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Der Ultrakurzwelleng-enerator mit Phasenfoeussierung- (Klystron)
von F. Lüdi.

Brown, Boveri & Cie., Baden (Schweiz).

(17. II. 1940.)

Einleitung: In letzter Zeit ist die Hochfrequenzverstärkung und die
Erzeugung von elektromagnetischen Wellen bis ca. 1 dm auf Grund des Prinzips der
Phasenfoeussierung eines Geschwindigkeitsmodulierten Elektronenstrahls durch die
erzielten grösseren Leistungen von Bedeutung geworden (1, 2). Theoretische
Ansätze zur Behandlung gewisser Einzelfragen wurden von verschiedenen Seiten
gegeben. Insbesondere wurde einerseits die Strommodulation aus der
Geschwindigkeitsmodulation, anderseits der Phasentreffpunkt in Abhängigkeit von der
Wechselspannung, der Beschleunigungsspannung und der Frequenz berechnet (2, 3).

Zweck der vorliegenden Untersuchung ist, einen allgemeinen analytischen
Ausdruck für den modulierten Strom zu finden, der beide Aussagen umfasst.
Auf Grund dieses Ausdruckes wird die am Induktor durch die Elektronenpakete
induzierte Wechselspannung, und hieraus der Verstärkungsfaktor berechnet. Für
eine Rückkopplungsschaltung wird ein Ausdruck für die Anschwingbedingung
aufgestellt (Amplituden- und Phasenbedingung). Weiter wird die Begrenzung
der Wechselspannungsamplitude und der maximale Wirkungsgrad des Generators
untersucht.

§ 1. Allgemeine Beziehung zwischen Gesehwindigkeitsmodulation und
Dichtemodulation.

Der Verstärker bzw. der Generator sei schematisch in Fig. 1

angedeutet :

RK
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Fig. 1. Ù
R

Ein von der Kathode emittierter Elektronenstrahl wird durch
die Beschleunigungselektrode B auf eine Geschwindigkeit v0
gebracht. Mit dieser Geschwindigkeit durchsetzt der Strahl ein
Elektrodenpaar, den Modulator M, dessen angelegte hochfrequente
Wechselspannung dem Elektronenstrahl eine Geschwindigkeits-
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modulation erteilt. Nach einer durchlaufenden Wegstrecke l
entstehen durch das gegenseitige Einholen ElektronenVerdichtungen,
die im Induktor I durch kapazitive Kopplung eine hochfrequente
Wechselspannung induzieren. Der Induktor sei durch den
komplexen Ersatzwiderstand 9Î geschlossen. Eine Rückkopplungs-
schleife BK führt im Fall des Generators einen Teil der
Induktorwechselspannung an den Modulator zurück.

In diesem Paragraphen werde folgende Frage untersucht:
Gegeben an der Stelle x o die Verteilungsfunktion / (x, t, v) ; wie
gross ist die Dichte an der Stelle x? (Fig. 2). Der Modulator sei so

1 _ „,

Fig. 2.

kurz, dass sein Wechselfeld während eines Elektronendurchgangs
zeitlich konstant ist. Nach dem Modulator (x0) hat man also eine
solche Geschwindigkeitsverteilungsfunktion / (x0 t, v), dass die
Geschwindigkeit nur eine Funktion der Zeit an der Stelle x 0 ist*).
Für die modulierte Geschwindigkeit v v0+Av gilt an der Stelle x
die Kontinuitätsgleichung.

df àf n m
dt dx

f hat die allgemeine Lösungsform

/ (x — v t, v). (2)

Die Dichte q an der Stelle x ist dann gegeben durch die
Integration über sämtliche Geschwindigkeitswerte v. Sie entspricht
der Integration in der molekularen Wärmetheorie über sämtliche
Geschwindigkeiten, um die Teilchendichte zu bestimmen. Dort
ist das Verteilungsgesetz durch die MAXWELL-BoLTZMANN'sche
Verteilungsfunktion gegeben. Von dieser Verteilungsfunktion kann
man hier absehen, da die thermischen Geschwindigkeitsschwankungen

klein sind gegen die durch das Wechselfeld am Modulator
erzeugten. Es ist:

+ QO 4-00

q (x, t) f f (x, t,v)dv= j f (x — vt, v) dv. (3)

*) Die Behandlung dieser Frage verdanke ich einer Diskussion mit den Herren
Prof. W. Pauli und Dr. M. Fierz, Zürich, E.T.H.
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Weil die Geschwindigkeiten der Elektronen erhalten bleiben
(Nichtberücksichtigung der Zusammenstösse), so ist die Geschwindigkeit

einer herausgegriffenen Elektronengruppe an der Stelle x
zur Zeit t

g(t~) (*)

und man kann deshalb für die Verteilungsfunktion eine ó-Funktion
einführen.

/ (x, t, v) ò [v — g (t - xfvj] (5)

f-(0,t,v)=o[v-g(t)] (5')

d. h. weil zur Zeit (t — xfv) nur eine bestimmte Geschwindigkeitsgruppe

am Modulator ausgetreten ist und die Geschwindigkeit er-

IW

\
M

Fig. 3.

halten bleibt, so kann die Verteilungsfunktion an der Stelle x zur
Zeit t für diese Geschwindigkeitsgruppe auf einen beliebig schmalen
Geschwindigkeitsbereich zusammengedrängt werden, wobei die
Verteilungsdichte beliebig gross wird und durch entsprechende
Normierung infolge der endlichen Teilchenzahl festgelegt ist.

Die Dichte ist also
-t-ao

Q (x, 0= «oj s [v - g (t - xfv)] dv. (6)

Man mache die Variablentransformation :

v-g[t-^.) y dv dy
dy
dv

dy
dv 1-, x

YA (7)
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dann wird:

e(x,t) J ò (y)dy °o

1--g'(t-
V

A
g(i-

X

¦-)V

Qo

r(.
(8)

wobei j à(y) dy auf 1 normiert sei. Der Index der eckigen Klammer

bedeutet, dass alle Werte der Klammer, wo v g ist, zu
summieren sind. (Man erkennt hier eine gewisse Analogie mit den
Retardierungsproblemen der Elektrodynamik, entsprechend der
Ähnlichkeit zwischen Wellengleichung und Kontinuitätsgleichung

(1).)

§ 2.

Um für Gleichung (8) eine Lösung zu bekommen, muss für
g (t) bei x o ein bestimmter zeitlicher Verlauf angenommen werden.

Da für so hohe Frequenzen, wie sie hier in Betracht kommen,
nur Sinusschwingungen realisierbar sind, so erkennt man, dass
die Lösung von (8) infolge der transzendenten Gleichung für v auf
analytischem Wege nicht angegeben werden kann; jedoch lässt sich
eine graphische Diskussion leicht durchführen, die alle wesentlichen
Züge wiedergibt. Zu diesem Zwecke werde das v, y Diagramm
aufgezeichnet. Für die Geschwindigkeitsmodulation g (t) gilt bei
sinusförmiger Wechselspannung beliebiger Amplitude am Austritt
des Modulators (x 0)

g (t) v0 (1 + a sin m t)i (9)

'^ ur cl-YAf m

wobei (70 die Beschleunigungsspannung ist.
Damit wird y an der Stelle x zur Zeit t

y=v — v0ll -l-asin m It (10)

Für verschiedene Werte von a bekommt man folgende Diagramme,
wobei wir uns nur für »-Werte in der Nähe v0 zu interessieren
brauchen.

Die Figuren für verschiedene Zeitwerte sind durch Parallelverschiebung

der »-Geraden zu erhalten (punktierte Linie in Fig. 4).
Weiter ist zu bemerken, dass grössere «-Werte (bei konstantem <x)

sich auswirken wie grössere oc-Werte. Von besonderem Interesse
ist Fig. 6. Dieser Fall kann bei genügend grossem x für noch so
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kleines a erreicht werden. Er ist als horizontale Wendetangente
charakterisiert durch

dy
dv

0; d*y
dv2

0. (11)

at. 0 <*.;» 0

*<f

Fig. 5Fis. 4

A,. -,<*.i^~3*3*+l **fx=f

mii'nm

Fig. 6. Fig. 7.

Da der Nenner in (8) gleich dyjdv ist, so bedeutet diese Stelle

grösste Elektronenanhäufung. Sie wird nach Mayer und Kockel
(4) als Phasenfoeussierung zweiter Ordnung, nach Brüche und
Recknagel als Phasentreffpunkt oder Brennpunkt mit der Brennweite

x=f gezeichnet; die beiden Gleichungen (11) bestimmen für
eine sinusförmige Wechselspannung die Brennweite /.
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Sie werden unter Berücksichtigung von (9), wobei t—xfv — ts

(Startzeit) gesetzt ist.

(a/ ti j - Un Jb * \ 3/ r\—— 1 — f " (1 + a sm cots)~,2 • a co cos tots 0
dv v2

t-t 1 — (1+a sin <ots) -1 a • cos 2 mts+ — sin cots-] £ cos (ots= 0 (12)
dv2 v v cov2

Hier machen wir eine Spezialisierung, auf deren Bedeutung wir
später zurückkommen werden. Für kleine Wechselspannungen
am Modulator a ^ 1 weichen die modulierten Geschwindigkeiten v
wenig von v0 ab; das dritte Glied in der zweiten Gleichung (12)
kann gestrichen werden. Mit diesen Näherungen <x <^ 1, v œ v0
werden die Gleichungen

dy _ 0
dv

X
: 1 \ — a co cos cots

ä*y_0 cos mt. — sin cot,„ (13)
dvi v0m

Sie müssen für ein bestimmtes ts (Wendetangente) simultan erfüllt
sein. Der zugehörige Ort x f (Brennweite) wird durch Elimination
von ts aus (13) erhalten. Es wird:

2v 2i/^u;/2
f ° _ ' rn "_ /j^\

a. co u0- m

ein Ausdruck, der mit demjenigen auf andere Art von Mayer und
Kockel4) abgeleiteten übereinstimmt.

Für Distanzen x, die grösser als die Brennweite / sind, hat man
die Verhältnisse der Fig. 7. Hier ist die Klammer (8) in einem
bestimmten Zeitmoment für alle Schnitt- bzw. Berührungspunkte
zu summieren. Die Elektronenanhäufung ist hier kleiner als im
Brennpunkt, entsprechend den endlichen Häufungsstellen. Die
Punkte 2 und 4 (und nur diese) bedeuten Phasenfoeussierung 1.
Ordnung bei Mayer und Kockel4) dyfdv o, die Schnittpunkte
die Treffstellen bei Mayer5).

Für Distanzen x kleiner als die Brennweite / ist aus Fig. 5
ersichtlich, dass für jeden Zeitmoment der Schwingung die Klammer

(8) nur aus einem einzigen Summand besteht. Bleiben wir bei
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kleinen Wechselspannungen am Modulator a <^ 1, so wird nach
Entwicklung von (9)

'(«-t)-^^.-*^ — -('-t) <15)

und damit die Stromdichte j (x, t) für x < / wenn für j0 — o0 v0
gesetzt wird.

j(X,t)=-Q(x,t)-V0= - ^—
; -. (16)

i — I -yf -V- • cos m ft——jP.

Der Brennpunkt ist auch durch die Nullstelle des Nenners in (16)
charakterisiert, wenn der cos gleich + 1 ist, da sein Koeffizient
nach Gleichung (14) den Wert + 1 hat. Im Brennpunkt l /
schwankt also die Stromdichte zwischen j0/2 und oo. Der Strom
wird natürlich nicht unendlich, da die gegenseitige Abstossung
der Elektronenfocussierung eine Grenze setzt. Aus (14) ist ersichtlich,

dass die Brennweite / bei Beschleunigungsspannungen ZT0

ca. 300 Volt und uJUç, 1/10 nur für sehr hohe Frequenzen in
geometrisch brauchbare Dimensionen rückt. Für relativ kleine
Wechselspannungen am Modulator lässt sich (16) für ein
gegebenes l (Abstand Induktor—Modulator) entwickeln, wobei v ph v0

gesetzt wird

i (h t) jo 1 +-^± COS (cot-0) (17)

« ml0

Zum konstanten Strom überlagert sich also eine reine cos Schwingung;

die Differenz j (l, f)—j0 jd stimmt mit dem Ausdruck von
Metcalf & Hahn1) überein. Die Reduktion der Klammer (8) auf
einen einzigen Summanden bedeutet, dass noch keine Überholungen

der verschiedenen Elektronengruppen stattgefunden haben,
diese vielmehr nur zusammengerückt sind. Wird u0 grösser, so
verzerrt sich die cos-Schwingung, jedoch erlaubt die Fourierentwick-
lung immer das Betrachten der ersten harmonischen, wobei die
Amplitude entsprechend abzuändern ist.
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§ 3. Berechnung der induzierten Wechselspannung am Induktor.

Für kleine Modulationsspannungen u und kleinen Abstand l
(Fig. 8) gilt nach (17) für die im Induktor eintretende Wechsel-

i i
11
i i

II
x o
IL-sinwf

Fig- 8

J-d-l
i i

-aruiruir-
R

stromdichte (positive Grössen in positiver x-Richtung)

jd (x, t) j (x, t) — j0 — ax- cos [mt

a=
JqCQUq

2v0U0

ausserdem gilt für jede Stelle x die Kontinuitätsgleichung

1 d<£x
div r 0 * 1,-

und damit:

jd (x, t) t (t)

4o3i dt

1 d<SL

dt

(18)

(19)

(20)

t (t) ist eine räumliche Integrationskonstante und hängt von den
äusseren Bedingungen ab. Aus (20) und (18) folgt durch Integration
nach der Zeit von 0 bis t

©„.= 4ji ftdt—ànax f cos (cot dt <S0 (t)

4:3iax
sin co t

m (-X) (21)

9
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und daraus die am Induktor induzierte Wechselspannung u' aus
du'
dxS» — ~Ärj durch Integration von x l bis x l + d

i+d i+d

ï — fßf„(0 dx + — f sin (mt dx
i i °

~ r 4n2v0al co (d + 2 T)] cod /om— <g0-d + ~—sm mt — sin —— (22)
2v0 2v0

hierbei ist axjm als langsam Veränderliche vor das Integralzeichen
genommen*). Sei

co 2 3i ,„„-.v0=v-X, — -— (23)
v0 X

wobei X die Paketlänge der Elektronenverdichtungen ist, Fig. 1 und
y die Frequenz der Modulationsspannung; dann kann (22) auch
geschrieben werden

u' -e0'd + bBm^-sm(a>t- — -^P\ (24)

ò

X \ Vn X

4 31 jr, Un l
m Un

Für sin n djX 1 ist die induzierte Wechselspannung ein Maximum,
d. h. wenn die Induktordicke d gerade ein ungeradzahliges
Vielfaches einer halben Paketlänge X ist

d=(2n + l)A. (25)

Diese Bedingung ist mit (23) gleichbedeutend mit der Forderung,
dass die Durchgangszeit T' djva ein ungeradzahliges Vielfaches
einer halben Schwingungsdauer T/2 3ijm sei,

T'=(2« + l){ (26)

eine Forderung, die für die Energieabgabe verständlich ist; die
Dicke d könnte allerdings auch kleiner sein, im Grenzfall unendlich
dünn, die einzelnen Elektronen würden ihre Energie entsprechend
der Potentialdifferenz ändern ; aber zugleich würde die induzierende
Raumladung zwischen den Induktorplatten und damit die Span-

*) Davon überzeugt man sich durch exakte Ausrechnung des Integrals,

obige Vereinfachung ist erlaubl

Volt und co 2 7r-109 der Fall ist.

v vDie obige Vereinfachung ist erlaubt für d « l und —^- <X —5- was bei Z70 300
co co
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nung am Induktor abnehmen; hierin unterscheidet sich der
Induktor in seiner Wirkung vom Modulator, wo es nur auf die
Geschwindigkeitsmodulation der Elektronen ankommt, und seine
Dicke beliebig klein sein kann.

Aus (24) liest man die LeerlaufSpannung am Induktor ab ; ohne
äusseren Kreis ist die Integrationskonstante r (t) und damit ©0 0 ;
mit der Bedingung (25) wird:

«Lehrlauf — & COS CO ts ts t (27)

und nach (18)
jn (l> t) al cos co ts. (27')

Die LeerlaufSpannung ist also unabhängig von der Kapazität C0
und befindet sich in Gegenphase zum Elektronenstrom, wie es
sein muss ohne Leistungsentnahme.

§ 4. Induktor über Belastungskreis geschlossen.*)

Jetzt ist die Integrationskonstante t (t) J (t)jF verschieden
von Null und durch den angeschlossenen Kreis mitbestimmt. Für
einen Parallelschwingkreis wie in Fig. 8 angenommen (statt dessen
könnte auch ein anderer beliebiger komplexer Widerstand benützt
werden), gilt für den Zuflusstrom auf den Induktor:

J=JL + Jci + JR -~r + ü'Cx + f^dt (28)

und durch zeitliche Differentiation von (24)

J(t) 3i d I ml 3i d\ .__.u — ~AA- + co b sm cos (mt ¦ (29)
C0 X \ v0 X I

wobei für F/4 nd C0 gesetzt ist (F Indukatorfläche, C0

Induktorkapazität)

(28) und (29) ist ein simultanes Gleichungssystem, entsprechend
der Kopplung des Induktors mit dem angeschlossenen Schwingkreis.

Dadurch wird sowohl die Spannung u' als auch der Strom
I (t) erst bestimmt. Wir interessieren uns für die Spannung,
eliminieren also J (t). Hier ist eine Bemerkung vorauszuschicken:

Der Strom des äusseren Schwingkreises verteilt sich auf die
Verschiebungsströme JCo und JCa (Fig. 8) auf die beiden Kapazitäten
C0 und C2. Genau genommen ist also in (29) JCa zu setzen ; da sich
aber die Ströme wie die Kapazitäten verhalten, kann bei ent-

*) Diese Behandlung geschieht in Anlehnung an eine frühere Arbeit des Ver-
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sprechender Dimensionierung JCo mit genügender Genauigkeit
gleich J gesetzt werden. Die Elimination von J ergibt die
Differentialgleichung für u' (die Punkte bedeuten zeitliche
Differentialquotienten)

col nd'(u)' (ù)' D /
0 (30)

D 4»Coy,ttB?CB sin nä_
^ c=Cq + Ci_

U,

Um Gleichung (30) zu lösen, benütze man vorübergehend die
komplexe Schreibweise mit:

sin (coi— 0') ~ i e Umt — *') ml 3i d
0 1- —-—

also:

W (ü)' D .,,«,,,(ü) ' +-i-i_ + A_Z_ %—e» (»!-*'),K ' LC BC C

(31)

(32)

Die allgemeine Lösung ist die Summe der homogenen plus der
inhomogenen Lösung von (32) ; da die homogene Lösung infolge der
Dämpfung abklingt, interessiert man sich nur für die inhomogene ;
diese gibt für u0 mit dem Lösungsansatz

(33)

(34)

u' u0' ei{mt-0">

D
Ol

Ate LC

und wenn dieser Ausdruck auf r • ei& mit r | u0' | umgerechnet
und für D der Wert von (30) gesetzt wird:

nd

Un
43iC0j0lm sin -j- u0

Ur

0 arc. tg
bc(tc-°>')

m

(35)

(36)

und endlich mit 36, 35 und 33 nach Übergang zum Realteil:

nd4 Jl Cn jn l CO &in -j- U0
U

Un
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als Verstärkungsfaktor definieren wir das Amplitudenverhältnis
Un'fun nach (35)

4 3i Cn in l m sin -=—
V l- (38)

Uo R)Yc>&-CO \z ™ / J. 2\2

er ist proportional der Kopplungskapazität C0.

Für die Resonanzfrequenz ist der Verstärkungsfaktor am
grössten und dafür ist auch 0=0; ausserdem wird er ein Maximum
bei Erfüllung der Bedingung (25), und Gleichung (37) heisst:

u' u0' sin m ts. (39)

Bei Belastung tritt also im Resonanzfall zwischen Strom und
Spannung eine Phasenverschiebung von jr/2 auf, vgl. Gleichung (27')
entsprechend maximaler Energieabgabe an den Schwingkreis. Es
ist weiter zu bemerken, dass bei der unter § 3 gemachten Annäherung

die Verstärkung linear mit der Eingangsspannung un verläuft.

§ 5. Rückkopplung, Phasen und Amplitudenbedingung.

Durch Zurückführung eines Teils der Induktorspannung auf
den Modulator wird eine Rückkopplung eingeführt; der Bruchteil
der Amplitude sei e die Phase cp. Wenn wir die Anschwingbedingung
bei einer vorhandenen kleinen Störung (Brown'sche Schwankungen)
untersuchen, so gilt sicher die unter § 3 gemachte Annäherung.
Die Anschwingbedingung ist erfüllt, wenn die nach (37) nach Phase
und Grösse an den Modulator zurückgeführte folgende Ungleichung
für alle Zeiten erfüllt:

4jiC0j0l m sin ^-u0 wl nd
cos (mt —

«Mts-M-e—)'.
+ 0-9>)

• Sì u0 sin co t. (40)

Nachdem mit u0 gekürzt ist, befinden sich auf der linken Seite
im Faktor des cos. bis auf j0 alles positive Grössen. Die Bedingung
(40) zerfällt in eine Amplitudenbedingung

4 TreCJjolJ cosing-

ü0 (t)1^^-')1
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wobei jetzt j0 dem absoluten Betrag nach zu nehmen ist, und in
eine Phasenbedingung

/ ml 3i d _ \— cos m t — + 0 — cp sm m t

welche mit Berücksichtigung der Werte für 0, 0' und X verlangt

col cod ^ \Tr '
1 1- w — are. tv • AA

0 +ç>-arc.tg-IlA^ / (4m + 3)_^ (42)
v0 2v0 m 2

dies ist die allgemeine Formel für die Frequenzabhängigkeit von
v0 respektive von der Beschleunigungsspannung U0, denn die
andern Grössen sind durch die Schaltung gegeben und nicht von
Strom und Spannung abhängig. Nach Gleichung (25) ist für n 0
das zweite Glied der linken Seite oa tt/2 und kann durch
Konstruktion so gewählt werden; es ändert sich relativ zum ersten
Glied nur im Verhältnis d/21, sodass für die Frequenzabhängigkeit
von v0 mit genügender Genauigkeit gilt

ml Bci-^r—m2)-^ + cp- arc. tg \™ L (2 m +1) ». (43)

Die Frequenzstabilität ist umso grösser, je grösser B ist, d. h. nach
unserem Ersatzschema, je kleiner die Verluste sind, eine Aussage,
die auch bei andern Generatoren allgemein bekannt ist. Durch Wahl
der Beschleunigungsspannung hat man es leicht in der Hand, die
Resonanzfrequenz

1
R VLC

zu erzeugen, bei welcher der Generator am günstigsten arbeitet.
Für diese muss sein

i^+9,= (2 m + 1) n. (44)

§ 6. Diskussion der Anschwingbedingung, Amplitudenbegrenzung.

Aus (44) folgt für das Verhältnis zweier benachbarter
Spannungswerte (U0)m+X und (U0)m, welche die Resonanzfrequenz
erzeugen :

y (U0)m+i KUi (2m + l)-cpl3i
(U0)m (v0)m " (2m + 2,)-cpf3i
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aus (23) und (25) folgt für n 0 (man wird die Induktordicke d
klein und damit die Kopplungskapazität C0 möglichst gross wählen)

ffljj 31

Vn d

und mit (44), da cp/n in den wirklichen Fällen epfn < 1 ist
l

m rXH

2d
für die gebräuchlichen Konstruktionen ist m ungefähr 5, sodass
nach (45) das Spannungsverhältnis sehr klein wird und man mit
einer relativ geringen Spannungsänderung die Resonanzfrequenz
wählen kann.

Bei der Resonanzfrequenz und gleichzeitigen Erfüllung der
Bedingung (25) wird co2 1/LC und sin ji dfX 1, sodass für diese
Daten die Anschwingbedingung (41) am günstigsten erfüllt wird.

Wir fragen jetzt, wodurch bei Anschwingung eine Amplitudenbegrenzung

eintritt. Es gibt prinzipiell zwei Begrenzungsmöglichkeiten
:

1. Bei einer kleinen Störung, welche zur Anschwingung führt,
befindet sich der Brennpunkt noch weit hinter dem Induktor / > l.
Mit Ansteigung der Induktorwechselspannung u0' rückt der Brennpunkt

nach Gleichung 14 an eine solche Stelle zwischen Modulator

und Induktor, dass im Induktor die grösste Stromamplitude
und damit die grösste Wechselspannung auftritt (siehe § 7). Bei
weiterem Näherrücken des Brennpunktes an den Modulator würde
die Wechselspannung wieder abnehmen. Diese Amplitudenbegrenzung

entspricht dem Erreichen der mittleren Steilheit bei einem
gewöhnlichen Hochfrequenzgenerator mit Triode.

2. Da die Induktorwechselspannung nach (37) proportional
der modulierten Elektronenstromdichte ist, kann diese bei
entsprechend grossem Strom schon vor dem Einfangen des

Brennpunktes gleich der Beschleunigungsspannung werden; dadurch
werden die Elektronen in der negativen Halbperiode zur Umkehr
gezwungen.

Es ist dieselbe Begrenzung der Wechselspannung durch die
Anodenspannung beim gewöhnlichen Generator mit Triode vor
Erreichen der mittleren Steilheit.

Nun kommen wir auf die Spezialisierung für kleine
Modulationswechselspannungen, § 2 zurück. Um einen grossen Wirkungsgrad

zu erzielen, musste die Wechselspannung am Induktor ungefähr

gleich der Beschleunigungsspannung sein (die genauere
Berechnung erfolgt im nächsten Paragraphen), damit die Elektronen
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beim einmaligen Durchtritt durch den Induktor ihre ganze
kinetische Energie abgeben. Dies ist ein wesentlicher Unterschied zur
Bremsfeldröhre oder zum Magnetron, wo die kinetische Energie
der Elektronen in mehreren aufeinanderfolgenden Perioden
abgegeben werden kann. Aus diesem Grunde ist es von besonderer
Bedeutung, Schwingkreise mit kleinen Verlusten zu verwenden
(Hohlraumresonatoren). Eine grosse Wechselspannung wird nach
Gleichung (35) bei gegebenen Konstruktionsdaten durch einen grossen
Elektronenstrom erreicht. Bei einem Rückkopplungsfaktor £ =1
ist die Voraussetzung a < 1 bei u0' <70 nicht mehr erfüllt, man
musste zur Berechnung der Brennweite auf den allgemeinen
Ausdruck (12) zurückgreifen und bekäme einen wesentlich komplizierteren

Ausdruck für dieselbe. Dies ist aber gar nicht erwünscht; man
sieht ohne Rechnung, dass für ua' f& U0 der Brennpunkt in den
Modulator rücken würde, was aber nach der vorigen Darlegung
nicht möglich ist, da sein Abstand / > 0 sein muss ; mit andern
Worten, die Wechselspannung erreicht bei e 1 die
Beschleunigungsspannung nicht. Die Anschwingbedingung erfordert einen
endlichen Abstand Modulator—Induktor, daher ist es
zweckmässig, e < 1 zu wählen. Das Interessante an diesem Generator
ist das sichere Zusammenlaufen der Elektronen nach genügend langer

Zeit; die grösste Dichte ist unabhängig von der Brennweite /,
und diese stellt sich bei Erfüllung der Anschwingbedingung von
selbst am richtigen Orte ein.

§ 7. Berechnung der Energieabgabe der Elektronen an das Wechselfeld.

Die Bewegungsgleichung für eine beliebig im Induktor verteilte
Ladung Q/cm2 mit der Masse M lautet (immer für das eindimensionale

Problem)
Mx K

die Kraft K berechnet sich aus
l+d

K= fQx<Sxdx

i
und mit Berücksichtigung, dass die Ladungsdichte im eindimensionalen

Fall der speziellen Divergenzgleichung
1 d«.

Qx

genügt :

l+d

An dx

1 i i
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Hierin bedeutet | (&i+a + ®i) ®o die mittlere Feldstärke in
Gleichung (22) ; 1/4 n (@i+d — ®j) ist die Summe der auf beiden Platten
induzierten Ladungen, welche gleich Q ist; also

K ®0 ¦ Q

und mit dem Wert (£0 aus (22) wird die Bewegungsgleichung

Qu' Ob nd I ml nd\ ..„.Mx h-V-sin sm [mt — (46)
d d X \ v0 X I

Für nicht zu grosse Raumladungen ist das zweite gegen das erste
Glied zu vernachlässigen, es entspricht der Bildkraft und wurde
schon in anderem Zusammenhang diskutiert6). Dann heisst (46)
da Q/M efm die spezifische Elektronenladung ist

£=-— ^A. (47)
m d

Mit (47) wird die Energieberechnung eine Summation über alle
Elektronen. Es ist zu bemerken, dass für die Bremsung eines
Elektrons nicht nur die momentane Potentialdifferenz am Induktor
massgebend ist, sondern ihre zeitliche Änderung, während des

Elektronendurchgangs, da nach (26) bei günstigster Arbeitsweise
die Elektronen eine halbe Schwingungsdauer (n 0) zum Durchtritt

benötigen sollen. Es wird also für die Energieabgabe oder
-aufnähme wesentlich sein, in welcher Phase relativ zur
Wechselspannung die Elektronen in den Induktor treten. Die Eintrittsphase

nennen wir ß, sie sei 0, wenn das Elektron gerade beim
Spannungs-null-durchgang am Induktor eintrifft; dann heisst die
Bewegungsgleichung (47) mit (39), wobei wir den günstigsten Fall,
Resonanzfrequenz, und Durchtrittszeit gleich eine halbe
Schwingungsdauer, betrachten.

ai

mx — e Aj- sin (cots + ß) (48)

hieraus folgt durch Integration

x vn + — —°- cos (m ts+ ß) (49)
co m d

Die Integrationskonstante v0 ist die durch die Beschleunigungsspannung

erreichte Geschwindigkeit. Die Energieänderung in der
Zeit dt ist also

de d(—-—\ mxxdt (dts= dt)
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und mit (48) und (49) wird diese während der Durchtrittszeit T/2

T/2 T/2/r 6 ilde — / v0—5^-sin (mts + ß) dt

f _L i!_ (J^lfgin (a,tf + £) cos (mts + ß)dt
J m m \ d jo

das zweite Integral wird Null für jede Eintrittsphase ß, das erste
bekommt den Wert:

Vq e Uq n 0e —~ 2 cos ß
co d

weil dfvn T/2 nfm ist wird also

2
e — ea0' — cos ß. (50)

n

Negative Werte bedeuten Energieabgabe. u0' hat nach (38) wegen jn
einen negativen Betrag, sodass e u0' > 0 ist. Energieabgabe findet
für alle zwischen ß — nj2 und ß — + nß in den Induktor
eintretenden Elektronen statt. Die andern Elektronen nehmen
Energie auf.

Für den selbsterregten Generator ist zu bemerken, dass u0' nicht
mehr durch (38) ausgedrückt werden kann, weil der Strom nicht
mehr den einfachen cos-förmigen Verlauf von (18) hat, sondern durch
den Verlauf (16) ausgedrückt werden muss. Bei guten Schwinggebilden

wird sich trotzdem eine sinusförmige Wechselspannung mit
der gleichen Phase ausbilden, deren Grundwelle die Amplitude
u0" habe. Maximale Energieabgabe findet dann statt, wenn die
Beschleunigungsenergie gleich der Bremsenergie wird (cos /3=1)

e U0 — e u0" u0" — U0 (51)
n 2

Natürlich gilt dies nur unter der Voraussetzung, dass die
Durchtrittszeit der Elektronen allein durch die Geschwindigkeit v0
bestimmt sei, was aber gerade bei voller Abbremsung nicht mehr
der Fall ist. Gleichung (51) hat also mehr ideellen Wert.

Aus (39) und (27) resp. (16) ist ersichtlich, dass beim
Spannungsnulldurchgang die Extremwerte der Elektronendichten in den
Induktor eintreten; wobei nach den eben erfolgten Ausführungen
grösste Energieabgabe (ß 0) resp. grösste Energieaufnahme
(ß n) erfolgt.
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In Fig. 9 seien diese Verhältnisse veranschaulicht, u" ist die
Wechselspannung am Induktor mit positiven Werten in positiver
ic-Richtung. jfe ist die am vorderen Gitter des Induktors im gleichen
Zeitmoment eintretende Elektronenzahl pro Sek.

jfe

u u0" sin mts

Joh

1—p • cos mt

moiv0l co a Z

y=o

2v2 2v0

(52a)

(52b)

(52c)

ut,

}/e

o

Ü
Wli

Fig. 9.

Zur Bestimmung der Energiebilanz ist über sämtliche Elektronen
mit der Energieänderung

Un COS ßS

n

zu summieren.
Die Zahl der in der Zeit dt in den Induktor eintretenden

Elektronen ist nach (52 b)
iol«

dz
1 — p cos coli——)

dt.

Hier ist zu bemerken, dass anstelle von ts t — lfv0 der exakte
Wert t/ t — Ifv genommen werden muss, da diese kleine
Abweichung gerade das Unendlichwerden des Energie-Integrals
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verhütet (Abschwächung der Nullstelle im Nenner) ; bei allen
bisherigen Berechnungen war diese Vorsicht nicht notwendig, weil
keine Nullstellen im Nenner auftraten.

Wir führen die neue Variable

t:=t-—
ein; mit

[vgl. (9)], oc < 1 wird

v=v0 + —^— sm m t$

dt= ——rdt/ 1 — pcos mts' dt/
dts

und
dz jnfe • dt/

also die Energieänderung der Teilchenzahl dz (Gleichung (50), (51),

dE e • dz — ja Ua cos cots • dts'

wobei für ß= mts nach Fig. 9 gesetzt ist ; jetzt muss ts noch durch
t/ ausgedrückt werden; es ist für kleine oc

xt I l I <*-l ¦
ts t — — t t— 1 sm co ts

v v0 + ^sinmt/ v0 2v0

also
I <*-l

¦ X,ts= t ts sm mts
Vn 2vn

und
mts= mts' — p sin m ts' (53)

damit
dE — j0 Un cos (mt/ — p sin wt/) dt/ (54)

und die Leistung

1 p
L=—Jo f0—^ / cos (mt/ — p sm cot/) dt/=

_ l±c± r cos (cot,_psin mt^ d ^t». < ^2 n J
o

Aus (53) ist ersichtlich, dass sowohl für mts als auch für
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mt/ die Grenzen von 0 bis 2 n gehen. Das Integral in (55) ist die
Besselfunktion 1. Art und 1. Ordnung, 2 n Js also

L — j0U0- Jx (p)

und der Wirkungsgrad nach Division durch die Beschleunigungsenergie

j0 U0

V Ji (P) •

Jx (p) verläuft ähnlich wie der sin (p). Das Maximum liegt
bei p 1,84

Jx (1,84) 0,582

also wird der maximale Wirkungsgrad 58% (für die Resonanzfrequenz

und Durchtrittszeit gleich einer halben Schwingungs-
dauer). Dieser Wert stimmt mit demjenigen von Geiger7) und
Webster8) unabhängig gefundenen überein. Man erkennt, dass
das Integral (55) mit demjenigen von Webster zur Bestimmung des
Fourierkoeffizienten der Grundwelle bei der Zerlegung des Stromes

Gleichung (16) nach 2 a« cos n mts übereinstimmt, p — 1,84 ent-
n

spricht den beiden Stromspitzen in (16). Hier sei eine Bemerkung
über die Spannungsberechnung nachgeholt.

Für grössere p verläuft der Strom nicht mehr cosförmig, wie
in § 3 und 4 angenommen; man hat die Fourierzerlegung zu machen.
Die Berechnung der Leerlaufspannung geschieht wie in § 3
Gleichung (22) mit derselben Voraussetzung über die langsame
Veränderlichkeit der Besselfunktion, wie für x. Die Berechnung der
Spannung am Schwingkreis geschieht ähnlich wie nach Gleichung
(32), nur dass auf der rechten Seite eine Summe von harmonischen
Gliedern steht. Infolge des Resonanznenners, Gleichung (35),

überwiegt bei kleiner Dämpfung B ^> 1 das Glied, wo m2 -j-q-
(in unserem Falle die Grundwelle) bei weitem die anderen Glieder;
die Spannungsamplitude u0' am Induktor wird

4n2C0-v0j02J1(p)sm^r
(35a)

O) \2
R,

C2(-~

ein Ausdruck, der für kleine p, 2 Jx (p) —>¦ p in denjenigen von
(35) übergeht. Der Brennpunkt wird wegen (14) und u0= e u/ dort
eingefangen wo u0' bzw. Jx (p) das Maximum erreicht. Das ist
wegen (14) und (52 c) bei

/=_?_. (56)
1,84

v }
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Schlussbemerkung.

Während der Niederschrift dieses Aufsatzes bekam ich Kenntnis

von den beiden Arbeiten des Herrn Webster, welcher das

gleiche Thema behandelt. Die Problemstellung ist dieselbe, jedoch
weicht unsere Behandlung wesentlich von derjenigen von Webster
ab. Auch in den Resultaten unterscheidet sie sich in einigen
Punkten.

So kommt hier das Einfangen des Brennpunktes zwischen
Modulator und Induktor und damit die Amplitudenbegrenzung
zum Ausdruck.

Die Berechnung der erzeugten Wechselspannung durch
Kopplung des modulierten Elektronenstromes mit dem Schwingsystem

geschieht dort nach einem Ersatzschema, indem die
Kapazität als Verbraucher- statt als Kopplungskapazität auftritt.
Nach unserer Rechnung wird das Ersatzschema durch Fig. 10

G
rs*rs* R

Fig. 10.

dargestellt. Die Leerlaufspannung am Generator ist nach § 3

Gleichung (27) unabhängig von der Kopplungskapazität. Strom
und Spannung am System gehorchen zwei simultanen Gleichungen,
die Kopplungskapazität tritt dabei im Zähler des Spannungsaus-
druckes auf. Sie kann auch ein Teil des Schwingkreises sein

Gleichung (30).
Durch diese Behandlung kommt der Laufzeitcharakter im

Induktor zum Ausdruck, welcher zur Bedingung (25) führt
(Verhältnis der Induktordicke zur Elektronendurchgangszeit für günstigsten

Arbeitspunkt). Man hat also zwei charakteristische
Laufzeiten. Erstens die Laufzeit vom Modulator zum Induktor, welche
die Elektronenanhäufungen erzeugt und zweitens die Laufzeit der
so gebildeten Raumladung im Induktor, welche mit der Periode
des Schwingkreises in einem bestimmten Verhältnis steht. Die
zweite Bedingung ist das Analogon zum Verhältnis der Laufzeit
der schwingenden Raumladung zur Periodendauer des Schwingkreises

bei Bremsfeldröhre oder Magnetron.
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In der Behandlung der meisten Autoren wird die Induktordicke

als sehr dünn angenommen (Laufzeit im Induktor unendlich
klein) und nur die Laufzeit vom Modulator zum Induktor als

massgebend betrachtet.
Unsere Berechnung des Wirkungsgrades fusst daher

sinngemäss auf der endlichen Laufzeit durch den Induktor, bei
Berücksichtigung der Spannungsänderung des Elektronendurchganges.
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