUs'(k)A'(k), Ps'=V2jdKUs'*(k)B'(k), (46)

wo
A'*(k) A' (- k), B'* (fc) B' (- fc), (47)

[B'(k),A'(k')] -iô(k-k'). (48)

In der Tat findet man mit (44) bis (47):

Of'= ifdK{B'*B' + colA'*A'}. (49)

Die Hauptachsen transformation von fff" ist komplizierter
wegen des Fehlens des Freiheitsgrades s 1. Als Eigenschwingungen

ergeben sich hier ebene Wellen plus Kugelwellen, die einer
Streuung der Mesonen am Gitterpunkte 1 entsprechen. Da sich
später zeigen wird, dass zu dieser Streuung noch eine weitere,
stärkere Streuung hinzukommt, ist das genaue Aussehen der
Eigenschwingungen weniger wichtig, und wir stellen daher ihre
(approximative) Berechnung in den Anhang (Anhang 1) zurück.
Das Spektrum der Eigenfrequenzen ist dasselbe wie in Of', d. h.
es gilt

2' crsUs" (fc) col Ur" (fc) (r +-1). (50)
s

Mit den zu (45) bis (48) analogen Formeln, wo nur überall die
einfachen durch doppelte Akzente zu ersetzen sind (dabei ist
Ux" 0), kommt dann:

Of" \ J dK{B"*B" + col.A"*A"}. (51)

Wenn nun ausser dem a>Raum auch der fc-Raum durch ein
Punktgitter ersetzt wird, etwa vermöge einer Periodizitätsforde-
rung für den aj-Raum, so ergeben sich die Eigenwerte der Schrö-
dingergleichung (37) zu

E=-g2Yx+^cok(nk' + nk" + 1), (52)
k

wo nk', nk" (2g 0) die Mesonenzahlen in den verschiedenen
Eigenschwingungen bedeuten. Auf die Eigenfunktionen F brauchen
wir hier nicht einzugehen. Nach (52) ist die Selbstenergie des
Proton-Neutrons —g2Yx, also negativ und dem Betrage nach
von der Grössenordnung g2/l. Die Ladungsquantenzahl ro kommt
in dieser Näherung überhaupt nicht vor.
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§ 6. Störungsrechnung.

Wir kommen jetzt zu den Gleichungen (30) zurück, wobei die
bisher vernachlässigten Terme

/r/2 _ 1 ^"2 _ 1

\9—rr1=&, \V —=*" (53)
2i 2i2

nunmehr mitgenommen werden sollen. Der durch (37) definierte
Operator Of schreibt sich in den alten Koordinaten :

x- i Pi2 + 2 Ptps + 2 ßrs qt qs -2Gqx + g2 yx -,

s r,s

daher lauten die Gleichungen (30) mit der Bezeichnung (53)

{Of- (E + g2Yx) +2Gqx+ 0'}F'-2 Gqx F" 0

{Of- (E + g2Yx) +2Gqx+ &"} F" - 2 Gqx F' 0,

oder, mit
F' + F" F+, F'-F" F-, (54)

i(&'+0")= <P+, 1(0' — &")=&-: (55)

{Of- (E + g2 Yx) + 0+} F+ + 0- F- 0 (56)

{Of- (E + g2Yx) +4Gqx+ 0+} F- + <p- F+ 0. (57)

F+, F~ entwickeln wir nach den Eigenfunktionen der
Gleichung (37):

{Of-(Eß + g2Yx)}Fe=0, (58)

F+ ^aeFe, F- ^beFe. (59)
e q

Dabei sollen die Fe orthogonal und auf 1 normiert sein. Einsetzen
in (56), (57) ergibt, wenn die Matrixelemente wie üblich durch
Doppelindices angezeigt werden:

aAEa - E) + 2 ae **, + 2 &e *7* ° (60)
e e

K(Ea-E) +^ibe(4GqXea+0U) +^ae0;a=O. (61)
Q Q

Diese noch exakt gültigen Gleichungen sollen nun zunächst
nach einer Störungsmethode annähernd gelöst werden. In nullter
Näherung soll natürlich nach Obigem F' F", also F~ — 0 sein,
während F+ gleich einer bestimmten der Funktionen Fg gesetzt
werden soll. Für die erste Näherung setzen wir also an:

aa ôaT + «.„, ba =ßa, E=Er + er, (62)
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und man erhält aus (60) in bekannter Weise:

er=0tr, *a =A-=r0ta (0-+-T). (63)
ET — E„

In (61) ist aber zu beachten, dass, im Gegensatz zu 0+ und 0~,
der Term Gqx als gross zu gelten hat, da er schon in der nullten
Näherung (§ 5) eine entscheidende Rolle spielte. In der Tat ist
nach (34) qx¥2 GP Yx, bis auf Terme der Ordnung | Qx j ~ /i,-i,
die wegen (39) klein sind. Setzen wir also in (61) zur Abschätzung
Gqx= g2Yx, GqlQa= g2Yx- òQa, so ergibt sich mit (62):

ß • 0~Pa
4g2Yx + Ea-ET "

Nun ist aber nach (52) \Ea — Et\ ~ cok < l-1 ~ Yx, also wegen
g2^>l: \Ea — Er\<^g2Yx. (Hohe Vielfache von a>k kommen
nicht in Betracht, da die entsprechenden Matrixelemente von 0~
erheblich kleiner sind.) Daher:

ßa --\---0-. (64)
4g2Yx

Da überdies, wie sich sogleich zeigen wird, die Matrixelemente 0T~
klein sind gegen die wesentlichen Matrixelemente von 0+, sind
die ßa gänzlich belanglos verglichen mit den a„ (63), d.h. es gilt
auch in dieser Näherung F~ 0, F" F'.

Zur Berechnung der Matrizen 0+, 0~ nach (55) und (53)
schreiben wir die durch (31) definierten p', p" auf Grund der
Transformationsformeln (33) und (41) neu an:

P,,)= (m±i) -2' (&'Ps" -Qs" Ps')- GP%> YSPS". (65)Pis s

Bei der Darstellung von Qs" und Ps" durch die Variablen A", B"
wären hier streng genommen die durch (50) definierten
Eigenschwingungen 77" zu verwenden. Wir wollen hier eine geringfügige

Vernachlässigung in Kauf nehmen, die darin besteht, die
in 77" enthaltene Streuwelle wegzulassen, d. h. 77" 77' zu setzen;
da nämlich die Amplitude dieser Streuwelle nach Anhang 1 zu l
proportional ist, verschwindet der damit begangene Fehler im
Limes l —>¦ 0. In dieser Näherung ist es auch gleichgültig, ob bei
Summationen über die Gitterpunkte der Punkt 1 mitgenommen
oder weggelassen wird. Man erhält dann:

2' (Qs Ps" - Qs" PA ^JdK {A'B" - A" B'} (66)
S

GP^'YsPs"^g- 1/töV- fdK-\e-»*>B"(k). (67)
c. V [Aj TX) J COt.•k
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Der Operator (66) ist mit fff ÏH' + Of" vertauschbar und kann
daher durch Wahl geeigneter Eigenfunktionen Fe diagonal gemacht
werden; seine Eigenwerte sind ganzzahlig. Zur Abkürzung schreiben

wir:

m-JdK{A'B"-A"B'}=m', (68)

wo ro' wie ro halbzahlig ist; hiermit wird

V',\ K ± *) + 9 T/tö^w fdK~e-"°*> 73"(fc). (69)
p j y (2^)3 j «ii

Da m —m', d.h. die Grösse (66), als die Ladung der „freien"
Mesonen interpretiert werden kann, bedeutet m' + \ nach Obigem
(vgl. § 4) die Ladung des Proton-Neutrons einschliesslich seiner
gebundenen Mesonen, ro' übernimmt also hier die Rolle der Zahl m
des § 3.

Den Faktor q~2 in (53) entwickeln wir gemäss (34) nach
Potenzen von Qx:

q-2 (gli Yx)-2-2(gli Yx)~* ¦ Qx + ¦ ¦ -, (70)

wo Qx Qx gemäss (46) als lineare Funktion der A' auszudrücken
ist. Diese Entwicklung ist wegen (39) rasch konvergent.

Ordnet man die verschiedenen in (53) bzw. (55) auftretenden
Terme nach fallenden Potenzen von o, so ergibt sich folgendes
Bild : In 0+ ist der höchste Term von der Ordnung g°, nämlich :

[dK— e-i**B"(k)/*=0Q>. (71)
J co?PYX2 2(2?r)3 'Jk

Als quadratische Form in den B" liefert dieses <£(0) einerseits
Diagonalelemente, welche gemäss (63) zu den Energie-Eigenwerten
beitragen, andererseits nicht-diagonale Elemente, welche Streuprozesse

beschreiben. Da die Terme der Ordnung g° im folgenden
§ 7 exakt, d. h. ohne die Fehler der störungsmässigen Näherung,
behandelt werden, kann hier auf die Berechnung der Matrixelemente

von 0(°' verzichtet werden. Es sei aber hier schon bemerkt,
dass der Beitrag von <Z>(0> zur Selbstenergie des Proton-Neutrons
von der Grössenordnung l/l ist, also dem Betrage nach klein gegen
die „Selbstenergie nullter Näherung" —g2Yx (vgl. (52), Yx~lß,
</2>l).

0+ enthält ferner Terme der Ordnung g-1, die teils linear in
den B", teils dritten Grades in den A' und B" sind; die linearen
Terme entsprechen (virtuellen) Emissions- und Absorptions-Prozessen

der Mesonen, die anderen entsprechen höheren Prozessen,
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wie z. B. der Bildung eines Zweier-Schauers aus einem primären
Meson. Die Wirkungsquerschnitte solcher Prozesse sind, da sie
den Faktor g~2 enthalten, klein gegen den Streuquerschnitt.

Von den Termen der Ordnung g~2 in 0+ ist namentlich das
Diagonalelement

• ro'2 (72)
4g2PYx2

{ '

bemerkenswert, da es den höchsten ladungsabhängigen Term in
der Selbstenergie darstellt, entsprechend dem zu ro2 proportionalen
Term in (24). Wir finden also auch hier wieder die quadratische
Abhängigkeit der Masse von der Ladungszahl: Neutron und Proton
(m' qr i.) sind die stabilsten Zustände, wogegen die Massen der
nächsten Nachbarzustände um (2 g2PYx2)~1 höher liegen; dieser
Massenzuwachs ist von der Grössenordnung g~2l'1, also nach (39)
klein gegen die Mesonmasse /n.

In 0~ sind die höchsten Terme diejenigen der Ordnung gr1.
Damit werden die Koeffizienten ßa nach (64) von der Ordnung gr3
und, wie schon erwähnt, für die hier diskutierten Effekte belanglos.

§ 7. Die Tenne —gr°-

Wir stellen uns jetzt die Aufgabe, die Eigenwerte und
Eigenfunktionen bis auf Terme der Ordnung g° hinunter exakt zu behandeln,

was natürlich mit der obigen ersten störungstheoretischen
Näherung noch nicht getan ist, da in höheren Näherungen
wiederum Terme ~ g° auftreten würden. Zur Erleichterung der Rechnung

soll aber hier l <^ 1/fi angenommen werden, d. h. wir
vernachlässigen alle Terme, die im Limes l 0 verschwinden. Dann
kann, wie in § 6, die in 77" enthaltene Streuwelle ignoriert werden
(77" TJ'), und die in dieser Näherung oben erhaltenen Ausdrücke
für 0+ und 0~ sind ohne weiteres verwendbar.

Entwickelt man in den exakten Gleichungen (60), (61) die
aQ, be nach fallenden Potenzen von g, so ist ähnlich wie in § 6

leicht zu sehen, dass die höchsten Terme in ae von der Ordnung g°,
diejenigen in be von der Ordnung gr3 sind. Behält man also nur
die Terme höchster Ordnung bei, und ersetzt man in diesem Sinne
auch 0+ durch <Z><°> (71), so lauten die Gleichungen (60), (61):

aa(Ea-E)+^aQ0fl=O, ba=0,
Q

und entsprechend die Gleichungen (56), (57) :

{Of+ 0W-(E + g2Yx)} F+ 0, F-=0. (73)
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Wir brauchen also nur die Hauptachsentransformation der quadratischen

Form 0f+ <Z>(0) durchzuführen.
Es ist zweckmässig, mit folgender kanonischen Transformation

zu beginnen:

A' (fc) - — V (fc), A" (fc) - - — b" (fc),
mk 0)k

B'(k) + coka'(k), B"(k) + coka" (fc).

Nach (49), (51) und (71) wird dann:

Of' \j'dK{b'*b' + cola'*a'}

Of"= ifdK{b"*b" + co$a"*a"}

0(0) %r I jdK— e-i**' a" (fc)
k

(75)

wo

r=-^ L_ („±\ (76)
(2 n)3 PYX2\ l • x '

Die eingestrichenen Freiheitsgrade sind bereits separiert. Das
Hauptachsenproblem von 0f" + <Z>(0> führt auf folgendes lineare
Gleichungssystem :

(col-v2)a"(k) + — eil'*> ¦ fdK'— e~ik'^ a" (¥) 0. (77)
cok J cak

Hieraus ist ersichtlich, dass für jede Eigenfrequenz v der Ausdruck
a"(fc) • (eo| — v2)mke~ikXi von fc unabhängig ist. Setzt man
demgemäss

a" (fc) «(,)• —4 * é " XY (78)
mk (»I — n

so ergibt sich durch Einsetzen in (77) :

Zur Bestimmung der Eigenwerte v haben wir also die Gleichung

fdK - — (79)J col (v2-col) r K

Um eine abzählbare Schar von Eigenfrequenzen zu erhalten,
verwandeln wir wie üblich den kontinuierlichen fc-Raum in ein
Punktgitter, indem wir im Koordinatenraum eine Periodizitäts-
forderung gestellt denken. Die Elementarzelle des fc-Gitters habe
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zudas Volumen v, so dass das Symbol dK • • • durch v • *T • •

J k
ersetzen ist. Die den verschiedenen Gitterpunkten in V zuzuordnenden

cok-Werte mögen so gewählt sein, dass keine zwei unter
ihnen gleich sind; diese Wahl ist zulässig, da die Beziehung
m\ Z*2 + k2 erst im Limes v 0 exakt zu gelten braucht. An
Stelle von (79) hat man jetzt:

V - —, (80)
xL-1 coi (V vT'

wo die Summe über die Gitterpunkte in V zu erstrecken ist. Lässt
man v in dem Intervall zwischen zwei benachbarten «>ft-Werten
variieren, so variiert die linke Seite von (80) monoton zwischen
+ co und — co, so dass ein und nur ein v-Wert in diesem Intervall

die Gleichung (80) befriedigt1). Es liegt also zwischen je
zwei konsekutiven cok-Werten gerade eine Eigenfrequenz vv,
ferner noch eine weitere oberhalb des höchsten a)j.-Wertes
(comax!Z! (,1t2 + S(tc/1)2)ì), da von dort aus die linke Seite von
(80) monoton von oo auf 0 abfällt. Diese höchste Eigenfrequenz,
die v0 heissen möge, ist, wie man leicht abschätzt, nicht wesentlich
grösser als ß)max, d.h. von der Grössenordnung lß.

Die Energie-Eigenwerte der Gleichung (73) sind nun:

E=-g2Yx + 2«ÄK' + J) +2",«' + *)• (81)
* p

Die Energie des Grundzustandes (nk nv" 0) unterscheidet sich
von der Nullpunktsenergie des Vacuum-Mesonfeldes um

-</2Yi+M2"*>-2«>*); (82)
p k

diese Energiedifferenz kann als die Selbstenergie des Proton-Neutrons

in unserer Näherung interpretiert werden. Dazu liefert die
Eigenfrequenz v0 einen Beitrag der Grössenordnung 1/ü, während
die anderen Summenterme in (82) höchstens einen Beitrag der
gleichen Ordnung geben können (wegen ß>max — a>mm ~ lß)- Dieses
Resultat stimmt übrigens, was die Grössenordnung anlangt, mit
dem der störungsmässigen Berechnung nach § 6 überein. Verglichen
mit dem Hauptterm g2 Yx (~ g2/l) sind die Terme ~ g° unbedeutend.
Es sei daran erinnert, dass die Ladungsabhängigkeit der
Selbstenergie erst in den Termen ~ g^2 zutage tritt.

Vgl. eine ähnliche Diskussion bei Wigîteb, Cbitcheield und Teller,
Phys. Rev. 56, 530, 1939.



288 Gregor Wentzel.

Die zu einer Eigenfrequenz vp gehörige Lösung a" von (77)
nennen wir up (fc) ; also nach (78) :

«,(*)=«*•—r^ reÌ,eXl- ^o>k (<w| — vi)
Da keine Entartung vorliegt, besteht Orthogonalität, und durch
Wahl von aB kommt:

2«£(fc)«v(fc) <W- (84)
k

Die Einführung der Normalkoordinaten durch

a"(fc) 2Mfc)«(p) &"(fc)=2<(fc)^(P) (85)

bewirkt dann die Separation von Of" + $(0) und gestattet die
Eigenfunktionen F+ von (73) in bekannter Weise zu bestimmen, worauf
hier nicht eingegangen zu werden braucht.

Bei der Diskussion wollen wir eine einschränkende Voraussetzung

machen, die, wie sich zeigen wird, hohe Frequenzen aus-
schliesst. Wir sahen oben, dass ausser v0 jede Eigenfrequenz vp
zwischen zwei Frequenzen cok liegt, sagen wir: zwischen cov und
cov+x. Es sei nun angenommen, dass vv sehr viel näher bei cov

liegt als bei cop+x:
| Vp—cüj, | <^ | vp — wp+x\. (86)

Dies wird allgemein der Fall sein, wenn | vP — cov\ klein ist gegen
den mittleren Abstand zweier benachbarter mk-Werte, d. i. gegen

v
4 71 0)p | p |

(wo | p | s/col — ii2); wir fordern demnach :

T^— --r—? r>|p|- (87)
4 TT COp | Vv — CDp I

Um zu sehen, unter welchen Umständen diese Bedingung erfüllt
ist, spalten wir in der Summe in (80) den grössten Term (fc p)
ab und schreiben, unter Vernachlässigung von Termen, die nach
(86) klein sind:

y 1
_

1
+ y 1

T1 «>* (vp — <°k) 2 co3 (vP — cop) ^ col (co2 —col)
kïp

Zur Abschätzung der AY' kann man diese durch ein Integral über
den fc-Raum ersetzen, wo eine schmale Kugelschale (co„ — e < wk
< COp + e) auszulassen ist; dies ist gleichbedeutend damit, dass bei
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der Integration über den Pol des Integranden der Hauptwert
des Logarithmus zu nehmen ist; auf diese Weise ergibt sich:

v.y,
1

_. 2"V_
coi CO' JkJ

(kiop)

Durch Einsetzen in (80) erhält man:

1 v co

4 n cop Vp — cop 2 tir + TC /LI. (88)

Dieser Ausdruck soll nun nach (87) gross gegen | p | sein, was für

\p\<p (89)

offenbar erfüllt ist; dagegen ist | p | > fi unzulässig, da dann
\p\ ~ cop und cool/r ~ co2l< cov ist. Die Bedingung (87) lässt also

nur Meson-Geschwindigkeiten zu, die klein gegen die
Lichtgeschwindigkeit sind. Dann ist übrigens in (88) der erste Term
rechterhand klein gegen den zweiten (wegen 1\P ~ l <^ 1//*), so
dass man setzen kann:

^__=4jz>2. (90)

Von den zur Eigenfrequenz vP gehörigen Eigenschwingungskomponenten

up (fc) (83) ist dann diejenige mit fc p die bei weitem
grösste:

Up(p) a, • —— «*»-. -«„.15- e*»* ; (91)
A //¦ (a)j, — Vp) V

für die übrigen Komponenten kann man angenähert schreiben:

Up (fc) a., ¦ —1 ««** (fc * p). (92)
Ö)j.(ft)| — CO*)

Die dieser Eigenschwingung im Koordinatenraum entsprechende

Ortsfunktion ist <

'uIhS=v^uAk)e-ikxs. (93)

Spalten wir hier wieder den grössten Term fc p ab, und ersetzen
wir die restliche Summe durch ein Integral, so kommt mit (91), (92) :

M3),s= <*J— 2 7i2e-ip(xs-xi)+ f dK e-ikfa-xj) \

\ J o)k(ml — co2) \

19
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Das fc-Integral stellt bekanntlich eine Kugelwelle mit dem Punkt
xx als Zentrum dar, und zwar eine Superposition von auslaufender

und einlaufender Kugelwelle, wenn wie oben bei der
Integration über den Pol des Integranden der Hauptwert des
Logarithmus genommen wird. Eine auslaufende Kugelwelle allein
erhält man, wie bekannt, indem man dem Pol nach einer Seite
ausweicht ; dann ergibt sich für \xs — xx \ ^> 1/1 p | :

f 1 e~*l P xs~ xi 11

«„,„= — 2 n2a.Ae-^P As-xi) A .— (94)
{ fl | %s *"l I J

Hier ist gemäss (89) cov /j, gesetzt.

Dass die Eigenschwingungen nicht reine ebene Wellen,
sondern ebene plus Kugelwellen sind, heisst natürlich, dass die
Mesonen durch das Proton-Neutron gestreut werden. Die Amplitude
der Streawelle entspricht einem Wirkungsquerschnitt der Grösse
4 Ti/fi2. Da Iffi ^> l vorausgesetzt wurde, ist diese Streuung wesentlich

stärker als die in § 5 erwähnte Streuung, deren
Wirkungsquerschnitt nach der im Anhang 1 mitgeteilten Rechnung von
der Grössenordnung l2 ist.

Ferner ist zu beachten — dies gilt übrigens für beide Arten
von Streuung —, dass nur die Eigenschwingungen der
zweigestrichenen Freiheitsgrade Streuwellen enthalten, während die
eingestrichenen Eigenschwingungen reine ebene Wellen sind.
Berechnet man nun für irgendeinen Zustand des Mesonfeldes die
Ladung es in einem Punkte s 4= 1 :

es i(qsPs - çSv*) (Qs' Y- GPYS) Ps" - QS"PS',

so treten in es keine Terme auf, welche die Amplitudenquadrate der
Kugelwellen enthalten (d.h. welche zu \xs — xx\^2 proportional
sind) ; wohl gibt es Interferenzterme zwischen ebenen und
Streuwellen, doch liefern diese im Mittel über genügend grosse
Raumbereiche keinen Beitrag zur Ladung. Dies kann aber nur bedeuten,
dass die Streuwellen im Mittel ungeladen sind, also gleichviel
positive und negative Mesonen enthalten, gleichgültig, welche Ladung
die Primärwelle trägt. Wenn also ein positives Meson auf ein
Proton oder Neutron auftrifft, ist das gestreute Meson mit gleicher
Wahrscheinlichkeit positiv oder negativ geladen. Diese Möglichkeit

der Streuung unter Ladungswechsel hängt mit der Existenz
der isobaren Protonzustände beliebiger Ladung zusammen: wenn
ein positives Meson sich in ein negatives umwandelt, nimmt die

Kernpartikel zwei Ladungseinheiten auf. Dass die Streuprozesse
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mit und ohne Ladungswechsel sich als gleichwahrscheinlich
ergeben, beruht natürlich auf der Vernachlässigung des Massenunterschiedes

der beiden isobaren Endzustände; wenn dieser
Massenunterschied mit (co, — /u) vergleichbar ist, werden sich quantitative

Unterschiede in der Streuwahrscheinlichkeit ergeben.
Man kann den Streuvorgang noch näher untersuchen, indem

man solche Zustände des Mesonfeldes betrachtet, in denen eine
bestimmte Eigenschwingung, die als Superposition einer
eingestrichenen und einer zweigestrichenen Komponente gewonnen wird,
einfach besetzt ist. Während diesen Komponenten einzeln die
Streuquerschnitte 0 bzw. 4 n//i2 zukommen, ergibt sich für die
Streuung eines positiven oder eines negativen langsamen Mesons der

Wirkungsquerschnitt 2 tc/u2, wovon je die Hälfte auf die Streuung
mit und ohne Ladungswechsel entfällt.

Wie weit sich die Eigenschwingungen mit | p | > /li berechnen
lassen, ohne dass willkürliche Annahmen über die Gitterstruktur
des x- und des fc-Raumes wesentlich eingehen, musste eine besondere

Untersuchung lehren, auf die hier verzichtet werden soll.
Es sei nur bemerkt, dass die störungsmässige Berechnung nach
§ 6 in der ersten Näherung einen Streuquerschnitt von der Grössenordnung

lß2co£ liefert, was für kleine Energien cov nach Obigem
sicher zu hoch liegt; immerhin deutet dieses Ergebnis darauf hin,
dass der Streuquerschnitt mit wachsender Energie abnimmt, und
und zwar bei den höchsten Energien (cop ~ 1/T) vermutlich bis
zur Grössenordnung l2.

II. Die Kernkräfte.

§ 8. Verallgemeinerung der Ansätze des § 4.

Es mögen jetzt N ruhende Proton-Neutronen vorhanden sein;
ihre Orte, die beliebig wählbar sind, nennen wir xx, x2, ¦ ¦ • xN;
die Gitterpunkte s > N sind von Kernpartikeln frei. Somit
schreiben wir statt (6) :

H fî« - G 2 {(if + i t«) Ws + Ks) - i rf) wt} ¦ (95)
s^N

Die Schrödingerfunktion F, die jetzt 2^ Komponenten hat,
bestimmt sich durch

(H-E)F=0. (96)

In Verallgemeinerung der kanonischen Transformation (26),
(27) führen wir jeweils für s :£ N in der komplexen ^S-Ebene
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Polarkoordinaten qs, &s ein. Die neuen Lagenkoordinaten seien:

für s 52 N : qs, &s (hermitisch), für s > N : qs, q* (nicht-hermitisch),
und die dazu kanonisch konjugierten Impulse:
für s gS N : ps, p{>s (hermitisch), für s>N :ps,p* (nicht-hermitisch).
Die Transformationsformeln lauten:

ixps=qse^s, xp* q,<r*»,,
s sì N:\ „ / i * „ / i

V qs s \ qs -

s > N: xps qs ei®, xp* q*e~i®, 7is pse~i», n* p*ei

(97)

wo

&s P»s - -ja i 2 (irPr - qt Pf) (S^N), (98)

&
N

r>N

1

s*- (")

Die Vertauschungsrelationen der alten und neuen Variablen folgen
auseinander ; dabei ist wieder wesentlich, dass p9' (s £Ï N) mit den
xpr, xp*, 7ir ,7t*(r > N) kommutiert. p'# i (xps tcs — xp* ti*) bedeutet
die Mesonladung es am Punkte s ; folglich gilt nach (98) :

2p»s=2es+2<v 2es (10°)
soSJ/ soi_N r>N s

Gesamtladung des Mesonfeldes.

In den neuen Variablen lautet H° (3) :

Ho i 2 (4= Pl VqS + ± (p's; - i)) + 2 PtPs
s^xVWSs 2s I s>N

+ ^crsqtqs, (101)
r,s

wo q* qr für r sS N, und wo

c„= crsei<**~*'->, wenn r sS JV, s 5S JV, |

c„ c„e* <*-*'> c*r, wenn r g iV, s > JV, (102)

crs~ c>-s) wenn r > N, s > N. J

i?0 hängt also jetzt von den Azimutwinkeln &s ab, aber, genauer
gesagt, nur von den Differenzen &s — dr : es besteht Invarianz
gegenüber der Substitution &s -> &s + cp, # -> & + cp, entsprechend
dem Erhaltungssatz für die Gesamtladung.
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In Verallgemeinerung des Ansatzes (29) setzen wir:

I? We*(mI+*Ti<i))#i.-i=y.F"> (103)
*âJf\ VqJ

mit ganzzahligen ms Yz l,, wo die 2* Komponenten von F' nur
noch von den qs, q* und von den relativen Azimuten &s — &r
abhängen sollen. Dann bedeutet

2K + |it»),

wie aus (100) ersichtlich, die Gesamtladung des Mesonfeldes, und

2 (ms Y- i)
sgiV

bedeutet die Ladung des Gesamtsystems : Mesonen plus Proton-
Neutronen.

In Berücksichtigung der für die isotopen Spinmatrizen
gültigen Relationen

r(.s)T(.s) lr(s) r(s)r(s) _ T(s)r(s) _ — ,'T(s)T2 T3 "l ' Tl T3 T3 Tl tT2

findet man durch elementare Rechnung:

AtM». i-rJ.s)'».
{(Tf + ir^e^+tAf-iA^e-^-e2 s=e2 -t«.

Somit ergibt sich durch Einsetzen von (103) in (96), (95) die
folgende Schrödingergleichung für F', welche den früheren
Gleichungen (30) entspricht:

i2fe+^^) + 2p>s + 2^2;2*
s£LN\ Hs I s>N r,s

-2G^AAqs-EÌF'=0, (104)
so^M

WO

PW K + i rf) + P»s -±r i 2 (2, Pr - 2r Pt) ¦ W5)N r>N

Nach seinem Ursprung entspricht p[s) der Mesonladung am Punkte
s(^N).

Wir interessieren uns nun, starke Kopplung voraussetzend,
wieder nur für die Lösungen mit negativer Selbstenergie, und nach
dem Vorangegangenen werden wir erwarten, eine gute erste Nähe-
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rung zu erhalten, wenn wir alle 2N Komponenten von F' einander
gleich setzen und die Terme (p\l — l)/q2s in (104) vernachlässigen :

{i 2 P\ + 2 PtPs + 2 (r,sqt qs-2GY1qs-E}F+=0, (106)
s^N s>N r, s s£-N

wo F+ eine einkomponentige Funktion ist.

§ 9. Die Kernkräfte in erster Näherung (Terme —g1).

Die zu (33) analoge Translation im q-Räume sei jetzt:
qs=Qs + GP-Zs, q*s Q* + GP ¦ Z*s,\
ps=Ps, p*=P*s, j [ }

wo
Qs Q*, Ps P*, Zs Z*s für s < N. (108)

Zur Beseitigung der linearen Glieder in (106) fordern wir:

%(érsZs + csrZ:) 2l-3 îmr^N,
(109)

2crs2s= 0 für r > N. '

s

Dann wird nämlich

2icrsqtqs-2Gyiqs=2icrsQtQs-g2%Zs. (110)
r. s so^N r, s so=LN

Anstelle von (109) schreiben wir nach (102) und (108):

2 crs cos (*f- A,) Zs + 2 crs \ (ê <•-** Zs + e-t«>-»r)Z*) l-s
S-<N s>N

für r ^ N, (111)

2 crse^s-o)Zs + 2 crsZs =0 für f > IV. (112)
sSxN s>Jf

Um zunächst die Zs mit s > N zu eliminieren, setzen wir:

Zt ^ste^s-n)Zs (t>N) (113)
sg-N

und fordern, um (112) zu genügen:

2<V*a8* -<Vs für r>^, s ^N. (114)
s>jv

Die hierdurch definierten a.st bestimmen sich wie folgt: Sei

Yrs -X- [dK-^e**^-^,, (115)
(2t%Y J col

K '
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wo Yls mit dem früheren Ys (35) übereinstimmt, so gilt nach (4)
und (1):

Sf y, /-3Aurs -*- r' s v TjrTr

Ferner sei A die IV-reihige Determinante:

^ii Y12 ¦ • • • YXN

^21 ^22 • • • • Y 2N

*¦JVl -^JV2

und ihre (IV — l)-reihigen Unterdeterminanten seien zlr

zL
dL

Dann lautet die Lösung von (114) :

as« — —T 2 Ars*rt
A ro&N

In der Tat kommt hiermit wegen (116):

s<N,t>N).

(116)

(117)

(118)

(119)

)i cr« as« — ,1 ,2j ^r's (' "rr' 2l Crt ^r't)
t>N A r'o^N t^N

oder wegen 2 Afs Yr't A • êst (für t <N) :

für r > IV,
r'<N

Cr

/ i cr « as «

OiV ys I t für r ^ N,
(120)

was für r > N mit (114) übereinstimmt. Die a sind wie die Y
reell. Eliminiert man nun mit Hilfe von (113) die Zt (t > N) aus
(111), so kommt:

2 Zs cos (&r — &s) ¦ (c„ + 2 crt <*-st) A3 (r <N),
s^N t>N

oder mit (120):

^Zs-cos(&r-&s)-Ars=A (r<N). (121)

Diese N linearen Gleichungen dienen zur Bestimmung von
Zx, Z2, • • • ZN, und damit zur Berechnung des konstanten Terms
in (110):

~g2*ZZs E0, (122)
sS_N

welcher für den tiefsten Eigenwert E der Näherungsgleichung
(106) massgebend ist. Zur Berechnung der höheren Eigenwerte



296 Gregor Wentzel.

hätte man noch die Hauptachsentransformation der quadratischen
Form in (110) durchzuführen, was mit derselben Methode wie
für N 1 (Anhang 1) geschehen kann. Da für die Diskussion
der Kernkräfte die Kenntnis des tiefsten Energie-Eigenwertes
genügt, gehen wir darauf nicht ein. Es sei aber bemerkt, dass bei
Vernachlässigung der Mesonstreuung, die im Limes l 0
verschwindet (vgl. Anhang 1), die Eigenfunktionen der Gleichung (106)
wie im Falle N 1 mit den Vacuum-Eigenfunktionen identisch
werden; insbesondere sind sie in dieser Näherung von den
relativen Azimuten &s — &r unabhängig.

Dagegen ergeben sich die Energie-„Eigenwerte" vermöge (122)
und (121) als Funktionen von cos (&r— &s) (r, s 1 • • • N), was
den Austauschcharakter der Kernkräfte bekundet. In der Tat ist
nach (103)

eiCßr-»s)F =F mì 1

d.h. der Operator ei(*r-*s) verwandelt die Eigenfunktion F in
eine andere, deren Ladungsquantenzahlen mr, ms um 1 grösser
bzw. kleiner sind. Dieser „Austauschoperator" wirkt also nicht
etwa auf die isotopen Spinindices der Kernpartikel; vielmehr
handelt es sich um einen Ladungsaustausch, der als direkter Übergang

eines gebundenen Mesons vom Teilchen r zum Teilchen s

oder umgekehrt gedeutet werden kann. Man bestätigt dies leicht
durch Anwendung der Operatoren p'$r,p'&s (98), die nach § 8 die
Mesonladungen in den Punkten r,s darstellen; es gilt nämlich:

p'#r é ^-^ F ë <*r-»»> (p'9r + 1) F,
V'H é «V-»*) F e* <«r-*> (p'ês - 1) F.

Die weitere Aufgabe, die Energie als Matrix bezüglich der
Ladungsquantenzahlen auf Diagonalform zu transformieren, braucht hier
nicht behandelt zu werden.

Für die folgende Diskussion bemerken wir noch, dass nach
(115) die Yrs für r s alle einander gleich und gleich dem in
§§ 5 bis 7 verwendeten Yx (38) sind:

T--y«-pW"^T' (128)

während sich für \xs — xr \ ^> l gemäss (40) das Yukawa-Potential
ergibt :

\ e-ß 1 xs—Xr I

Yrs -— für I xs — xr | ^> l. (124)
"it Jlr Ajg Ajif
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Für den Fall, dass IV (die Anzahl der anwesenden Proton-
Neutronen) gleich 2 ist, ergibt die Auflösung der Gleichungen (121) :

Z Z (Yi2-n)(Yi + Yi2^(^-^)) (m)i 2
Yx2-Y212 cos2 (&x-&2)

" V ;

Die Energie E0 — g2 • 2 Zx geht für \xx — x21 oo, Y12 0 in
das Doppelte der früher berechneten Selbstenergie eines Proton-
Neutrons (— gr2 Yx) über ; zieht man die Selbstenergie der beiden
Partikeln von E0 ab, so entspricht der Rest ihrer potentiellen
Energie :

Evot=-2g2(Zx-Yx)

- 2 a2
(Y» -Y^ Yl2 C0S ^1- gg) -YlY™ Sin2 ^- &2)

7126)
Yä-Y*2 cos2 (#x-&2) ' V

Für Abstände \xx — x2\^>l (wobei durchaus \xx — x2\ < 1//li sein
darf, sofern / <^j l//i) wird

und man erhält aus (126) angenähert:

Epot - 2 o2 Y12 cos (*, -&2) - g2 YX2 (ë <••-•»> + e* <*-*«>). (127)

Im Limes £ 0 gilt dies sogar exakt, wenigstens was die Terme
~ g2 anlangt. Obwohl hier das negative Yukawa-Potential als
Faktor auftritt, weicht unser Ergebnis doch von dem Bekannten
insofern ab, als in (127) die Summe zweier Austausch-Operatoren
auftritt; so wird beispielsweise das Paar „Neutron-Proton" durch
den Operator (127) nicht nur in das Paar „Proton-Neutron",
sondern auch in das Paar „negatives Proton-doppeltpositives Proton"
verwandelt. In sehr kleinen Abständen (\xx — x2\~l) ist der
Austauschcharakter nach (126) noch komplizierter.

Will man also z. B. die stationären Zustände eines
Zweikörperproblems (etwa des Deuterons) in üblicher Weise berechnen,
so führt dieses Problem auf unendlich viele Differentialgleichungen'
für ebenso viele Schrödingerfunktionen, da ja alle Zustände gleicher
Gesamtladung (mx + m2 ro const.) direkt oder indirekt
miteinander gekoppelt sind. Dabei ist der Charakter der Differentialgleichungen

von ro ganz unabhängig, da Evot in unserer Näherung
von mx, ro2 nicht abhängt: die Kräfte sind „ladungsunabhängig";
für alle ro-Werte ergibt sich das gleiche (kontinuierliche) Energie-
Spektrum der stationären Zustände. Allerdings gilt dies nur bei
konsequenter Vernachlässigung aller Terme niederer Ordnung in g,
was in praxi unzulässig ist, da zum mindesten die Abhängigkeit
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der Teilchenmasse von der Ladungszahl berücksichtigt werden
sollte, welche nach (72) in den Termen der Ordnung gn2 zutage
tritt. Die hier erhaltene Ladungsunabhängigkeit der Kräfte
beruht also ganz wesentlich auf der Annahme g ^> 1. Würde man
versuchsweise den Kraftansatz (127) auch auf den Fall g < 1

anwenden (obwohl er nur für g ^> 1 abgeleitet ist) und Epot als klein
gegen den Massenunterschied von Proton und doppeltpositivem
Proton betrachten, so würde sich die Kopplung mit den höheren
Isobaren als belanglos erweisen, d. h. (127) wäre praktisch
gleichbedeutend mit einem nur zwischen Proton und Neutron wirkenden

Austauschpotential, wie es auch die Yukawa'sche Theorie für
geladene Mesonen (ohne ,,Neutretto"-Feld) für g <^ 1 in erster
störungsmässiger Näherung liefert.

Für den Fall, dass die Partikelzahl N > 2 ist, nehmen wir
einfachheitshalber an, dass die Partikelabstände r alle ^> l seien,
und entwickeln nach Potenzen von l/r. Da dann nach (123), (124)
die Ausserdiagonalglieder der Determinante A (117) wie l/r klein
gegen die Diagonalelemente sind, ergeben sich für A und für die
Unterdeterminanten Ars folgende Entwicklungen:
A =Y1(\-Y-2JtYl, + ---)

Ar Yf-(1 - Y72 2,Yfs'+ • • 0
s<s' > (1*8)

(s, s' ofr)

Ar3= Yf-2 (- Y„ + Y;12 Yrs, Ys,s + ¦ ¦ ¦) (ri-s).
s'

(«' nr r, s)

Hier laufen alle Summationsindices nur zwischen 1 und N.
Entwickeln wir entsprechend auch Zs :

ZS Z« +ZS' + ZS" + ¦¦¦, (129)

so ergibt sich aus den Termen höchster Ordnung (~ YNX) in den
Gleichungen (121) :

Z? Yi, (130)

und durch schrittweises Weitergehen zu höheren Näherungen:

Z/ ^Yrscos(&r--9s), (131)
s

(S f)

Z » J_ j-2 Yn Y- 2 Yrs Yss, COS (&,. - &s) COS (*.- &,,)
r -y | s s, s'

1 1 (.sior) {sxr,s' f s)

-2 YrsYss,\, (132)
S, «' J

(s 4= r, s' 3. r, s'i s)

Für N 2 stimmt dies mit der Entwicklung von (125) überein.
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In der Energie E0 (122) entsprechen die Terme höchster Ordnung
in l/r der Selbstenergie der N Partikeln ; zieht man diese ab, so
bleibt für die potentielle Energie:

Epot=V' + V" + ---

V - g2^Zr' - g2 2 Yrs cos (*,-*.),

y" -322£r",
r,s

<r * »)

(133)

F' ist die Summe der Wechselwirkungsenergien der einzelnen
Partikelpaare gemäss (127). V" enthält (in den dreifachen Summen)
Terme, die von den Koordinaten dreier Partikel abhängen; diese
stellen „Dreikörperkräfte" dar. In V" treten auch Vierkörperkräfte

auf, usf., Diese n-Körperkräfte sind aber, verglichen mit
den Zweikörperkräften, klein wie (l/r)n~2; im Limes 1= 0 bleibt
V allein übrig.

§ 10. Die Selbstenergie von N Kernpartikeln; Terme ~gr°.

Die Berechnung der Energie-Eigenwerte bis zur Ordnung g°
kann im Prinzip ebenso durchgeführt werden, wie dies in § 7 für
den Fall N 1 geschah. Bezüglich der abstandsabhängigen Terme
ergibt sich dabei nichts wesentlich Neues: zu (133) treten nur
Potentialterme ähnlichen Charakters hinzu, die aber grössenord-
nungsmässig um den Faktor g~2 kleiner sind; wir gehen hierauf
nicht ein. Merkwürdig ist aber, dass die Selbstenergie, wenn man
die Abstände aller Partikelpaare unendlich gross werden lässt,
im Limes nicht proportional der Partikelzahl N wird. Die Gültigkeit

dieser Aussage dürfte kaum auf den Fall starker Kopplung
beschränkt sein. Da es sich hier um eine Frage handelt, die trotz
des problematischen Charakters aller Selbstenergie-Betrachtungen
von prinzipieller Bedeutung sein könnte, sei der Sachverhalt kurz
geschildert.

Führt man für den Fall AT > 1 die gleichen Überlegungen
durch, die in § 7 zu den Formeln (73) bis (80) führten, und zwar
für so grosse Partikelabstände, dass alle nicht-diagonalen YTS

vernachlässigt werden können, so erhält man als Gleichung für die
Bestimmung der Eigenfrequenzen vv anstelle von (80) :

y — ^J—.JL (134)fW ("'-»*) vT N2' y '

mit der gleichen Bedeutung von F (vgl. (76)). Der neue Faktor
1/IV2 stammt daher, dass das in $(0) (75) quadratisch auftretende
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Integral jetzt eine Summe von N Termen an Stelle eines einzigen
enthält, so dass nach Vernachlässigung der Interferenzterme
(Yrs mit r +- s) r mit N2 multipliziert erscheint.

Für die Lösungen der Gleichung (134) gilt qualitativ wieder
das in § 7 Gesagte: zwischen zwei benachbarten cok-Werten gibt
es eine und nur eine Lösung vv, und eine letzte v0 liegt oberhalb
des höchsten cok-Wertes (ß>max). In quantitativer Hinsicht ist aber
die Abhängigkeit der vv von N offenbar eine komplizierte, namentlich

für p 0. Bildet man nun, in Verallgemeinerung von (81)
und (82), die Energie des Grundzustandes des mit N Proton-
Neutronen gekoppelten Mesonfeldes, bzw. ihren Überschuss über
die Nullpunktsenergie des Vacuumfeldes :

#o(N) -g2Yx-N + i(Zvp(N) -~Zcok), (135)
p k

so wird der hier erhaltene Term der Ordnung g° keineswegs zu AT

proportional sein. Eine rohe Abschätzung für N 1 und N 2

ergibt, dass E0(2) kleiner als das Doppelte von E0(l) ist, und
zwar ist 2 E0(l) —E0(2) von der Grössenordnung lß. Sofern also

E0(l) als die wirkliche Selbstenergie des Protons gelten darf,
würde dies heissen, dass das Wechselwirkungspotential zweier
Partikel mit wachsendem Abstand nicht gegen Null geht, sondern
einem negativen Wert der Ordnung lß zustrebt. Bei Vorgängen,
in denen sich die Partikelzahl ändert, wie bei der Paar-Erzeugung,
musste sich eine derartige Nicht-Additivität der Selbstenergie
bemerkbar machen.

Diese Schwierigkeit besteht indessen nur, solange man nur
wenige Kernpartikeln als existent annimmt. Im Limes N -> co

nähern sich nämlich die Vp mit p +- 0 asymptotisch den Lösungen
der Gleichung

2^tt4—^ °> (t36)
* o)| (v2 - col)

d. h. sie streben gegen konstante Grenzwerte; andererseits wächst
v0 über alle Grenzen, wie daraus zu ersehen ist, dass die entsprechende

Lösung der Gleichung (136) v co ist ; sobald aber v0^> comax,

kann man statt (134) schreiben:

J^v i _J L
Vf< coi - vF N2

oder:

v=oc-jv, wo a=(r*2^r)-((2»),rr1)* (i»rI)-*~i/i.
-k m

Dies gilt, wie man leicht sieht, bis auf Terme, die für IV oo



Zum Problem des statischen Mesonfeldes. ¦ 301

verschwinden. Somit geht E0(N) für grosse N asymptotisch in
eine lineare Funktion von N über:

E0 (N) -(g2 Yx ~)N + const.1). (137)

Die additive Konstante kann man durch eine Subtraktionsvorschrift

beseitigt denken. Somit entspricht die Theorie, was die
Terme ~ g° anlangt, wenigstens im Limes N -> co den gewohnten
Vorstellungen.

§ 11. Diskussion.

Bevor wir daran gehen, die Hauptergebnisse der vorstehenden
Rechnungen im Hinblick auf die aktuellen Probleme der Mesontheorie

kurz zu diskutieren, sei nochmals an die zugrunde gelegten
Voraussetzungen erinnert. Neben der Beschränkung auf geladene
Mesonen mit Spin 0 war wesentlich die Annahme „starker
Kopplung" zwischen Mesonen und Kernpartikeln, was — in dem
hauptsächlich interessierenden Fall „ Gitterkonstante l < Meson-
Comptonwellenlänge 1/u" — bedeutete, dass der Kopplungsparameter

g= Gl^ gross gegen (/nl)~^ sein sollte (vgl. (39)). Übrigens
ist es diese Voraussetzung in erster Linie, die uns hindert, in den
obigen Formeln die Gitterkonstante l, die die Rolle einer
Abschneidelänge spielt, gegen null gehen zu lassen, es sei denn, dass

man gleichzeitig g wie Z~* gegen co gehen liesse, was aber zu
unendlich grossen Kernkräften führen würde. Da jedoch das
Problem des Grenzübergangs l -> 0 mit dem speziellen Ziel dieser
Arbeit nichts zu tun hat, betrachten wir die Länge l hier als eine
gegebene, nicht verschwindende Konstante.

Obwohl dem Proton-Neutron a priori nur zwei Zustände mit
den Ladungen 0 und + 1 zugeschrieben wurden, besitzt es, wie
wir gezeigt haben, bei starker Kopplung mit dem Mesonfeld
stationäre Zustände mit beliebigen Ladungszahlen Z 0, ± 1, ±2, • • •.

Dies ist so zu verstehen, dass das Proton-Neutron imstande ist,
Mesonen dauernd an sich zu binden, und zwar ohne dass damit
notwendig die Anwesenheit freier Mesonen verknüpft wäre. Die
Masse bzw. die Selbstenergie der verschiedenen „Proton-Isobaren"
ergab sich näherungsweise als eine quadratische Funktion der
Ladungszahl Z : _. ,_B E const. +e(Z — \)2,

wo e -g-2*"1 im Falle l& lf/i (vgl. (72)).

x) Setzt man diese Entwicklung nach fallenden Potenzen von N fort, so
lautet der nächste Term : <x/4JV. Die Reihe bricht also keineswegs beim konstanten
Glied ab.
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Trotz oberflächlicher Ähnlichkeit darf man diese aus der
Yukawa'schen Theorie abgeleiteten Aussagen nicht verwechseln
mit der kürzlich von Hehler1) veröffentlichten Hypothese, nach
welcher den Kernpartikeln a priori, d. h. unabhängig von der
Kopplung mit dem Mesonfeld, energetisch höhere Zustände mit
den Ladungswerten — 1 und + 2 zugeschrieben werden. Eine
solche Hypothese greift tief in die Grundlagen der Yukawa'schen
Theorie ein und führt dementsprechend auch zu ganz anderen
Folgerungen, so z. B. hinsichtlich der Mesonstreuung, die sich viel
kleiner ergibt infolge gewisser, aus der Theorie der Lichtstreuung
bekannter Interferenz-Effekte. Gerade dieser Umstand hat Heitler

zur Aufstellung seiner Hypothese veranlasst, da der grosse
Streuquerschnitt der ursprünglichen Yukawa-Theorie mit den
Experimenten nicht verträglich war. Die Unterschiede der Heitler'
sehen gegenüber der Yukawa'schen Theorie treten am deutlichsten
zutage, wenn man dem Proton unendlich viele A-priori-Zustände
zuschreibt, derart dass alle ganzzahligen Ladungen vorkommen
und die Masse von der Ladungszahl unabhängig ist (was natürlich
nur näherungsweise zutreffen könnte); koppelt man das skalare
Mesonfeld mit einem so beschaffenen „Proton", so lässt sich, wie
wir im Anhang zeigen (vgl. Anhang 2), das statische Mesonfeld
exakt abseparieren, und die Mesonstreuung am ruhenden (unendlich

schweren) Proton verschwindet identisch (bei beliebiger
Kopplungsstärke, nicht nur in störungsmässiger Näherung)2).

Wenn unsere auf Grund der ursprünglichen Yukawa-Theorie
für den Fall starker Kopplung gewonnenen Aussagen, trotz des

Auftretens höherer isobarer Zustände, ganz anders lauten, so beruht
dies natürlich auf den andersartigen Eigenschaften dieser Isobaren,
die aus je einem Proton-Neutron und gebundenen Mesonen
zusammengesetzt sind. Freilich wird eine qualitative Übereinstimmung

zwischen beiden Theorien bestehen hinsichtlich solcher
Folgerungen, die wesentlich nur auf der Existenz der isobaren
Zustände beruhen. Dies gilt beispielsweise von der ^-Instabilität der
höheren Isobaren, wobei zu bemerken ist, dass die Lebensdauer
unserer zusammengesetzten Isobaren durch diejenige des Mesons

eindeutig bestimmt ist. Was den Austauschcharakter der
Kernkräfte anlangt, treten in beiden Theorien Austauschoperatoren
auf, die der Möglichkeit der Umwandlung in höhere Isobare Rechnung

tragen (vgl. § 9). Auch gehen beide Theorien darin einig,
dass ein Meson bei der Kernstreuung seine Ladung umkehren

x) Nature 145, 29, 1940.
2) Auf die Verallgemeinerung für vektorielle Mesonen gehen wir hier

nicht ein.
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kann, indem die Kernpartikel zwei Ladungseinheiten aufnimmt
oder abgibt (§ 7). Diese Übereinstimmung erstreckt sich aber
keineswegs auf die quantitativen Verhältnisse.

Die hier für starke Kopplung (g ^> 1) erhaltenen Aussagen
können natürlich nicht unmittelbar mit Erfahrungsdaten
verglichen werden. Dies gilt namentlich von den Kernkräften, von
denen wir gezeigt haben (§ 9), dass sie bei zunehmendem g asymptotisch

wie gf2 anwachsen. Anders der Streuquerschnitt, der nach
§ 7 nicht über alle Grenzen anwächst, sondern einem konstanten
Grenzwert zustrebt, nämlich dem Wert 2 tc//li2 im Falle langsamer
Mesonen (wovon je die Hälfte auf die Streuung mit und ohne
Ladungswechsel entfällt, falls der Massenunterschied der
beteiligten Proton-Isobaren vernachlässigbar ist). Dieser Grenzwert des

Streuquerschnitts liegt jedoch sehr hoch, mindestens 2
Zehnerpotenzen über dem für mittlere Energien (~ ff) beobachteten
Querschnitt1), und es wäre daher für die Beurteilung der Yukawaschen

Theorie wichtig, zu untersuchen, etwa durch Fortsetzung
der Entwicklung nach fallenden Potenzen von g, ob die Theorie
eine genügend starke Abnahme des Streuquerschnitts beim Übergang

von hohen zu mittleren Kopplungsstärken erwarten lässt.
Auch müssten Mesonen mit Spin 1 und mit Spinkopplung in
Rechnung gesetzt werden. Indessen ist zuzugeben, dass wir keinen
Anhaltspunkt gefunden haben, der eine einfache Erklärung der
schwachen Streuung auf Grund der unmodifizierten Yukawa'schen
Theorie erhoffen lässt2), so dass in dieser Hinsicht eine Hypothese
wie die oben erwähnte Heitler'sche einen grossen Vorzug besitzt.

Anhang 1 (zu § 5).

Die Eigenschwingungen TJ".

Die Hauptachsentransformation von Of" (42) erfordert die
Auflösung der Gleichungen:

2' crs U," - v2 Ur" 0 (r * 1, s 11) • (138)

Wegen des Fehlens des Freiheitsgrades s 1 sind die Lösungen
nicht exakt ebene Wellen; wir schreiben sie als Fourier-Integrale :

V," =oV~i J dKy(k)eile*s. (139)

1) J. G. Wilson, Proc. Roy. Soc. 174, 73, 1940.
2) Der Heisenberg'sche Einwand gegen die Störungstheorie der Streuung,

dass sie die Rückwirkung der Streuwelle auf das streuende Teilchen ausser acht
lässt (ZS. f. Phys. 113, 61, 1939), kann gegen unsere Rechnung nicht erhoben
werden.
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Beachtet man, dass nach (1) und (4)

2' crseihxs — crX eihx- -
s

so erhält man durch Ijansetzen von (139) in (138) :

crX eik*i + (cojj — v2)eikxr] 0jdKy(k){
für alle r +-1- Multiplikation mit e~ik'xr und Summation nach r,
unter Ausschluss von r 1, ergibt bei nochmaliger Verwendung
von (1) und (4):

JdKy (k){clx-((Ofl+ col-v2)}ei«c-k')*i+Vy(k')(a)lr-v2) 0. (140)

Der hier auftretende Koeffizient c' cxx — (cofc + col — v2) enthält
nur Terme, die durch das Fehlen des Freiheitsgrades 1 bedingt
sind; es liegt daher nähe, ihn als kleine Grösse zu behandeln.
Wäre er null (wie im Falle der Eigenschwingungen TJ' in § 5),
so wären die Lösungen von (140) : v cov, y (fc') ô(k' — p), wo
p ein beliebiger Wellenzahlvektor im Periodizitätsbereich V ist.
Wir versuchen daher den Näherungsansatz:

V CO- y(k) ô(k-p)+y'(k), (141)

wo y' wie c' klein ist, derart dass Terme ~y'c' vernachlässigt
werden können. Dann folgt aus (140) für fc' Y P '¦

y'(k') -
und mit (141) und (139):

c-,- — co.

V
'_ (,i(p-k')Xi

r„"(p) r-ije^-e^- -1- fdK^f e»*<*s-*i> («•#!). (142)

Die Eigenschwingung TJS" besteht also aus einer ebenen und einer
Streuwelle mit Zentrum in xx. Durch die Ausführung der
Integration nach | fc| (Umgehung des Pols | fc| | p \ in der komplexen
Ebene) kann bekanntlich erreicht werden, dass die Streuwelle nur
eine auslaufende Kugelwelle enthält. Für \p\ < n/l (die Kugel
\p\ const liegt ganz im Periodizitätsbereich V) erhält man in
bekannter Weise, sofern \xs — xx \ ^> 1/j p | :

TJS" (p)=V~l \eipxs — eipa
e»l»l l*»-*il 2ti2

coi (143)
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Die Amplitude der Streuwelle entspricht einem Wirkungsquerschnitt

Q 4tz
V

co2)
4tc

[P (cxx - CO2)]2 (144)

(Vgl. hierzu aber § 7: der Streuquerschnitt eines positiven oder
eines negativen Mesons ist Q/2.) Für cxx ergibt sich aus der
Definitionsgleichung (4) durch Ausführung der Integration über
den Periodizitätskubus V:

vu

Hiermit wird

Cn ¦¦=! — )+ fi2, also cn

TT3

Q=T12
l \2
-P P\<J (145)

Der Streuquerschnitt ist also von der Grössenordnung l2.

Es bleibt noch zu beweisen, dass je zwei Eigenschwingungen
(142) aufeinander orthogonal sind, auch wenn sie zur gleichen
Eigenfrequenz cov gehören. In der Tat ergibt sich aus (142), wenn
entsprechend unserer Rechengenauigkeit die in den Streuwellen-
Amplituden quadratischen Terme vernachlässigt werden, mit Hilfe
von (1) :

%U$"*(p)TJ3"(p')-ô(p-p')

e* (v'-v- *¦¦

V
-ii M dK°YA

e,, — co. 1
'dKAJYY

ei(p'—p)x,

)-co'l " V J

i r¦— j dK(cxx— col)

CO

>k — mp

1

CO, ¦ CO,
+

V

Der hier übrigbleibende Ausdruck muss aber, da für covr £ cOp die
Orthogonalität aus den Definitionsgleichungen der Eigenschwingungen

folgt, die Grössenordnung der vernachlässigten Terme
haben, und dies gilt offenbar auch im Limes cop, cop, was zu
beweisen war.

20
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Anhang 2 (zu § 11).

Zur Hypothese der Zustände höherer Ladung.

Wir beschränken uns wieder auf den Fall des skalaren
geladenen Mesonfeldes und benutzen zu seiner Beschreibung dieselben
Bezeichnungen wie bisher (vgl. § 2). Es befinde sich wiederum
eine (unendlich schwere) Kernpartikel am Orte xx, doch soll diese

jetzt — ohne Mesonen — nicht nur 2, sondern unendlich viele
Ladungszustände gleicher Masse besitzen; die Ladungszahl n
durchläuft also alle ganzen Zahlen. Ferner sei angenommen, dass

hinsichtlich der Wechselwirkung mit dem Mesonfeld alle Ladungszustände

gleichberechtigt sind: der Kopplungsparameter soll von
der Ladungszahl n unabhängig sein. An Stelle von (9) hat man
dann die Gleichungen:

(H°-E)Fn-G(xpxFn+x+f*Fn_x) 0 (n=0,±l,---), (146)

wo Fn die Schrödingerfunktion des Mesonfeldes bedeutet für den
Fall, dass sich die Kernpartikel im Ladungszustand n befindet.

Zur Lösung der Gleichungen (145) benutzen wir den Operator:

A„ -— dcpe we 7 sV 8 s '. (147)
2 71 .'

0

Die Ys haben hier dieselbe Bedeutung wie in § 5, d. h. es gilt
gemäss (36) :

V/- Y — /—3ji/ iLrs -1- s l ur 1 •

s

Hieraus folgt, bei Verwendung der Hamiltonfunktion (3) :

[HO, 2 Ys .ts] i 2 crs xp* Ys i l~* xp*.
s r-,8

Auf Grund dieser Formel beweist man leicht die Identität:
H« • An - G (xpx An+1 + xp* An.x) An ¦ (H« - g2 Yx), (148)

wo gemäss (7) g2 G2P. Mit dem Ansatz

Fn FW An_m ¦ f (m= ganze Zahl) (149)

kommt demnach:

(H- - E) F« - G (xpx F«, + f* F^i)
An„m-{H»-(E + g2Y1)}-f=0,

womit die Zurückführung auf das bekannte Problem des
ungekoppelten Mesonfeldes :

{H° - (E + g2 Yx)} f 0 (150)
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erreicht ist. Wird also auf irgendeine Eigenfunktion / des „Va-
cuumfeldes" der Operator A„_m angewendet, wo m eine beliebige
ganze Zahl ist, so resultiert daraus eine Eigenfunktion des
Problems (146). Alle Energie-Eigenwerte liegen um g2Yx tiefer als

im Vacuumfalle. Wird diese Selbstenergie — g2 Yx (Yx ~ lß)
subtrahiert, so kann man auch ohne weiteres den Grenzübergang
!•->-0 vollziehen. Ferner beweist man leicht:

Aj n—m n—m' ~ Ommr, jx^^^n—mIn'—m Onnr, yyOxj
n m

woraus die Orthogonalität und die Vollständigkeit der angegebenen
Eigenfunktionen folgt.

Der Operator An lässt sich durch eine Besselfunktion vom
Index n darstellen, worauf aber nicht eingegangen werden soll.
Dagegen benutzen wir eine bekannte Rekursionsformel der Bessel-

funktionen, die sich durch partielle Integration nach cp in (147)
ergibt :

iGP^YAnsAn^-TzfAn+1) -nAn. (152)

Kommutiert man nämlich den Operator der totalen Mesonladung

« i 2 (ws ^s — wi nt)

mit A„, so ergibt sich gerade der Ausdruck linkerhand in (152);
man erhält demnach:

[e,An] -nAn. (153)

Wendet man also den Operator e auf eine der Eigenfunktionen
(149) an, so kommt:

«Fim) e An_m f An_m(- n + m + e)f,

und unter Hinzufügung des der Kernladung n entsprechenden
Terms :

(e + n)FW=An_m(m + e)f. (154)

Wählt man nun für / solche Vacuum-Eigenfunktionen, welche die
Mesonladung e diagonal machen, so ist offenbar im Schema der
Eigenfunktionen F*f> die Gesamtladung e + n (Meson- plus
Kernladung) diagonal, und ihre Eigenwerte sind gleich den Eigenwerten e

des Vacuumfeldes, vermehrt um die ganze Zahl m. Somit bedeutet
m offenbar die Ladung des Kerns einschliesslich seiner gebundenen

Mesonen.
Der Operator An_m bringt die Verzerrung zum Ausdruck,

welche das Vacuumfeld durch die Anwesenheit der Kernpartikel
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erfährt. Die räumliche Abhängigkeit dieser Verzerrung wird durch
die Koeffizienten Ys bestimmt, die nach (40), ausser in der nächsten

Umgebung des Kerns (|a;s — xx\ ~ l), die Ortsabhängigkeit
des Yukawa-Potentials aufweisen. Dieses nimmt aber mit wachsendem

Abstand exponentiell ab und verschwindet praktisch für
\xs — xx | ^> 1/fi, so dass dort auch die Verzerrung des Feldes
aufhört:

A-™ £â ànm F« ss / • ònm für I xs - xx \ > 1/^. (155)

Betrachtet man beispielsweise eine Vacuum-Eigenfunktion /,
welche der Anwesenheit eines einzigen Mesons vom Impuls fc

entspricht, so stimmt das durch die Funktion F^ (mit beliebigem m)
beschriebene Mesonfeld in grossen Abständen völlig mit dem
entsprechenden Vacuumfeld überein, und das heisst natürlich, dass
das Meson an einem Kern der hier betrachteten Art nicht gestreut
werden kann. Damit ist der Beweis für die im § 11 angeführte
Behauptung erbracht.

Falls N Protonen der betrachteten Art anwesend sind, ist der
Operator An_m in (149) durch ein Produkt von N entsprechenden
Operatoren zu ersetzen. Für die Energie des Grundzustandes
ergibt sich dann:

E0=-Ng2Yx-g2^YrsOrs, (156)
r s

fr t s)

wo Yrs die gleiche Bedeutung wTie in § 9 hat (vgl. (115)), und wo
Ors den Austauschoperator bedeutet, der die Ladungs quanten-
zahlen eines Partikelpaars mr, ms in mr + 1, ms — 1 verwandelt
(r, s beziehen sich hier nur auf Proton-besetzte Gitterpunkte). Die
Kräfte entsprechen also hinsichtlich ihrer Ortsabhängigkeit exakt
den Yukawakräften, während ihr Austauschcharakter den beiden
Möglichkeiten der Umwandlung in benachbarte Isobarenpaare
Rechnung trägt (vgl. §§9 und 11).

Zürich, Physikalisches Institut der Universität.
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