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Zur Theorie der Laufzeitschwingxingen*)
von F. Lüdi.

(A.-G. Brown, Boveri & Cie., Baden, Schweiz).

(26. XII. 39.)

Inhalt: Die für Ultrakurzwellen charakteristischen Laufzeitschwingungen
werden vom Standpunkt des Rückkopplungsprinzipes analytisch untersucht. An
Hand der stationären Lösungen der Differentialgleichungen für ein selbstgesteuertes
System lassen sich die von der Raumladung hervorgerufenen Effekte wie
Koppelwellenverlauf, Intensitätsverlauf, Anfachbedingung, als Funktion der Abstimmung
des äusseren Schwingkreises diskutieren. Sowohl die charakteristischen gemeinsamen

Merkmale als auch die Unterschiede der verschiedenen Schwingungstypen
(Bremsfeldröhre, Magnetronschwingung I. Art und Magnetronschwingung II. Art)
finden weitgehend ihre Deutung. Eine Zusammenstellung der Resultate befindet
sich am Schluss.

Einleitung.

Die Laufzeitschwingungen der Bremsfeldröhre sind von
verschiedenen Autoren behandelt worden, am ausführlichsten von
Dick1). Hierbei gibt es in Analogie zur Behandlung der Schwingungen

in gewöhnlicher Dreipolröhrenschaltung prinzipiell zwei
Methoden. Erstens geht man aus vom stationären Zustand des

Systems, konstruiert die Schwinglinie, die durch die statische
Charakteristik der Röhre bestimmt ist und bildet den Schnittpunkt

mit der Rückkopplungsgeraden2). Dieser bestimmt die
Amplitude der Schwingung im stationären Zustand. Wenn die
Schwinglinie einen Wendepunkt hat, so bekommt man mit der
Rückkopplungsgeraden die Reissdiagramme des schwingenden
Systems, und als Tangente im Nullpunkt der Schwinglinie liefert
sie die Anfachbedingung. Zweitens stellt man die Differentialgleichung

des Systems auf, wobei die Differentialgleichung der
freien gedämpften Schwingung durch Einführung der
Rückkopplung in diejenige der selbstgesteuerten Schwingung erweitert
wird. Indem periodische Lösungen mit reellen positiven Exponenten

gesucht werden, bekommt man die Bedingungen zwischen den
Parametern (Durchgriff, Steilheit, Rückkopplung usw.) für die
Anfachung bzw. für den stationären Zustand des Systems. Ohne

*) Am 22. Dezember 1938 als Habilitationsschrift an die Abteilung für Elektrotechnik

der E.T.H. eingereicht.
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Einführung von Nichtlinearitäten ist eine Begrenzung der Amplitude

bei positiv reellen Exponenten nicht erreichbar3).
Trotzdem hat die zweite Methode auch bei linearisierten

Systemen den Vorteil grosser Übersichtlichkeit der wesentlichen
Fragestellung, und es soll in diesem Aufsatz versucht werden, das

Rückkopplungsprinzip, das ja von so grundlegender Bedeutung
für alle selbstgesteuerten Mechanismen ist, auch auf die
Laufzeitschwingungen zu übertragen. Wir beschränken uns ausdrücklich
auf lineare Systeme und wollen untersuchen, wie weit die wesentlichen

Züge der Erscheinungen wiedergegeben werden. Es wird
sich zeigen, dass die Theorie bei sinngemässer Einführung der
Rückkopplung formal derjenigen des Zweikreissenders entspricht,
und zwar des sekundärangefachten, und sich ganz wie dieser
behandeln lässt*). Um die Analogie besser hervortreten zu lassen,
folgen wir auch weitgehend den Bezeichnungen von Ollendorff.
Diese zweite Methode scheint auch deshalb berechtigt, weil nach
Dick die Schwinglinie nur umständlich und auf graphischem Weg
erhalten werden kann. Ausserdem führten Begriffe wie ultradynamische

Charakteristik für diese Schwingungstypen bisher nicht zu
konkreten Resultaten.

§ 1.

Es werde zuerst eine modellmässige Übersicht gegeben. Die
Laufzeitschwingungen in der Bremsfeldröhre und im Magnetron
sind charakterisiert durch eine in einer Eigenperiode schwingende
Elektronenraumladung, welche über die Elektrodenkapazität mit
einem äusseren Schwingkreis gekoppelt ist. Damit ist sofort ein
wesentlicher Unterschied zu den Schwingungen der gewöhnlichen
Dreipolröhre gegeben, wo die Laufzeit der Elektronen keine Rolle
spielt und also auch keine entsprechenden Eigenfrequenzen
auftreten. Bis jetzt sind im wesentlichen drei Typen von Laufzeit-
Schwingungen bekannt. 1. Diejenigen der Bremsfeldröhre (Bark-
hausen-Kurz), wo die Eigenperiode der Elektronen durch eine
elektrische quasielastische Kraft (das positive Gitterpotential)
bestimmt ist. 2. Die Magnetronschwingung I. Art (Okabe); hier
ist die Eigenperiode in erster Näherung nur durch das Magnetfeld
(Larmorpräzession oder Rollkreisfrequenz) bestimmt. Sie tritt
sowohl bei ungeschlitzten Anoden als auch bei geschlitzten auf und
unterscheidet sich von der BARKHAusEN-KuRz-Schwingung nur
dadurch, dass die quasielastische Kraft durch ein Magnetfeld statt

*) Man vergleiche die sehr übersichtliche Darstellung in dem Buch von
F. Ollendorff. „Grundlagen der Hochfrequenztechnik". Verlag Julius Springer,
Berlin.
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durch ein elektrisches Feld bestimmt ist. Die grosse Ähnlichkeit
der beiden Schwingungsarten tritt auch in den experimentellen
Erscheinungen sehr deutlich hervor. 3. Gibt es noch die
Magnetronschwingungen II. Art (Posthumus); sie treten nur in Röhren mit
mehrfach geschlitzten Anoden auf. Die Eigenperiode ist hierbei
sowohl durch das elektrische als auch durch das magnetische Feld
bestimmt (sogenannte Leitbahnfrequenz). Diese Schwingungsart
weicht in den experimentellen Erscheinungen ziemlich von den
beiden erstgenannten ab.

Da ausser elektrischen und magnetischen Kräften keine
anderen bekannt sind, die auf das Elektron wirken, so dürfte mit
den drei angeführten Schwingungsarten die Möglichkeit zur
Erzeugung ungedämpfter Laufzeitschwingungen im wesentlichen
erschöpft sein. Weil von Herriger und Hülster die Posthumusformel

für die Frequenz co bis ca. 10 m Wellenlänge verifiziert
wurde5) und diese vom Verfasser an über 30 Messungen von 40 bis
300 cm bei den verschiedensten Feldern ebenfalls nachgeprüft
wurde, scheint kein Grund vorzuliegen, die technisch interessanten
Magnetronschwingungen durch eine negative Charakteristik
erklären zu wollen.

Für die drei Schwingungstypen ist ein erster
Aussortiermechanismus charakteristisch, der die energieaufnehmenden von
den energieabgebenden Elektronen trennt und nur die letzteren
im System zurücklässt, wodurch die Energiebilanz für dieses positiv
wird. Ein zweiter für die drei Arten verschiedener
Aussortiermechanismus sorgt dafür, dass die energieabgebenden Elektronen
nach Abgabe ihrer vom elektrischen Gleichfeld stammenden potentiellen

Energie aus dem System herausgenommen werden, weil
sonst Phasenumkehr und damit wieder Energieaufnahme aus dem
Wechselfeld stattfinden würde. Infolge dieser Aussortierungen,
die periodisch erfolgen, entsteht eine Ordnung einer grossen
Elektronenzahl zu einer Raumladungswolke, die als Ganzes in der
Röhre hin- und herschwingt und im Aussensystem die
Wechselspannung induziert; die durch Kathodenstrahlen entstehenden
Raumladungen sind aber immer noch so dünn, dass die Bewegung
der einzelnen Teilchen als voneinander unabhängig betrachtet
werden kann. Man kann höchstens die Korrektur der Elektronenbahnen

durch die anwesende Raumladung vornehmen1)6)*).
Für die Untersuchung der Eigenfrequenz, des

Aussortiermechanismus oder der Energiebilanz (Wirkungsgrad) der Elek-

*) Diese werde hier vernachlässigt; sie bedingt hauptsächlich eine
Frequenzkorrektur, jedoch nicht in prinzipieller Weise, was von Dick für die Bremsröhre,
und für das Magnetron von J. J. Müller ausführlich gezeigt wurde.
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tronen genügt die Betrachtung der Bewegung eines einzelnen
Elektrons in den gegebenen Feldern. Dies ist von verschiedenen
Autoren bereits ausführlich gemacht worden, und zwar

für die Bremsröhre von Möller22), Barkiiausen22), Dick1)
und anderen;

für die Magnetronschwingungen I. Art von K. Fritz1), J. J.
Müller6) und anderen;

für die Magnetronschwingungen II. Art von Posthumus8),
Herriger und Hülster5), Fischer und Lüdi9).
Will man dagegen den Frequenzverlauf, den Spannungs- bzw.

den Intensitätsverlauf oder die Anfachung der Schwingung in
Funktion der Abstimmung des äusseren Schwingkreises kennen
lernen, so muss man von der Raumladungswolke ausgehen, da
diese Effekte durch das Zusammenwirken aller Elektronen
bedingt sind. Der Raumladungsansatz für die Bremsröhre stammt
von Tank u. Schildknecht10). R. Wundt hat darauf eine Theorie
(Koppelwellenverlauf) aufgebaut11). Dann folgte Dick1) auf
hauptsächlich graphischem Weg. Wir versuchen hier, unter Zugrundelegung

von Differentialgleichungen, den rein analytischen Weg zu
gehen, wobei diese, wie in der Einleitung bereits angedeutet, in
diejenigen für die selbstgesteuerte Schwingung erweitert werden
sollen. Da alle drei Typen, wie oben bemerkt, gemeinsame Merkmale

haben, werden die Gleichungen (wofür als einfachstes Modell
die Bremsfeldröhre genommen wird) im Prinzip für alle drei Typen
gelten. Es lassen sich dann sowohl die gemeinsamen als auch die
verschiedenen charakteristischen Merkmale aus den Lösungen
herauslesen.

In der Bremsfeldröhre starten die Elektronen kontinuierlich
an der Kathode, durchfliegen das positive Gitter mit grosser
Geschwindigkeit, werden vor der negativen Kathode gebremst und
zur Umkehr gezwungen usw. In Erinnerung der Tatsache, dass
sich zwei Kathodenstrahlen ungestört durchdringen, haben wir
auch in der Bremsröhre eine sich in beiden Richtungen (Kathode—
Anode) durchdringende homogene Elektronenströmung. Wenn
durch irgendeine Störung in der einen Richtung mehr Elektronen
fliessen, so bedeutet dies eine hin- und herpendelnde
Elektronenverdichtung, eine pendelnde Raumladung, welche der Einfachheit
halber als schwingende Platte betrachtet werde, die mit einer
quasielastischen Kraft an das Gitter gebunden sei. Dieses Pendel kann
Energie durch Kopplung über die Raumladung und die
Röhrenkapazität an ein zweites gedämpftes Pendel, den äusseren Schwingkreis

abgeben. Damit Energieabgabe möglich ist, muss eine be-
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stimmte Phasenbeziehung zwischen Innen- und Aussensystem
bestehen*). Durch die Kopplung überträgt sich die Dämpfung des
äusseren Systems auf das innere (die schwingende Raumladung),
und dieses käme, auch ohne Eigendämpfung, allmählich zur Ruhe,
wenn nicht durch einen besonderen Mechanismus der innere Schwingkreis

immer wieder neue Energiezufuhr erfahren würde, die durch
den äusseren gesteuert wird. Diese Steuerung sei hier modellmässig
angedeutet.

K und A (Fig. la) seien die ebenen Elektroden, Kathode und
Anode; das Gitter G ist auf positivem Potential, im allgemeinen
über dem Sättigungswert. Die sich in Wirklichkeit gegenlaufend
durchkreuzenden Elektronen seien nebeneinander gezeichnet. Wenn

ff-—;-i w G-

K ^i

i.
•

•

-(+)

Fig. la. Fig. lb.

durch eine Störung (z. B. Schroteffekt) eine Verdichtung in der
einen Richtung entsteht, so erzeugt diese im Aussenkreis ein
Wechselpotential, welches auch direkt beim Einschaltvorgang
entstehen kann; dadurch werden die Elektronen, welche gegen die
positivere Platte fliegen, beschleunigt, während die entgegengesetzt

fliegenden verzögert werden. Öder anders ausgedrückt, die
positivere Platte rückt dem „Elektronenring" so nahe, dass die
falschphasigen Elektronen aussortiert werden, während an der
negativeren Platte die richtigphasigen, energieabgebenden
Elektronen zurückgestossen werden (Fig. lb). Da die energieaufnehmenden

Elektronen schon nach wenigen Perioden, im besten Fall
schon nach einer halben, aussortiert werden, so ist diese
Aussortierung gleichbedeutend mit einer um 180° phasenverschobenen
Schieberwirkung, die periodisch neue Elektronen mit maximaler
Amplitude in das schwingende System einlässt. Dieser Mechanismus

ist bei der Bremsröhre und beim Magnetron I. Art derselbe.

*) Ganz allgemein kann gesagt werden, dass die Phasenbeziehung so sein

muss, dass die Elektronenbewegung von einem elektrischen Wechselfeld gebremst
wird, damit Energieabgabe erfolgt; dies gilt auch für die Inversionsschwingungen
nach Hollmann22), wo als Spezialfall der Pendelbewegungen nur eine unperiodische
Hin- und Herbewegung betrachtet wird.
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Beim Magnetron II. Art werden die falschphasigen Elektronen gar
nicht zugelassen. Sie werden durch die Wirkung der tangentialen
Komponente des Wechselfeldes an der Kathode zurückgehalten,
bis sie zu richtigphasigen werden9). Durch den zweiten
Aussortiermechanismus müssen die neu hinzugekommenen Elektronen nach
Energieabgabe und zwecks Erhaltung des stationären Zustandes
aus dem System herausgenommen werden. Bei der Bremsröhre
geschieht dies mittels dem Gitter, beim Magnetron I. Art muss
die Schrägstellung das fehlende Gitter ersetzen6)7); diese erzeugt
für alle Elektronen eine Bewegungskomponente auf die Anode.
Statt der Schrägstellung können auch Endplatten verwendet werden

12)6). Bei den Magnetronschwingungen II. Art ist eine solche
nicht erforderlich, da dasselbe Tangentialfeld (vgl. die zitierte
Arbeit von Fischer u. Lüdi9) die energieabgebenden Elektronen
an der Anode aussortiert.

Obschon die hin- und herschwingenden Elektronen
ungedämpft sind, führen wir doch formal eine Dämpfung für das innere
System ein ; denn nicht alle Elektronen werden gerade im
Energieminimum abgefangen, wie die früher zitierten Arbeiten zeigen.

§ 2. Aufstellung der Koppelungsgleichungen.

In Fig. 2 ist die Bremsfeldröhre schematisch mit den beiden
negativen Elektroden, Kathode 1 und Anode 2 mit symmetrisch
gelegenem Gitter gezeichnet. Um nicht mit transzendenten
Gleichungen operieren zu müssen, sei das Lechersystem durch einen

k
AT i

_ J ifi. _r- \R \C

Fig. 2.

Schwingkreis wie bei der Dreipolröhre ersetzt. Beim Magnetron
ist dies sogar weitgehend durch Verbindungsbügel zwischen den
Anodensegmenten realisiert. Als wesentlicher Unterschied gegenüber

dem Lechersystem tritt bei dieser Schaltung die Grundwelle
nur bei einer Abstimmung auf, während sie dort periodisch bei
verschiedenen Längen wiederkehrt; wir begnügen uns mit der
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Betrachtung der Vorgänge bei einer Resonanzstelle. Die
Gleichspannung zwischen Gitter und Kathode bzw. Anode ist nicht
eingezeichnet, sie wird durch eine quasielastische Kraft ersetzt ; u ist
die Wechselspannung, die eigentliche Röhrenspannung. Die
positiven Richtungen verlaufen vom Gitter zur Anode (2), die negativen

vom Gitter zur Kathode (1). Nun sollen nach aussen keine
Feldlinien verlaufen, sodass also für die influenzierten Ladungen
pro cm2 q. und q2 und für die Raumladung q gilt:

<k + fc + q 0 • (1)

Dies gibt mit dem Satz von Gauss unter Verwendung der homogenen

Feldstärken Ex und E2:

2i=/?o®i €,-«1
ßo

fc -ßo g2 ®1 + g2 -TT («1-3«) •

Po

ß0 ist die Konstante im Volt-Amp.-Sek-Massystem,

IO9

(2)

ßo
4 TIC2

Dann werde die Kraft K pro cm2 auf die Ladungsschicht q von
der Dicke A x berechnet. Diese rührt erstens von den
Influenzladungen qx und q2, d. h. von der Röhrenspannung u her. Es ist

K= qAx-G.
p ist die Ladungsdichte pro Volumeneinheit, Ê die mittlere
Feldstärke an dieser Stelle, -f \ (<SX + <S2). Nach dem Satz von
Gauss ist aber q A x ß0 (<£2 — ®i), also :

K A(®2-e1)((g1+e2)

oder mit (2)

K ^-(qi-q2). (3)

Mit der zweiten quasielastischen Kraft, — ax, welche das Gleichfeld

vom Gitter ersetze, lautet also die Bewegungsgleichung für
die Elektronenmasse m pro cm2

mx -e^-(qi — q2)—ax.
2ßo
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Um (fc — fc) zu eliminieren, brauchen wir noch die Spannungs
gleichung unter Berücksichtigung von

+ <7/2

qx/7

f -f dx^ «, (dl2+x)+<S2 (lik-x) -i- (fc - fc) -^^.^ ^Po Po

Damit wird die Bewegungsgleichung

m x —- I m
/So

a; —- eta;

(4)

(5)

Dann werde die Kopplungsgleichung für den angeschlossenen
Schwingkreis bestimmt. Nach Kirchhoff ist:

u
«<?! + /* di

und nach (4)

d

2£o (fc-fc) -|- a: j-xßo ßo

L

d 2i

(6Ì

2/?„ F /So
a;,

da aus (1) bei konstanter Raumladeschicht q 0 und fc —fc
folgt, und q1=—ijF, q2= +ijF, also fc — q2=—2ifF ist. (F
Elektrodenfläche). Bei Einführung der Röhrenkapazität C0 Fßjd
wird also

Cn ß>
X. (7)

Aus (6) und (7) werde i eliminiert; dann liefert nochmalige
Differentiation und Ordnung:

Cn

U

Tc; BCn ßo
(8)

In (5) und (8) haben wir also die bsiden Kopplungsgleichungen.
Mit den Abkürzungen

C C^+Cx

1
2—— coJ

LC 2

md
q Co

a — y
ßo C r ßo

a

m
-a/3 oij2

1

BC
c/.y

co,2

(9)

und bei Einführung einer formalen Dämpfung öx in Gleichung (5)
schreiben sich die beiden Gleichungen (5) und (8)

x + co-,2 x + ôx x — a« 0 (10a)

ü + co22 u + ò2 ù + y x 0 (10b)
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Wir sehen aus (9), dass die Eigenfrequenz des inneren Kreises cox,
wie durch die Gleichspannung bestimmt wäre, durch die Bildkraft
aß etwas herabgesetzt wird; und ebenso wird die des äusseren
Kreises co2 durch Parallelschaltung der Röhrenkapazität etwas
kleiner. Wenn der äussere Schwingkreis in Serieresonanz geschaltet
wäre, so würde sie grösser. Vergleichen wir die beiden Gleichungen
mit den Kopplungsgleichungen zweier ungedämpfter mechanischer
Pendel

a C '

x + — x + — (x — y) 0
m m

a G \ r\y + — y + — (y — x) o.
m m

so ist ersichtlich, dass in unserem Fall eine Beschleunigungskopplung
und eine Kraftkopplung vorliegt, eine sogenannte gemischte

Kopplung13), qx bedeutet die Änderung des Verschiebungsstromes

durch die bewegte Raumladung q, welche die induzierte
Spannung erzeugt. Ist q oder C0 gleich Null, so verschwindet die
Kopplung und jedes Pendel schwingt in seiner Eigenfrequenz. Man
erkennt hier auch, dass ein zeitlich veränderliches q, wie es zur
vollständigen Differentialgleichung für die Anfachbedingung
erforderlich wäre, zu nichtlinearen Gleichungen führen würde. Um
diese Schwierigkeit zu umgehen, behandeln wir q als Parameter
und werden uns bei den entsprechenden Diskussionen erinnern,
dass nicht x, sondern q die wachsende Variable bei konstanter
Amplitude x0 ist; doch kommt es ja nur auf das Moment q • x an.

§ 3. Die Lösung der Kopplungsgleiehungen für die freie ungedämpfte
Schwingung.

Die beiden simultanen Gleichungen (10) werden gelöst mit
dem Ansatz

x 9Cest u ueet (11)

damit wird aus (10)

9C(e2+ w-?+ ô1e)— Ua= 0, (12a)

9C (y e2) +U(e2+ co2 + e ô2) 0 (12b)

Die Lösung dieses homogenen Gleichungssystems verlangt, dass
die Determinante der Koeffizienten 0 sei, also:

(e2 + coj2 + eój) (fi2 + co22 + eô2) + <xy e2 0
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Ausgerechnet führt dies zur charakteristischen Gleichung für die
Wurzeln :

e4 + e3 (fc + fc)
+ e2 (cox2 + co2 +òxò2 + x) + e (ôx co2 + ò2 cox2) + cox2 co22 0. (13)

Die Dämpfungen òx und <32 seien zuerst 0 gesetzt; die entstehende
biquadratische Gleichung lässt sich sofort lösen.

e4 + e2 (cox2 + co22 + x) + cox2 co22 0 (13a)

CO-,2 + CO, A ± -I / K2 + w22 + t) 2 - 4 co2 co2
_ ^2

Wo t cny der Kopplungsfaktor ist.
Für die Resonanz cox co2 co bekommt man :

-U>a + 0±y°M0
Wir erhalten zwei Koppelfrequenzen, welche infolge des

zweiten Gliedes in der Klammer etwas gegen höhere Frequenzen
verschoben sind. Da im ersten Glied unter der Wurzel co2 als
Faktor auftritt, wollen wir die Grösse der beiden Glieder unter
der Wurzel gegeneinander abschätzen.

Es sei angenommen

(t)>-
Dann treten zwei imaginäre Werte von e auf, wovon der eine gleich
ico ist, während der andere höher liegt. Im Experiment liegen aber
die Abweichungen der Koppelfrequenzen symmetrisch zur
Resonanzfrequenz, wenn auch die kleinere etwas undeutlich ist (Fig- 4).
Für die Abweichung der höheren Koppelfrequenz von der
Abstimmungsfrequenz gilt für den imaginären Wert von e jQ

Q2 co2 + x
oder

Qi — a>2 x (Q — co) (û + co) 2p co2

wobei Q co (1 + p) und p die prozentuale Abweichung der
Koppelfrequenz bedeutet. Wir haben

co2r=2pcoi und (~\ p2coi. (15)

Das erste Glied verhält sich also zum zweiten Glied wie 2pIp2.
Aus dem Experiment liest man für eine 26 cm-Welle den grössten
Wert für p ~ 0,03 ab, sodass das Verhältnis ~ 60 wird, d. h. wir
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sind im Widerspruch mit unserer Annahme, welche wegen r ay
ein viel zu grosses q erfordern würde. Das zweite Glied unter der
Wurzel und damit das zweite in der Klammer, kann daher ohne
grosse Einschränkung gestrichen werden, wodurch sich die weitere
Diskussion sehr vereinfacht; für den Resonanzfall gilt

— e2 Q2 m2 =F y e

und für den imaginären Wert von (14)

x /(co2+co22 + xYt 4 toj2 a>22

(16)

(13a)

« ,t
Ana

Fig. 3.

Koppelwellenverlauf nach (14c) Intensitätsverlauf nach (36a).

Das obere Vorzeichen gibt die langsamere, das untere die raschere
Frequenz. Die innere Frequenz cox und der Kopplungsfaktor r
werden als konstante Parameter betrachtet. Indem durch cox
dividiert, und

^i'2 _ n- ^1.2
CO,

y
CO-,
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gesetzt wird, bekommt man für 0 in Funktion der Abstimmung
des äusseren Kreises co2:

®x,2
_ n _ t /l+y2+x''t=°™=f- T Y(l + y2 + x')2 — 4y2 (14 b)

Und wenn die Summanden unter der zweiten Wurzel ausgerechnet
und Glieder in x'2 nach der eben gemachten Abschätzung
gestrichen werden, so bekommt man die für die Ausrechnung
günstigere Form

+ yi — 2y2+(l + y2)2x'-f t+ yOi,.- -^ T

Wellenlänge

cm
50 Ä°ß

29-

28

Ä.
SV&S,

38 39 W H

(14c)

*2 *J cm

Abstimmkreis
Fig. 4.

Koppelwellen- und Intensitätsverlauf nach Messungen von J. J. Müller6).

welche für Resonanz in den entsprechenden Ausdruck zu (16)
übergeht

0̂1,2=]/iTa/t'- (16a)

Man kann also aus Messung der Koppelfrequenzen im Resonanzfall
den Kopplungsfaktor t' und damit auch die Raumladung q
bestimmen. Wir zeichnen zuerst den Koppelwellenverlauf für eine
dreiprozentige Abweichung der Koppelwelle im Resonanzfall auf;
dieser Wert entspricht ungefähr dem Experiment, er ist eher etwas
zu gross. Hierfür ergibt sich

x pco2 -j/co2 t
r' t/o2 4 p2 4 (0,03)2 0,0036 2t' 0,0072.

Mit diesem Wert liefert (14 c) für die Nachbarschaft der Resonanz
Ox und 02 (Fig. 3).
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§ 4. Die Bestimmung der Spannungsamplitude für die freie

ungedämpfte Schwingung im Resonanzfall.

Nach Gleichung (14) bekommen wir für e vier Wurzeln, wovon
je zwei konjugiert komplex sind; wir nennen sie ex, —ex, e2, —e2
bzw. j Qx, —jüx, j Q2, —j Q2. Die allgemeinen Lösungen für
x und u heissen:

u ux e£i ' + u2e-e'* + u3eEs

x %1e**t + 9e2e-f'« + 9e3e' 2* + 9£3e-f*(
(17)

u und 9t sind aber durch die Gleichungen (12) miteinander
verknüpft; aus (12b) bekommen wir (fc ô2— 0) unter Berücksichtigung

des Wertes für y und co2 nach (9)

u

oder

A!Rq 9£= im

1

TA

Ä 1

Të

(18)

Zur Bestimmung der vier Unbekannten gelten vier
Anfangsbedingungen :

x=--9in

x ¦¦

u ¦¦

u ¦

0

0

0

für t'= 0 (19)

d. h. wir suchen Lösungen für den Fall, dass zur Zeit t 0 das
innere Pendel mit maximaler Amplitude in Bewegung gesetzt wird,
während die übrigen Grössen Null sind. Rechnet man die
Unbekannten nach (17), (18), (19) aus (am einfachsten mit der
Determinantentheorie), so bekommt man:

22V

SR»

L
2p LVÄ

-L
o (a m

Ain

^0

SR,

2R4

+ L

-L
U s'JC,

9t0

£n

(20)
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Mit den angenäherten Werten für s aus (16) bekommt man mit
Berücksichtigung von (18) und den Abkürzungen (9) aus (20) :

9ix 9C2 9i3 9C. *°

und

u _ u _ i i/gg d g co -1/C70d g
1 2"4 Yc^e/rnLG^^T Y Cj^ejm*'

_<a_ -,/Cpd
4 v cß0

efm

efm

(21)

(hierbei ist für qfm= e/m die spez. Elektronenladung gesetzt), so dass
schliesslich :

M=u cos Ûxt-U cos Q2t=u sin A __
2 W. sm / _i 1.\ t

% r, x &0 r. v /Q-,+Qo\ /Q-.-Q,x=-?cosQxt+-? cosQ2t=óXncos l^YY^l\t-cos * 1 2

2 1
2 2 ° V 2 i

(22)

herauskommt ; durch die letzte Gleichung ist die Spannung mit der
schwingenden Raumladung verknüpft. Für u und x existieren
zwei Hauptschwingungen, die sich zu Schwebungen superponieren
wie beim analogen Fall zweier mechanisch gekoppelter Pendel.
Man sieht, dass die Phasenverschiebung, die im wesentlichen durch
den ersten Faktor in (22) bestimmt wird, 90° ist, so dass pro Periode
maximale Energieabgabe stattfindet.

§ 5. Berechnung der Koppeldämpfungen.

Es werde jetzt die Gleichung (13) unter Berücksichtigung der
Dämpfungen ôx, ô2 gelöst. Wir machen für e den Ansatz

E —A+jÜ (23)

Unter der Annahme kleiner Dämpfungen, wobei also höhere
Potenzen als die erste von A, ô vernachlässigt werden, wird damit
aus (13)

(j QA + (j Q)2 (co2 + co2 + x) + CO2 CO2

- 4 (j Q)s A + (j QA (fc + fc) + 2 (j Q) (-A) (co2 + co2 + x)

+ (j Q) (fc co2 + fc co2) 0. (24)

Die ersten drei Glieder sind wegen (13a) gleich Null, es bleibt
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die untere Zeile von (24). Setzen wir ò' öj2, dividieren durch
2 (jQ) und ordnen, so kommt

oder
A [2Q2— (co2+co2+x)] V2 (fc'+fc') — (fc co2+ò2cox2

(fc' + fc') Q2 Ôx C022 + Ô2 ft»!2

2Q2— (co2+co2+x) 4oQ2—(co2+co2 + x)

und wenn man weiter nach Koeffizienten von òx und ò2 ordnet
und Zähler und Nenner mit cox2 dividiert:

A <v —" 1- <y (251
2 02-(l + y2 + T')

2 202-(l + y2 + x')
v ;

#

Fig. 5.

Setzt man für 0 den Wert (19) ein und geht man wieder auf ô

zurück, so entsteht

A ài
1=F-

1 + y2 2y2

f(l + y2 + x')2-4.l

4 IT
1 + y2

]/(1 + 2/2 + t')2-42/2
(26)

Dieser Ausdruck ist ganz ähnlich demjenigen für den
Zweikreissender4), speziell für Resonanz y=l wird für sehr kleine
Kopplungen

A ~-i + —*-~ 4 4
(27)
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Ist insbesondere die innere Dämpfung sehr klein gegen die
äussere, so ist das ganze System trotzdem gedämpft, indem sich
eben durch die Kopplung die Dämpfung auch auf das innere
System überträgt und die beiden Pendel mit der Dämpfungskonstanten

4

abklingen lässt. Dieser Wert stimmt mit demjenigen von M. Wien13)
für denselben Fall, aber auf genauere Art ebenfalls für die freie
Schwingung berechneten Wert überein. Mit (27) und (23) können
wir nun die Lösung (22) für den gedämpften Fall erweitern :

4 • / ""1 ~~r~ "*2 \ i " / ""1 "*2u e * u sin | "1 ' "a t • sin
\ 2 j \ 2

«1+ o,
Qx + Qx\ /Qx — Q,

(28)

x=e 4
%0-cos l^lYL^Vt- cos p^pfMt

was zu den gedämpften Schwebungen führt; Fig. 5.

§ 6. Erweiterung der Differentialgleichungen (10) auf den Fall der

selbstgesteuerten Schwingung mit Berücksichtigung der Dämpfungen.

Im vorigen Paragraph wurde gezeigt, dass das massgebliche
elektrische Moment x • g der Raumladung durch die
Koppeldämpfung abnimmt. Es muss also durch eine Selbststeuerung im
stationären Zustand aufrechterhalten werden, das heisst die
Abnahme des Moments muss durch eine gleichwertige Zunahme ersetzt
werden. Als solche betrachten wir die erste Aussortierung, wie sie

im Paragraph 1 skizziert wurde. Durch diese wird dem inneren
System periodisch neue elektrische Ladung mit maximaler Amplitude

9C0 zugeführt, wodurch das elektrische Moment M in der
Zeit dt um dM zunimmt. Da die Aussortierung, bzw. die Zunahme
des Momentes durch die Wechselspannung selbst bestimmt ist,
machen wir den Ansatz:

dM %0dg=èudt bzw. 6 —— dt (29)

das heisst, die Zunahme des Momentes ist sicher proportional zur
Spannung u, und zwar entweder proportional zu Phase und Amplitude

oder nur zur Phase. Vorläufig wollen wir beide Möglichkeiten

nebeneinander betrachten; hierbei ist Proportionalität mit
der Amplitude genügend allgemein, da eine beliebige Amplituden-
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abhängigkeit für kleine Grössen immer linearisiert werden kann;
prinzipiell wichtiger sind vielmehr die beiden angeführten Möglichkeiten.

Der Proportionalitätsfaktor 6 hat im amplitudenabhängigen
Fall die Bedeutung einer Steilheit. Da über die Phase zwischen
Momentzuwachs dM und Spannung u noch nichts vorausgesetzt
sei, wird 6 allgemein komplex angesetzt.

8 ?'s + £. (30)

Über diese Phase kann, wie bereits im ersten Paragraphen
betont, nur auf Grund der Betrachtung der Elektronenbewegung
etwas gesagt werden und wir verschieben die Aussage deshalb auf
einen Nachtrag.

Die Abnahme des Momentes ist in unserer Behandlung durch
die Abnahme von x bei konstantem g bestimmt. Um die Behandlung

auf gleicher Basis weiterzuführen, soll jetzt die Zunahme
ebenfalls durch x bestimmt sein, so dass also in (29) die Rollen
von x und g als Variable und Parameter vertauscht werden müssen ;

für g wird der Wert im stationären Zustand gesetzt und ein
entsprechendes dx gesucht ; also

dM dx u .•'.
—— —— • q 6u bzw. 8 -.—r. (31)
dt dt |u|

Um damit in die Bewegungsgleichung (10a) eingehen zu
können, muss durch nochmalige Differentiation die Beschleunigung
von x bestimmt werden :

x — ù 8* ¦ ü bzw. 8* -:—r. (32)
a u

Diese Beschleunigung ist in der Bewegungsgleichung für
x (10a) als positive Zusatzkraft einzuführen. Statt der Gleichungen

(10) bekommen wir jetzt die für Rückkopplung erweiterten:

at

x + co,2 x + ô-, x olu+q* ù bzw. v.u+6* -—r (33a)
|u|

ü + co22 u + S2ü — yx (33b)

Die zweite bleibt unverändert. Diese Gleichungen ermöglichen
nun infolge des Rückkopplungsgliedes zum Unterschied von (10)
stationäre Lösungen. Sie sind vom Typus für sekundär angefachte
Systeme, denn die Koordinate x wird durch die Koordinate u
gesteuert. Würde die Rückkopplung vom Typus primär ange-
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fachter Systeme sein, so dass statt 6* ù, 8* x stehen würde, so
könnte dieses Glied zu öxx geschlagen werden, (ôx — 8*) x Sx x
wo 8* dann als negativer Widerstand gedeutet würde; und die
Diskussion für die Anfachbedingung könnte ebenso einfach mit
den Koppeldämpfungen (26) erfolgen wie für den primär
angefachten Zweikreissender bei Ollendorff4). Für den vorliegenden
Fall des sekundär angefachten Systems könnte man auch die
Koppeldämpfungen A ausrechnen und die Anfachbedingung
A ^ 0 aufstellen. Statt dessen suchen wir gleich stationäre
Lösungen,- indem wir in (23) A 0 setzen, was aber im Prinzip
auf dasselbe hinauskommt. Es werden also die Ansätze

x %e'at u ue'Qt (34)

gemacht und in (33) eingesetzt:

<K [(j Q)2+co2+(j Q) fc] u <*.+(jQ) 8* u bzw. u o.+(jQ)$* (35a)

u [(jQ)2 + co2 + (jQ) fc] - (jQ)2 y-9C. (35b)

Wir bilden aus (35b) das Verhältnis der Amplituden u/9C

iL -y » (36)
9C r (jQ)2 + co2+(jQ)ò2

v '

und setzen es in (35a) ein; dieses Verhältnis gilt auf jeden Fall.
Es gibt:

(jQ)2 + cox2+(jQ) fc ___J^__. (ay+y (jQ) 8*). (37)
(jQ)2+co22+(]Q) fc

Dies ausmultipliziert und für 8* js* + t* gesetzt, gibt
weiter :

(jQy + (jQ)2 (cox2 +co22 + x + òx <52) + cox2 co2

+ (JQY (fc + fc) + (jQ) (fc co2 + ài «>22) - (?^)3 7 j s*-(jQ)3 yt*.

Und nach Trennung der reellen und imaginären Werte:

Q* - Q2 (o)!2 + ft)22 + x + óx fc) + co2 co2 =—Q*ys* (38)

- Q2 (ò2 + fc) + (a2 co2 + òx co2) Q2yt*. (39)

In (38) erkennt man bis auf Grössen ôx, ò2, Q3, y • s* die
Frequenz der freien ungedämpften Schwingung (Gl. 14). Die
Korrekturgrössen können in 1. Näherung als klein betrachtet
werden, denn die Selbststeuerung ändert die Frequenz nicht
wesentlich. Damit sind die Frequenzen vor den Amplituden
bestimmt und (35a) und (35b) sind als Gleichungssystem für 9C

und u mit konstanten Koeffizienten aufzufassen. Es enthält sowohl
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die Amplituden-abhängige sowie die Amplituden-unabhängige
Selbststeuerung. Im zweiten Falle ist statt 6* 8*/u zu setzen. Für
den ersten Fall bilden (Gl. 35a) und (35b) ein homogenes
Gleichungssystem für 9C und U, so dass nur das Verhältnis u/9£
bestimmt ist. Um die Amplituden einzeln zu bestimmen, muss
noch eine empirische Beziehung zwischen zwei Grössen bekannt
sein. Als solche werde diejenige zwischen 8 und 9t (resp. g)
betrachtet; sie entspricht dem Schwingliniendiagramm des gewöhnlichen

rückgekoppelten Senders. Im zweiten Fall sind die Amplituden

einzeln bestimmt (inhomogenes Gleichungssystem). Sie
stellen sich nach dem Emissionsstrom, der Verstimmung y und der
Dämpfung ò ein. Reisserscheinungen können nicht auftreten. Eine
einfache Überlegung an Hand der Fig. 1 zeigt, dass amplitudenabhängige

Aussortierung dort zu erwarten ist, wo die Elektronen
schon beim ersten Umlauf nahe an die Anode kommen (kritische
Einstellung), also bei der Bremsfeldröhre und beim Magnetron
I. Art; dagegen ist amplitudenunabhängige Aussortierung bei den
Schwingungen II. Art zu erwarten, weil dort das Magnetfeld grösser
ist als der kritische Wert und die Elektronen auf ihrer ersten
Cykloidenbahn noch weit von der Anode entfernt sind. Damit in
Übereinstimmung treten beim ersten Schwingungstyp
Reisserscheinungen auf, beim zweiten dagegen nicht.

Noch einige Bemerkungen über die physikalische Bedeutung
der Steilheit 8. Im Idealfall ist diese durch die Maxwellverteilung
der aus der Kathode austretenden Elektronen bestimmt. Nicht
alle Elektronen haben beim Austritt dieselbe Geschwindigkeit
und der Geschwindigkeitszuwachs durch die überlagerte
Wechselspannung ist daher für jedes Elektron verschieden. Bei amplitudenabhängiger

Aussortierung gelangen nur die schnellsten Elektronen
nach einer Halbperiode auf die Anode und werden dort aussortiert.
Im Realfall ist jedoch die Steilheit noch viel flacher, da der
Spannungsabfall längs dem Heizfaden, sowie dessen Zentrierung
mitbestimmend ist.

§ 7. Berechnung des Intcnsitätsverlaufes, der Koppeldämpfungen und

Anfachungsgeraden.

Die Berechnung des Intensitätsverlaufes geschieht mittels (36),
wobei g, das heisst y über einen kleinen Verstimmungsbereich y
als konstant betrachtet wird; dies ist nicht ohne weiteres
selbstverständlich, vergleiche den Verlauf der Primär- und
Sekundäramplituden beim Zweikreissender nach Ollendorff. Wir
vernachlässigen zuerst die Dämpfung ò2 in (36), dividieren Zähler
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und Nenner durch cox2 und setzen für 0 die angenäherten Werte
der freien Schwingung (Gleichung 19a) für das frühere Beispiel
p 0,03 ein; dieses Vorgehen wird später noch legitimiert. In
willkürlichem Masstab (y9C 10) aufgetragen, bekommt man für
das Quadrat der Spannungsamplitude

^1,2
\Al,V 1100 Oh + y2

(36a)

welche in Fig. 3 eingezeichnet sind. Diese Kurven, sowohl wie die
Frequenzkurven Ox und 02 geben jedenfalls den experimentellen
Verlauf qualitativ gut wieder, man vergleiche die Kurven für ein
Magnetron I. Art Fig. 4, welche hier mit Erlaubnis von Herrn
J. J. Müller, Zürich, wiedergegeben sind. Die grösste Intensität

*&-<)+&-*)
t,oA

tirO.

frO,
-0,5

Fig. 6.

befindet sich (wie dies bei allen Zweikreissystemen oberhalb der
kritischen Kopplung der Fall ist) ausserhalb, aber in der Nähe
der Resonanzstelle y 1. Doch auch über die Reisserscheinungen
lässt sich etwas aussagen. Hierfür ist Beziehung (39) zuständig,
die hier umgeschrieben werde in

yf=fc r
ui;.

-1
UL2

(40)

Die Punkte, wo Gleichung (40) gerade erfüllt ist, bedeuten
stationären Zustand. Die Punkte, für welche die linke Seite grösser
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als die rechte Seite ist, bedeuten Anschwingen bis eine Nicht-
linearität die Amplitude begrenzt; alle übrigen Punkte bedeuten
Abreissen der Schwingung. In den Kurven der Fig. 6 ist die
rechte Seite der (Gl. 40) für das erwähnte Beispiel y 0,03, aber
der willkürlichen Setzung òx ò2 1 aufgetragen, ferner die
linke Seite nach Gleichung (77) des Nachtrages mit &/q n 1.

Die obere Seite der Figur gilt für die langsamere Frequenz Ox,
die untere für die raschere 02. Die Verhältnisse sind ganz ähnliche
wie beim sekundärangefachten Zweikreissender (Ollendorff); im
besonderen liegt der Anfachungswert für die kürzere Welle etwas
niedriger als für die längere (Abstand der Geraden von den Kurven),
so dass diese also leichter angefacht wird, was mit dem Experiment
im Einklang stehen dürfte. Die Geraden sind im Gegensatz zum
Zweikreissender etwas geneigt, wie weit der Gültigkeitsbereich geht,
wird später noch diskutiert. Aus dieser Figur, die weitgehend
symmetrisch ist, ist nicht ersichtlich, warum das Abreissen, wie
das Experiment fast allgemein bei diesem Schwingungstyp zeigt,
nach kürzeren Wellen verschoben ist, vgl. Fig. 4. Es scheint,
dass dieser Effekt nur durch Nichtlinearitäten in den
Bewegungsgleichungen zu erfassen ist1).

§ 8. Diskussion einiger Spezialfälle für die Spannungsamplitude.

Fall 1.

S* 0, t* 4=0 in (39), so dass die Frequenz durch (38), bzw.
angenähert durch (16) festgelegt ist; damit bekommt man aus (36)

u _ y
ft)2 ± a) V-r"

^ (41)* Tm^+jco-]/V±^.ò2
Erweitert man Zähler und Nenner mit

T coVx-jcoyi+^Y-ô.
so dass der Nenner reell wird, so bekommt man unter
Vernachlässigung kleiner Grössen und Kürzung mit co2

U
y

+[°>\Ar-AT]~j^\coVx±^
X ' x + fc2

(CO-

7-
Vr) =F1-/

T + V
VW. (42)
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Ist die Kopplung x grösser als die Dämpfung, so wird die
Amplitude von dieser unabhängig und mit (9) bekommt man für
die Spannungsamplitude

u=^ft>l/ 1C»d ¦9C -+co~\/-l(M-.9^. (43)^ Vß0Cefm ^ Vß0Celm 2
v ;

Das obere Vorzeichen gilt für die raschere Schwingung, die
sich also in Gegenphase zur schwingenden Raumladung q befindet,
das untere Vorzeichen für die langsamere (mitphasige) Schwingung.
Das Resultat stimmt hinsichtlich Phase und Amplitude mit der
freien Schwingung, Gleichung (21) überein; in (43) ist auch noch
ein Faktor \ zu setzen, weil im stationären Zustand die Amplituden
der schwingenden „Platten" alle Werte von 0 bis 9C0 annehmen,
der Schwerpunkt also die Amplitude 9t0/2 hat.

Fall 2.

Ist dagegen die Dämpfung sehr viel grösser als die Kopplung
ö2 ^> x, so resultiert für u aus (42)

qC0co %
' ßo G fc 2

>

Die Spannungsamplitude ist genau um — 90° gegen die
Schwingungsamplitude der Raumladung verschoben, so dass pro
Periode maximale Energieabgabe erfolgt.

Fall 3.

Für die Zwischenwerte von ô2, x gilt (42) und tg cp der
Phasenverschiebung der beiden Schwingungen (die Abweichung von 0,
bzw. 180° der ungedämpften Schwingung) ist bestimmt aus (42) zu

tgö>=±~^-. (45)
VT

Fall 4.

t* 0; aus (39) wird damit für Resonanz

ßs (fc + fc) co2 (fc + fc)
oder

Q co.
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Auch diese Lösung ist möglich, weil 6* komplex ist und in
diesem Fall gleich j s* wird. Bei kleiner Dämpfung ô verlangt (37),
dass für Q co die Klammer

(ay + y(jQ)6*) (x-yQs*)m0 (46)

wird, was mit Berücksichtigung der Werte für x, y und s* heisst,
dass q einem entsprechenden Wert zustreben muss. Rechnet man
aus (36) für Q co die Amplitude u aus, so bekommt man für
nicht zu grosse Kupplungen (co ¥2 Q)

1 fc ß0C ô2 2

also denselben Wert wie im Fall 2. Dieser Fall ist besonders
interessant zum Verständnis des Unterschiedes zwischen
Bremsfeldschwingungen sowie Magnetronschwingungen I. Art einerseits
und Magnetronschwingungen II. Art (Posthumus) andererseits.
In den beiden ersten Fällen treten die verschiedenen Koppelwellen
in ganz gleicherweise auf (M. Dick1), J.J.Müller6), 0. Groos14)
und andere), während bei den Posthumusschwingungen trotz der
viel grösseren Intensität keine solchen nachzuweisen sind15). Dies
lässt sich folgendermassen verstehen. Die Lösungen der
Bewegungsgleichungen für ein einzelnes Elektron zeigen nach den früher
genannten Autoren im Fall der Bremsröhre und des Magnetrons
I. Art eine Superposition von zwei Schwingungen verschiedener
Frequenz cox und Q, wobei Q 4= <ox ist. Jedes Elektron schwingt
mit der Frequenz, die ihm die quasielastische Bindung vorschreibt
und dazu überlagert mit derjenigen, welche durch die
Wechselspannung der Röhre bestimmt wird, die ihrerseits durch das
Zusammenwirken aller Elektronen entsteht. Im Fall der
Posthumusschwingungen (IL Art) ergibt sich als Lösung der
Bewegungsgleichungen, wie bei Fischer und Lüdi9) *) gezeigt, nur eine Fre-

*) Loc. cit. Von Herrn Dr. F. Ollendorff, Haifa, sind wir freundlich
aufmerksam gemacht worden, dass die Transformation f — f + Wt unterhalb
Gleichung (10) in der genannten Arbeit nicht richtig ist; sie gilt nur im Spezialfall, wo
sich die Elektronen relativ zum Drehfeld im mitlaufenden Koordinatensystem
gerade an den Stellen befinden, wo das Drehfeld nur eine radiale Komponente hat,

2 jjwo also cos —r— f0 0 ist. Eine radiale elektrische Komponente bedeutet aber mit
A

dem Magnetfeld eine Bewegung in der tangentialen Richtung, eine Zusatzgeschwindigkeit,

wodurch die früher angenommene Synchronität gestört wird. Hierdurch
ändert das Elektron seine Lage relativ zum Drehfeld, solange, bis es sich an der
Stelle befindet, wo das Drehfeld im mitlaufenden Koordinatensystem nur eine
Tangentialkomponente und also mit dem Magnetfeld eine Bewegung in der Radial-

2 jjrichtung erzeugt. Dort ist aber cos —oo- Sa 1 und obige Transformation ist
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quenz, da die erzeugte Röhrenspannung durch das Radialfeld eine
synchronisierende Wirkung auf die Leitbahngeschwindigkeit der
Elektronen ausübt, wodurch die Frequenz des inneren Systems
weitgehend gleich der Frequenz des äusseren Systems wird, so dass
also Fall 4 vorliegt. Dieser Fall hat eine grosse Ähnlichkeit mit
dem Dampfmaschinenmodell, das heisst mit einer erzwungenen
Schwingung, wo sich die Phase auf maximale Energieabgabe
einstellt und nur eine Frequenz, also keine Koppeleffekte, auftreten.
Dass man es mit der Form einer erzwungenen Schwingung zu tun
hat, erkennt man daran, dass die Eigenlösung der Bewegungsgleichung

(10a) ohne Berücksichtigung der Kopplung (Glied in u)
in (10b) eingeführt zur Lösung (47) führt.

Hier können wir auch sehen, dass der Verlauf der Anfachungs-
geraden in Fig. 6 in der Nähe der Nullinie nicht mehr unbedingte
Gültigkeit hat; denn das sind die Werte für t*, wo 0 sich dem
Wert 1 nähert, das heisst wo der Fall 4 vorliegt und Gleichung (46)
für den stationären Zustand massgebend wird. Die Intensität ist

nicht richtig, sie muss nach Ollendorff durch f cp + konst mit konst
2 ji

— tg —— fa ersetzt werden. Die Schlussfolgerungen über die Synchronisierung werden
A

dadurch nicht geändert; man erkennt gerade hier, dass durch die Radialkomponente
des Drehfeldes eine Häufung der Elektronen an den Stellen erfolgt, wo nur eine

2 jjTangentialkomponente, d.h. tg —r-S0 0 ist. Wenn die Leitbahngeschwindigkeit v
A

(welche durch das elektrische Gleichfeld und Magnetfeld bestimmt ist) nicht mit
der Drehfeldgeschwindigkeit (festgelegt durch den äusseren Schwingkreis) übereinstimmt,

so werden sich die Elektronen dort anhäufen, wo das Gleichfeld plus die

+

ö°öro o\
vn

0)

Fig. 7a. Fig. 7b.

Radialkomponente des Drehfeldes mit dem Magnetfeld gerade die
Leitbahngeschwindigkeit Drehfeldgeschwindigkeit erzeugt. Dies ist hier noch so
ausführlich dargelegt, weil man durch diese Elektronenhäufung erkennt, wie eine
Perlenschnur von Verdichtungen und Verdünnungen entsteht, das Polrad, welches
sich an Stelle der schwingenden Platte in Fig. 2 dieses Aufsatzes im Kreise dreht.
Der Effekt, das Entstehen einer induzierten Spannung durch die bewegte
Raumladung ist jedoch derselbe wie dort.
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an diesen Stellen trotzdem sehr klein wegen der grossen Verstimmung

von innerem und äusserem System (Verlauf der Intensitätskurven

in Fig. 3). Für die Posthumusschwingungen, wo
weitgehende Synchronisierung vorhanden ist, hat der Resonanz-
Nenner in (36) über grosse Bereiche den Wert (j Q) ô2, so dass
die Intensität über viel grössere Verstimmungsbereiche noch
relativ grosse Werte hat, was auch mit dem Experiment
übereinstimmen dürfte; die Abstimmung ist dort lange nicht so scharf
wie bei den Schwingungen I. Art. Durch die Synchronisierung wird
auch die Bildung einer grösseren Raumladung ermöglicht, wodurch
die höheren Spannungen bei diesem Schwingungstyp verständlich

sind.
Schliesslich werde noch ein spez. Fall 5 besprochen. Der

äussere Schwingkreis in Fig. 2 sei durch einen rein ohm'schen
Widerstand B ersetzt ; das bedeutet L co Cx 0 damit wird :

ft>22 0, y ß, ö2= „„ und mit Gleichung (14a) Q cox. Aus

Gleichung (36) erhält man mit diesen Werten:

1 + j-^
*=-/» rxV*

für kleine ö2 und mit dem Wert von ß

u -f(i+,-AW
Po V coxl

Spannung und Raumladung befinden sich nahezu in Gegenphase.

Für grosse ò2 tritt eine Phasenverschiebung von —n\2 auf.

Po à2

§ 9. Genauere Bestimmung der stationären Frequenzen und Amplituden
unter Berücksichtigung der Glieder s* und t*.

Wir gehen aus von den Gleichungen (38 und (39); beide
werden durch coA dividiert. Mit den Abkürzungen

d1 A- d2 A- **'=^*r <*' -^r (48)
CO-f (02* COj* cox*

bekommt man:

04-02(l + y2 + x' + DXD2) + y2=-02Qys*' (49)

02(Dx + D2)-(D2-Dxy2) -02yt*' (50)
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Die zweite werde nach Dx aufgelöst

Dx^D2°^l + 91lYn. (51)1 y2-l y2-02
y '

und in (49) eingesetzt; man erhält:

0«- 04 (2 y2 +1 + x' + Q y s*' - D2 -D2y t*') + O2 (2 y2 + y*
+ y2(x' + Qys*')—D22) — y*=0. (52)

Nun ist erstens s*' ^> t*', siehe Nachtrag, und Q ist sicher ^>D2
für die praktischen Fälle, so dass das letzte Glied in der ersten
Klammer gestrichen werden kann. Für Resonanz y 1 wird
damit aus (52)

06-04 (l+2+r'+ß y s*' — D2) + O2 (2+1+A+Q y s*— D22)

-1 0. (53)

Aus dieser Gleichung kann man O2—1 ausklammern:

Oi(02~l)-02(x'+Qys*'~D2) (O2-l)-O22(O2-l) + (O2-l) 0 (54)

0 1 (55)

ist also eine Lösung. Damit wird der Frequenz- und der Intensitätsverlauf

in Fig. 3 etwas korrigiert. Dieser Frequenzwert liefert
mittels (36) bei Berücksichtigung der Dämpfung <52 einen weiteren
Intensitätswert, der über den beiden andern liegt. Wir haben also
für den Resonanzpunkt drei Frequenz- und drei Intensitätswerte.
Weil die Form der Gleichung (53) wegen der Kleinheit von t*' ganz
ähnlich derjenigen für den primär angefachten Zweikreissender ist,
so ist anzunehmen, dass auch hier der korrigierte Frequenz- und
Intensitätsverlauf mit jenem weitgehende Ähnlichkeit zeigt (vgl.
Ollendorf). Er ist in Fig. 3 punktiert angedeutet.

Dann wird Gleichung (54) durch (O2 — 1) dividiert; es bleibt:

04 - 2O2 f T' + ^ y S*' ~^ +1W 1 0 ¦ (56)

Wir nehmen an, dass die korrigierte Lösung in der Nähe
der unkorrigierten ist, was ja durch Vergleich des unkorrigierten
theoretischen Kurvenverlaufs Fig. 3 mit dem experimentellen
weitgehend verifiziert wird. In der Klammer (56) kann Q als un-
korrigierter Wert eingesetzt werden, so dass für die erste Approximation

von 0 eine biquadratische Gleichung vorliegt. Es wird

Oy =1 + 1(t' + ûj/8»'- Z)22) ± ]/i(x'+Qy s*'-D22+ 1)2-1
1 + J (t' + Q y «*' - D22)

± ]/i (x' + Qy «•' - D22)2 + x' + Qy s*'- D22 (57)
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s*' t' D22 sind alles kleine Grössen; rechnet man das Quadrat
unter der Wurzel aus und vernachlässigt Produkte dieser Grössen
untereinander, so bleibt mit derselben Näherung wie früher:

022 m 1 ± yx' + Qy s*'-D72 (58)

Gleichung (58) lässt drei Fälle unterscheiden:
1. Starke Kopplung t'+ßys*'^ D22

°f,2 1 ± Vï777 A" x' + Qys*' ^—- (59)
2

Jl

ist ausserdem x' ^> Q y s*' so hat man die beiden Koppelfrequenzen
der ungedämpften freien Schwingung, Gleichung (16a).

2. x' + Q y s*' D22. Hierfür wird Ox>2 1. Man hat nur
noch eine Koppelfrequenz, dies ist die kritische Kopplung, die
ebenfalls beim Zweikreissender bekannt ist.

3. Lose Kopplung x' + Q y s*' <^ D22. Hier liefert die
Annahme 0 dp 1 sicher keine reelle Lösung und Gleichung (56) verliert
dabei ihre Bedeutung. Wir sehen also, dass die Verhältnisse analog
wie beim Zweikreissender sind und dass bei Vergrösserung der
Dämpfung über den kritischen Wert die beiden Koppelfrequenzen
in eine einzige übergehen. Der Vergleich mit dem Experiment sagt
uns deshalb, dass der Fall 1 vorliegt. Da mit diesem Kriterium
die Spannung in guter Näherung von der Dämpfung unabhängig
wird, vgl. Fall 1 von § 8, so kann diese ohne Kenntnis der Dämpfung
berechnet werden. Berechnet man mit (59) die Spannung u aus (36)
für Resonanz und Vernachlässigung der Dämpfung, so bekommt
man

co 9t0

Vr" 2
(60)

welcher Wert für Q y s*' 0 in denjenigen der freien ungedämpften
Schwingung, Gleichung (21) übergeht. Aus Messung der prozentualen

Abweichung p der Koppelfrequenz von der Resonanzfrequenz

lässt sich also x", daraus q und weiter y berechnen. Es

gilt wie in Gleichung (15)

r'- 4pz=«r + Qr^ (61)

oder, wenn die Werte für a, y aus (9) und für s* sjq eingesetzt
werden :

^29 2 2 Co & C0 s
4 p2 co,2 — i y—F 1

m ß0d C ß0C
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und, wenn weiter für qjm efm die spez. Elektronenladung
gesetzt wird:

4p2wx2-Q-C0lß0C-s
1

efm l/ß0d CJC
' K '

Wir sehen: aus dem gemessenen Kopplungsfaktor x"
bekommen wir für q und damit für u, Gleichung (60), eine obere
Grenze, wenn der Wert Qys* vernachlässigt wird.

Bei Vernachlässigung dieses Wertes bekommen wir aus (60)
(61) und (9)

co22pd 9£0 ciApd2

ejm 2 2 e/m
(63)

da ja d 2 9t0 ist. Dies ist also ein sehr einfacher Ausdruck, der
sich gut kontrollieren lässt ; es geschehe am Ende dieses Paragraphen

Wir holen noch eine Betrachtung über den Koppelwellenverlauf

bei extrem starker Verstimmung nach. Dazu dient
Gleichung (52)

für y -> co wird daraus: O2 1 0=1 (64)

für y -> 0 reduziert sich diese Gleichung auf

O6 + O4 (1 + t' + Q y s*' — D22) - D22 O2 0

und

02 l+x' + Qys*'- D22 i/A+x'+Qy s*' -D22)2+4: DY2

2 ± '
2

Hier führt nur das positive Vorzeichen zu reellen Lösungen.
Ist D2 iQ 0 so wird

02^1+t' + Qys*'.
Man bekommt in beiden Extremfällen nur eine Lösung und diese

Koppelfrequenz gleicht der Eigenfrequenz des inneren Systems,
was mit dem Experiment ebenfalls in Übereinstimmung ist.

Es werde die Spannung nach (63) für p 0,01 und co 2 n-109
(entsprechend einer 30 cm-Welle) berechnet; für d werde 0,5 cm
gesetzt (meistens haben diese Magnetronröhren zwei Halbzylinder,
zwischen denen die Raumladung hin- und herschwingt. Der Durchmesser

für diese Wellenlänge beträgt etwa 1 cm; der äquivalente
Plattenabstand ist kleiner, er sei halb so gross angenommen).
Mit diesen Werten und ejm 0,18- IO16 im Volt-Amp. Sek.-System
bekommt man für den Scheitelwert von u

u 28 Volt

und der Effektivwert ist ueff 20 Volt.
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Dieser Wert stimmt grössenordnungsmässig als obere Grenze
mit dem gemessenen überein (15 Volt15). Seite 231; dort wird für
diesen Schwingungstyp die Bezeichnung Schwingung 1. Ordnung
gebraucht. Da für höhere Frequenzen auch die Anodendurchmesser

entsprechend kleiner gemacht werden, so befinden sich alle
Spannungen in der Nähe dieses Wertes. Für die Posthumus-
Schwingungen gelten diese Werte nicht, sie sind nach Messungen5)
auch viel grösser.

Der obere Grenzwert von q berechnet sich nach (62) für
dieselben Grössen und ausserdem für O/O0 1 zu

q 10~14 Coulomb/cm2.

10~14
Das sind i 5«-io-19 64000 Elektronen pro cm2. Nimmt man

an, sie seien in einer Schicht von 1/100 mm Dicke (was einer
untersten Grenze entsprechen dürfte), so bekommt man

64 • 10« Elektronen/cm3

also eine so kleine Dichte, dass unsere Annahme über die
Unabhängigkeit der einzelnen Elektronen voneinander weitaus gerechtfertigt

erscheint. Wegen der hohen Frequenz sind eben nur so
kleine Raumladungen notwendig.

§ 10.. Nachtrag über die Berechnung des Winkels cp zwischen den

Grössen s und t in Gleichung (30).

Da dies eine Frage des Aussortiermechanismus ist, muss man,
wie in § 1 betont, auf die Bewegungsgleichung für ein einzelnes
Elektron zurückgehen. Ein Elektron, das unter dem Einfluss
einer quasielastischen Kraft mit der Eigenfrequenz co schwingt
und ausserdem noch durch eine periodische Kraft mit der Frequenz
Q beeinflusst wird, genügt der Bewegungsgleichung:

x + co2 x fc sin Û t. (66)

Die Lösung dieser Bewegungsgleichung ist für co ^o Q

x a sin (cot — cp) + b sin ü t (67)
mit

fc
ò

A — Q2

Um zu erfahren, wo der Schwerpunkt der aussortierten, resp.
neu hinzugekommenen Elektronen liegt, berechnen wir die Arbeit,
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die ein Elektron pro Periode aufnimmt, oder abgibt; maximale
Arbeit bedeutet maximale Veränderung der Amplitude und damit
Bestimmung des Schwerpunktes, das heisst des Phasenwinkels
der aussortierten Elektronen. Die Arbeit unter dem Einfluss der
beiden Kräfte ist mit (67) :

dE dx (fc sin Qt — A x) x (fc sin Qt — A x) dt. (68)

Der erste Summand gibt die Arbeit der Bewegung mit der
äusseren Kraft; der zweite Summand diejenige mit der inneren
quasielastischen Kraft. Über eine Periode T — 2 n\Q gibt der erste
Summand mit Berücksichtigung von (67) :

T T

x dt ¦ fcsin Qt h co a / cos (cot — cp) sin Qt dt
0 0

T

+ kb Q f cosQtsm. Qtdt. (69)

Hier fällt der zweite Summand bei der Integration über eine
Periode weg; der erste wird mit

cos a sin ß | [sin (ß + a) + sin (ß — a) ]

umgeformt; man bekommt:

T

Ex= fc • eoa \ f {sin [(cu + Q) t — 9?] +sin [(Q — co) t + cp]] dt
0

kam
cos

-cos cp

1

2tt c

1

Q+co Q—co

— c {cos (2nX — 9?) — cos 9?}

kam Q
mit c

-') [ 1 11
Q+m Q—cu

kaco Q[ f -
U*—ftr( \ Q

Q2—m2

Der zweite Summand von (68) gibt:

co

-COS Cp\

(70)

B. Ax dx A

und mit Berücksichtigung von (67)

Aa2
E, {sin2 (2 n X — cp) — sin2 95}.
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Die Klammer kann geschrieben werden:

1 — cos2 (2 ji X — cp) — (1 — cos2 cp) [cos cp + cos (2jiX — 95)]

• [cos 93 — cos (2 n X — cp) ]

so dass E2 mit (70) wird:
A E

E2 a —-[cos cp + cos (2jiX — 95)] -—i—- (Q2 — &>2)
2 fc co Q

und also

Ex+E2 =Ex{l+ n*Ä - (Q2-m2) [cos cp + cos (2 n X - <p)\ (71)
2 k co Q "

J

Für Q ^2 co kann der zweite Summand beliebig klein werden,
so dass mit guter Näherung gilt

E Ex.

Der Maximalwert der Klammer (70) bestimmt die Phase des

Schwerpunktes der neuhinzugekommenen Elektronen relativ zur
Steuerspannung u. Wir sagen der neuhinzugekommenen, weil das
Minuszeichen in (70) Energieabgabe bedeutet und diese Elektronen
gerade komplementär zu den aussortierten liegen. Die Klammer

(70) werde noch trigonometrisch umgeformt in:

cos cp [cos (2 31 X — 1)] + sin cp sin 2 n X A cos cp + B sin cp.

Für das Maximum dieses Ausdruckes gilt:
— A sin cp + B cos cp 0

B sin 2 n X
tg <P -r- ^^ r • (72)

A cos 2ji X — 1

Für Q co, das heisst X 1 wird der Ausdruck unbestimmt
und man muss Zähler und Nenner nochmals differenzieren :

COS 2 TT A
tg9?= ——-. (73)

— sm 2 n X

Für X 1 wird tg 99 — go, das heisst 99 — 90°. Mit der
Bewegungsgleichung (67) bedeutet dies, dass alle Elektronen, die
zwischen 0 und +180° starten (schraffierter Teil Fig. 7), deren
Schwerpunkt der Spannung b sin Qtum + 90° vorauseilt, nicht
aussortiert werden (Verkleinerung der Amplitude) und welche
daher eine Vergrösserung des elektrischen Momentes (§ 6) bedeuten;
für diese Elektronen ist t — 0 vgl. Fig. 8a und Gleichung (30).
Damit ist Fall 4, § 8, für die Posthumusschwingungen legitimiert.



108 F. Lüdi.

Wir betrachten die Abweichungen Q d- m : da die Abweichungen
durchwegs sehr klein sind, können Zähler und Nenner in (72)
entwickelt werden. Setzt man X 1 + a, a cu/û— s und macht
man diese Entwicklung, so folgt aus (72)

¦=tfl
- 3i a

(74)

welcher Wert für a 0 in (73) übergeht. Es können s und t in (30)
geschrieben werden:

t — 6 • cos cp s 6 • sin 99.

Fig. 8a. Fig. 8b.

Daraus ist sofort ersichtlich, dass s das Vorzeichen in der
Umgebung X 1 nicht ändert. Für t wird mit trigonometrischer
Umformung

i=6—; çnô-3za. ô3i (— l) (76)

lA+i lo- '
da a eine sehr kleine Grösse und X 1/012 ist.

Für die Diskussion von Gleichung (40) gilt also

t*
6 / 1

31

q \olfi
(77)

Nun folgt aus der Fig. 3, dass für die grössere Koppelfrequenz

02 > y, 02 > 1

ist; dadurch wird die rechte Seite von (40) negativ. Nach (77)
wird für die grössere Frequenz t* auch negativ; das Umgekehrte
gilt für die kleinere Frequenz. In Fig. 6 kommt dies in der Lage
der Anfachungsgeraden zum Ausdruck. Wir sehen also, dass

unser etwas rohes Modell für die Rückkopplung zum mindesten
das richtige Vorzeichen liefert, was eine wichtige Kontrolle be-
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deutet. Die Einführung von Nichtlinearitäten in der Bewegungsgleichung

(Abweichung von der quasielastischen Kraft,
Berücksichtigung der Raumladung auf die Bewegung eines einzelnen
Elektrons, siehe Dick, loc. cit.) würde diesen Effekt lediglich
noch vergrössern. (Abdrängung der Vektorbahnkurven bei Dick
Fig. 36 und 37.) Ein wesentlicher Unterschied zum sekundär
angefachten Zweikreissender muss hier noch festgestellt werden,
dort ist das Vorzeichen von t* durch das Vorzeichen der Steilheit
und der Kopplungen bestimmt, so dass man also entweder nur die
eine oder die andere Frequenz (durch Umpolen der Kopplung
VorzeichenWechsel) bekommt. Hier geschieht dieses „Umpolen"
automatisch durch Sprung von einer Frequenz auf die andere,
wofür lediglich die Grösse der Koppeldämpfungen (Fig. 6)
massgebend ist; beide Frequenzen treten sozusagen miteinander in
Konkurrenz. Hierin nähern sich die Reisserscheinungen der
Laufzeitschwingungen denjenigen des primärangefachten
Zweikreissenders. Dies ist ebenfalls in Übereinstimmung mit den
experimentellen Beobachtungen. Eine Überdeckung der Koppelwellen

tritt praktisch nicht auf.
Schliesslich sei noch eine Bemerkung über die Anfachbedingung

gemacht: Schreibt man (40) mit dem Ungleichheitszeichen und
setzt für y und t* die Werte ein, (9) und (77), so erhält man statt (40)

C» 9„{l-l\^{-g--l) + dJ*l). (78)
ß0c \o1>2 y - i\o{>2 j no£2

Beachtet man, dass für Resonanz y 1, und dass weiter für
kleine Abweichungen O, 2 von 1 (entsprechend den experimentellen
Feststellungen) 012 za Ol 2 ist, so kann (78) geschrieben werden :

c0in 6 > ài + <5„

ßo C

sA
31

c
C0

(ài + à2.

oder:
a n

(79)

und für amplitudenunabhängige Rückkopplung

- ÈL^-(ài+à2). (80)
U 31 Vr,

Dazu sei bemerkt : Die Setzung A 0 in (23) heisst, dass man
von vornherein stationäre Lösungen sucht und zwar unter welchen
Bedingungen sie auftreten. Im Falle amplitudenunabhängiger Aus-
sortierung ändert sich u als Funktion von q so lange, und zwar im
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richtigen Sinne, bis Gleichung (80) erfüllt ist. Im Gegensatz zu (79)
hat man hier unter allen Umständen Ausschwingung, und eo ipso
auch keine Reisserscheinungen.

Für die Steilheit 6 besteht also eine ganz analoge Anschwingbedingung

wie für den Zweikreissender, oder die einfache Dreipolröhre

mit Rückkopplungsschaltung. Die Steilheit, welche nach (29)
für die Aussortierung massgebend ist und die ihrerseits wieder mit
der Kathodenemission wächst, muss nach (79) proportional zur
Summe der Eigendämpfungen sein und ausserdem proportional
zum Verhältnis von Aussenkapazität zu Röhrenkapazität. Das
letztere tritt hier an Stelle der Beziehung zwischen Induktivität
und Kapazität, da die Kopplung eine rein kapazitive ist. Im
besondern erkennt man die Notwendigkeit einer minimalen Steilheit

(Kathodenheizung) zur Anfachung von Schwingungen : dies ist
eine bekannte experimentelle Erscheinung. Aus (38), (39) und (76)
ist ersichtlich, dass für die Anschwingung als wirksame
Rückkopplung nur die kleine Komponente t auftritt. In den
entsprechenden Gleichungen für den Zweikreissender (Ollendorff)
ist für phasenreine Rückkopplung t 6 und s 0 zu setzen.
Unserem Fall, wo eine Komponente j • s auftritt, würde beim
Zweikreissender die Einschaltung eines Widerstandes und einer
Kapazität in Reihe zwischen Rückkopplungsspule und Gitter
entsprechen, wodurch die Rückkopplung nicht mehr phasenrein wird.
Jedoch ist zu bemerken, dass im stationären Zustand sich eine
solche Frequenz einstellt, dass Amplitudenbedingung und
Phasenbedingung für die Gesamtrückkopplung erfüllt sind. Die
Phasenbedingung wird in unserem Fall durch Gleichung (38) verbürgt.
Die unter Berücksichtigung der rechten Seite bestimmte Frequenz
gibt mit (36) eine solche Phase zwischen U und 9C, dass der Schwerpunkt

der neu hinzukommenden Ladung mit dem Schwerpunkt
der schwingenden Raumladung in Phase ist. Die Phase zwischen
neu hinzukommender Raumladung und Spannung ist durch den
Aussortiermechanismus festgelegt (Gleichung 74), entsprechend
dem in die Rückkopplung eingeschalteten Widerstand und
Kondensator beim Zweikreissender.

Diese Bemerkungen schliessen in sich, dass die früher
berechnete Spannung mit Hilfe der angenäherten Koppelfrequenz
nur Grössenordnungsmässige Richtigkeit haben kann. Ferner
muss betont werden, dass beim Zweikreissender im Resonanzfall
(beide Kreise auf gleiche Frequenz abgestimmt und ausserdem
gleiche Kapazitäten der beiden Parallelkreise) bei phasenreiner
Rückkopplung Spannung und Strom für beide Koppelfrequenzen
in Phase sind, also keine Blindkomponente auftritt. Dies findet
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man durch Einsetzen der Spannungswerte in die Stromgleichung
für den Zweikreissender

i uxCx+^-+ J^dt-^J^-dt (81)

wobei

u2=±nx-eiat ß2=cu2±-^
zu setzen ist. Ein Abweichen von dieser Koppelfrequenz durch
nicht-phasenreine Rückkopplung würde sofort eine Blindkomponente

der Spannung hervorrufen.
Für unser Modell findet man für die Beziehung zwischen

Strom und Spannung nach Gleichung (6) mit u u e'a *, i i e*Dt
für den Resonanzfall, wobei für Q die angenäherte Gleichung (16)
benützt wird.

hierbei ist für
Co <1

1
_

1 /i Co

Cx L(C0+CX) LCX\ Cx

gesetzt. Man erkennt aus Gleichung (82) das Auftreten einer
Blindkomponente, die für die kleinere Frequenz (oberes Vorzeichen)
grösser als für die grössere Frequenz ist.

Für Fall 5, § 8, wird die Anschwingbedingung (39) bei ampli-
tuden-abhängiger Rückkopplung unter Berücksichtigung von
cu2 0 y ß

ßt ^ fc

oder mit Gleichung (76) (012 1)

-^ji • o > ê,
ßo

das heisst die Anschwingbedingung wäre in diesem Falle nur erfüllt,
wenn die innere Dämpfung ôx Null wäre, was aber nicht der Fall ist,
weil die Elektronen nicht bei der Energie Null abgefangen werden.

Es werde noch eine Bemerkung an (79) und Fig. 2 angeknüpft :

Aus der ganzen Ableitung ist ersichtlich, dass der Röhrenkapazität
nicht die Rolle eines inneren Widerstandes zukommt, sondern
diejenige eines Kopplungsgliedes. Deshalb kann man nicht von
einem inneren Kurzschluss durch die Röhrenkapazität sprechen,
wie dies bei den gewöhnlichen Dreipolröhren der Fall sein kann.
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Auch ist es unzutreffend, von einem statischen Widerstand als
Verhältnis von Anodenspannung und Anodenstrom in Analogie
zur Dreipolröhre zu sprechen (vgl. 0. Groos), denn aus Fig. 2
und der Darstellung ist ersichtlich, dass Anodenstrom- und
Anodenspannung nichts mit innerem Widerstand zu tun haben. Die
Spannung bestimmt bei der Bremsröhre in erster Linie die
Frequenz der schwingenden Raumladung und diese hängt mit dem
Anodenstrom nur indirekt zusammen.

§ 11. Experimente und ihre Deutung.

Es seien noch einige experimentelle Ergebnisse und Beobachtungen,

die der Verfasser an zahlreichen Röhren verschiedener
Konstruktion erhalten hat im Zusammenhang mit der Theorie
besprochen. Am Ende von § 6 wurde betont, dass die
statische Steilheit 6 durch die Maxwell-Verteilung der Glühemmis-
sion und durch den Spannungsabfall längs des Heizfadens sowie

mA

fr

12

»H

ê

f-

1-

2-

Jh
1 1—/ t 3 Amp.

Fig. 9a.

Heizfaden zentrisch.

mn

1 Z 3 4- fimp.

Fig. 9b.
Heizfaden schief.

durch dessen Zentrierung bestimmt ist. Versuche an ein und
derselben Magnetonröhre (2 mm Anodendurchmesser, Wellenlänge
ca. 8 cm, Schwingung I. Art) zeigten sehr deutlich, dass bei einer
gewissen Schiefstellung des Heizfadens relativ zur Anodenachse,
welche die Steilheit verflacht, keine Schwingungen mehr erhalten
wurden, dass diese aber bei Rückversetzung der schiefen in die
zentrische Lage wieder auftraten. (Fig. 9.)

Dies scheint eine weitere Stütze für die Auffassung amplitudenabhängiger

Rückkopplung zu sein.
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Ferner wurde eine Röhre nach Konstruktion Hblbig mit
seitlich des Anodenzylinders angebrachter Kathode gebaut, um
die lästige Kathodenrückheizung zu verhindern. Der
Anodendurchmesser ist 5 mm, die Kathode möglichst punktförmig ca.
1 mm2, die Anode hat zwei Schlitze, wobei die beiden Anodenhälften

durch ein Lechersystem von 1 cm Länge verbunden sind,
das ganze ist aus einem massiven Kupferstück herausgearbeitet.
Das Magnetron sollte nach dem Typus I. Art schwingen, weil für
diese Wellenlänge (ca. 4 cm) die elektrischen und magnetischen
Felder für eine Schwingung II. Art viel zu hoch wären. Schwingungen

wurden unter keinen Umständen erhalten; die Aufnahme
der Anodenstromcharakteristik bei veränderlichem Magnetfeld und
konstanter Anodenspannung ergab auch hier eine zu flache Steilheit

im Vergleich zu Fig. 8a, siehe Fig. 9, der Masstab ist derselbe.

mit

/Imp

mA

6-

Fig. 10.
Rmp.

Man kann fragen, warum dann die Röhren von Helbig zum
Schwingen gebracht werden. Die Erklärung scheint mir in
folgendem zu liegen: Die Röhre von Helbig war entsprechend dem
angeschlossenen Schwingkreis für eine viel längere Welle bestimmt
(ca. 1 m). Die Vierschlitzanode konnte sich daher in der Schwingung

II. Art erregen, was schon aus der grossen Leistung (ca.
800 Watt) hervorgeht. Man weiss, dass diese Schwingungsart
leichter als die I. Art anzuregen ist, also eine flachere Steilheit
erlaubt. Dies ist nach Gleichung (79) der Fall, wenn die Dämpfungen

kleiner als für die Schwingung I. Art sind. Die Dämpfung des

Aussensystems ò2 ist im Prinzip für beide Schwingungstypen
dieselbe, jedoch ist die Eigendämpfung dx des Generators für
beide Typen verschieden. Diese rührt ja, wie am Ende von § 1

angedeutet wurde, wesentlich von der mehr oder weniger guten
phasenrichtigen Gruppierung der schwingenden Elektronen her.
Für die Schwingungen II. Art, wo die energieabgebenden
Elektronen durch das synchronisierende Wechselfeld zu Paketen
gruppiert werden, muss deshalb die Dämpfung ôx kleiner sein als
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für den ersten Schwingungstypus, wo die synchronisierende
Wirkung fehlt. Auch ist der zweite Aussortiereffekt bei den
Schwingungen II viel geordneten als bei den Schwingungen I.

Eine weitere Feststellung werde besprochen: Aus der Theorie
folgt in keiner Weise, dass es eine optimale Raumladung gibt,
bei der die Schwingintensität am grössten ist. Danach ist diese um
so grösser, je grösser die schwingende Raumladung ist. Bekannt ist
aber, dass es bei gegebenen Daten für Spannung und Magnetfeld
eine optimale Emission gibt, für welche die Schwingintensität
I. Art den grössten Wert erreicht. Diese Beobachtung wurde auch
vom Verfasse.' an zahlreichen Versuchen mit Magnetronschwingungen

speziell unter 10 cm Wellenlänge gemacht. Auch diese

Erscheinung kann erklärt werden. Durch Vergrösserung der
Emission werden die kritischen Daten geändert, so dass die
Schwingung auf einem anderen für die Aussortierung ungünstigeren
Arbeitspunkt der statischen Charakteristik erfolgt. Es ist klar,
dass dies nur für die Schwingungen I. Art zutrifft, da nur für diese
die Elektronen die Anode nahezu tangieren müssen. Bei der
Schwingung II. Art. beobachtet man diese kritische Einstellung
auch nicht. Dass die kritischen Daten wirklich geändert werden
und zwar so, dass die Spannung grösser oder das Magnetfeld kleiner
eingestellt werden muss bei grösserer Emission zeigen folgende
Messungen an einer Röhre mit 2 mm Anodendurchmesser und
ca. 6,5 cm Wellenlänge :

Tabelle 1 : Die Emission JÄ wurde entsprechend der Kathodenheizung

JA bei konstantem Magnetfeld (Erregerstrom JM)
vergrössert und die zugehörige Anodenspannung VA aufgesucht, bei
der die Schwingintensität IHF (in willkürlichen Einheiten, gemessen
mit Thermokreuz und Galvanometer) ein Maximum wurde.

Tabelle 1.

3M JB Ja Va I
Amp. Amp. mAmp. Volt lHF

1,07 5,8 3 540 3

1,07 5,9 5,5 560 5,5
1,07 6,0 7,2 610 7,2
1,07 6,1 15 610 0

1,07 6,1 14,5 740 8

Die Neigung der Anodenachse gegen das Magnetfeld betrug
ca. 10°, die Wellenlänge änderte sich von 7 auf 6 cm.

Dann wurde die Spannung konstant gehalten und bei Ver-
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grösserung der Emission das Magnetfeld so geändert, dass die
Schwingintensität möglichst gross war, Tabelle 2.

Tabelle 2.

Va JB Ja JM 1„XT
Volt Amp. m. Amp. Amp. *HF

500 5,8 2,5 1,07 3

500 5,9 3,5 1,07 3

500 6,0 5,0 1,07 0,7
500 6,0 6,0 1,00 5

Wellenlänge und Winkeleinstellung wie vorher. Eine
Verkleinerung des Magnetfeldes ist also einer Vergrösserung der
Anodenspannung äquivalent, wie es sein muss. Schliesslich wurde
noch der kritische Wert des Magnetfeldes bei Vergrösserung der
Kathodenemission bestimmt, das heisst der Punkt, wo bei
konstanter Anodenspannung der Anodenstrom bei grösserwerdendem
Magnetfeld zu sinken beginnt und die Röhre noch schwingungsfrei
ist. Auch diese Messung bestätigt obige Aussage. Tabelle 3.

Tabelle 3.

VA JB Ja Jju
Volt Amp. m Amp. Amp.

500 5,8 3 1,0
500 5,9 4 1,0
500 6,0 5,5 0,96
500 6,1 8 0,93
500 6,2 10 0,91
500 6,3 14 0,87

Damit mag die Erscheinung zusammenhängen, dass beim
Einsetzen der Kathodenrückheizung durch die falschphasigen
Elektronen sich der Generator infolge des Emissionsanstieges aus
dem günstigen Arbeitspunkt der statischen Charakteristik
entfernt und die Schwingintensität verkleinert wird. Durch
Vorschalten einer Diode16), welche im Sättigungsgebiet den Emissionsstrom

des Magnetrons begrenzt und so die Rückheizung stabilisiert,
konnte bei einem 4,2 cm Magnetron bei entsprechender Spannungserhöhung

der Emissionsstrom durch Rückheizung von 4 mA auf
25 mA gebracht werden, wobei die Schwingintensität noch
etwas grösser wurde. Wenn dann die Schwingung aus irgend einem
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Grund abreisst und mit Verschwinden der Rückheizung der
Emissionsstrom zurückfällt, so befindet man sich unangenehmer
Weise ganz ausserhalb der kritischen Daten und muss diese neu
einstellen*).

Es werde jetzt noch die Modulation beim Sender sowie die
Gleichrichtung und Entdämpfung beim Empfänger im
Zusammenhang mit der statischen Charakteristik besprochen. Da der
Anschwingvorgang auf die statische Charakteristik der
Laufzeitschwingungen zurückgeführt ist, so muss wie bei der Triode auch
die Modulation, Gleichrichtung und Entdämpfung auf diese
zurückgeführt werden können. Die statische Charakteristik, für den
Aussortiereffekt massgebend, spielt hier dieselbe Rolle wie bei
der Triode, nur dass die Verschiebung des Arbeitspunktes nicht
durch die Gitterspannung wie bei der Triode geschieht, sondern in
den verschiedenen Fällen durch das Bremspotential, das Magnetfeld
oder die Anodenspannung. Auch darf bei den Laufzeitschwingun-
gen aus der Charakteristik bei veränderlicher Spannung oder
Magnetfeld nicht einfach eine zugehörige Stromänderung abgelesen
und so das Schwingliniendiagramm konstruiert werden. Die
Charakteristik ist hier vielmehr bestimmend für die entstehende,
schwingende Raumladung wie schon früher besprochen (§ 6).

Auch die Aussortierung ist hier entsprechend dem Sättigungsstrom

auf endliche Werte begrenzt, so dass die Schwingintensität
infolge Nichtlinearität wie bei einem gewöhnlichen Sender nicht
ins Unendliche steigt; es stellt sich eine mittlere Steilheit für die
Aussortierung ein und die Modulation ist ganz analog zu verstehen
wie bei der gittergeregelten Triode in Senderschaltung, wo durch
Änderung der Gittervorspannung sich verschiedene Endamplituden
einstellen17). Bei dieser Modulationsart sind wie bei der Triode
Reisserscheinungen zu erwarten. Die Gleichrichtung mit MagnetronI
oder mit Bremsfeldröhre ist ebenfalls auf Grund der statischen
Charakteristik zu verstehen. Befindet sich der Arbeitspunkt an
einem Knick, so werden in der positiven Halbperiode der angelegten
Hochfrequenzspannung mehr Elektronen aussortiert als in der
negativen Halbperiode. Nun sind diese im Telefon den
niederfrequenten Gleichstrom liefernden Elektronen die falschphasigen,
während die richtigphasigen im Generator zurückbleiben, und mit
der Eigenfrequenz entsprechend den eingestellten Daten schwingen.

*) Die Rückheizung ist überhaupt ein Punkt in der unbefriedigenden Funktion
vieler Magnetrons, der allzuoft mit Schweigen übergangen wird; man vergleiche
dagegen die sehr interessante Untersuchung von E. G. Linder (Proc. I.R.E. vol. 26,
p. 347, März 1938) wonach Kathodenrückheizung auch ohne Schwingung (d. h. es
braucht keine falschphasigen Elektronen) auftreten kann.
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Damit ist die Entdämpfung ursächlich mit der Gleichrichtung
verknüpft, was eine bekannte Erscheinung ist (für die Bremsfeldröhre

vgl. H. E. Hollmann, für das Magnetron I. Art A. Esait
und E. Ahrens18)). Es ist auch verständlich, dass die Einstellung
kritisch ist, das heisst, dass, wenn der Arbeitspunkt in das Gebiet
genügender Steilheit rückt, Anschwingung erfolgt, was für den
Empfang unerwünscht ist. Eigene Versuche mit einer Übertragung
durch ein Wave-Guide mit Magnetronsender und -Empfänger, auf
4,2 cm Wellenlänge (Rohrdurchmesser 3 cm), haben diese
Erscheinungen vollauf bestätigt, auch die Reisserscheinungen beim
Sender konnten bei ungünstiger Einstellung der Daten beobachtet
werden. Bei guter Einstellung kann die Übertragung der Musik
trotz grosser Aussteuerung als klangrein bezeichnet werden. Es sei
noch eine kurze Bemerkung über die Modulation bei
Magnetronschwingungen II. Art angebracht. Versuche auf dem gleichen
Prinzip wie für die Schwingungen II. Art gaben ein negatives oder
doch ein schlechtes Resultat. Nach dem Mechanismus dieser
Schwingungen ist dies auch verständlich. Da bei gutem Wirkungsgrad

das Magnetfeld bedeutend grösser als das kritische ist, die
Elektronen also die Anode nicht tangieren, sondern erst allmählich
durch die Wechselspannung auf die Anode laufen, ist eine
Beeinflussung der schwingenden Raumladung q durch die Anodenspannung

nicht möglich, die Aussortierung erfolgt amplitudenunabhängig.

Nur bei kleinem Wirkungsgrad, wo die Elektronen auf
ihren Zykloidenbahnen schon beim ersten Umlauf in die Nähe der
Anode kommen (Magnetfeld nahe dem kritischen Wert), ist eine
Beeinflussung der Aussortierung durch das Anodenpotential zu
erwarten. Auch dies wird durch die Versuche bestätigt. Diese
Modulation ist aber ungünstig, weil durch Veränderung der
Anodenspannung die Leitbahngeschwindigkeit verändert und damit
zugleich eine Frequenzmodulation erzeugt wird. Hier wäre eine
Beeinflussung der schwingenden Raumladung durch ein achsiales
elektrisches Feld, welches die Leitbahngeschwindigkeit nicht
verändert, günstiger. Die Elektronen müssen allerdings durch
dieses Feld in einer kürzeren Zeit auf die Endplatten gezogen
werden als sie benötigen, um durch das tangentiale Wechselfeld
auf die Anode zu gelangen. Aus diesem Grund hat man wohl für
diesen Schwingungstyp zu einer Rastermodulation gegriffen,
welcher die Anodenspannung derart herauf- und herabsetzt, dass
die Schwingungen ein- und aussetzen. Endlich sei noch auf eine
interessante Konstruktion von H. Gutton und S. Berline19)
hingewiesen. Diese Röhren zeichnen sich durch eine Vielzahl von
Segmenten aus, in der Weise, dass benachbarte Segmente an achsial
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gegenüberliegenden Ringen befestigt, welche unter sich wieder mit
einem Bügel (Induktivität) verbunden sind.

Dadurch kommen benachbarte Segmente auf verschiedenes
Hochfrequenzpotential, es können sich Schwingungen II. Art
erregen, die Röhre braucht nicht schief im Magnetfeld zu stehen.
Für die längeren Schwingungen (16 cm) stimmt die Posthumusformel

ziemlich genau, sie braucht nicht absolut genau zu stimmen,

da durch das synchronisierende Wechselfeld eine weitgehende
Verstimmung möglich ist; wesentlich ist vielmehr auch, dass die
kritischen Daten eingestellt werden, die Elektronen also gerade die

Fig. 11.

Anode nicht mehr berühren. Wenn das Drehfeld zwischen den
Schlitzen räumlich nicht sinusförmig verläuft, so können auch
Oberschwingungen erregt werden; Hauptsache ist, dass sich die
Elektronen im Mittel gegen die Anode bewegen. Dass auch für die
Erregung der Schwingung II. Art nicht eine statische negative
Charakteristik die Ursache sein kann, wurde von Okabe mit allem
Nachdruck betont und durch schöne Experimente bewiesen20).

Die zahlreichen Röhren verschiedener Bauart wurden mit
der Hilfe von Herrn Reck, Glasbläser am Institut für techn. Phys.
Zürich, hergestellt; ihm sei für seine stete und gewandte
Hilfsbereitschaft bestens gedankt.

Zusammenfassung.

1. Die Laufzeitschwingungen werden als gekoppeltes System
von schwingender Raumladung und elektrischem Schwingkreis
aufgefasst. Die dafür aufgestellten Differentialgleichungen zeigen
formale Analogie mit denen des Zweikreissenders. Die Lösung der
Gleichungen für die freie ungedämpfte Schwingung gibt den
Koppelwellenverlauf und den Intensitätsverlauf Fig. 3; er stimmt qualitativ

gut mit dem Experiment überein.
2. Unter sinngemässer Einführung der Rückkopplung werden

die Differentialgleichungen erweitert in diejenigen für das selbst-
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gesteuerte System mit Berücksichtigung der Dämpfung. Die
formale Einführung der Rückkopplung wird auf Grund des
Aussortiermechanismus und der Bewegungsgleichungen für das einzelne
Elektron begründet.

3. Die Untersuchung der Raumladung einerseits und der
einzelnen Elektronenbewegung andererseits hat ihre Berechtigung,
weil wohl die Effekte wie Koppelwellenverlauf, Intensitätsverlauf
und Anfachbedingung durch die Zusammenwirkung aller Elektronen

bedingt sind, dass aber die Elektronendichte noch klein genug
ist, um die einzelnen Elektronenbahnen als voneinander unabhängig
zu betrachten; und diese sind ihrerseits massgebend für die
Eigenfrequenz, die Aussortierung und die Energiebilanz.

4. Die stationären Lösungen für das selbstgesteuerte System
geben für kleine Dämpfungen denselben Koppelwellen- und
Intensitätsverlauf (im besonderen gleiche Resonanzspannung) wie
die Lösungen der freien ungedämpften Schwingung. Ausserdem
liefern sie eine für rückgekoppelte Systeme typische
Anfachbedingung (Formel 79), welche auch die Reisserscheinungen enthält.
Durch die Beschränkung auf lineare Systeme werden diese nur
qualitativ wiedergegeben, die beobachtete Verschiebung des
Reissens nach kürzeren Wellen wird damit nicht erfasst.

5. Die genauere Untersuchung der Koppelwellen im
Resonanzfall unter Berücksichtigung der Dämpfung zeigt, dass
verschiedene Koppelwellen nur auftreten können, wenn die Kopplung
über einem kritischen Wert liegt.

6. Im stationären Schwingungszustand ist der Phasenwinkel
zwischen Spannung und schwingender Raumladung durch den

Kopplungsfaktor, die Dämpfung und durch die Phase der
Rückkopplung relativ zur Wechselspannung (Aussortierung) Gleichung
36, 38 und 74) derart bestimmt, dass Phasengleichheit zwischen
vorhandener und neu hinzukommender Raumladung besteht.

7. Die Spannungswerte sind in erster Näherung von der
Dämpfung unabhängig und stimmen mit denjenigen für die freie,
ungedämpfte Schwingung überein. Die Gleichungen zeigen einen
Zusammenhang zwischen prozentualer Abweichung der
Koppelfrequenz von der Resonanzfrequenz und der Resonanzspannung.
Der so berechnete Spannungswert stimmt mit dem gemessenen
grössenordnungsmässig (ca. 20 Volt) überein. Weiter kann die
Raumladungsdichte aus dem gemessenen Kopplungsfaktor bestimmt
werden; man findet als obere Grenze 6 • IO7 Elektronen pro cm3.
Dadurch wird die Annahme freier Elektronenbahnen weitgehend
gerechtfertigt.
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8. Für Kopplungen kleiner als die kritische, tritt in
Übereinstimmung mit einzelnen experimentellen) Veröffentlichungen14),21)
nur eine Frequenz und damit nur eine Spannung (verschieden von
obiger) auf ; sie hat gegen die schwingende Raumladung — 90°
Phasenverschiebung.

9. Die Entstehung der Koppelwellen ist an die Bedingung
geknüpft, dass die Koppelfrequenz verschieden von der
Eigenfrequenz der Elektronen ist. Bei der Bremsfeldröhre und beim
Magnetron I. Art (ungeschlitzte Anoden) ist dies der Fall, da die
Lösung der Bewegungsgleichungen eine Überlagerung von zwei
Schwingungen (Eigenfrequenz plus Koppelfrequenz) ergibt. Bei
den Magnetronschwingungen II. Art (geschlitzte Anoden) zeigt
die Lösung der Bewegungsgleichungen eine weitgehende Synchronisierung

der Eigenfrequenz mit der Koppelfrequenz und dadurch
mit der Frequenz des Abstimmkreises. Deshalb treten bei diesen
Schwingungen die Koppeleffekte nicht auf und die Abstimmung
ist nicht so scharf wie bei den obgenannten Schwingungen. Die
Synchronisierung ist auch verantwortlich für den relativ grossen
Wirkungsgrad bei den Schwingungen II. Art, weil sich hier die
Elektronen immer in der Phase für Energieabgabe befinden,
während sich bei den Schwingungen I. Art ihre Bewegungsphase
zur Spannung dauernd ändern. Durch den zweiten
Aussortiermechanismus muss dafür gesorgt werden, dass sie vor der ersten
Phasenumkehr entfernt werden, was bei noch relativ grossen
Amplituden der Fall sein kann.

10. Die verschiedenen Arten der Modulation, sowie die Ent-
dämpfungsmöglichkeit sind implizit in der Dämpfung des
Innensystems (schwingende Raumladung) enthalten, weil durch
Beeinflussung der Aussortierung diese sich weitgehend ändern lässt.

Zum Schluss ist es mir eine angenehme Pflicht, Herrn Ing.
W. Amrein und Herrn Ing. E. Baumann für viele fördernde
Diskussionen aufs beste zu danken.

Auch Herrn Prof. Dr. F. Fischer, E.T.H. Zürich, sei bestens
gedankt für die Möglichkeit, in seinem Institut zu arbeiten.
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