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Théorie classique des forces d'échange
par E. C. G. Stueckelberg et J. F. C. Patry.

(25. IV. 40.)

1. Introduction et Résumé.

Le potentiel de l'interaction statique entre des particules nucléaires, dû au
champ des forces nucléaires (théorie de Yukawa) est calculé sous forme d'une série
en g2/hc. La méthode est celle des transformations de contact valable aussi bien
en théorie classique qu'en théorie quantique. La convergence de la serie semble
bonne pour le cas de la théorie scalaire (mesotron sans spin). Bile est très mauvaise

pour la théorie vectorielle (mesotron doué d'un spin).

Les niveaux d'énergie d'un ensemble de particules se calculent
comme l'énergie des orbites, proprement quantifiées, d'un système
mécanique de points matériels. Si les forces entre les particules
dérivent d'un potentiel ne dépendant que de la distance f" entre
le rUime et le i>ême point matériel, ces orbites sont obtenues comme
solutions des équations canoniques:

i dH t. dH
r)qt> f)pf

Ces équations proviennent d'une fonction Hamiltonienne :

ff(p",g") S^" + SS^"v (1,2)
Il /X V

où H1' représente l'énergie cinétique et V'"' le potentiel des forces
dépendant de r"» \qf — q"\. q^ctp11 sont les vecteurs de
position et d'impulsion du ^ème pointe de masse.

De même, les trajectoires hyperboliques qu'on observe dans
les expériences de diffusion de rayons corpusculaires, se calculent
à partir de (1,2). Ce procédé est suffisant, dans une certaine
approximation, pour la discussion de la structure des atomes et
molécules quand on utilise pour V1"1 le potentiel de Coulomb
entre les noyaux et les électrons considérés comme des points
matériels.

Si l'on veut pousser l'approximation plus loin, il est nécessaire

d'introduire des variables intérieures des « points matériels »

comme par exemple le « spin » de l'électron pour la structure fine
et le « spin » des noyaux pour la structure hyperfine.

Le point matériel /e doit donc être décrit non seulement par
p* et q" mais, en plus, par ses variables intérieures, que nous
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désignerons par a" et b11. a* et b" sont canoniquement conjuguées,
ce qui veut dire que leur évolution temporelle est donnée par des

équations analogues à (1,1), l'équation pour à1* ayant le signe
négatif.

Le potentiel d'interaction V1" prend alors la forme V1"
(af, b?, a", b", r"v), faisant intervenir à la fois les variables
intérieures et la distance rf ". Dans la théorie de la structure atomique
et moléculaire, les parties de V'1", qui montrent cette dépendance
de a^ et b", sont relativement peu importantes et il suffit de les
traiter comme des perturbations des orbites calculées pour le
potentiel de Coulomb pour obtenir une très bonne approximation.
Par contre, la structure des noyaux atomiques nous montre que
les forces entre protons et neutrons doivent dépendre des variables
intérieures en première approximation déjà. Ce qu'on exprime
habituellement en disant que les forces entre proton et neutron
sont des « forces d'échange ».

Le but de ce travail est de calculer le potentiel V**" entre
protons et neutrons, qui résulte d'une théorie du champ des forces
nucléaires. On remarquera l'analogie complète avec le problème
potentiel de Coulomb — champ électromagnétique, car en effet
le potentiel de Coulomb découle de la théorie du champ
électromagnétique de Maxwell dans l'approximation statique (Iq^l^c,
c vitesse de lumière). On pensait jusqu'ici que la théorie du
champ nucléaire (proposée par Yukawa et élaborée par différents
auteurs1)) donnait un potentiel F*" u(af', b**, a", b") • v^"). Le
facteur _^,

"(O-'-^r- (LS)

disparaît pour des distances r^-l'1 (Z_1 étant le rayon d'action
des forces nucléaires).

Le facteur u est constant malgré sa dépendance des aß et
des f, en vertu des équations de mouvement des a? et b11. On
savait d'ailleurs que (1,3) n'est valable que pour autant que les

particules n'agissent sur le champ que par l'intermédiaire de leurs
propriétés scalaires (charge électrique, etc.). Si, en plus, on tient
compte de leur propriété vectorielle (spin), (1,3) doit être
complété par des termes montrant un couplage entre l'orientation du
spin des particules et le rayon vecteur de leur distance relative.
Le facteur u ne reste alors plus constant mais, pour calculer les
niveaux d'énergie, une certaine moyenne peut -être définie. La
démonstration qui (1,3) (ou la forme plus compliquée dans le cas
de l'action sur les spins) résulte de la théorie du champ n'a été
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fournie que par la première approximation de la méthode de
perturbation de la théorie des quanta. Cette démonstration n'est pas
suffisante quoique l'un de nous ait montré, par une méthode plus
appropriée, que le potentiel de Coulomb et (1,3) (si les variables
intérieures n'interviennent pas) sont valables pour l'approximation
statique. Cette nouvelle démonstration s'obtient par des
transformations de contact et peut être donnée aussi bien en théorie
quantique qu'en théorie classique2). Dans le travail ci-dessous,
nous appliquons cette méthode des transformations à des
problèmes dans lesquels les variables intérieures interviennent. Nous
montrons ainsi que le potentiel (1,3) (ou sa généralisation vectorielle)

ne représente plus l'interaction. Il n'est que le premier
terme d'une série qu'on peut calculer par des méthodes purement
classiques.

Dans les pages suivantes, nous avons calculé cette série
jusqu'au troisième terme pour le champ scalaire (théorie originale de

Yukawa) et jusqu'au deuxième pour le « champ vectoriel » qui,
seul, a la symétrie nécessaire pour représenter les niveaux connus
du deuton.

La théorie des champs quantifiés introduit des termes
supplémentaires dans ces séries, à cause des fluctuations du champ.
Nous en avons calculé aussi quelques-uns.

Nos résultats montrent que, dans l'état présent de la théorie,
il est très difficile de remplacer l'action du champ par une
interaction entre les particules. Ceci pour les raisons suivantes: En
premier lieu, les termes de la self-énergie infinie de particules
ponctuelles apparaissent comme dans l'électrodynamique. Mais,
en plus de ces énergies qui tendent vers des constantes infiniment
grandes quand le rayon des particules tend vers zéro, nous
trouvons, en troisième approximation de la théorie scalaire et en
deuxième approximation de la théorie vectorielle, des termes de
la série qui dépendent de la distance entre deux particules et dont
le facteur constant tend vers l'infini pour des particules
ponctuelles. Pour les étudier, nous les avons rendus finis en introduisant

des particules de dimensions finies. Enfin, le rayon de

convergence de la série étudiée semble être de l'ordre de A1. Cela veut
dire que, pour les régions intéressantes, on n'a aucune raison de

supposer que le potentiel de Yukawa a une signification quantitative.

Tous ces défauts sont de nature purement classique. Si,
en plus, on tient compte des termes dus aux fluctuations du champ,
mentionnés ci-dessus, on trouve une série de termes présentant le
même genre de difficultés, -mais dont l'influence quantitative est
plus grande encore.
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2. Théorie d'un champ à une seule composante.

Nous décrirons le champ des forces nucléaires à l'endroit x
et au temps t par le scalaire Q(x,t). Nous verrons plus loin de

quelle façon l'on forme, à partir de ce champ, la force avec
laquelle il agit sur les particules. Mais, tout d'abord, nous étudierons

l'influence que les particules exercent sur ce champ. Pour
cela, nous écrirons l'équation la plus simple montrant une co-
variance relativiste :

A -j*-^-1*)^'*) -4^J(M- (2,1)

L'inhomogénéité —4ngJ est due aux particules (neutrons et
protons) et nous verrons en (2,3) comment elle dépend de l'endroit q1"

où est placée la //ème particule. En l'absence de particules, gJ est
nul et Q satisfait à l'équation d'onde homogène. Cette équation
n'est autre que l'équation de de Broglie pour des quanta doués
d'une masse Ihfc. (h est la constante de Planck divisée par 2 n.)

Ces quanta n'interviendront jamais dans notre théorie, qui
reste entièrement classique et le mot particules signifiera toujours
protons ou neutrons. La constante l qui intervient dans l'équation

(2,1) déterminera aussi le rayon d'action des forces nucléaires.
Mais revenons à l'influence des particules sur le champ. Par

analogie avec l'électrodynamique, nous appellerons gJ la densité
de charge des particules par rapport au champ Q. Avant de
définir J, il nous faut préciser ce que nous appellerons particule
ponctuelle. Si celle-ci est située à l'endroit x q1*, on peut lui
associer la densité ô(x —q1'), ô étant la fonction de Dirac.

Pour rendre finies certaines expressions qui apparaîtront
dans notre théorie, nous serons obligés de remplacer la fonction
de Dirac ô(x) par une fonction g(x) donnant un rayon fini à la
particule. En intégrant sur un domaine grand par rapport aux
dimensions de la particule, on aura:

fdxzQ (x) fdxzô(x 1

Les résultats obtenus pour des particules ponctuelles (en passant
à la limite g ô) seront marqués par une flèche ; par exemple
pour une fonction f(x), on aura:

fdxAf(x)g(x)^f(0). (2,2)

(Toute intégration J dx3 est h exécuter sur l'espace entier.) Comme
le champ Q, que nous voulons étudier, n'a qu'une seule compo-



Théorie classique des forces d'échange. 171

sante, nous formerons une densité scalaire J**, au moyen de

laquelle nous définirons J:

J"= ßfg(x — q^); avec cß" ]/c2 — | g"|2 (2,3)

L'inhomogénéité due à toutes les particules sera alors définie par:

j=2J"- (2'4)

Comme nous ne nous intéresserons qu'au cas statique | qM\ <^ c,
on a ^ 1. On voit alors que le facteur g est la «charge » (par
rapport au champ nucléaire) d'une particule. L'équation (2,1)
prend alors la forme:

ZQ gJ avec 4nZ=l2-A (2,5)

équation facilement intégrable à l'aide de la fonction v(r) de
Yukawa (voir (1,3)).

Q(x) gZ^J gfdy^(\x-y\)J(y) (2,6)

(2,6) définit l'opérateur intégral Z-1, qui nous sera utile plus tard.

Il nous faut maintenant décrire l'influence du champ Q sur
les particules. Pour cela, nous nous servirons de la conservation
de l'énergie. En effet, pour des petites vitesses, l'équation (2,1)
peut être obtenue à partir d'une fonction d'énergie (Hamiltonienne).

H H<* + V + fîPart (2,7)

où Hch et V sont respectivement les fonctionnelles suivantes de

Q(x) et de la fonction canoniquement conjuguée P(x)

Hch fdx3^(QZQ + 4nc2P2) (2,8)

V=-fdx*gQJ.
Pour pouvoir écrire les équations canoniques, nous aurons besoin
des dérivées fonctionnelles. Nous les définirons par

ôF=[dx*1^-dQ.(x)
J ôQ(x)

qui exprime la variation ôF d'une fonctionnelle F[Q(x)] lorsque
les fonctions admises Q(x) satisfont à certaines conditions aux
limites.
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Les équations canoniques deviennent alors:

t^ dH __ T

Q-ôôp-^c2P.
(2,9)

Eliminant P on retrouve (2,1).
De (2,7) découlent aussi les équations de mouvement des particules

de masse M sous la forme canonique. On obtient celles-ci
en écrivant

Jfjpart=y H"(pi1); H" |p"|2.

On voit ainsi que les particules sont soumises à une force

î-^A-f/Y. (2,10)

C'est là l'équation qui nous indique comment le champ Q agit
sur les particules.

Nous désirons maintenant transformer l'Hamiltonienne de

façon à faire apparaître un potentiel qui, pour de petites vitesses
des particules, s'exprimera en fonction de la distance r"" entre les
deux particules pi et v. Ainsi nous aurons ramené l'action du
champ Q sur les particules à une action entre particules (analogue
au potentiel de Coulomb). C'est une transformation de contact
qui nous permettra de faire cette opération. On peut définir des
transformations de contact pour les fonctions P et Q aussi bien
que pour les variables p" et q". Pour cela, on se sert d'une
expression U, fonction de p'' et de q'M, et fonctionnelle de P et de Q'.
Au moyen des relations

dU «», dU .._.
dp" dq'f

Q^ ATATA-' P'W=A777A <2'12)
oP(x) o Q (x)

on peut calculer les substitutions des transformations de contact.
La substitution particulière

Q=Q' + gZ-iJ ; P P' (2,13)

5" 5'"; pß p'" + — Â(q'") n'"
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résulte en effet d'une fonctionnelle de transformation

U=U0 + gUx (2,14)
avec •

U0= fdx3PQ' +2(p*,g'")
J ii

ux= fdx3PZ-1J' -, J' Se(« —?'")•
J 11

De l'Hamiltonienne H de (2,7) résulteront à nouveau les équations
de l'évolution temporelle des nouvelles variables P', Q', p'ß, q'<",

sous forme canonique, si nous effectuons les substitutions (2,13).

AÇq") est un potentiel vecteur dont la valeur limite est

Â(q) -> -J^cZ~iP(q).

L'Hamiltonienne à laquelle nous parvenons ainsi sera

H Hch + ^fl" v>) +22 F"" (2>15)
Il fl V

avec

22T7"" - I 92 f àxz J Z-1 J -v oo-g22^(^").
Il V J /1< V

Nous avons partout supprimé les primes. L'interaction entre
le champ et les particules est entièrement comprise dans le fait
que les p'' de (2,7) sont devenus des nß dépendant d'un potentiel
vecteur. Il en résulte que l'inhomogénéité de l'équation d'onde
sera maintenant proportionnelle aux vitesses des particules. Dans
l'approximation qui nous intéresse, nous négligerons tout effet dû
à la vitesse et Q P 0 sera une solution de notre équation.
Alors Hcil 0 et n" p1". En vertu de la deuxième équation
(2,15), notre problème se réduit au calcul des orbites pour des

particules soumises à une influence mutuelle décrite par le potentiel

V'". Le terme infini est la contribution des termes p v;
il ne devient infini que dans la limite g —>- à.

3. La théorie d'un champ à plusieurs composantes.

La théorie simple exposée au chapitre précédent permet deux
généralisations, que nous allons introduire. Tout d'abord, nous
attribuerons à différentes particules des « charges » différentes, ce

que l'on peut faire en introduisant un facteur scalaire et sans dimension

x'1 dans la définition de J" (2,3). En second lieu, on peut
considérer plusieurs champs indépendants Qt(x), chacun satisfai-
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sant à (2,1) avec des inhomogénéités respectives Jt, qui seront
définies en introduisant des facteurs t1/ au second membre de

(2,3). t? exprimera alors (en terme d'une constante g de la dimension

de charge) la « charge » de la particule yi par rapport à la
composante Qi du champ.

Ces généralisations ne changent rien aux considérations du
paragraphe précédent. Il faudra évidemment compléter les
formules linéaires en P, Q ou J par un indice i, tandis que les autres
formules, qui sont toutes bilinéaires par rapport à ces variables,
sont à sommer sur l'indice i, par exemple P2 devient AIP2.

Si tous les champs ont la même constante l, l'interaction
aura la forme :

227r^^22«-022(2«)«(O- OU)
/i v fi i /i<v i

En généralisant ainsi notre théorie, nous avons gardé la supposition

que les Q{ sont tous des scalaires. Cependant un potentiel
de la forme (3,1) ne suffit pas encore pour expliquer les forces
nucléaires. En effet, la théorie primitive de Heisenberg3) nécessitait

déjà l'introduction des « forces d'échange ». Tandis que l'action

des forces résultant d'une énergie potentielle (3,1) se borne
à transporter de la quantité de mouvement d'une particule à

l'autre, ces forces d'échange ajoutent à ce transport l'échange
d'une autre qualité des particules. La force introduite par Heisenberg,

par exemple, lie à l'action mécanique d'un proton sur un
neutron, le transport de la charge électrique du proton au neutron.
Les forces, qui ont été ensuite introduites par Majorana et Bart-
lett4), ajoutent à ce transport de charge électrique un échange
supplémentaire de moment angulaire du spin.

Pour décrire l'échange de charge électrique entre deux particules,

il faut concevoir un champ qui puisse transporter de la
charge électrique. Il faut donc pouvoir construire, à partir des

grandeurs du champ Q{ un quadrivecteur gch et gc^ satisfaisant
(dans les régions où il n'y a pas de particules chargées électriquement)

à l'équation de continuité:

cdiv5ch + éoh= ° (3>2)

car alors, on pourra poser que ce quadrivecteur est proportionnel
au quadrivecteur de densité de charge électrique. Les quantités

Qch -,—r- (Qi grad 62 — <2a grad Qx)
4nhc

(3,3)

et YTAAz (- && + &&)4nhcl
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satisfont à ces conditions dans les régions entre les particules où
l'inhomogénéité Jt S J" disparaît. Pour leur donner la dimen-
sion d'une densité (cm-3), il faut que la constante h quelconque
ait la dimension (p ¦ q). Dans les régions où se trouvent les particules

porteuses de charge électrique (proportionnelle à Xß pour la
particule /Y), il faut compléter les densités (3,3) et écrire:

g gch + ^X"^~ g(x —q")
" C

(3,4)

eo= et + Z^Q(x-~q").

Ces expressions satisferont l'équation de continuité, si l'évolution
temporelle de chaque A" est donnée par

*"-*|- (Qi(5") *ï - Q* (§") Ti) • (3>5)

Cette équation signifie que la charge électrique transportée par
le champ est prise aux particules.

Cet échange de charge électrique nécessite donc l'introduction
d'une nouvelle variable X" (variable intérieure) en plus des p" et q"
pour chaque particule ;i. Pour avoir conservation d'énergie, elle
doit être une fonction de certaines variables canoniques intérieures
a" et b".

L'évolution temporelle d'une variable quelconque F est, en
vertu des équations canoniques, donnée par la paranthèse de

Poisson:

1 S ^[da db db da J
v '

La somme est à exécuter sur toutes les paires de variables
canoniques, c'est-à-dire sous forme d'intégration sur les dérivées
fonctionnelles par rapport aux P»(x) et Qt(x) et sous forme de
sommation sur les pß,qß et nos nouvelles variables a" et b".

Dans notre Hamiltonienne (2,7), généralisée par l'introduction
des rf, ce ne sont évidemment que les r? qui peuvent dépendre

des variables intérieures. Pour avoir plus de symétrie, nous
introduirons un rfs au lieu de X" par la relation rfò 2 X" — 1.

L'évolution temporelle (3,5) pour X" découle alors de H (2,7)
si, pour les r* et t£, les relations cycliques

ät'^i^T'J (3,8)
sont satisfaites.
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Si l'on complète le champ Qx et Q2 par l'introduction d'un
Q3 qui agit sur les particules u, par l'intermédiaire de t^, nos
formules gagnent en symétrie. Grâce à cette troisième composante,
les t? satisfaisant tous à (3,7), deviennent des constantes
d'intégration du problème (1,1) malgré la dépendance explicite du terme
infini de (3,1) en rf. Cela n'est vrai du reste que pour de grandes
distances entre particules. Pour deux particules seulement (3,7)
nous assure même que le facteur ^r-'A (que nous abrégerons

sous la forme (t/*, r")) reste une constante d'intégration. Toutes
ces propriétés peuvent se démontrer très simplement. En effet,
en posant NÇ l hrf, on voit que (3,7) devient

2rç={jrç,ff#. (3,8)

Ces relations sont analogues à celles satisfaites par les trois
composantes du moment d'impulsion d'un corps solide. Ainsi, tous
les théorèmes qui s'appliquent à ces moments sont valables pour
les N%.

C'est pour cette raison qu'on appelle N? la composante i du
« spin isotopique » de la particule ci.

Le fait que les charges des particules nucléaires (neutron et
proton) sont toujours positives et au plus égales à la charge du
proton s'exprimera par la condition que la valeur d'une composante

du vecteur N" dans « l'espace de charge électrique » sera
toujours contenue entre — h/2 et + h/2.

Malheureusement la validité de (1,1) avec (3,1) comme potentiel

d'interaction ne peut plus être démontrée comme au chapitre 2.

Malgré le fait que (r", r") sont des constantes de l'intégration de
(1,1), la substitution (2,13) n'est plus strictement canonique. Elle
ne l'est qu'en première approximation en g. Nous discuterons
dans le paragraphe suivant l'effet des variables intérieures sur la
forme du V"" qui, dans le problème (1,1), déterminerait les orbites.

4. La théorie des forces d'échange.

Les deux champs Qx et Q2 transportent donc de la charge
électrique d'une particule à l'autre, autrement dit ils produisent
l'échange de charge électrique entre deux particules. C'est la
raison pour laquelle les forces dérivant du potentiel V"" en (3,1)
sont appelées des «forces d'échange».

Pour faire apparaître dans l'Hamiltonienne un potentiel V"
décrivant l'interaction entre les particules, à la place de l'interaction

par l'intermédiaire du champ, nous devons, comme
précédemment, opérer une transformation de contact du type (2,13).
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En effet, nous avons vu que cette opération a séparé le champ
statique Z~XJ du champ total Q. La nouvelle variable Q',
différence entre ces deux champs, ne se trouve dans l'Hamiltonienne
que sous forme d'un potentiel vecteur, dont l'influence est
négligeable pour des petites vitesses.

En essayant de définir des fonctionnelles U de transformation,
nous nous heurtons au fait que, maintenant, les variables
intérieures a" et b" dépendent du temps. Nous avons alors développé
la fonctionnelle U sous forme d'une série de puissance de la charge g.
C'est le seul moyen que nous avons trouvé pour tourner cette
difficulté. Nous posons U U0 + g Ux + g2 U2 + U0 est
défini par (2,14) (le terme PQ' étant remplacé par £PiQ/, en plus

un terme S a" V" doit être ajouté) et Ux et U2 sont donnés par

7Ji=2 /'dS3PiZ-1Ji(a,ò',g')

U.2
dJ,\ /m. r x^v-r, r, x dj.*2tefdVPtz-^\frfa*»ptz-^\ (4,i)

Ji(a, b', q') symbolise la fonction J{ qui dépend des a", b", q" et
dans laquelle les IA sont remplacés par les b'" et les q" par les q '<".

Les dérivées apparaissant en U2 sont les dérivées de cet Jt par
rapport à W et b'M. La somme est à exécuter sur toutes les paires
de variables a" et b'1". Cette transformation donne en plus des

transformations (2,11) et (2,12), des transformations canoniques
pour les variables intérieures a" et b". Dans les formules explicites

figureront les J(a, b', q') et leurs dérivées. Si ces expressions
sont développées en série de Taylor

J,(a,b',q')= J{(a', b',q')+^(a"- a'") Mi. + (4,2)
ii v®

on trouve, pour Pt, *q" et p? (au potentiel vecteur près), des identités

comme substitutions, tandis que les variables Qt s'expriment
sous forme d'une série

Qt Q/ + gZ-iJ/ - -Ç Z-i(A'ikZ-ipk') +... (4,3)

Un indice (i ou k) apparaissant deux fois dans la même expression
implique une sommation sur cet indice. J/ est l'abréviation pour
la fonction Ji(a', b', q'). Le prime signifie que a", b" et q" sont
remplacés par les nouvelles variables a'", 6'" et q'1". Les
grandeurs A'ik(x) sont formées à partir des paranthèses de Poisson

Aik(x)g(x -y) -*- {Jï(x), J*©)}. (4,4)
12
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La flèche indique que la décomposition du premier membre en
un produit d'une fonction de x par g(x —y) n'est possible que dans
la limite g(x) —v (3(5).

Les Jit fonctions des variables canoniques a", b" et q", doivent
être exprimés en termes des J/ et des A'ik. Les transformations
canoniques pour W et b" donnent, pour ces substitutions

Ji=J/~gA'ikZ^Pk' + (4,5)

Le résultat de ces substitutions donne, pour V"", le terme (3,1),
mais, en plus, on a des termes contenant les variables du champ
sous forme linéaire

Fin _ g^jdx3Pi Z-1 (Aik Z~!Jk) +... (4,6)

et d'autres bilinéaires ou d'ordres plus élevés:

j/biiin^ _.oÇfdx3QiAikZ-ipk + (4,7)

Comme dans les paragraphes précédents, nous avons supprimé les

primes après avoir effectué la substitution. En tirant alors de
l'Hamiltonienne l'équation d'onde inhomogène (2,1), on voit facilement

que l'inhomogénéité aura des termes provenant des dérivées
fonctionnelles de Vïin et de Vhmn. Or les inhomogénéités dues à
T/biiin son£ au moins linéaires dans les variables du champ. En
nous limitant aux termes en g2, la solution Q P 0 reste donc
possible pour les champs et Vbim n'a donc pas d'influence. Mais
ce n'est pas le cas pour ylin. En effet, un champ «statique» qui
est présent, même si les q" sont nuls, apparaîtra dû aux inhomogénéités

provenant de FIin. Il est proportionnel à g3 et dérive
du yiin en (4,6). Ce champ statique sera la cause d'une force
proportionnelle à g6 entre les particules.

Mais on peut éliminer le F"1™ de notre H par une nouvelle
transformation de contact, comme nous l'avons fait pour la partie
statique de V en (2,8). On pourra ainsi remplacer la force par
un potentiel d'interaction statique F'"'<x's entre quatre particules
H, v, a, ß. Cette deuxième transformation de contact

U =U0 + g3U3

U0 fdx3 Pi Q/ + 2 (f"q'") +2 «TV*
n m (4,8)

7J3 - (8 n c2)-ifdx3 Q/ Wi (a, b', q')

Wi 2Z-i(AikZ-*Jk)
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introduit en effet un potentiel d'interaction supplémentaire

22221^^-^S/^3^2
ii v a ß où ne, J

6 llr«ß+rl"+rßK)

--SSSSi^frfOftrtN e

,.,„. (4'9)
Il v rx ß *° l ' '

Si deux particules /u et v seulement entrent en considération,
cette expression prend la forme

„6 -Ir*"1 -Ir1" -2lrßV
v«v=ïÂh^-4(t"%v)) V~ - ^- (4'10)

lorsque nous appliquons la théorie symétrique par rapport aux
trois composantes du champ, théorie définie par (3,7), et si nous
posons (t£)2 1 (ce dernier fait résulte de la théorie des quanta).
Il est intéressant de remarquer que (4,10) ne donne pas de Vßfl
(énergie propre). Cela n'est vrai que pour la théorie symétrique.

L'Hamiltonienne exprimée en termes des nouvelles variables
contiendra encore une fois des termes de la forme Vm et F*»*1111.

Cependant, les termes F"1"1 ne donneront naissance à des champs
statiques que dans une approximation en gf5, champs qui, à leur
tour, produiront des forces proportionnelles à gr10. Leur élimination

sera encore une fois possible par une transformation

U=U0 + g5U5 + ---
Il est donc, en principe, possible de remplacer la théorie du champ
nucléaire par des potentiels d'interaction statiques qu'on peut
exprimer sous forme d'une série en g*.

Pour effectuer ces transformations et substitutions, S. Lie a
donné une méthode générale que nous décrivons dans le
paragraphe suivant.

5. La méthode des groupes continus de transformation de contact.

S. Lie5) a démontré que les substitutions

o n-

sont canoniques. Elles sont définies à partir des itérations
D'n D' ¦ D' • D'... (n fois) d'un opérateur différentiel

D^(Wi-_^±) (5,2)1

da' db' db' da' v ;
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Comme en (3,6), la somme est à exécuter sur toutes les paires
de variables canoniques. L'avantage de ce procédé est de donner
directement les substitutions tandis qu'auparavant ce n'était qu'à
la suite d'un long calcul qu'on pouvait les obtenir. U' est
fonctionnelle et respectivement fonction des nouvelles variables
canoniques P', Q'.p'", q'1*, a'", b'f, F est une variable canonique ou une
fonction de telles variables. F' est la même fonction des
variables primées.

Cette méthode exprime F en termes de parenthèses de Poisson
par la série

F F' + {U', F'} +1 {U', {U', F'}} + A- • • • (5,3)

Avec la fonctionnelle

U=gUx; Ux=jdx3PtZ-KJi (5,4)

on revient aux transformations (4,3) et (4,5), mais la série en g
est maintenant complètement déterminée.

Transformant ensuite avec la fonctionnelle

U=g3U3; U3=-(8nc2)-1fd23QiWi (5,5)

(les définitions de Wt étant données en (4,8) et (4,4)), on introduit
l'interaction en ge (4,9). On continue ces substitutions jusqu'aux
interactions en g10 par un U g'°Ub. Le résultat de ces calculs
en se limitant à deux particules est donné par

<710 -Viri"' I -Ir""

[12 —4(t"t")]. (5,6)e-2lr<" 1

(lr"")2 (lr0)

Dans cette expression sont contenus les termes en g10
provenant déjà de (5,5) aussi bien que les termes obtenus par U5.

Nous avons supprimé, dans cette formule, les termes infinis
et constants en V^ (énergie propre des particules). Cependant, V^
contient encore des termes infinis, mais ceux-ci ne sont plus des

constantes. Ils sont fonction de la distance entre les particules.
Nous les avons rendus finis en donnant aux particules un rayon
fini r0 défini par

-= /"/V *>, Q(x)e(y)dx3dy3-+œ. (5,7)
r0 JJ \x—y\



Théorie classique des forces d'échange. 181

Nous avons calculé numériquement V^v et Vf* pour une
valeur r0 dix fois plus petite que le rayon d'action des forces l~x.
Ces résultats sont donnés dans la figure 1, où nous avons tracé
le rapport entre ces deux derniers potentiels et le potentiel de
Yukawa V%v (c'est-à-dire (3,1), sans le terme de la self-énergie).
On remarquera que, même pour des distances r ~ r0, la convergence
semble bonne. Le fait que V"v donne une répulsion entre neutron
et proton (r" r") — 3) est un défaut bien connu de la théorie
scalaire. C'est une des raisons qui nous obligent à considérer des

champs vectoriels (cf. le dernier alinéa du paragraphe suivant).

0,02

i

-—JV^

i

i
/"' 2'1-S

i

l-0.02 /<f
— 0.04/

-0.06
1

-0,08

Fig. 1.

Rapport entre les approximations supérieures du potentiel d'interaction et le potentiel
de Yukawa pour la théorie scalaire.

Nous avons représenté le rapport VejVi et V10IV2 en fonction de r avec les
valeurs numériques suivantes: (t'', r") -3; gjhc 1/10; l/r0 10x7. Nous
remarquons que la convergence de la série est excellente, même pour des distances
de l'ordre r0. Nous avons arrêté la courbe V10jV2 qui dépend de r0 à la distance
r r0, car, pour des distances plus courtes, elle n'a aucune signification.

6. La théorie vectorielle.

Jusqu'ici, nous n'avons considéré que les forces provenant de
la variable intérieure charge électrique, forces qui produisaient
l'échange de cette charge entre les particules nucléaires. Ce sont
des forces d'Heisenberg. Mais on sait que, en plus de cette
propriété scalaire, on doit admettre que les particules échangent une
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propriété vectorielle, leur moment d'impulsion du spin dans
l'espace ordinaire (force de Majorana). La théorie devient alors plus
compliquée car elle demande l'introduction d'un champ vectoriel,
qui peut seul transporter cette propriété vectorielle.

La théorie d'un tel champ a été proposée par Proca6) pour
le cas des équations homogènes et Kemmer7) l'a appliquée au
cas inhomogène. L'un de nous a démontré8) que les équations
peuvent aussi être mises sous forme canonique si le champ est
décrit par cinq composantes Q" à la place de chaque Qf des

paragraphes précédents. Les quatre premières composantes de ce

champ forment un quadrivecteur (a 1, 2, 3, 4) et la cinquième

un scalaire. Nous écrirons ces composantes sous la forme Qt (vecteur

QI, QI et QI), Qf et Q{ (vrai scalaire).
La densité de charge des particules par rapport au champ

était gJI gr1g(x —q>"). Les particules nucléaires étant douées

maintenant d'un moment angulaire M1' (h/2)af', mesuré en termes
de la constante h par un vecteur sans dimension a, on peut alors

associer à la particule un vecteur de la densité de polarisation g S?

par rapport au champ Q{ vectoriel

(/S^/^TfSMÎ-g"). (6,1)

Nous exprimons cette polarisation au moyen d'une deuxième
constante / de la même dimension que g et par la longueur Z-1 introduite

en (1,3) et (2,1). Pour autant qu'on se limite à de petites
vitesses, les équations (2,1) sont à remplacer pour chaque Q( par

1

c2 dt2

1 à2

¦Ang rot 8t (6,2)

l2 Q? ^-AngJ?dt2

JL JA_'2\ q _ 4 n g nc\-i dJL
c2 dt2 r dt

Qi est un vrai scalaire au sens de l'espace-temps, tandis que JP

et Q? sont les quatrièmes composantes des quadrivecteurs J, et Q{.

(Nous négligeons J2 pour nos approximations statiques et posons
J»0 Ji, car le facteur ß 1; voir (2,3)).
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Pour autant que l'on néglige dès le début l'influence du
potentiel vecteur, les équations (6,2) résultent, sous forme canonique,
d'une Hamiltonienne (2,7) avec

H"b ^ i J dx3{(Qi, ZQi) + QiZQ(-Q! ZQ!

+ A ne21 Pi\2 + A nc2Pl — 4 nc2Pf}

V g fdx 3 {(Ql +4nj Pt) Jt - (Qi, rot S/)}. (6,3)

La covariance relativiste des équations (6,2) et (6,3). pour des
vitesses quelconques et le fait que l'énergie H est toujours positive

a été démontrée par l'un de nous8) si l'équation, compatible
avec (6,2), c div Qi + QP — clQ{= 0 est introduite comme condition

initiale.
Une fonctionnelle de transformation peut être construite en

analogie parfaite avec (2,14) (PQ' est à remplacer par (P{, Q/)
+ P?Qf + PiQ/). Ux est alors donné par

Ux fdx3[(Pi,Z-i rot S/) + P?Z-iJi' + Qi'(lc)-hli'-]. (6,4)

Il en résulte une Hamiltonienne avec le potentiel bien connu

22 Vï'= ~ (dk3{- (vot Si,Z-i rot St) +JiZ~1Ji - A n Jtl~*Jt}

2(^)(W/2OO +
fl>v

d \u d
' dq*

â»,o")

,-lri1*
wjlV

(6,5)*

(6,5) n'est valable que pour autant que les %l et les composantes
du vecteur o? sont constantes. S'ils dépendent des variables
intérieures a^, bß, le processus de Lie, décrit au chapitre 5, doit être
appliqué et l'on retrouve l'expression (6,5) pour le terme en g2.

En effet, la première substitution de Lie, qui correspond à

(5,4) est U' gUx avec le Ux de (6,4,) mais où, naturellement,
toutes les grandeurs portent un prime. Le résultat d'une telle

*) Au moment où les particules se « touchent », le premier et le dernier terme
de la formule exacte donnent lieu à des termes supplémentaires du type constante
XÔCql1— q"). Ils peuvent être éliminés d'une façon covariante, comme l'un de
nous l'a démontré (Stueckelberg, Phys. Rev. 54, 889, 1938).
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substitution est qu'en plus de SUV", le H contiendra un Flin

et un ybilin; dont le premier terme est

Fin g3 fdx3 {(Pi, Z-1 rot Rt) + P? Z-1 Tt + QAlc)-1 Tt}. (6,6)

Les abréviations Rt et Tt sont

Ri - (rot (Z-1 rot Sk), Äik) + AikZ~1Jk (6,7)*)
Ti - (rot (Z-1 rot Sk), Âik) + AikZ~Uk

Ici, la définition de Aik(x) est donnée par la paranthèse de Poisson
(4,4), tandis que le vecteur Ailc est défini par

Aik(x)g(x —y)-+{Si(x), Jk(y)}. (6,8)

Le tenseur asymétrique (dont les indices a et ß se rapportent aux
trois axes spatiaux) est défini par

A^(x)g(x -y)-+ {S«(x), S?(y)}. (6,9)

Le produit intérieur d'un vecteur B avec Aik donne un vecteur
(B, Aik) — Cik de composante

Cßik=isBaAßuA
a l

Ce sont des produits semblables qui figurent dans (6,7).
La seconde transformation de Lie (analogue à (5,5)) est

U g3U3 g3 fdx3 [(4nc2)^ (Qt, rot Z^Èt)
-(Anc2)-^Q9 Z-ìTi-AA^PiZ-l TJ. (6,10)

Elle nous amène à un potentiel

2222Lg"^=-—^/"dî3[(rotp;., Z-2rotß,)
ii v a ß 8 n czJ

~TiZ-2Ti + An(ï)~2T{Z^Ti\. (6,11)

En nous limitant à deux particules seulement, on arrive à un
V^v que l'on doit ajouter à (6,5) et qui contient déjà des termes
infinis (dépendant de la distance) alors que, dans la théorie
scalaire, ils ne sont apparus qu'en Vf*. Exprimant ces coefficients
infinis par 1/r"1 comme en (5,7), on arrive aune formule très
compliquée. Nous avons pris pour la valeur moyenne de (ff''a, avß) la
valeur zéro lorsque a Jp ß et la valeur ^(o1*, Tr") lorsque « ß (oc et ß

*) D'autres termes non écrits résultent encore. Mais ils sont éliminés en

même temps que les termes (5 (qP—qv), si on ajoute à l'Hamiltonienne (6,3) le terme

invariant 2 n g2 l~2 f dx3 Jt Jt.
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se référant aux axes spatiaux et p, et v à deux particules). La
formule pour V2 (6,5) se réduit alors à l'approximation discutée
dans l'introduction

7'<" hcl (tt) [y + 1(55) cp]e-^-\ (6,12)

Nous avons introduit, dans le seul but de simplifier l'écriture,
la variable sans dimension £ — ri, et les constantes sans dimensions

y g2jhc et cp f2/hc. Nous avons aussi supprimé les
indices et la virgule dans les paranthèses (t", t") et {a1', a").

Dans la même approximation, on obtient*) pour V6 la formule

Fr=T7r J_yo,,, (613)6 t, t 6 \ r /

avec : (hcl)-1 V%" e-2 s|"2 {cp3 [30 - 4 (tt) - 4(55) + i 8(55) (tt)]
+ y cp2 [16 - l 16 (tt) - J 8 (55) - \ 64(55) (tt)]
+ y2 cp [24 —8(tt) -16(55) - \ 16(55)(tt)]
+ y3[12-4(TT)]}

- e-3« £"2 («p3 [8(55) - i. 28(55) (tt)] + y?2 [64 - J 64 (tt)
-4 32(55) + »- 80 (ad) (rr)]-y2 cp [24 (55) - 8(55) (tt)
+ 73[12-4(tt)]}

+ e-2« f~3 cp3 [72 — 16(tt) - J 32 (55)(tt)]
e-3ê t-z {cp3 [16(tt) - 8(55) -4(55)(tt)]

+ ycp2 [32 - J 32(tt) — ' 64(55) -f | 256(55) (tt)]
+ y2 çp [56 (55) - 3. 56(55) (tt)] - y3 [24-8 (tt)]}

+ e-2H~icp3 [180 -40(tt) — i,- 80(55) (tt)]

- e-3« f-V t8(55) - 32(TT) - 20(55) (tt)]
+ y y2 [96 - 32 (tt) - \ 32(55) (tt)]

+ e-2 * |-5 ç>3 [216 - 48 (tt) - 32(55) (tt)]
+ e-3f |-5ç,3 [24 (tt) + 40(55) + 20(55) (tt)]

- y cp2 [48 - 16 (tt) - i 16 (55) (tt)]

+ e-2* f-« ç>3 [108 - 24(tt) - 16(55) (tt)]

+ e-3* £-o ç»3 [72 (55) + 12(55) (tt)]

- e-3 ^-7 cp3 [S(rr)-A0(aa) -4(55)(tt)]
*) Ces longs calculs ont été effectués par J. C. P.
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et: (hclY^V^* - e"2f |"2{co3 [66 - 12(tt) - 4(55) +8(55) (tt)]
+ y cp2 [32 - \ 32(tt) — £ 8(55) — -1-128(55) (tt)]
+ y29?[48-16(TT) +32 (55)-| 32(55) (tt)]
+ y3[24-8(TT)]}

-e-2«|-3ç»3{120- 16(tt) + 16(55) -1-32(55)(tt)}
— e-2 « f-V {300 - 40(tt) + 40(55) — j 80(55) (tt)}
— e-211-5 cp3 {360 — 48(tt) + 48(55) — 32(55) (tt)}
— e-2 * £-• ç?3 {180 - 24(tt) — 24(55) — 16(55) (tt)}

Nous avons donc séparé V^v en deux termes V%" et I"1 V01"

pour bien marquer la partie qui tend vers l'infini, si r0 (et donc
|0) tend vers zéro.

En plus de la supposition (r%)2 1 qui provenait de la théorie
des quanta, nous avons fait certaines suppositions sur les expressions

bilinéaires des a1', dans le seul but de simplifier cette formule.
Ces suppositions supplémentaires seront discutées au chapitre
suivant. Elles ne modifient pas fondamentalement les résultats, mais
seulement les coefficients numériques des différents termes.

Le rapport V^vfV^v, tracé dans la figure 2, montre que la
convergence d'une telle série est très mauvaise en comparaison
avec la convergence de la théorie scalaire.

Si nous posons / 0, d'où cp 0, nous aurons, en première
approximation, le potentiel de la théorie scalaire, mais changé
de signe:

p-lrl"'i/r=(T^)!?2<L_.

La seconde approximation, par contre, contiendra des termes en
l/r0 qui ne se trouvaient pas dans le potentiel de la théorie
scalaire. La formule (4,10) est remplacée par la relation:

q6 e-Mr"* o-Zlrl"V'A^Tl—ilZ-A^r)]^« fe2c2i ¦-
I r""2

2g-3ïrf» 2 e-2lr^v
+ lrlivz 1^ riit2

Comme le facteur [12 — 4^^")] est toujours positif, le sens de la
correction sera toujours le même. A une grande distance, le terme
prépondérant étant

2 e~2lr

lr0 r2
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il y aura renforcement de l'attraction alors qu'aux petites distances
(plus faibles que r0) une forte répulsion sera produite par le terme

lr3 '

Les deux termes qui sont déjà apparus dans la théorie scalaire n'ont
pas une grande influence. La convergence de la série dépendra
de la valeur de lr0. Pour obtenir une comparaison rapide, pour lr=l

Vf"
Wi"'
I 2

Sfi - 0,0589
lr„

Pour la valeur de lrn 1/10, ce rapport est plus grand que 0,5.
La convergence de la théorie scalaire n'existe donc plus, si on
remplace le scalaire par la quatrième composante d'un quadrivecteur.

\ 10000

iooo\

100 \
10 \\ v ti.* 2

V.AA
1

/-'\\ 2 1''

0,1

Fig. 2.

Rapport entre la deuxième approximation vectorielle et le potentiel de Yukawa.
Cette figure représente, à une échelle logarithmique, les valeurs absolues

des deux rapports F6/F2 et Fjj/F2 en fonction de r. Le premier de ces rapports
est négatif. Les valeurs numériques que nous avons choisies sont données par la
résolution du problème du deutéron par le potentiel de Yukawa: (t'', t") -3,
(a*1, a") 1, j2/hc 1/10, g2/hc 1/40. Ces rapports sont plus grands que un,
même pour des distances de l'ordre de lr1. La théorie semble donc divergente,
même pour ces distances. Remarquons enfin que le rapport entre cette seconde

approximation et le potentiel de Yukawa est donné par la formule

V,
1 Vi
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7. L'influence de la théorie des quanta.

Dans la théorie des quanta, le calcul des orbites est remplacé
par celui, plus simple, des valeurs propres de l'opérateur de l'énergie

H.
On associe aux variables canoniques Pt, Qi,pß, q", des opérateurs

qui satisfont aux règles de commutation suivantes : ([F, G]
est le commutateur F G — GF de deux opérateurs).

[Pt(x),Qi(y)]=~aaßoiko(x-y)
1

[^/ßi... 5,)] A jy_ (7,1)
dq*1

j est un opérateur, qui commute avec tout opérateur et dont le
carré vaut — 1. En prenant comme opérateur l'expression H de
la théorie classique, on arrive à une théorie quantique qui est

covariante, si l'on définit les opérateurs F par

F-±-[H,F]. (7,2)
h

Ainsi les relations entre les espérances mathématiques des opérateurs

F, G, ¦ ¦ ¦ et F, G, ¦ ¦ ¦ sont les mêmes qu'entre les grandeurs
classiques correspondantes.

Essayons de trouver l'analogue quantique d'une substitution
de Lie : Premièrement on vérifie facilement qu'aux parenthèses de
Poisson correspondent les commutateurs:

{F,G}=±-[F,G]. (7,3)

On peut prévoir que la substitution (analogue à (5,3))

F F' + j- [IV, F'] + A- (y)V, [TJ', F']] + ¦¦¦ (7,4)

est canonique.
L'opérateur U' est l'opérateur correspondant à la fonctionnelle

U' de la théorie classique dans laquelle les variables classiques
ont été remplacées par leurs opérateurs.

La démonstration que (7,4) est canonique se fait rapidement
alors qu'il eût été très long de donner la preuve qu'une substitution

de Lie avait cette propriété. En effet, si Q~l est l'opérateur
réciproque (QQ-1 Q-1 û 1) de Q, toute substitution

F=QF'Q-1 (7,5)
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laisse invariantes les relations de commutation (7,1) et donc aussi
les opérateurs gouvernant l'évolution temporelle (7,2). Si l'on
considère l'opérateur Q(U', j) comme série de puissance de U'
et de j, il est nécessaire que Q(U',—j) Q'1^', j) pour que
les espérances mathématiques de F et de F' soient en même temps
des nombres réels. Le seul opérateur satisfaisant à cette condition
est la série

^14p' + è(i)W'-«>>(-H (7'6>

Alors, en substituant cette série dans (7,5), on trouve immédiatement

la série (7,4).
En vertu de la validité des transformations classiques, on

pouvait penser que la théorie des quanta n'introduit que des

changements de détails. Toutefois, nous verrons que les termes
bilinéaires de l'Hamiltonienne (transformée) vont jouer un rôle,
alors que nous avons pu les éliminer en théorie classique.

Discutons tout d'abord les détails. Premièrement, la valeur
propre minimale de Hoh devient infinie (zéro point energy). Cela
introduit une constante additionnelle sans intérêt. Secondement,
la charge X» 2 t^ — 1 et le spin Mß sont quantifiés. Ce fait
s'exprime par les relations cycliques

ïrï T2 T3 - T3 T2 (7>7)

(valables pour les trois rf et les trois a**) et donne comme valeurs
propres 0 et 1 pour la charge électrique et Az. hß pour les

composantes de Mf. Pour que les commutations qui découlent de (7,7)
ne soient pas en contradiction avec la loi de correspondance (7,3),
il faut que la constante h introduite dans la théorie classique soit
égale à celle figurant dans (7,1) (constante de Planck divisée par
2 n). Ainsi, les V* (proprement symétrisés) ont la même forme
qu'en théorie classique. Le terme F"." de la théorie vectorielle'
dans le paragraphe précédent a été calculé en utilisant (7,7) et en
prenant la valeur moyenne définie à la suite de (6,11).

Revenons maintenant aux termes bilinéaires. En théorie
classique, les solutions Q{ Pi 0 étaient possibles dans l'approximation

considérée, car les inhomogénéités des équations d'ondes
pour les champs transformés disparaissaient pour Qt P2 0.
Les termes 17bilin pouvaient alors être négligés en toute rigueur.
En théorie quantique, on sait que les expressions bilinéaires
contenant par exemple P{(x) ¦ Pt(y) ne peuvent jamais être nulles
(fluctuations du champ).
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On doit donc tenir compte d'un terme en g* à ajouter à (4,10).
L'un de ceux-ci a la forme

-\g^fdx3(AikZ-1Pk)Z^(AilZ-1Pl). (7,8)

En exprimant les opérateurs P,- par une série de Fourier et en
introduisant aussi les opérateurs opérant sur le nombre de quanta
contenu dans chaque onde plane, on montre que

(Z-^PAx)) (Z-iPk(y)) \cFn (\x-y\l)ôik (7,9)

K0(z) est la fonction de Bessel d'ordre zéro définie par Watson9).
(7,8) donne ainsi lieu à une interaction proportionnelle à <jf4 ayant
la forme

Ff - - (tt) {t *— K0(rl). (7,10)
n hc r

Mais (7,10) n'est pas la seule contribution, proportionnelle à

g*, aux valeurs propres de H. Il y a en effet d'autres termes
analogues à (7,8) mais qui contiennent le facteur infini 1/rjj1. En plus,
en calculant la « perturbation du second ordre » des termes
bilinéaires proportionnels à g2, on trouvera des déplacements des
niveaux d'énergie dus à l'émission et à la réabsorption de paires
de quanta, termes analogues à ceux calculés autrefois par Tamm
et par Iwanenko10), dans la théorie des forces nucléaires basée

sur l'échange des paires de neutrinos et électrons entre proton
et neutron.

En prenant, comme précédemment, g2jhc 1/10, (7,10) a une
valeur beaucoup plus grande que le terme classique F^\

Ainsi, comme on pouvait s'y attendre, la quantification des

champs rend plus mauvaise encore la convergence de la théorie.

8. Conclusions.

Nous avons ainsi montré qu'il est possible de faire une théorie
classique des « forces d'échange » entre les particules nucléaires.
Cette théorie associe au transport de la quantité de mouvement
d'une particule à l'autre, une autre propriété de cette particule,
charge électrique ou moment angulaire du spin, par exemple. Ces

grandeurs ne sont plus des constantes associées aux particules,
mais deviennent des variables intérieures. Les résultats de cette
théorie classique sont très intéressants car il apparaît certaines
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difficultés inhérentes à la théorie des forces d'échange. Elles ne
proviennent ni de la quantification des champs, ni de celle de la
charge ou du spin. Les raisonnements qui donnent naissance à

ces difficultés restent naturellement vrais dans la théorie des

quanta. Celle-ci d'ailleurs introduit d'autres difficultés dues aux
fluctuations du champ quantifié.

Dans les théories données jusqu'ici, on s'est servi du potentiel
statique de Yukawa (et de sa généralisation vectorielle). Or nos
résultats nous montrent que ce potentiel ne décrit l'interaction
entre particules que pour autant que les variables intérieures
restent constantes. Autrement dit, le potentiel de Yukawa ne
tient pas compte des échanges de charge ou de spin. Aussitôt
que l'échange se produit, on peut encore, si l'on veut, décrire
l'interaction par un potentiel, mais celui-ci est très différent, pour
les distances intéressantes, du potentiel de Yukawa.

Nous avons réussi à exprimer ce potentiel des forces d'échange
sous forme d'une série grâce à la méthode des substitutions de Lie
(théorie des groupes continus des transformations de contact).

Le premier terme de cette série est le potentiel de Yukawa.
Il n'est valable que pour de grandes distances entre les particules
(plus grandes que le rayon d'action des forces nucléaires). Ainsi,
toute conclusion quantitative se basant sur l'emploi de ce potentiel
nous semble injustifiée.

Dans les régions intéressantes (rayon des forces nucléaires)
la série de la théorie scalaire semble convergente. Pour la théorie
vectorielle, par contre, le second terme est déjà plus grand que
le premier. En plus, le troisième terme de la théorie scalaire et
le second de la théorie vectorielle n'ont pu être rendus finis qu'en
donnant aux particules un rayon fini.

En terminant nous aimerions remercier M. le professeur
J. Weigle du grand intérêt qu'il a témoigné à nos recherches.

Institut physique de l'Université de Genève.

Bibliographie.

x) Yukawa, Proc. Phys. Math. Soc, Japan 17, 48 (1935). — Yükawa et
Sakata, Proc. Phys. Math. Soc, Japan 19, 1084 (1937). — Yukawa, Sakata
et Taketani, Proc. Phys. Math. Soc, Japan 20, 319 (1938). — Yukawa,
Sakata, Taketani et Kobayasi, Proc. Phys. Math. Soc, Japan 20, 720 (1938).
— Stueckelberg, Helv. Phys. Acta II, 225 (1936). — Stueckelberg, Helv.
Phys. Acta II, 299 (1938). — Kemmek, Proc. Roy. Soc. 166, 127 (1938). —
Froelich, Heitler et Kemmer, Proc Roy. Soc 166, 154 (1938). — Bhabha,



192 E. C. G. Stueckelberg et J. F. C. Patry.

Proc Roy. Soc. 166, 501 (1938). — Kemmer, Proc. Camb. Phil. Soc. 34, 354

(1938). — Belinfante, thèse de doctorat Leiden (1939). — Bethe, Phys. Rev.
55, 1261 (1939); 57, 260 (1940); 57, 390 (1940).

2) Stueckelberg, C. R. Acad. Se, Paris 207, 337 (1938). — Stueckelberg,

Phys. Rev. 54, 889 (1938). — Moller et Rosenfeld, Nature 143, 241

(1939).— Stueckelberg, Nature 143, 560 (1939).— Stueckelberg et Patry,
Helv. Phys. Acta 12, 299 (1939).

3) Heisenberg, Z. für Physik 77, 1 (1932).
4) cf. Bethe et Bacher, Rev. of Mod. Phys. 8, 84 (1936).
5) Lie, Theorie der Transformationsgruppen I, Leipzig 1888.

6) Proca, Journ. Phys. et Radium 7, 347 (1936).
') Kemmer, Proc. Roy. Soc. 166, 127 (1938).
8) Stueckelberg, Helv. Phys. Acta II, 299 (1938).
9) Watson, Theory of Bessel Functions, Cam. 1922, p. 80.

10) Tamm, Nature 133, 981 (1934). — Iwanenko, Nature 133, 981 (1934).


	Théorie classique des forces d'échange

