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Theorie classique des forces d’échange
par E. C. G. Stueckelberg et J. F. C. Patry.
(25. IV. 40.)

1. Introduction et Résumeé.

Le potentiel de l'interaction statique entre des particules nucléaires, dii au
champ des forces nucléaires (théorie de YUrRAWA) est calculé sous forme d’une série
en g%/he. La méthode est celle des transformations de contact valable aussi bien
en théorie classique qu’en théorie quantique. La convergence de la serie semble
bonne pour le cas de la théorie scalaire (mésotron sans spin). Elle est trés mauvaise
pour la théorie vectorielle (mésotron doué d’un spin).

Les niveaux d’énergie d'un ensemble de particules se calculent
comme ’énergie des orbites, proprement quantifiées, d’'un systéme
mécanique de points matériels. Si les forces entre les particules
dérivent d'un potentiel ne dépendant que de la distance r** entre
le p*me et le »*™¢ point matériel, ces orbites sont obtenues comme
solutions des équations canoniques:

. 0H

H —

. £, 0H
oa.u » 4 0p* ’

(1,1)

Ces équations proviennent d’une fonction Hamiltonienne:
H(pr, g =2 He 4+ 2, 2 Ve (1,2)
© I

ou H* représente 1’énergie cinétique et V** le potentiel des forces
dépendant de = |g* —q”|. ¢* et p” sont les vecteurs de po-
sition et d’impulsion du x®™® pointe de masse.

De méme, les trajectoires hyperboliques qu’on observe dans
les expériences de diffusion de rayons corpusculaires, se calculent
& partir de (1,2). Ce procédé est suffisant, dans une certaine
approximation, pour la discussion de la structure des atomes et
molécules quand on utilise pour V#* le potentiel de Coulomb
entre les noyaux et les électrons considérés comme des points
matériels.

Si 'on  veut pousser I'approximation plus loin, il est néces-
saire d’introduire des variables intérieures des « points matériels »
comme par exemple le « spin » de 1’électron pour la structure fine
et le «spin» des noyaux pour la structure hyperfine.

Le point matériel x doit donc étre décrit non seulement par
p* et §* mais, en plus, par ses variables intérieures, que nous
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désignerons par a* et b“. a* et b* sont canoniquement conjuguées,
ce qui veut dire que leur évolution temporelle est donnée par des
équations analogues a (1,1), I’équation pour d*# ayant le signe
négatif.

Le potentiel d’interaction V#* prend alors la forme V#*
(a“ b4, a”, b*, r**), faisant intervenir & la fois les variables inté-
rieures et la distance r#”. Dans la théorie de la structure atomique
et moléculaire, les parties de V'#”, qui montrent cette dépendance
de .a# et b*, sont relativement peu importantes et il suffit de les
traiter comme des perturbations des orbites calculées pour le po-
tentiel de Coulomb pour obtenir une trés bonne approximation.
Par contre, la structure des noyaux atomiques nous montre que
les forces entre protons et neutrons doivent dépendre des variables
intérieures en premiére approximation déja. Ce qu’on exprime
habituellement en disant que les forces entre proton et neutron
sont des « forces d’échange ».

Le but de ce travail est de calculer le potentiel V#* entre
protons et neutrons, qui résulte d’'une théorie du champ des forces
nucléaires. On remarquera l’analogie compléte avec le probléme
potentiel de Coulomb — champ électromagnétique, car en effet
le potentiel de Coulomb découle de la théorie du champ électro-

magnétique de Maxwell dans I'approximation statique ([g#|<<c¢,
¢ = vitesse de lumiére). On pensait jusqu’ici que la théorie du
champ nucléaire (proposée par Yukawa et élaborée par différents
auteurs')) donnait un potentiel V#* = wu(a®, b*, a’, b*) - v(r*”). Le
facteur

s
el?

v (M) = — | , (1,3)

v

disparait pour des distances r> I-! (I-! étant le rayon d’action
des forces nucléaires).

Le facteur u est constant malgré sa dépendance des a* et
des b*, en vertu des équations de mouvement des a* et b*. On
savait d’ailleurs que (1,3) n’est valable que pour autant que les
particules n’agissent sur le champ que par l'intermédiaire de leurs
propriétés scalaires (charge électrique, etc.). Si, en plus, on tient
compte de leur propriété vectorielle (spin), (1,3) doit étre com-
plété par des termes montrant un couplage entre l'orientation du
spin des particules et le rayon vecteur de leur distance relative.
Le facteur 4 ne reste alors plus constant mais, pour calculer les
niveaux d’énergie, une certaine moyenne peut -étre définie. La
démonstration qui (1,3) (ou la forme plus compliquée dans le cas
de l'action sur les spins) résulte de la théorie du champ n’a été
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fournie que par la premiére approximation de la méthode de per-
turbation de la théorie des quanta. Cette démonstration n’est pas
suffisante quoique I'un de nous ait montré, par une méthode plus
appropriée, que le potentiel de Coulomb et (1,3) (st les variables
Intérieures n’interviennent pas) sont valables pour I'approximation
‘statique. Cette nouvelle démonstration s’obtient par des trans-
formations de contact et peut étre donnée aussi bien en théorie
quantique qu’en théorie classique?®). Dans le travail ci-dessous,
nous appliquons cette méthode des transformations & des pro-
blémes dans lesquels les variables intérieures interviennent. Nous
montrons amsi que le potentiel (1,3) (ou sa généralisation vecto-
rielle) ne représente plus l'interaction. Il n’est que le premier
terme d’une série qu’on peut calculer par des méthodes purement
classiques.

Dans les pages suivantes, nous avons calculé cette série jus-
qu’au troisiéme terme pour le champ scalaire (théorie originale de
Yuxawa) et jusqu’au deuxiéme pour le «champ vectoriel» qui,
seul, a la symétrie nécessaire pour représenter les niveaux connus
du deuton.

La théorie des champs quantifiés introduit des termes supplé-
mentaires dans ces séries, a cause des fluctuations du champ.
Nous en avons calculé aussi quelques-uns.

Nos résultats montrent que, dans I’état présent de la théorie,
il est trés difficile de remplacer I’action du champ par une inter-
action entre les particules. Ceci pour les raisons suivantes: En
premier lieu, les termes de la self-énergie infinie de particules
ponctuelles apparaissent comme dans ’électrodynamique. Mais,
en plus de ces énergies qui tendent vers des constantes infiniment
grandes quand le rayon des particules tend vers zéro, nous trou-
vons, en troisiéme approximation de la théorie scalaire et en
deuxiéme approximation de la théorie vectorielle, des termes de
la série qui dépendent de la distance entre deux particules et dont
le facteur constant tend vers l'infini pour des particules ponc-
tuelles. Pour les étudier, nous les avons rendus finis en introdui-
sant des particules de dimensions finies. Enfin, le rayon de con-
vergence de la série étudiée semble étre de I'ordre de I=1. Cela veut
dire que, pour les régions intéressantes, on n’a aucune raison de
supposer que le potentiel de Yurawa a une signification quanti-
tative. Tous ces défauts sont de nature purement classique. Si,
en plus, on tient compte des termes dus aux fluctuations du champ,
mentionnés ci-dessus, on trouve une série de termes présentant le
méme genre de difficultés, mais dont 'influence quantitative est
plus grande encore. ‘
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2. Théorie d’un champ a une seule composante.

Nous décrirons le champ des forces nucléaires a 'endroit
et au temps ¢ par le scalaire Q(Z,t). Nous verrons plus loin de
quelle facon 'on forme, & partir de ce champ, la force avec la-
quelle 1l agit sur les particules. Mais, tout d’abord, nous étudie-
rons l'influence que les particules exercent sur ce champ. Pour
cela, nous écrirons I’équation la plus simple montrant une co-
variance relativiste:

1 02 5\ 5 e "
(A s l)@(m, = —dngd(F,1). (2,1)
L’'inhomogénéité —4 mg.J est due aux particules (neutrons et pro-
tons) et nous verrons en (2,3) comment elle dépend de I’endroit g#
ou est placée la w®™® particule. En l'absence de particules, gJ est
nul et ¢ satisfait a4 'équation d’onde homogéne. Cette équation
n’est autre que I’équation de pE Brocrie pour des quanta doués
d’une masse lh/c. (b est la constante de Planck divisée par 2 x.)

Ces quanta n’interviendront jamais dans notre théorie, qui
reste entiérement classique et le mot particules signifiera toujours
protons ou neutrons. La constante ! qui intervient dans 1’équa-
tion (2,1) déterminera aussi le rayon d’action des forces nucléaires.

Mais revenons & l'influence des particules sur le champ. Par
analogie avec I’électrodynamique, nous appellerons gJ la densité
de charge des particules par rapport au champ . Avant de dé-
finir J, il nous faut préciser ce que nous appellerons particule
ponctuelle. Si celle-ci est située a l'endroit x = g#, on peut lui
associer la densité d(x — g*#), 6 ¢tant la fonction de Dirac.

Pour rendre finies certaines expressions qui apparaitront
dans notre théorie, nous serons obligés de remplacer la fonction
de Dirac é(z) par une fonction ¢(z) donnant un rayon fini & la
particule. En intégrant sur un domaine grand par rapport aux
dimensions de la particule, on aura:

[dz3e () = [dZ36(z) =1.

Les résultats obtenus pour des particules ponctuelles (en passant
a la limite ¢ = d) seront marqués par une fleche; par exemple
pour une fonction f(Z), on aura:

[ dz% (&) (@) — £(0). (2,2)

(Toute intégration f dz? est & exécuter sur I'espace entier.) Comme
le champ @, que nous voulons étudier, n’a qu’'une seule compo-
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sante, nous formerons une densité scalaire J#, au moyen de la-
quelle nous définirons J:

Jr= Bro(xz —q"); avec cﬁﬂ‘:]/c’z—[ﬁ#[z (2,3)
L’inhomogénéité due & toutes les particules sera alors définie par:
J=>J" (2,4)

n

Comme nous ne nous intéresserons qu’au cas statique |g*| < ¢,
on a f#=1. On voit alors que le facteur g est la « charge» (par
rapport au champ nucléaire) d’une particule. L’équation (2,1)
prend alors la forme:

ZQ=g9d avec 4nZ=101>—41 (2,5)

équation facilement intégrable & l’aide de la fonction v(r) de
Yukawa (voir (1,3)).

QE)=gZ'd =g [dy®e(z —Y))J@) (2,6)

(2,6) définit 'opérateur intégral Z-1, qui nous sera utile plus tard.

Il nous faut maintenant décrire I'influence du champ ¢ sur
les particules. Pour cela, nous nous servirons de la conservation
de ’énergie. En effet, pour des petites vitesses, I’équation (2,1)
peut étre obtenue & partir d’une fonction d’énergie (Hamiltonienne).

H = Heh + V + Hoart (2,7)

ou HM et V sont respectivement les fonctionnelles suivantes de
@ (z) et de la fonction canoniquement conjuguée P (Z)

H = [dZ33(QZQ + 47 c? P?) (2,8)
V——[dE3gQd.

Pour pouvoir écrire les équations canoniques, nous aurons besoin
des dérivées fonctionnelles. Nous les définirons par

o F
0Q (Z)
qui exprime la variation § F d’une fonctionnelle F[Q(z)] lorsque

les fonctions admises ) (x) satisfont & certaines conditions aux
limites.

OF = [dz? 8Q (%)
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Les équations canoniques deviennent alors:

P= m——(;g—: —7ZQ +gd
- (2,9)
. 98 2
() = 5P 47c?P.

Eliminant P on retrouve (2,1).

De (2,7) découlent aussi les équations de mouvement des parti-
cules de masse M sous la forme canonique. On obtient celles-ci
en écrivant

Hvw— S e Gr);  HE = o [
; 2M

On voit amnsi que les particules sont soumises 4 une force

5 06 (g*
e 5 g Oéqu 9, (2,10)

C’est 1a 1’équation qui nous indique comment le champ () agit
sur les particules.

Nous désirons maintenant transformer I’'Hamiltonienne de
facon & faire apparaitre un potentiel qui, pour de petites vitesses
des particules, s’exprimera en fonction de la distance 7#* entre les
deux particules p et ». Ainsi nous aurons ramené l’action du
champ @) sur les particules a une action entre particules (analogue
au potentiel de Coulomb). C’est une transformation de contact
qui nous permettra de faire cette opération. On peut définir des
transformations de contact pour les fonctions P et ) aussi bien
que pour les variables p# et g#. Pour cela, on se sert d’une ex-
pression U, fonction de p* et de ¢’#, et fonctionnelle de P et de Q.
Au moyen des relations

-y _0U ., - 0U

qg” = Of)'u ’ 05;# (2?11)
00 - 5p 0 PO =5 212

on peut calculer les substitutions des transformations de contact.
La substitution particuliére

Q=@ +g247; P=P (2.13)
qu=gs PP - A@) =7
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résulte en effet d’une fonctionnelle de transformation
| | U=U,+gU, - (2,14)
avec - . ; '
Up= [d2°PQ + ) (5% 7
u ‘
U, = fdcc3Pz—1J' s J =0 — 7).
'u N

De I'Hamiltonienne H de (2,7) résulteront a nouveau les équations
de I’évolution temporelle des nouvelles variables P, ', p'#, q'*,
sous forme canonique, si nous effectuons les substitutions (2,13).

A (q*) est un potentiel vecteur dont la valeur limite est

AG) — — -2 cz1pP@).
aq
L'Hamiltonienne & laquelle nous parvenons ainsi sera
H = Heb + SVH# (74 + >, >\ Vw (2,15)
avec ’ ’
D20 Ve = —%ngd%‘*JZ“lJ — 0 — g2 D0 (1),
uov : . n<y

Nous avons partout supprimé les primes. L’interaction entre
le champ et les particules est entiérement comprise dans le fait
que les p* de (2,7) sont devenus des #* dépendant d’un potentiel
vecteur. Il en résulte que I'mhomogénéité de ’équation d’onde
sera malntenant proportionnelle aux vitesses des particules. Dans
Papproximation qui nous intéresse, nous négligerons tout effet da
a la vitesse et ) = P = 0 sera une solution de notre équation.
Alors H® = 0 et 7* =p* En vertu de la deuxitme équation
(2,15), notre probléme se réduit au calcul des orbites pour des
particules soumises 4 une influence mutuelle décrite par le poten-
tiel V#*. Le terme infini est la contribution des termes u = v;
il ne devient infini que dans la limite ¢ — 9. '

3. La théorie d’un echamp a plusieurs composantes.

- La théorie simple exposée au chapitre précédent permet deux
généralisations, que nous allons introduire. Tout d’abord, nous
attribuerons a différentes particules des « charges » différentes, ce
quel’on peutfaire en introduisant un facteur scalaire et sans dimen-
sion 7 dans la définition de J* (2,3). En second lieu, on peut
~considérer plusieurs champs indépendants @;(x), chacun satisfai-
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sant & (2,1) avec des inhomogénéités respectives J;, qui seront
définies en introduisant des facteurs z¥ au second membre de
(2,3). 7 exprimera alors (en terme d’une constante g de la dimen-
sion de charge) la «charge» de la particule g par rapport a la
composante ¢); du champ.

Ces généralisations ne changent rien aux considérations du
paragraphe précédent. Il faudra évidemment compléter les for-
mules linéaires en P, ¢} ou J par un indice 4, tandis que les autres
formules, qui sont toutes bilinéaires par rapport & ces variables,
sont & sommer sur l'indice 4, par exemple P? devient Z P2

Si tous les champs ont la méme constante I, lmteractmn
aura la forme:

SOV >0 D Dt —g@ > V) v (). (3,1)

noov uoi u<v i
En généralisant ainsi notre théorie, nous avons gardé la supposi-
tion que les ; sont tous des scalaires. Cependant un potentiel
de la forme (3,1) ne suffit pas encore pour expliquer les forces
nucléaires. En effet, la théorie primitive de HrISENBERG?) néces-
sitait déja l'introduction des « forces d’échange ». Tandis que l'ac-
tion des forces résultant d’une énergie potentielle (3,1) se borne
a transporter de la quantité de mouvement d’une particule a
lautre, ces forces d’échange ajoutent & ce transport 1’échange
d’une autre qualité des particules. La force introduite par Hrrsen-
BERG, par exemple, lie & 'action mécanique d’un proton sur un
neutron, le transport de la charge électrique du proton au neutron.
Les forces, qui ont été ensuite introduites par MAJORANA et BART-
LETT?), ajoutent & ce transport de charge électrique un échange
supplémentaire de moment angulaire du spin.

Pour décrire I’échange de charge électrique entre deux parti-
cules, 1l faut concevoir un champ qui puisse transporter de la
charge électrique. Il faut donc pouvoir construire, a partir des
grandeurs du champ ; un quadrivecteur p°" et o satisfaisant
(dans les régions ou il n’y a pas de particules chargées électrique-
ment) a 1’équation de continuité:

cdivo® + o= 0 (3,2)

car alors, on pourra poser que ce quadrivecteur est proportionnel
au quadrivecteur de densité de charge électrique. Les quantites

o= - (Ql grad @y — @ grad @)
(3,3)
0, = A 7 ho? [ Q1Q2 e Q2Ql)
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satisfont & ces conditions dans les régions entre les particules ou
I'inhomogénéité J,; = Z' J# disparait. Pour leur donner la dimen-

sion d’une densité (cm—3), il faut que la constante h quelconque
alt la dimension (p - ¢). Dans les régions ot se trouvent les parti-
cules porteuses de charge électrique (proportionnelle & 4# pour la
particule u), il faut compléter les densités (3,3) et écrire:

0 —9"“+ZA” e(w—q “)
(3,:4)
= o +Zl‘”9(w = g

Ces expressions satisferont I’équation de continuité, si I'évolution
temporelle de chaque 2# est donnée par

b 2L Q@) 75— Qe @) 7). (35)

Cette équation signifie que la charge électrique transportée par
le champ est prise aux particules.

Cet échange de charge électrique nécessite donc 1 mtroductmn
d’une nouvelle variable 4* (variable intérieure) en plus des p* et g*
pour chaque particule u. Pour avoir conservation d’énergie, elle
doit étre une fonction de certaines variables canoniques intérieures
a* et b~

L’évolution temporelle d’une variable quelconque F' est, en
vertu des équations canoniques, donnée par la paranthése de
Poissox:

(3,6)

: 0H 0F 0H OF
I {H,F} =3 = .
W 1 Z(oa 0b ~ 0b Oa)

La somme est & exécuter sur toutes les paires de variables cano-
niques, c’est-a-dire sous forme d’intégration sur les dérivées fonc-
tionnelles par rapport aux P;(Z) et @;(z) et sous forme de som-
mation sur les p#, ¢* et nos nouvelles variables a* et b“.

Dans notre Hamiltonienne (2,7), généralisée par l'introduc-
tion des 7¥, ce ne sont évidemment que les 7§ qui peuvent dépendre
des variables intérieures. Pour avoir plus de symétrie, nous intro-
duirons un 7% au lieu de A* par la relation 7# = 2 A* —1.

L’évolution temporelle (3,5) pour A* découle alors de H (2,7)
s1, pour les 7¢ et 7%, les relations cycliques
21 = h{w, 14} (3,8)
sont satisfaites. |
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Si 'on compléte le champ @, et @), par 'introduction d’un
@5 qui agit sur les particules u par l'intermédiaire de 74, nos for-
mules gagnent en symétrie. Gréce & cette troisiéme composante,
les 7{' satisfaisant tous & (8,7), deviennent des constantes d’inté-
gration du probléme (1,1) malgré la dépendance explicite du terme
mfini de (3,1) en 7¥. Cela n’est vrai du reste que pour de grandes
distances entre particules. Pour deux particules seulement (3,7)
nous assure méme que le facteur %’ t#7] (que nous abrégerons

sous la forme (7%, ")) reste une constante d’intégration. Toutes
ces proprietés peuvent se démontrer trés simplement. En effet,
en posant N = 1 h7f, on voit que (3,7) devient

Ne = {N#, Nu3, (8,8)

Ces relations sont analogues a celles satisfaites par les trois com-
posantes du moment d’impulsion d’un corps solide. Ainsi, tous
les théorémes qui s’appliquent & ces moments sont valables pour
les N¥.

C’est pour cette raison qu’on appelle N la composante 4 du
« spin 1sotopique » de la particule wu.

Le fait que les charges des particules nucléaires (neutron et
proton) sont toujours positives et au plus égales a la charge du
proton s’exprimera par la condition que la valeur d’une compo-
sante du vecteur N{ dans «l’espace de charge électrique» sera
toujours contenue entre — h/2 et + h/2.

Malheureusement la validité de (1,1) avec (3,1) comme poten-
tiel d’interaction ne peut plus étre démontrée comme au chapitre 2.
Malgré le fait que (7, v*) sont des constantes de l'intégration de
(1,1), la substitution (2,18) n’est plus strictement canonique. Elle
ne l'est qu’en premiére approximation en g. Nous discuterons
dans le paragraphe suivant l'effet des variables intérieures sur la
forme du V*#” qui, dans le probléeme (1,1), déterminerait les orbites.

4. La théorie des forces d’échange.

Les deux champs @, et (), transportent donc de la charge
électrique d’une particule & l’autre, autrement dit ils produisent
I’échange de charge électrique entre deux particules. Cest la
raison pour laquelle les forces dérivant du potentiel V#” en (8,1)
sont appelées des « forces d’échange ».

Pour faire apparaitre dans I’Hamiltonienne un potentiel V#”
décrivant l'interaction entre les particules, & la place de l'inter-
action par l'intermédiaire du champ, nous devons, comme précé-
demment, opérer une transformation de contact du type (2,13).
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En effet, nous avons vu que cette opération a séparé le champ
statique Z~1J du champ total ¢. La nouvelle variable @', diffé-
rence entre ces deux champs, ne se trouve dans I’'Hamiltonienne
que sous forme d'un potentiel vecteur, dont I'influence est négli-
geable pour des petites vitesses. _

En essayant de définir des fonctionnelles U de transformation,
nous nous heurtons au fait que, maintenant, les variables inté-
rieures a* et b* dépendent du temps. Nous avons alors développé
la fonctionnelle U sous forme d’une série de puissance de la charge g.
C’est le seul moyen que nous avons trouvé pour tourner cette
difficulté. Nous posons U = Uy + gUy + g2U, + . ..., U, est dé-
fini par (2,14) (le terme P@)’ étant remplacé par Z%' P;Q/, en plus

un terme X a* b'* doit étre ajouté) et U, et U, sont donnés par
U, = }_}fdzﬁ P, Z1J,(a,V,q)

V=13 (fdm?'PZl )(Zfd 3PZI?)‘;,) (4,1)

J;(a, b, ¢') symbolise la fonction J; qui dépend des a*, b, g* et
dans laquelle les b* sont remplacés par les b'* et les g# par les g'“.
Les dérivées apparaissant en U, sont les dérivées de cet J; par
rapport a a* et b'’*. La somme est & exécuter sur toutes les paires
de wvariables a* et b'#. Cette transformation donne en plus des
transformations (2,11) et (2,12), des transformations canoniques
pour les variables intérieures a” et b*. Dans les formules expli-
cites figureront les J(a, b, ¢') et leurs dérivées. S1 ces expressions
sont développées en série de TayLor

Ji(a, b, 7 =Js(a, ¥, ) +Z ”~a“)g;j e

(4,2)

on trouve, pour P,, g et p# (au potentiel vecteur preés), des iden-
tités comme substitutions, tandis que les variables ); s’expriment
sous forme d’une série

2
Qi= Q) +9Z7 1/ — %— LYW AL Z AP ) 4+ o (4,3)

Un indice (¢ ou k) apparaissant deux fois dans la méme expression
implique une sommation sur cet indice. ;" est 'abréviation pour
la fonction J;(a’, V', ¢'). Le prime signifie que a*, b* et g* sont
remplacés par les nouvelles variables a'#, b'* et q'#. Les gran-
deurs A;.(Z) sont formées & partir des paranthéses de Porsson

Ai@)e @ —¥) {J ) s (y} (4,4)

12
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La fléeche indique que la décomposition du premier membre en
un produit d’une fonction de T par o (xz —7 ) n’est possible que dans
la limite o (z) — d(Z).

Les J;, fonctions des variables canoniques a*, b* et g#, doivent
étre exprimés en termes des J,” et des A4;,. Les transformations
canoniques pour a* et b* donnent, pour ces substitutions

. | Y W L (4,5)

Le résultat de ces substitutions donne, pour V#*, le terme (3,1),
mais, en plus, on a des termes contenant les variables du champ
sous forme linéaire

'Vlin=__g3fd§3pz.z—1 (Asp Z2T) + .« (4,6)

et d’autres bilinéaires ou d’ordres plus élevés:
2
Vbﬂin — _%fdiaQiAikZ—lpkﬁL. 5 i (4,7)

Comme dans les paragraphes précédents, nous avons supprimé les
primes apres avoir effectué la substitution. En tirant alors de
I’'Hamiltonienne 1’équation d’onde inhomogéne (2,1), on voit facile-
ment que I'inhomogénéité aura des termes provenant des dérivées
fonctionnelles de Vi et de VPiIin, Or les inhomogénéités dues &
Vhiin sont au moins linéaires dans les variables du champ. En
nous limitant aux termes en g2, la solution ) = P = 0 reste donc
possible pour les champs et VP1* n’a donc pas d’influence. Mais
ce n’est pas le cas pour V", En effet, un champ «statique» qui
est présent, méme si les g* sont nuls, apparaitra d& aux inhomo-
généités provenant de V'n. Il est proportionnel & ¢3 et dérive
du Vin en (4,6). Ce champ statique sera la cause d’une force
proportionnelle & g® entre les particules.

Mais on peut éliminer le V'™ de notre H par une nouvelle
transformation de contact, comme nous 'avons fait pour la partie
statique de 1 en (2,8). On pourra ainsi remplacer la force par
un potentiel d’interaction statique V#**# entre quatre particules
p, v, , B. Cette deuxiéme transformation de contact

U =U,+¢°U,

U, =fd§3 P;Q/ +2@”§'ﬂ) +Za”b'*‘
7 “

Us=— (8¢t [da® QW (a, ', q)

T/V'z' e G- (Az-kZ‘l Jk)

(4,8)
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introduit en effet un potentiel d’interaction supplémentaire

Tuva 3 2
;Z;;I# N 32nczfd$ PV

—1(r*P Y 4 pPR)

9 . v
--SEEs sttt T

S1 deux particules g et » seulement entrent en considération,
cette expression prend la forme

P Pl b b
(12 —4 (7)) e”’" emT e (4,10)

puv Y

Ve =

h2 c*l

lorsque nous appliquons la théorie symétrique par rapport aux
trois composantes du champ, théorie définie par (3,7), et si nous
posons (7§)%2 = 1 (ce dernier fait résulte de la théorie des quanta).
Il est intéressant de remarquer que (4,10) ne donne pas de V##
(énergie propre). Cela n’est vrai que pour la théorie symétrique.

I’Hamiltonienne exprimée en termes des nouvelles variables
contiendra encore une fois des termes de la forme Vin et JPilin,
Cependant, les termes V'™ ne donneront naissance & des champs
statiques que dans une approximation en ¢% champs qui, a leur
tour, produiront des forces proportionnelles & g% Leur élimina-
tion sera encore une fois possible par une transformation

U: Lro+g5l:}r5+...

Il est donc, en principe, possible de remplacer la théorie du champ
nucléaire par des potentiels d’interaction statiques qu'on peut
exprimer sous forme d’une série en g4

Pour effectuer ces transformations et substitutions, S. Lie a
donné une méthode générale que nous décrivons dans le para-
graphe suivant. ‘ |

5. La méthode des groupes continus de transformation de contact.
S. Lir®%) a démontré que les substitutions

& ]- m 174 ~

He=Y s D™ F (5,1)
| = ]
sont canoniques. Elles sont définies & partir des itérations
D*=D-D"-D"... (nfois) d'un opérateur différentiel
oU’” o oUu" o )

RELE (5.2)
0a" 0b ob" oa’

D’:E(
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Comme en (3,6), la somme est & exécuter sur toutes les paires
de variables canoniques. L’avantage de ce procédé est de donner
directement les substitutions tandis qu’auparavant ce n’était qu’a
la suite d’un long calcul qu’on pouvait les obtenir. U’ est fonc-
tionnelle et respectivement fonction des nouvelles variables cano-
niques P’, Q',p'*, q'*, a’*,b"*, F est une variable canonique ou une
fonction de telles varlableq F' est la méme fonction des va-
riables primées.

Cette méthode exprime F en termes de parenthéses de Porsson
par la série :

Al r r .L 57 £ ! nia ]'
F=F +{U 14} MJD {U If} .3‘ (5,3)
Avec la fonctionnelle
U=gU,; U,=[d&3P,Z1J, (5,4)

on revient aux transformations (4,3) et (4,5), mais la série en g
est maintenant complétement déterminée.
Transformant ensuite avec la fonctionnelle

U=¢*U;; U;=— (8mc?) dz3Q, W, (5,5
g°Us 3

(les définitions de W; étant données en (4,8) et (4,4)), on introduit
Vinteraction en ¢% (4,9). On continue ces substitutions jusqu’aux
iteractions en ¢'° par un U = ¢>U,. Le résultat de ces calculs
en se limitant & deux particules est donné par

Tuv glﬂ 6_2“’!” (
107h4c4l” ) (,r,.uv)2” e

1)2{6 e — [8(z* v*) — 24]

—Fpr l.r"“' el r””)

F—[8 (z#7") — 72 —
+ l-ro[ (z#7%) ]} T A (1””)2 (1—e

e—2l'r we 1 12 v -
e —— — e i 1 P 036
L AT i
Dans cette e\iprebsion sont contenus les termes en ¢'° pro-
venant déja de (5,5) aussi bien que les termes obtenus par Uj.

Nous avons supprimé, dans cette formule, les termes infinis
et constants en V& (énergie propre des particules). Cependant, i
contient encore des termes infinis, mais ceux-ci ne sont plus des
constantes. Ils sont fonction de ld. distance entre les particules.
Nous les avons rendus finis en donnant aux particules un rayon
fin1 r, défin1 par

! sz% 0(@)e@)dz2dy®—> 0. (5,7)
0 |z —y |
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Nous avons calculé numériquement V%" et V%' pour une
valeur 7, dix fois plus petite que le rayon d’action des forces /-1
Ces résultats sont donnés dans la figure 1, ot nous avons tracé
le rapport entre ces deux derniers potentiels et le potentiel de
Yurawa V¥ (c’est-a-dire (3,1), sans le terme de la self-énergie).
On remarquera que, méme pour des distances » ~r,, la convergence
semble bonne. Le fait que 1% donne une répulsion entre neutron
et proton ((t#7”) = —38) est un défaut bien connu de la théorie
scalaire. C’est une des ralsons qui nous obligent & considérer des
champs vectoriels (cf. le dernier alinéa du paragraphe suivant).

0,02 .

/Wz\
i I—r 21—
:
L—0

,02 $ &\\3 A
L —0,04
L —0,06
Z0,08
Fig. 1.

Bapport entre les approximations supérieures du potentiel d’interaction et le potentiel
de Yukawa pour la théorie scalavre.

Nous avons représenté le rapport Vg/V, et Vio/V, en fonction de r avec les
valeurs numériques suivantes: (4, %)= —3; g/hc = 1/10; 1/r, = 10x[. Nous
remarquons que la convergence de la série est excellente, méme pour des distances
de Pordre 7,. Nous avons arrété la courbe V,,/V, qui dépend de 7, & la distance
r = 7y, car, pour des distances plus courtes, elle n’a aucune signification.

6. La théorie vectorielle.

Jusqu’ici, nous n’avons considéré que les forces provenant de
la variable intérieure charge électrique, forces qui produisaient
I’échange de cette charge entre les particules nucléaires. Ce sont
des forces d'Heisenberg. Mais on sait que, en plus de cette pro-
priété scalaire, on doit admettre que les particules échangent une
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propriété vectorielle, leur moment d’impulsion du spin dans es-
pace ordinaire (force de Majorana). La théorie devient alors plus
compliquée car elle demande l'introduction dun champ vectoriel,
‘qui peut seul transporter cette propriété vectorielle.

La théorie d’un tel champ a été proposée par Proca®) pour
le cas des équations homogénes et KemMERr?) 'a appliquée au
cas inhomogéne. L'un de nous a démontré®) que les équations
peuvent aussi étre mises sous forme canonique.si le champ est
décrit par cing composantes f 4 la place de chaque ); des para-
graphes précédents. Les quatre premiéres composantes de ce
champ forment un quadrivecteur (x = 1,2, 3,4) et la cinquiéme
un scalaire. Nous écrirons ces composantes sous la forme Q: (vec-
teur Q}, Q7 et Q3), QF et @, (vrai scalaire).

La densité de charge des particules par rapport au champ
était gJ% = gtfo(x — q#). Les particules nucléaires étant douées
maintenant d’un moment angulaire M* = (h/2)5*, mesuré en termes
de la constante h par un vecteur sans dimension @, on peut alors

associer & la particule un vecteur de la densité de polarisation g@?
par rapport au champ @); vectoriel

gS¢ = fll et Grg(® — ). (6,1)

Nous exprimons cette polarisation au moyen d’une deuxiéme cons-
tante f de la méme dimension que g et par la longueur /-1 intro-
duite en (1,3) et (2,1). Pour autant qu’on se limite & de petites
vitesses, les équations (2,1) sont & remplacer pour chaque ); par

(A _ L0 Q,= —4mg rot S, (6,2)
\ 62 atz 2 () ’
1 02 | .
(A ——C“’é“ 0t2 _l2) Q’i S 4: TEQJ?IO
1 02 0J)
A—— - P\Q,=—Admg le)-! —
( @ o l)Q“ ALY

@); est un vral scalaire au sens de l'espace-temps, tandis que J?
et f sont les quatriémes composantes des quadrivecteurs J; et Q.

(Nous négligeons oJ; pour nos approximations statiques et posons
J? = J,;, car le facteur B =1; voir (2,3)).
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Pour autant que 'on néglige deés le début I'influence du po-
tentiel vecteur, les équations (6,2) résultent, sous forme canonique,
d’une Hamiltonienne (2,7) avec

HeE = %fdi:;{(@u Z@z) +Q:ZQ; — Q) ZQ)
+ 4 ;e? |13z|2 + 4 mc? P — 4 me® PP}

V=g [dEe{(Qy -4 n% P)J; — (@, rot S))}. (6,3)

La covariance relativiste des équations (6,2) et (6,3). pour des
vitesses quelconques et le fait que ’énergie H est toujours posi-
tive a été démontrée par I'un de nous®) si I'équation, compatible
avec (6,2), ¢ div Q, + Q2 — ¢1Q, = 0 est introduite comme condi-
tion initiale.

Une fonctionnelle de transformation peut étre construite en
analogie parfaite avec (2,14) (P’ est & remplacer par (P, Q)
+ P2QY 4+ P; Q). U, est alors donné par

Uy= [da?[(P;, Z7! rot 8;) + PP Z-1J7 + Q/(191d/].  (6,4)

Il en résulte une Hamiltonienne avec le potentiel bien connu
2 - >
};2 Vi = :”’z_fdzs{— (rot 8;, Z-V rot 8) +J, 21, — 4 nd -2 )}

—> 0 + > (*77) (92 + f2 [(3“, c?)

u>v

_]ypr
e e

(6,5) n’est valable que pour autant que les ¥ et les composantes
du vecteur o# sont constantes. S’ils dépendent des variables inté-
rieures a*, b“, le processus de Lir, décrit au chapitre 5, doit étre
appliqué et l'on retrouve l'expression (6,5) pour le terme en g2

En effet, la premiére substitution de Lie, qui correspond &
(5,4) est U' = gU, avec le U, de (6,4,) mais ou, naturellement,
toutes les grandeurs portent un prime. Le résultat d'une telle

*) Au moment ol les particules se « touchent », le premier et le dernier terme
de la formule exacte donnent lieu & des termes supplémentaires du type constante
X 0(q*—7"). Ils peuvent étre éliminés d’une fagon covariante, comme 1'un de
nous I’a démontré (STUECKELBERG, Phys. Rev. 54, 889, 1938).
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substitution est qu’en plus de 22'V#*, le H contiendra un V1o
u v

et un IPHn dont le premier terme est

Vin = g3 [dz3{(P,, Z-1rot R) + PP Z-' T, + Q:(1c)' T}.  (6,6)

Les abréviations Ez et T, sont | |
R, = — (rot (Z~'rot gk), Aa) + Ay Z-1J, (6,7)%)

T, = (rot (Z—'rot Sk), Aik) + A, 717,

Tci, la définition de A4, (x) est donnée par la paranthése de Poisson
(4,4), tandis que le vecteur A; est défini par

Le tenseur asymétrique (dont les indices « et f se rapportent aux
trois axes spatiaux) est défini par

A (&)o@ —§) — {S:®), SiH)}- (6,9)
Le produit intérieur d’un vecteur B avec Jzk donne un vecteur
(B, A;) = C;;, de composante
Ch= ZIB“AE;?-

Ce sont des produits semblables qui figurent dans (6,7).
La seconde transformation de Lie (analogue a (5,5)) est

U=gUy=g® [ dZ3 [(4 e~ (Qy, rot Z'R))
—@acd)' QP 2T, — (o)t P 271 T)]. (6,10)

Elle nous amene & un potentiel

EZZEVE"Mz— ! fdia[(rotﬁi,Z*zrotRi)
w v o B 8 7 2

— T 72T, +4a()2T,Z-1T]. (6,11

En nous limitant & deux particules seulement, on arrive & un
Ver que 'on doit ajouter a (6,5) et qui contient déja des termes
6 J , ]
infinis (dépendant de la distance) alors que, dans la théorie sca-
laire, ils me sont apparus quen FV#’., Exprimant ces coefficients
infinis par 1/r;1 comme en (5,7), on arrive 4 une formule trés com-
pliquée. Nous avons pris pour la valeur moyenne de (0#%, 0”#) la
valeur zéro lorsque o + B et la valeur £ (6%, ¢”) lorsque a= g (x et §

*) D’autres termes non écrits résultent encore. Mais ils sont éliminés en
méme temps que les termes § (EM* (P), si on ajoute a4 "'Hamiltonienne (6,3) le terme
invariant 2 w g2 12 f da? Jid;.
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se référant aux axes spatiaux et g et » & deux particules). La
formule pour ¥V, (6,5) se réduit alors & 'approximation discutée
dans I'introduction

Vir = hel (x7) [y + $(55) gle$ &1, (6,12)

Nous avons introduit, dans le seul but de simplifier 1’écriture,
la variable sans dimension &= rl, et les constantes sans dimen-
sions y = g%/hc et @ = f2)[hc. Nous avons aussi supprimé les in-
dices et la virgule dans les parantheéses (%,7") et (g%, o).

Dans la méme approximation, on obtient*) pour V4 la formule

If;év _ V’,Ztv e _g_ Vgl“' (6,13)

0

avec: (hel)=1Ver = e=286-2{p3[80 — 4 (v7) — 4(60) + 4 8(07) (v7)]
—;—ytp 2[16 — L 16(z7) — } 8(o0) — ¢ 64(3’)(11:)]
+ 92 [24—8(::) - 16(88) — 116(59) (z7)]
+ p3[12 — 4(r7) ]}

— ¢35 &2 {38 33) — 1.28(55) (¢7)] + y@?[64 — § 64 (v7)
32(63) + 9 80(33)(77)“;; ¢ [24 (55) —8(57) (x7)

+ 28 £33 L72 — 16(n) 132 G5) (7))

+ e 38 £-3{g3[16(r7) + 8(55) — 4(55) (v7)]
4oy [32 — 1 82(r7) — L 64(55) 4 4 256(57) (x7)]
+y2 [56 (55) — § 56(55) (v7)] +y3[24—8 (z7)]}

+ e 285493 [180 — 40(z7) — 4 80(c0) (v7)]

o3 g3 [8(55) — 32(r7) — 20(55) (v7)]
+y®2[96 —82 (v7) — } 82(c0) (z7)]

+ 2§53 [216 — 48(x 1) — 32(55) (x7)]

+e38£-508 [24(v7) + 40(55) + 20(5F) (v7)]
— 9y @2 [48 — 16 (v7) — L 16(00) (v 7)]

+ e 28563 [108 — 24(r7) — 16(55) ()]
+ e 385693 [72 (o0) + 12(0c0)(r7)]
— e 38E-"93 [8(r7) —40(o0) — 4(00) (r7)]

*) Ces longs calculs ont été effectués par J.C. P.
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et: (hel)= 1V — — 28 £-2{¢? [66 —12(v7) — 4(00)
+y[82 — 1 32(r7) — 1 8(55) — § 128(55) (
4929 [48 — 16(17) + 32 (55) — 4 32(55) (v7)]
+ y%[24 —8(z7)]}

3

)

— e 28 £-4¢3 {300 — 40(z7) + 40(c5) — § 80(50) (v7)}
)
)

Nous avons donc séparé V#* en deux termes Ve» et &;1VO0#
pour bien marquer la partie qui tend vers I'infini, si ry (et donc
&, tend vers zéro.

En plus de la supposition (z§)% = 1 qui provenait de la théorie
des quanta, nous avons fait certaines suppositions sur les expres-
sions bilinéaires des ¢#, dans le seul but de simplifier cette formule.
Ces suppositions supplémentaires seront discutées au chapitre sui-
vant. Elles ne modifient pas fondamentalement les résultats, mais
seulement les coefficients numériques des différents termes.

Le rapport V#*/V#*, tracé dans la figure 2, montre que la
convergence d’une telle série est trés mauvaise en comparaison
avec la convergence de la théorie scalaire.

Si nous posons f= 0, d’'ou ¢ = 0, nous aurons, en premiere
approximation, le potentiel de la théorie scalaire, mais changé

de signe:
—1r#?

vy = () g® =

rev

La seconde approximation, par contre, contiendra des termes en
1/ry qui ne se trouvaient pas dans le potentiel de la théorie sca-
laire. La formule (4,10) est remplacée par la relation:

6—21,1“"”’__6—3Irl“”

W 4 (g
Vo — [12 — 4 (z#7")]

h2e?l e
9 e—3lr"“’ 2 e—ZM"“’
e g e S e
[rev3 lry w2

Comme le facteur [12 — 4 (7#7*)] est toujours positif, le sens de la
correction sera toujours le méme. A une grande distance, le terme
prépondérant étant
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1l y aura renforcement de ’attraction alors qu’aux petites distances
(plus faibles que ry) une forte répulsion sera produite par le terme

6—317
s
Les deux termes qui sont déja apparus dans la théorie scalaire n’ont
pas une grande influence. La convergence de la série dépendra
de la valeur de Ir,. Pour obtenir une comparaison rapide, pour lr=1
uv
L PP
|V Irg
Pour la valeur de Iry = 1/10, ce rapport est plus grand que 0,5.

La convergence de la théorie scalaire n’existe donc plus, si on rem-
place le scalaire par la quatriéme composante d'un quadrivecteur.

Fig. 2.
Rapport entre la deuxiéme approxvmation vectorielle et le potentiel de Yukawa.

Cette figure représente, & une échelle logarithmique, les valeurs absolues
des deux rapports Vg4/V, et V2/V, en fonction de r. Le premier de ces rapports
est négatif. Les valeurs numériques que nous avons choisies sont données par la
résolution du probléme du deutéron par le potentiel de Yukawa: (7%, %) = -3,
(6#,06*) =1, [*[hc = 1/10, g*/hc = 1/40. Ces rapports sont plus grands que un,
méme pour des distances de l'ordre de [=!. La théorie semble donc divergente,
méme pour ces distances. Remarquons enfin que le rapport entre cette seconde
approximation et le potentiel de Yukawa est donné par la formule

Ve| /1 78

V| Iry V,

V,
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7. L’influence de la théorie des quanta.

Dans la théorie des quanta, le calcul des orbites est remplacé
par celui, plus simple, des valeurs propres de 'opérateur de 1’éner-
gle H

On associe aux variables canoniques P;, Q;, p*, q*, des opéra-
teurs qui satisfont aux reégles de commutation suivantes: ((F', G]
est le commutateur FG — GF de deux opérateurs).

(P2 (E), Q1)) = —?— .9 0ex (5 —7)
e gy aegr B OF 71
[p* gt q")] T (7,1)

7 est un opérateur, qui commute avec tout opérateur et dont le
carré vaut — 1. En prenant comme opérateur 'expression H de
la théorie classique, on arrive & une théorie quantique qui est
covariante, si on définit les opérateurs I’ par

F= %. H, F]. (7,2)

Ainsi Jes relations entre les espérances mathématiques des opéra-

teurs F, G, -+ - et F, G, - - - sont les mémes qu’entre les grandeurs
classiques correspondantes. |

Essayons de trouver 'analogue quantique d’une substitution
de Lie: Premiérement on vérifie facilement qu’aux parenthéses de
Porssox correspondent les commutateurs:

F, G} = g F, G]. 7,3
{ ? } h [ ? ] ( )
On peut prévoir que la substitution (analogue & (5,3))
_ ' 1 /42
I_‘ —_ ﬁ‘f 7777 Uf’ F’ + T (—) Uf, UI, Ff +7. = f",4
-+ Lo Py o (L)oo, P (7.4

est canonique.

L’opérateur U’ est 'opérateur correspondant & la fonction-
nelle U’ de la théorie classique dans laquelle les variables classiques
ont été remplacées par leurs opérateurs.

La démonstration que (7,4) est canonique se fait rapidement
alors qu’il et été trés long de donner la preuve qu’une substi-
tution de Lie avait cette propriété. En effet, s1 2-1 est 'opérateur
réciproque (2021 = Q-10=1) de £, toute substitution

F — QF Q- (7,5)
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laisse Invariantes les relations de commutation (7,1) et donc aussi
les opérateurs gouvernant 1’évolution temporelle (7,2). Si l'on
considére l'opérateur 2(U’,j) comme série de puissance de U’
et de 5, 1l est nécessaire que Q(U’, —9g) = 2-1(U’, 4) pour que
les espérances mathématiques de F' et de I soient en méme temps
des nombres réels. Le seul opérateur satisfaisant & cette condition
est la série

1+ e Y N e (LT
Q 1+hU+2!(h)U + e}.xp(h U) (7,6)
Alors, en substituant cette série dans (7,5), on trouve immédiate-
ment la série (7,4).

En vertu de la wvalidité des transformations classiques, on
pouvait penser que la théorie des quanta n’introduit que des
changements de détails. Toutefois, nous verrons que les termes
bilinéaires de I’Hamiltonienne (transformée) vont jouer un role,
alors que nous avons pu les éliminer en théorie classique.

Discutons tout d’abord les détails. Premiérement, la valeur
propre minimale de H®® devient infinie (zéro point énergy). Cela
introduit une constante additionnelle sans intérét. Secondement, .
la charge ## =27% —1 et le spin M# sont quantifiés. Ce fait
s’exprime par les relations cycliques

T — TH R — i T
JTh = T4 T L e (7,7)

(valables pour les trois =¥ et les trois ¢#%) et donne comme valeurs
propres 0 et 1 pour la charge électrique et - h/2 pour les com-

posantes de Me. Pour que les commutations qui découlent de (7,7)
ne solent pas en contradiction avec la loi de correspondance (7,3),
il faut que la constante h introduite dans la théorie classique soit
égale a celle figurant dans (7,1) (constante de Planck divisée par
2 m). Ainsi, les V#* (proprement symétrisés) ont la méme forme
qu'en théorie classique. Le terme F“* de la théorie vectorielle’
dans le paragraphe précédent a été calculé en utilisant (7,7) et en
prenant la valeur moyenne définie & la suite de (6,11).

Revenons maintenant aux termes bilinéaires. En théorie
classique, les solutions ¢); = P, = 0 étaient possibles dans ’approxi-
mation considérée, car les inhomogénéités des équations d’ondes
pour les champs transformés disparaissaient pour @; = P; = 0.
Les termes VPiin pouvaient alors étre négligés en toute rigueur.
En théorie quantique, on sait que les expressions bilinéaires con-
tenant par exemple P,(Z)- P;(§) ne peuvent jamais étre nulles
(fluctuations du champ).
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On doit donc tenir compte d’un terme en g4 a ajouter a (4,10).
L’un de ceux-ci a la forme

— 39 [AF% (4, 271 P) 21 (4, 21 P)). (7,8)

En exprimant les opérateurs P, par une série de Fourier et en
introduisant aussi les opérateurs opérant sur le nombre de quanta
contenu dans chaque onde plane, on montre que

(Z1PE) (2 Puff) = Ko (F—F )00 (19)

K(2) est la fonction de BesseL d’ordre zéro définie par Warson?).
(7,8) donne ainsi lieu & une interaction proportionnelle & g* ayant
la forme
4 p-lr
Ver = — 5 (T7) g ¢

4 7 he r

K, (rl). (7,10)

Mais (7,10) n’est pas la seule contribution, proportionnelle &
g%, aux valeurs propres de H. Il y a en effet d’autres termes ana-
logues & (7,8) mais qui contiennent le facteur infini 1/r7%. En plus,
en calculant la « perturbation du second ordre » des termes bili-
néaires proportionnels & g% on trouvera des déplacements des
niveaux d’énergie dus & I’émission et & la réabsorption de paires
de quanta, termes analogues & ceux calculés autrefois par Tamm
et par IwaNENKO!?), dans la théorie des forces nucléaires basée
sur l’échange des paires de neutrinos et électrons entre proton
et neutron.

En prenant, comme précédemment, g2/he = 1/10, (7,10) a une
valeur beaucoup plus grande que le terme classique V%,

Ainsi, comme on pouvait s’y attendre, la quantification des
champs rend plus mauvaise encore la convergence de la théorie.

8. Conclusions.

Nous avons ainsi montré qu'il est possible de faire une théorie
classique des « forces d’échange» entre les particules nucléaires.
Cette théorie associe au transport de la quantité de mouvement
d'une particule & l’autre, une autre propriété de cette particule,
charge électrique ou moment angulaire du spin, par exemple. Ces
grandeurs ne sont plus des constantes associées aux particules,
mais deviennent des variables intérieures. Les résultats de cette
théorie classique sont trés intéressants car il apparait certaines
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difficultés inhérentes a la théorie des forces d’échange. Elles ne
proviennent ni de la quantification des champs, ni de celle de la
charge ou du spin. Les raisonnements qui donnent naissance &
ces difficultés restent naturellement vrais dans la théorie des
quanta. Celle-ci d’ailleurs introduit d’autres difficultés dues aux
fluctuations du champ quantifié.

Dans les théories données jusqu’ici, on 8’est servi du potentiel
statique de Yukawa (et de sa généralisation vectorielle). Or nos
résultats nous montrent que ce potentiel ne décrit 'interaction
entre particules que pour autant que les variables intérieures
restent constantes. Autrement dit, le potentiel de YurawA ne
tient pas compte des échanges de charge ou de spin. Aussitdt
que I’échange se produit, on peut encore, si l'on veut, décrire
I'interaction par un potentiel, mais celui-ci est trés différent, pour
les distances intéressantes, du potentiel de YukawaA.

Nous avons réussi & exprimer ce potentiel des forces d’échange
sous forme d’une série grace 4 la méthode des substitutions de L1
(théorie des groupes continus des transformations de contact).

Le premier terme de cette série est le potentiel de YurawaA.
Il n’est valable que pour de grandes distances entre les particules
(plus grandes que le rayon d’action des forces nucléaires). Ainsi,
toute conclusion quantitative se basant sur 'emploi de ce potentiel
nous semble injustifiée.

Dans les régions intéressantes (rayon des forces nucléaires)
la série de la théorie scalaire semble convergente. Pour la théorie
vectorielle, par contre, le second terme est déja plus grand que
le premier. En plus, le troisitme terme de la théorie scalaire et
le second de la théorie vectorielle n’ont pu étre rendus finis qu’en
donnant aux particules un rayon fini.

En terminant nous aimerions remercier M. le professeur
J. WEIGLE du grand intérét qu’il a témoigné & nos recherches.

Institut physique de 1’Université de Geneve.
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