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Über den Drehimpuls von Teilchen mit Ruhemasse null
und beliebigem Spin

von Markus Fierz.
(30. XI. 39.)

Zusammenfassung: Die Theorie für Wellenfelder, die Teilchen mit dem
Spin / > 1 und Ruhemasse null zugeordnet sind, muss als ausgearteter Grenzfall
der Theorie für Teilchen mit endlicher Ruhemasse gelten. Die Ausartung äussert
sich im Auftreten einer Eichgruppe. In der vorliegenden Arbeit wird gezeigt,
dass die Ausartung weiter zur Folge hat, dass ein derartiges Wellenfeld, falls nur
ein einziges Feldquant vorhanden ist, stets einen Drehimpuls j > f besitzt. Dieser
Satz wird dadurch bewiesen, dass die Differentialgleichungen des Feldes durch
Kugelwellen gelöst werden, die zu eichinvarianten Feldgrössen Anlass geben und
die sich bei räumlichen Drehungen um den Ursprung nach einer irreduciblen
Darstellung ftj der Drehgruppe transformieren. Dabei zeigt sich, dass j > f sein
muss. Zu vorgegebenem j > / gibt es noch 2 Scharen von je 2 j'+l linear
unabhängigen Kugelwellen.

In einer früheren Arbeit1) über relativistische Wellengleichungen

kräftefreier Teilchen wurde kurz auf die Ausartung der
Theorie hingewiesen, die eintritt, wenn die Ruhemasse der Teilchen
null gesetzt wird. In diesem Falle existieren nämlich Lösungen
der Feldgleichungen, für die Energie, Impuls und Drehimpuls
verschwinden und die deshalb wohl keine physikalische Bedeutung
haben. Damit hängt das Auftreten einer sog. „Eichgruppe" eng
zusammen: Zu jeder Lösung der Feldgleichungen kann eine Lösung
die zur Energie null gehört hinzuaddiert werden, ohne die
physikalischen Grössen Energie, Impuls und Drehimpuls zu ändern.
Betrachtet man Lösungen, die durch „Umeichen" ineinander
übergehen als gleichwertig, so existieren zu vorgegebener Frequenz
und Wellenzahl nur zwei linear unabhängige, inäquivalente
Lösungen. Beim Licht ist dieses Verhalten bekannt: Die beiden
linear unabhängigen Polarisationszustände einer ebenen Welle
sind hier z. B. die rechts und die links zirkulär polarisierte Welle.
Longitudinale Lichtwellen gibt es nicht, bzw. sie haben die
Energie null. Ein Strahl rechts oder links zirkulären Lichtes der
Frequenz co, d. h. ein Wellenpaket kleiner Winkeldivergenz, trägt
einen Drehimpuls in seiner Bewegungsrichtung der Grösse 4: Ff co

wenn E die im Wellenpaket enthaltene Energie bedeutet. Man
kann cum grano salis dies Verhalten dahingehend beschreiben,
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dass man sagt, der Spin des Lichtquants sei stets parallel oder
antiparallel zu seiner Bewegungsrichtung eingestellt2). Eine
strenge Formulierung des Sachverhaltes folgt aus der bekannten
Auswahlregel, die besagt, dass bei Emission eines Lichtquants
Übergänge j j' 0 des emittierenden Systems nicht vorkommen.
Für das Licht gilt deshalb der Satz: Der Drehimpuls eines
einzigen Lichtquants ist niemals null3). Für vorgegebene Frequenz
und vorgegebenen Gesamtdrehimpuls j > 1 gibt es noch zwei
linear unabhängige Scharen von je 2 j + 1 Kugelwellen, die der
Strahlung eines elektrischen und eines magnetischen 2J'-Pols

entsprechen4). In dieser Arbeit wollen wir zeigen, dass im Falle
beliebigen Spins / und Ruhemasse null der analoge Satz gilt:

Der Drehimpuls eines einzigen Feldquants ist stets grösser
oder gleich /:

i > f
Zu vorgegebener Frequenz co und vorgegebenem j > / gibt es

zwei linear unabhängige Scharen von je 2 j + 1 Kugelwellen,
die sich bei Drehungen um den Ursprung untereinander nach
der Darstellung &j der Drehgruppe transformieren.

Als Beispiel eines Feldes mit Spin > 1, für das unser Satz
Geltung hat, wäre das Gravitationsfeld zu nennen, das zum Spin 2

gehört5). Die Emission von Gravitationswellen ist jedoch ein so
schwacher Effekt, dass sich die, gemäss obigem Theorem dabei
geltenden Auswahlregeln experimentell nicht prüfen lassen. Trotzdem

scheint uns der Satz rein theoretisch genügend bemerkenswert,

nicht zuletzt wegen seines Zusammenhangs mit der
Eichgruppe, um näher darauf einzutreten.

Wir müssen also zeigen, dass der Drehimpuls dem Betrage
nach stets grösser oder mindestens gleich dem Spin / ist, falls nur
ein Feldquant vorhanden ist. Zu diesem Zweck gehen wir so vor:
Wir wollen zeigen, dass der Drehimpulsoperator in der g-Zahl-
Theorie gleich dem Operator der infinitesimalen Drehungen ist.
Nun muss man beachten, dass im Falle des Vorhandenseins nur
eines Quants, die g-Zahl-Theorie äquivalent der Matrixtheorie
eines Einkörperproblems ist. Jeder Operator der g-Zahltheorie
kann auf die Form

m, n

gebracht werden, wobei a*n,am die quantisierten Amplituden
der Eigenzustände sind, welche den Vertauschungs-Relationen

[an>am]=Ô* 1

nm
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genügen. Onm ist das Matrixelement des Operators nach den
Eigenzuständen n, m. Falls nur im Zustand n0 ein Teilchen sitzt,
ist der Erwartungswert des Operators 0 das Diagonalelement Ono

TCo
:

n, i

denn es ist a* ax — ònla*an und weiter

a* an= 0 für n $ n0, 1 für n= n0.

Der Erwartungswert des Produktes zweier Operatoren 0 und P wird

2 2 al Pnm am aì °« ah 2 «» P«* °l °I 0i» ün
k,l n,m n^-l

+ Tia*nPnnana*°nnan
n

2jananalal Pnl^ln+ "«„rc„^»,m„

nun ist

Wir erhalten daher

pö=Sp«„A„„-
Für den Operator der Infinitesimalen Drehungen folgt hieraus,
dass, falls nur ein Eigenzustand angeregt ist, der sich nach der
irreduziblen Darstellung &j der Drehgruppe transformiert, das
Quadrat dieses Operators j(j + 1) beträgt. Wir werden nun im
folgenden zeigen, dass der Drehimpuls gleich dem Operator der
infinitesimalen Drehungen der eichinvarianten Grössen ist und
dass die bei Drehungen irreduziblen Lösungen sich nach Darstellungen

mit j > / transformieren. Also ist auch der Drehimpuls
stets grösser oder gleich /.

1. Die Wellengleichungen und der Drehimpuls.

Wir wollen im folgenden den Spinorkalkül von van der
Waerden6) benützen. Die Gleichungen für ganzzahligen Spin f
lauten dann

?«&:: o (i)

axJß ist ein Spinor mit / punktierten und / unpunktierten Indices.
In beiden Indexsorten ist er symmetrisch. Bei Spiegelungen geht
a^ß in sich über. Die Gleichung (1) kann aus der Lagrangefunktion

L=Pß«a*Zt:PaßariYY. (3>

durch Variation gemäss SjLdix=0 hergeleitet werden. Die Glei-
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chung 2) ist dann als Nebenbedingung hinzuzufügen und hat zur
Folge, dass die Energie des Feldes stets positiv bleibt.

In (A) wurde gezeigt, dass Lösungen der Gleichungen (1)
(2) existieren, deren zugehörige Energie verschwindet. Diese
Felder haben die Gestalt

KÏYY. vi 4.:: +VÏ4YY + -- ¦ +pì4yy. + --- (4)

Dabei hat Cjj;;; / — 1 punktierte und / — 1 unpunktierte Indices,
in denen es symmetrisch ist. Es genügt den Gleichungen

D4::: 0, pf4;;; 0. (4')

Falls man zu aj$;;; ein Feld der Form (4) hinzuaddiert, so ändert
sich die Lagrangefunktion um ein vollständiges Differential, die
Energie bleibt invariant. Wir heissen die Transformation

«'#:::=¦<#:::+«#::: (5)

in Analogie zur Maxwellschen Theorie, Eichtransformation. Grössen,
die bei der Transformation (5) ungeändert bleiben, heissen
eichinvariant. Durch Differentiation können wir aus a01^-- weitere
Feldgrössen bilden:

rriri nliv.. ¦ ___ h +Xliv... m n\i... _ U— V¦ ¦ ¦ \P aya.... — °x... > PgXaaß...—°exß..A

TJ. h+Xliv... fl. ngv L— ix... fl

Durch /-maliges Differenzieren lassen sich aus a£J;;; Grössen
bilden, die nur punktierte oder nur unpunktierte Indices enthalten
in denen sie symmetrisch sind:

(7)

0 (7')

B+ und B~ sind eichinvariante Feldgrössen. Eichinvariant sind
weiter die Integrale der Bewegungsgleichungen, insbesondere
Energie, Impuls und Drehimpuls, die wie folgt zu definieren sind7) :

E„ergie^/(L-s!|<i)<»'

Drehimpuls-P(l- -% fA- {ô'tÇj„)âV.
a J °Va

(6)

B+>¦i • ¦ • hf p* mai • phtafa^\ ¦li
.a/

B-
ai- ¦ ¦ a2/ P>,ia/+i

' Vif «vt <:: A
.ay

Pah B+äi. ¦-*2f - 0, p*lXBai. • -a2/
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Die Qa sind hierbei die Grössen

ce-*/, a*?--".t- ri ist gleich —^-.
ai...af> Xi...Xf> Hî« » At

òfk im Drehimpuls ist der Operator der infinitesimalen Drehung.
Es ist

°ik= — hi-
ò*k ist deshalb im Spinorkalkül durch einen symmetrischen
Spinor zweiter Stufe darstellbar. Um diesen Operator angeben
zu können, ist es bequem, die Zeit vor dem Räume auszuzeichnen,
d. h. wir wollen nur noch Invarianz der Gleichungen bei räumlichen

Drehungen verlangen. Bei Drehungen transformieren sich

die Grössen (v1, v2) wie (%, u2). Indem wir eine bestimmte
Zeitkoordinate wählen, die wir ein für allemal festhalten, schreiben
wir für

aal'.'.'.a/~ aa,...af, >.,...Xf.

An Stelle des Operators i p? tritt dann

ipf=d*ß +e}-ß

Dabei ist

;.

d_

dt

d

4 1 OXjc

(9)

Die ah,ß sind die Matrizen
a

«•")=(?à), (°l'ß) (?"«)» (<*")=G-!) (io)

Es ist also z. B. o|, 2 — i. da/J ist ein symmetrischer Spinor.
Es gilt

d\d>i=ô»aâ. (11)

Der Aufteilung eines Spinors a?ß in räumliche und zeitliche
Komponenten entspricht demnach die Aufspaltung von a^a in einen
symmetrischen und einen schiefen Teil.

In dieser drehinvarianten, aber nicht Lorentz-invarianten
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Schreibweise ist der Operator der infinitesimalen Drehung gegeben
durch

K"ao,ß... [(Xflrdl + Xv,dl)aaß + eoilxa,ß...+£avaßß...+ ---
+ eß„avx...+£ß,%«...+---] (12)

ò*v ist mit daß vertauschbar, wie man leicht nachrechnet, falls
man benützt, dass die folgende Identität gilt:

"'aß Xoq ea.aegß+ SoLQ£oß-

2. Zusammenhang des Drehimpulses mit den infinitesimalen Drehungen.

Wir wollen nun zeigen, dass der Drehimpuls, falls man die
Theorie quantisiert, der Operator der infinitesimalen Drehung der
eichinvarianten Grössen ist, dass also gilt:

i[Pll,>B*ß...]=dt,B±ß_ (13)

wo, wie stets [A, B] AB — BA gesetzt ist.
Nun ist der Drehimpuls gemäss (8) durch die nicht

eichinvarianten «£»••• ausgedrückt. Eindeutige V. R. existieren jedoch
nur für die eichinvarianten Grössen B+h---hr und B^...<x2r Diese
wurden in (A) angegeben und lauten

ifß+* (x),B+ (x')l=-ViVp p D(x-x')

[B+, B+] [B-, B-] [B* +, B-] 0.

(14)

Dabei bedeutet V die in den Indices af symmetrisierte Summe.

Da der Drehimpuls (8) selber eichinvariant ist, so müssen diese
V. R. genügen, um (13) zu verifizieren, trotzdem im Ausdruck (19)
für Ppiv die nicht eichinvarianten aai.. .a/, xx.. .xt und a*ai- • •«/• K- ¦ -h
vorkommen. Hiezu eiche man die aXl.. ,af,x1.. .Àf so, dass sie in
sämtlichen Indices symmetrisch werden. Diese spezielle Eichung
ist immer möglich. Es soll somit ein Spinor c«2...af,ß2...ßf gesucht
werden, der (4') genügt und die Gleichung erfüllt:

ax1...xfß1...ßf — CI>Xl...riß1...ß+2j P<n1ß1r'tx2...af ß2...ßf
(«) iß)
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wo a'ai... ß in allen 2 / Indices symmetrisch ist. Es soll somit die
Relation gelten

fc ua1...txfß1...ßf — b Zj P«1ßA<*z...zfß2...ßf H5\

2 bedeutet hier wieder die in den Indices (ax.. af) und (/?,... ßf)
;oc)(/3)

symmetrisierte Summe. (15) stellt ein System von 2 / — 1 linear
unabhängigen linearen Differentialgleichungen dar, aus denen die
2 /—1 unabhängigen Komponenten von cTl.. .rf_x, ßx.. .ßt_t bestimmt
werden können. Durch (15) ist die Eichung vollständig festgelegt.

Die Nebenbedingung (2) nimmt bei solcher Eichung die
Gestalt an:

*"<W.. 0. (16)

Die Gleichungen (6) erhalten die Form:

jßn i

da«v--- ih+ -—dßa 4-
da«v-- =jh-

Somit gelten die Gleichungen

4r(Ky...+Ky...)
dt 2

/ 2 y-1 d'-1
BX...Hr= \T) dAFi-K-'-Hf ^

_
/ 2y-1^-1

<*i-<Hf~ \ i dtf-1 °«i-••««/¦

Der Drehimpuls nimmt die Gestalt an

P^= -fdV{à*i- ¦ •«*/ (x„a dj+a!„ dj) <v.. «2/ + aai.. .«2/ (xßddä,

+ xxedaß)a*«i- ¦ -«2/ + 2/(i*«t- ¦ ¦«* o,^.. ,Hf + af«*- ¦ •«•/ o^ ^
— ò A* <**¦ •-<**t — à, a*a2---«2/)}

Die Operation x òd\ + xÌLidd ist eine Differentiation nach dem
Azimut um die Achse (/jA). Man kann deshalb durch eine partielle
Integration PXli auf die Form bringen

Pi/, -/^{«*«1-^(d>ai...a2/)-fl*«i-"V(^<...ay)}.(19)
Wir zerlegen jetzt die speziell geeichten Felder in „monochro-
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matische" Bestandteile, a (co, x), welche durch folgende
Gleichungen definiert sind:

dabei ist

a(k) 7cr-ri [[a(x)eirk*)co2dcodQ; \%\ co
[Z 7t) J J '

a(x) f co2 dco a(x, co); A a(x,co) + co2a(x,co) 0. (20)

Für diese „monochromatischen" Felder kann man die speziell
geeichten Feldgrössen mittelst der Formeln (16) und (17) durch
B- ...af un(i ßoT...

<x2
bzw. deren erste zeitliche Ableitungen

ausdrücken, je nachdem / gerade oder ungerade ist. Die Fallunterscheidung

nach der Parität von / ist auch für die Vertauschungsrelationen

(V. R.) der B in denen die Zeiten t,t' gleichgesetzt
sind, nötig. Hier bleiben nämlich rechts nur die Terme stehen,
die eine ungerade Anzahl Ableitungen der D-Funktion nach der
Zeit enthalten; und da im ganzen / Ableitungen vorkommen,
so ist die Zahl der räumlichen Ableitungen gerade oder ungerade,
je nachdem / ungerade ist oder gerade. Die räumlichen Ableitungen
haben nun verschiedenes Vorzeichen in den V. R. für B+ und
für B~, was sich aber nur bei ungerader Anzahl von räumlichen
Ableitungen äussert. Es treten daher in den V. R.
Vorzeichenunterschiede auf, je nachdem / gerade oder ungerade ist.

/ gerade

«V (co)=, (B+ {co)+B~ (co))

B+... Hf (co) — (2 co)' (aai... Hf--j dXl «ae H... X2f)
CO*

B-1...aL2f \(2coy(aai,..0i2t + -^d^àeoi2...a2f). ¦ (21)

Den Drehimpuls schreiben wir wie folgt:

P^ =JdVjco2 dco —— f co'2 dco' {(B+V ¦ • «2/ (co, x)

+ ß-%... «,, l(0>x^ ò*x àai ^ ((0>) a,)_(#+V - -«2/ (co, x)

+ È-*«i---«2f(co,x))òl;.aai...a.2f(co',x)}. (22)
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Die Vertauschungsrelationen für B+* (co), B+ (co) und B+*(co) findet
man gemäss (14) falls man t—t' setzt

[B±V--«v(co, *),B±...T2/(«>>')]

±
% tJ _ _ ò (co—co')V SE-(2/)! (f£0)£j ^ (2 /-2 n-1)! (2n+l)! 2»« «»

sin co,- |ì —x'|
• (— C02)n *!•••• «5"2 »+1 Cf2 n+2 » • • da2/

v 7 Ti T2m+1 T2n+2 T2/

[B±%---«2/(co,a:),B^...T2/(co',a;')]

i /_1

222 i

w \x—x

ô (co — co')

(2/)!„to(é)éU2/-2n)!(2rc)! 2n2co2

sin co 15 —x'
(—CO2)" <£¦••• (5a2»cZ"2«+l • •. <fv
x ' Ti t2k t2«+1 *2/ co- x —a;

(23)

Damit kann man die Vertauschung [P,,x, B± (co)] ausrechnen.
Man hat dabei die Gleichungen (20) und (21) zu benützen.

Da ô* mit den Differentiationen dß vertauschbar ist, findet
ftv OL '

man leicht

»[p^,B*...«wH]-*;*BS...«tfH. (18)

/ ungerade

Anstelle von (21}, (22) und (23) treten die folgenden
Gleichungen :

«1 • • ' a2f H ico (2 co)

1

/(Ba1...«2/H+Ba1...a2/H)

Ba,...Ht (co) T (2 co)/"1 «...a2f + dl aQH...a2/)

b:«,. .«,, H y (2 CO)/ (aXl. a2/ -< CIe«2. a2/) •

(21')

Px=-JdVf-r^-~^dcoJco'2dco'{{B+*^-^f(co,x)

+B~*H- ¦ ¦ <Hf (w, X)) ^Oai. a2/ (CO', X)

+ ^i(B+V- • • «2/ (co,x)+B-*«1- • M«>,z)KA. • -«v'K. *)}•

(22')
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(co',x')}

T 2 2 2; -co')

(2f)\^Q^)(2f-2n-l)\(2n+l)\2 7i2co2

sin co \x — x'l
(— co2rdai---(5a2"+1cVt:' Tl T2n+1 Ti

•2m+2
2 n+1 T2 «+2 T2/ co x-

[B±*^--^f(co,x),B%,..X2i(co',x')

222- ó (co — co')

(2/)! „4o^ ^ (2/-2n)! (2»)! 2»» «,*

• • cV*2 n d"2 n+1 •

T2 « T2 n+1
¦d"*'-

(23')

CO |x —X

Aus diesen Gleichungen folgt nun wieder die Gleichung (13)

i [Plß, Bj.. .a2/ (co)] ^ B±..
.«2f (co). (13)

Die analogen Rechnungen lassen sich auch für halbzahligen Spin
f m + \ durchführen.

Wir gehen aus von den Gleichungen

pj,.^vtt"0;p^6"*"»%"° (24)

b+ und b~ sind wieder symmetrische Spinoren, die hier aber eine

ungerade Anzahl Indices haben. Bei Spiegelungen wird b+ mit b~

vertauscht. Die Gleichungen (24) lassen sich durch Variation
aus der Lagrangefunktion

r{~ò a.

Mi...l*f+$'
-**,... >¦!.

L f.
¦"t-h F*t+h "/+* Al

.b+Ä---^+i''¦^l-F'/tiW **i...-/i/_j
xt+h _/,-*A'- • • A/-i «^+i xf+i h-^---fti-i
¦¦¦¦ ¦ ¦¦ ..ßi+if K.-.h+i

Al-h\
7+i

(25)

P*f+i "f+i
+ b-f--lif-hpß'+hÄt+ib

herleiten, falls man noch die Gleichungen

als Nebenbedingungen hinzufügt. Aus den Gleichungen (24)
folgt, dass 6+ und 6~ der Wellengleichung zweiter Ordnung genügen.
Wieder folgt die Existenz einer Eichgruppe, indem sich die
Lagrangefunktion bei der Transformation

h+'M...xf+i h+Xth...kf+i + y Ai +ÌM...it+i »

MiVi.-.iif-l " PiiH-..Pf-i tfjAfi.)^"1 "'--"t-h I

"l--ff+h
j)+AiA2...A/_è

PiPt.-.if+ii+ y vLc~Xi--kf-i\
1 ^—I. *>¦ ft...«.!

(27)
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nur um ein vollständiges Differential ändert. C+ und C~ genügen
den Gleichungen

Px,ec+tYY. °-> PiX*c~tv.=°

und sind in punktierten und unpunktierten Indices symmetrisch.
Die durch (8) definierten Integrale: Energie, Impuls und
Drehimpuls sind wiederum eichinvariant. Weiter existieren die
eichinvarianten Feldgrössen B+a/3--- und B~ß

_
:

JD+aßy... —«,8 oc „ff/5... h+Y--- R- rr. n ¦ U—qo... 1

D —VP °qo...> Daßv... VeaPaß..." y...

VoiB+^-- 0,p^B-ß ..=0. I

In bloss drehinvarianter Schreibweise, bei der die Zeitkoordinate
vor dem Räume ausgezeichnet ist, kann man durch eine spezielle
Eichung erreichen, dass die Grössen 6+ und b~ in allen Indices
symmetrisch werden. Bei dieser speziellen Eichung lassen sich
b+ und b~ wieder durch die eichinvarianten B+ und B~ ausdrücken,
und zwar gilt

"a.,. .a2f öaj "ga2. .a2:/, 0; Oai. .a8/"T" dj^ "ea^. .Ofc/= " I

/ 2 \m dm (29)

Bt.:.,r{~)j^ht-^ (™=>-«-

Man kann die Grössen bt „ und KY „ durch Differentiation
al • • • a2/ al • • • a2/

aus Potentialen herleiten:

"¦a^Qiot^. .da/ + aa1. -a2f— ^"a,. asf
+ \

(30)
dx1aeoL2...a2f + aoL1.. ct2/ — *Oax...0I2/•

Dabei hat aai...a2/ neben der Wellengleichung 2. Ordnung noch
die Nebenbedingung

^"»^«»...«„-O (31)

zu erfüllen. Für die Lösung der Feldgleichungen ist es sehr bequem,
diese Potentiale aai... a einzuführen, da hiedurch bei ganzem wie
bei halbganzem Spin dasselbe Verfahren anwendbar wird. Die
Gleichungen (30) sind allerdings nicht Lorentzinvariant, was aber
für unsere Zwecke gleichgültig ist. Genau so wie b+ und b~ lassen
sich auch die aai...<x2/ durch die eichinvarianten Grössen B+und
B~ bzw. deren erste Ableitungen nach der Zeit ausdrücken.
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2/ (32)

Der nach der Vorschrift (8) gebildete Drehimpuls hat bei der
speziellen Eichung die Gestalt

F>" T /dF(ò+*ai- ' • *>f (*-- dl + xßTdl) 6+ ^
+ 2/ (b+**- • • «2/6+«2... ^ + Ò+* «2- • • «2/ 6+a2... a2f)

+ b-*«i--«v(xXrd; + xlirdl)b-1.,.K
+ 2f(b-*°f-*zfb7-!l2...X2f + b^--«2fb-a,...X2f)}

±fdV{b+*«i- -MO«!-.-«*,)
+ 6-*"i"-«v«/,6^. ..«2/)}

Falls wir wieder die durch (20) definierten monochromatischen
Komponenten einführen, können wir die b+ und ft- durch die
eichinvarianten B+ und B~ ausdrücken. Wieder hat man eine
Fallunterscheidung zu machen, je nachdem m =- f — \ gerade
oder ungerade ist.

m gerade

BY\...^f(co) (2corbtx...a2f

P*« T /dV jw2d0Jj2AÖ^ {B+*^-^(co,x) (OÌ-h,<*))
+ B-*«i- ¦ ¦ «*, (co, x) (<5A% ft".. -aw (x))}

die V. R. lauten für t= t'

[R±*«x.. .Hf(oi,x),Bf T (co',x')] +

i 'y v v - i.m~-m')

(2/)! io à à (2/-2n-l)!(2n+ l)!2»«
• (—co2)" ó"1 • • • ó"2 «+1 d"2 «+2 • • • (T*f

Tl T2n+1 T2n+2 T2/

sm co x —x
T2/ co x —X

(33)

Dabei bedeutet

[a, by [a b + b a]

Man verifiziert wieder leicht, dass die Gleichung (13) gilt:

H-P^A) Bai...a2/] ô)lXBXi,,,a2f.
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m ungerade.

Hier gilt
2 2d± _ _ /o r,,y»—i i± ?i± d±

-"«!...<%2/ ^
V *") %...a2/'%...a2/ i (2 co)w+1 «i-••««/"

Demnach kommt im Drehimpuls B+* und B_* vor. Deshalb
benötigen wir hier die folgenden V. R.

[B*±^—»/(e,,ai)fB± ...T2/(co',x')]
+

3__ fe1 y v g (co —co')

(2/)!ioè)â(2/-2n)!(2n)!2^co2
• - co2)« ó"1 • • • óa» d"-« • • • d«" smoì'Jx-f'{.

Tl Tn tm+1 T2/ CO • |X —X I

Damit bestätigt man wieder die Gültigkeit der Gleichung (13).

3. Lösung der Wellengleichungen durch bei Drehungen irreduzible
Funktionen.

Wir haben gezeigt, dass der Drehimpuls in der g-Zahl-Theorie
gleich dem Operator der Infinitesimalen Drehungen der
eichinvarianten Grössen ist. Wir müssen jetzt zeigen, dass die bei
Drehungen irreduziblen, eichinvarianten Lösungen der
Feldgleichungen in unserem Falle sich stets nach einer Darstellung #,•

der Drehgruppe mit j > / transformieren.
Wir betrachten Lösungen der Gleichung

A cp + co2cp=0. (35)

Die spezielle Kugelwelle

9,o=>nwr (36)
r

ist eine Lösung von (35). Nun bilde man

-wr 2 dW.. da2 „,• cp0 0lXl.. ><4, (37)
(2 l)\ ^^l^.--- «2Ï-1«2Î

i)

2 bedeutet die Summe aller Permutationen der a*. Es gibt,
K-)
da 0l in allen Indices symmetrisch ist, 2 Z + 1 linear unabhängige
Funktionen ^...^ die sich bei Drehungen nach &i transfor-
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mieren. Die 0l sind daher Linearkombinationen der (2 1 + 1)
Funktionen

—j= Y^> (cos &) eim9Jl+i (cor) mit Z>m> — l.

Die Funktionen 0l erfüllen neben der Gleichung (35) noch folgende
Identität

d 0l <Sm |

°>2 V ôi-i (38)
ga a1...au g a a, .o2 "•"

/£ J_|_-|\ /£ £_ J\ I j£-j £<*1 Ö £«2 " *«3 • -a2 l

Dies folgt aus den Gleichungen (35) und (36). Als Folge von
(38) gelten noch die Relationen

*'*U...*M-»» 2^T <X— (39)

#ai^--2^72l=ì)T§ <<•••-• (40)

Mit den Funktionen 0„ „ wollen wir nun Linearkombinationenal• • • a2 l
bilden, welche Lösungen der Gleichungen (16) bzw. (31) sind.
Wir machen den Ansatz:

«£...«2/H

V — y Aj' "«+1 ¦¦¦h' (CO) 0t+j~n « „ (41)£ n! (2 /- n) ^ «i • • •«¦ w ""+1' ' ¦"* "»+1' ¦ ¦"2> { '

¦^« ...« (w) ist ein symmetrischer, räumlich konstanter Spinor
von Rang 2 j, der der Gleichung

-T^K
a (co) + co2Al a (co) 0

Jx<2, ax. .a2j- x /. al- • -«2i v '

genügt, j ist ganz oder halbganz, je nachdem / ganz oder halbganz

ist; denn f + j — n muss stets ganz sein. Die Summe über n
kann sich von n 0 bis n 2 f erstrecken, falls j > /; sonst geht
sie nur von 0 bis 2 j weil n die Anzahl der Indices a.t ist, welche
am Spinor Ai auftreten. Die Koeffizienten cn müssen so bestimmt
werden, dass die Gleichung

deaaÌo« a =0 (42)!"«!'¦¦ «2/ v '

erfüllt wird. Die Lösungen sind deshalb, wie wir sehen werden,
im wesentlichen durch die A} (co) bestimmt.



de" n« Ugoa3...a2f

-2Wn
i ß,
°«3---«»+l

-»-1)4,

l)4ff«3--

+i---ß-2jde

ßn+V
¦ ¦ ¦CLn+2

ßn+1- ¦

1 0l+'i-n

¦¦ß2ide"

¦ß*j(fJ+j-n

...ß2j

0l+}-n
ea<*n+3---t

i>nl(2f-n)
+ 2n(2f—n)A

+ (2f-n)(2f-
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Bestimmung der Koeffizienten cn : Wir setzen unseren Ansatz
(41) in (42) ein und erhalten

(43)

In (43) haben wir schon eine kleine Umformung vorgenommen.
Wir haben nämlich die E in (41) aufgeteilt in 3 Teilsummen:

In der ersten ist die Anzahl der Indices a.(, die an A' auftreten
n — 2, in der zweiten n — 1 und in der dritten n. Die Zahlfaktoren
kommen davon her, dass in (41) S eine symmetrische Summe mit
(2 /) Summanden bedeuten, in (43) dagegen nur eine solche mit
(2 / — 2) Summanden. Wir können nun die Differentiationen
ausführen, indem wir die Formeln (38), (39) und (40) benützen.
Dabei treten Terme auf, die eaß., egß, bzw. 0° und oeß. enthalten.
Da A}Ui__ ein symmetrischer Spinor ist, so geben diese Terme
null. Falls man dies beachtet, findet man

dea j

V c± y\n(n—\\Ai e°ßn+i---hi0m-n+1
^n\(2f-n)\ß\n(n 1>A*---'» vea«n+i...ß2]

+ W2 (2_/-n-lH2/-n) (2m-n+l)(2m-2-w+l)(2m-2»-l) l ;v '

.J* ßn+l---ß210m-n-\ }. (44)

Wir haben hier zur Abkürzung f + j m gesetzt.
Damit (44) verschwindet, muss sich 0m-n+i, das durch

Differenzieren aus 0m-n entstanden ist, wegheben gegen <Z>m-M+i das

aus ç£TO-«+2 entstanden ist. Daraus folgt erstens, dass die
Koeffizienten cn mit geradem n unabhängig sind von denjenigen mit
ungeradem n. Weiter ist jedoch die obere und die untere Grenze
der Summation hierdurch bestimmt. An der unteren Grenze der
Summe (44) muss der erste Term in der geschwungenen Klammer
für sich allein verschwinden. Also beginnt die Summe mit n=0
oder n l. An der oberen Grenze muss der zweite Term in der
geschwungenen Klammer verschwinden. Dies ist nur möglich, falls

j>f (45)
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angenommen wird, da dann die Summe sich bis n 2 f oder bis
n 2 f — 1 erstreckt, je nachdem man Lösungen betrachtet, in
denen nur gerade oder nur ungerade n von null verschieden sind.

Für 0 :£ n ^ 2 f muss gelten

„ (2m—ri) (2 m—n+1)
cM+2 — w 5 — en. (46)+2

(2 m—2n+1) (2m—2n—1)
v '

Die Rekursionsformel ergibt folgende Lösung für die c„, falls
c0 1 gesetzt wird

_ m\(2m—2n)\2n n. n, .._,
(2m—n)! (m—w)!

Da Realteil und Imaginärteil der cn voneinander unabhängig
sind, so gibt es zu einem vorgegebenen A1 falls j >/ ist,
zwei voneinander linear unabhängige Lösungen, von denen eine

nur Funktionen 0l mit geradem l, die andere nur solche mit
ungeradem l enthält. Diese beiden Typen von Lösungen entsprechen
in der Maxwell'schen Theorie, wo / 1 ist, dem Strahlungsfeld
eines elektrischen und eines magnetischen Multipols. Aus den

aa!...a2/ (m) erhält man gemäss den Gleichungen (21), (29), (30)
eichinvariante Grössen. Zu vorgegebenem j gibt es zwei Scharen
von (2 j +1) linear unabhängigen Lösungen, von denen sich je
2 j + 1 nach der Darstellung der Drehgruppe #3- untereinander
transformieren. Das wesentliche Ergebnis ist hierbei dieses, dass

j >/ sein muss, damit die a^ _ _ (w) und damit die eichinvarianten

Grössen nicht verschwinden.

Zum Schluss jnöchte ich Herrn Prof. Pauli für viele
hilfreiche Diskussionen danken.

Zürich, Physikalisches Institut der E. T. H.
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