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Uber den Drehimpuls von Teilchen mit Ruhemasse null
: - und beliebigem Spin
von Markus Fierz.
(30. X1I. 39.)

Zusammenfassung: Die Theorie fiir Wellenfelder, die Teilchen mit dem
Spin f >1 und Ruhemasse null zugeordnet sind, muss als ausgearteter Grenzfall
der Theorie fiir Teilchen mit endlicher Ruhemasse gelten. Die Ausartung dussert
sich im Auftreten einer Hichgruppe. In der vorliegenden Arbeit wird gezeigt,
dass die Ausartung weiter zur Folge hat, dass ein derartiges Wellenfeld, falls nur
ein einziges Feldquant vorhanden ist, stets einen Drehimpuls § > f besitzt. Dieser
Satz wird dadurch bewiesen, dass die Differentialgleichungen des Feldes durch
Kugelwellen gelost werden, die zu eichinvarianten Feldgrossen Anlass geben und
die sich bei rdumlichen Drehungen um den Ursprung nach einer irreduciblen Dar-
stellung @, der Drehgruppe transformieren. Dabei zeigt sich, dass j >f eein
muss. Zu vorgegebenem § > f gibt es noch 2 Scharen von je 2 7+ 1 linear unab-
héngigen Kugelwellen.

In einer fritheren Arbeit!) tber relativistische Wellenglei-
chungen kraftefreier Teilchen wurde kurz auf die Ausartung der
Theorie hingewiesen, die eintritt, wenn die Ruhemasse der Teilchen
null gesetzt wird. In diesem Falle existieren némlich Losungen
der Feldgleichungen, fiir die Energie, Impuls und Drehimpuls
verschwinden und die deshalb wohl keine physikalische Bedeutung
haben. Damit hingt das Auftreten einer sog. ,,Eichgruppe” eng
zusammen: Zu jeder Losung der Feldgleichungen kann eine Losung
die zur Energie null gehort hinzuaddiert werden, ohne die physi-
kalischen Grossen Energie, Impuls und Drehimpuls zu #ndern.
Betrachtet man Losungen, die durch ,,Umeichen® ineinander
tibergehen als gleichwertig, so existieren zu vorgegebener Frequenz
und Wellenzahl nur zwei linear unabhéngige, indquivalente Lo-
sungen. Beim ILicht ist dieses Verhalten bekannt: Die beiden -
linear unabhéngigen Polarisationszusténde einer ebenen Welle
sind hier z. B. die rechts und die links zirkular polarisierte Welle.
Longitudinale Lichtwellen gibt es nicht, bzw. sie haben die
Energie null. Ein Strahl rechts oder links zirkularen Lichtes der
Frequenz w, d. h. ein Wellenpaket kleiner Winkeldivergenz, trigt
einen Drehimpuls in seiner Bewegungsrichtung der Grosse 4 E/w
wenn B die im Wellenpaket enthaltene Energie bedeutet. Man
kann cum grano salis dies Verhalten dahingehend beschreiben,
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dass man sagt, der Spin des Lichtquants sei stets parallel oder
antiparallel zu seiner Bewegungsrichtung eingestellt?). Eine
strenge Formulierung des Sachverhaltes folgt aus der bekannten
Auswahlregel, die besagt, dass ber Emission eines Lichtquants
Ubergéinge § = §° = 0 des emittierenden Systems nicht vorkommen.
Fir das Licht gilt deshalb der Satz: Der Drehimpuls eines ein-
zigen Lichtquants ist niemals null®). Fir vorgegebene Frequenz
und vorgegebenen Gesamtdrehimpuls 7 > 1 gibt es noch zwel
linear unabhingige Scharen von je 27 + 1 Kugelwellen, die der
Strahlung eines elektrischen und emnes magnetischen 2/-Pols ent-
sprechen?). In dieser Arbeit wollen wir zeigen, dass 1m Falle
beliebigen Spins f und Ruhemasse null der analoge Satz gilt:

Der Drehimpuls eines einzigen Feldquants ist stets grosser
oder gleich f:

=

Zu vorgegebener Frequenz o und vorgegebenem j > [ gibt es
zwel linear unabhéngige Scharen von je 29 + 1 Kugelwellen,
die sich ber Drehungen um den Ursprung untereinander nach
der Darstellung ¢; der Drehgruppe transformieren.

Als Beispiel eines Feldes mit Spin > 1, fir das unser Satz
Geltung hat, wire das Gravitationsfeld zu nennen, das zum Spin 2
gehorts). Die Emission von Gravitationswellen ist jedoch ein so
schwacher Effekt, dass sich die, geméss obigem Theorem dabel
geltenden Auswahlregeln experimentell nicht priifen lassen. Trotz-
dem scheint uns der Satz rein theoretisch gentigend bemerkens-
wert, nicht zuletzt wegen seines Zusammenhangs mit der Hich-
gruppe, um néher darauf einzutreten.

Wir miissen also zeigen, dass der Drehimpuls dem Betrage
nach stets griosser oder mindestens gleich dem Spin f ist, falls nur
ein Feldquant vorhanden ist. Zu diesem Zweck gehen wir so vor:
Wir wollen zeigen, dass der Drehimpulsoperator in der g¢-Zahl-
Theorie gleich dem Operator der infinitesimalen Drehungen ist.
Nun muss man beachten, dass 1m Falle des Vorhandenseins nur
eines Quants, die ¢-Zahl-Theorie dquivalent der Matrixtheorie
eines Kinkorperproblems ist. Jeder Operator der g-Zahltheorie

kann auf die Form
0=>0a,0,,0,
m,

gebracht werden, wobei a,,a, die quantisierten Amplituden
der Eigenzusténde sind, welche den Vertauschungs-Relationen

[an J a’:@] - 5.’? m
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gentigen. 0, ,, ist das Matrixelement des Operators nach den
Eigenzustdnden n, m. Falls nur im Zustand n, ein Teilchen sitzt,
1st der Erwartungswert des Operators O das Diagonalelement O, ,, :

Z an VAL Ono
denn es ist ay a; = 0, a,a, und weiter
¥* .e LX
a, a,= 0 fir n+mn,, 1 fir n=mn,.

Der Erwartungswert des Produktes zweier Operatoren Ound P wird

2 20 Py, 0 O ay= Za P, a,0; 0,0,

E,ln,m

- Z a. P, a,a0,a

nnoNn R NN N

= ) i iy 0y B0 TP 0

Rg g — Mo Mg
ltn

nun 1st
Oy @, =8, ,. 5 Ooy=1+6, .
Wir erhalten daher
—‘P_O: EPnoiOlno ¥

;

Fir den Operator der Infinitesimalen Drehungen folgt hieraus,
dass, falls nur ein Eigenzustand angeregt ist, der sich nach der
irreduziblen Darstellung &#; der Drehgruppe transformiert, das
Quadrat dieses Operators j(j + 1) betrigt. Wir werden nun im
folgenden zeigen, dass der Drehimpuls gleich dem Operator der
infinitesimalen Drehungen der eichinvarianten Grossen ist und
dass die bei Drehungen irreduziblen Losungen sich nach Darstel-
lungen mit 7 > f transformieren. Also 1st auch der Drehimpuls
stets grosser oder gleich f.

1. Die Wellengleichungen und der Drehimpuls.

Wir wollen 1m folgenden den Spinorkalkill von vAN DER
WAERDENS) beniitzen. Die Gleichungen fiir ganzzahligen Spin f
lauten dann .

ag =0 - (1)
prajp=0 (2)
k% ist ein Spinor mit f punktierten und f unpunktierten Indices.
In beiden Indexsorten ist er symmetrisch. Bei Spiegelungen geht

a%% in sich tiber. Die Gleichung (1) kann aus der Lagrangefunktion
L=pla*2i: piasd::. (3)

durch Variation geméss ¢ f Ld*z=0 hergeleitet werden. Die Glei-
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chung 2) ist dann als Nebenbedingung hinzuzufiigen und hat zur
Folge, dass die Energie des Feldes stets positiv bleibt.

In (A) wurde gezeigt, dass Losungen der Gleichungen (1)
(2) existieren, deren zugehorige Energie verschwindet. Diese
Felder haben die Gestalt

n.ua "Pacﬁ ._]_pacﬂ ---+p§c"~"‘—l—--- (4)

Dabei hat Cf::: f—1 punktierte und f—1 unpunktierte Indices,
in denen es symmetrlsch 1st. Es gentigt den Gleichungen

Oeh::=0, plel:--=0. (4")

Falls man zu aiﬁjjj ein Feld der Form (4) hinzuaddiert, so #ndert
sich die Lagrangefunktion um ein vollstindiges Differential, die
Energie bleibt invariant. Wir heissen die Transformation

a'thr= gl Lol (5)

in'Analogie zur Maxwellschen Theorie, Bichtransformation. Grossen,
die bei der Transformation (5) ungeiéindert bleiben, heissen eich-

invariant. Durch Differentiation konnen wir aus a“‘ﬁ : weltere
Feldgrossen bilden:
pyiaﬁi...:b+iﬂﬁ.... P a}.v _b-—v }
2 Poj

eaf..
P bt =05 pbLG=0.

(6)

Durch f-maliges Differenzieren lassen sich aus agfg Grossen
bilden, die nur punktierte oder nur unpunktierte Indices enthalten
m denen sie symmetrisch sind:

B+i.1...).2f:p}1f+ltxl. . .pizf(}tf aii:.’i;
B~ — ir..dy ) (7)

0. - - Qay p).locf+1 p)fong ml...al»
FAreends, — o _ =
thB i EY 1 P“Boal...ocgf_o (()

B+ und B- sind eichinvariante Feldgrossen. Eichinvariant sind
weiter die Integrale der Bewegungsgleichungen, insbesondere
Energie, Impuls und Drehimpuls, die wie folgt zu definieren sind?):

oL .
Energie = E = ](L Z 00 Qa) av
OL 0Q
Impuls=p, = Zj OQ . av (8)
0L

Drehimpuls = P, = — Z_ f (05 Q) d

0 Q)
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Die @, sind hierbei die Grossen

0Q,
ot -

y (. | - TN P 1 3 :
aa;...a;’ a }11...,5.; s Qa 15t ngICh

673 im Drehimpuls ist der Operator der infinitesimalen Drehung.
Es ist

‘52‘1;: “5;: i’

0;z 1st deshalb im Spinorkalkiill durch einen symmetrischen
Spinor zweiter Stufe darstellbar. Um diesen Operator angeben
zu konnen, ist es bequem, die Zeit vor dem Raume auszuzeichnen,
d.h. wir wollen nur noch Invarianz der Gleichungen bei rdum-
lichen Drehungen verlangen. Bei Drehungen transformieren sich
die Grossen (vl, v%) wie (u;, %). Indem wir eine bestimmte Zeit-
koordinate wihlen, die wir ein fiir allemal festhalten, schreiben
wir fiir

I |
a&;...a;~aa1...mf,;-1...lf- .

An Stelle des Operators ¢ p# tritt dann

. 0
tpf=ad'% +&'f

0t o
- 0 :
lpﬁ:udlﬁ+slﬁﬁ'
Dabei ist
ae S YL 2 BL..
= > 0 ; elf=—g2l=1.
Die o%# sind die Matrizen
(02 7)=Q %) (2")=0G 0 (27)=6 2 (10)
Es ist also z. B. 0%%= —1. d,; ist ein symmetrischer Spinor.
Es gilt | |
dyds=644. (11)

Der Aufteilung eines Spinors aj in rdumliche und zeitliche Kom-
ponenten entspricht demnach die Aufspaltung von a;, in einen
symmetrischen und einen schiefen Teil.
In dieser drehinvarianten, aber nicht Lorentz-invarianten
4
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Schreibweise 1st der Operator der infinitesimalen Drehung gegeben
durch

6ﬂvaa5 [(xﬁtrd:—l—m dr)a ﬂ_'_e .uavﬁ... +£wa#ﬁ---+

+ep,a,, +e,0 Mﬂ_—l—...] (12)

0., ist mit d,, vertauschbar, wie man leicht nachrechnet, falls
man bentitzt, dass die folgende Identitat gilt:
d

2B Lag = 8a6893+ €aoop-

2. Zusammenhang des Drehimpulses mit den infinitesimalen Drehungen,

Wir wollen nun zeigen, dass der Drehimpuls, falls man die
Theorie quantisiert, der Operator der infinitesimalen Drehung der
eichinvarianten Grossen ist, dass also gilt:

i[P,., B, |- %, B, (18)
wo, wie stets [4, B]= A B — B A gesetzt ist.

Nun ist der Drehimpuls geméss (8) durch die nicht eichin-
varianten af7--- ausgedriickt. Kindeutige V. R. existieren jedoch
nur fiir die eichinvarianten Grossen B4 %s und By, ... a,,. Diese
wurden in (A) angegeben und lauten

1

_ + % + [t et

,i [Bal...azf(m): Bi-l...izf\m ] ‘o%pal L a2f1':2fD(x {E)
1., B ) (14)
T [Bi'l"'izj.(x): Bal---dgf(m )] (2]c)| azz)poqu p“zf 2fD (.’13 .CU)

[B*, B*]=[B~, B~]=[B**, B7]=0 J

Dabei bedeutet > die in den Indices o; symmetrisierte Summe.

ag

Da der Drehim;{)u)ls (8) selber eichinvariant ist, so miissen diese
V. R. gentigen, um (18) zu verifizieren, trotzdem im Ausdruck (19)
tiir P,, die nicht eichinvarianten a,,. . Byl « oy und a*or- - g Ay g
vorkommen. Hiezu eiche man die aq,...«;,4,...4; SO, dass sie in
samtlichen Indices symmetrisch werden. Diese spezielle Eichung
1st immer moglich. Es soll somit ein Spinor ca,...q,, g,.. ., gesucht
werden, der (4') gentigt und die Gleichung erfillt:

14
aocl...ocf ﬁl...ﬁf:a’al...af, ﬂl +(z(lﬁ)pa]_ﬁ1 “2 fo '82 'B
o)
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WO @a,...p, in allen 2 f Indices symmetrisch ist. Es soll somit die
Relation gelten

o Bron
1 azou-uaf Bu.. . By al 2 poh B az oty B By (15)
(@) (8)

>\ bedeutet hier wieder die in den Indices («;..%;) und (B;...8;)
) (B)
symmetrisierte Summe. (15) stellt ein System von 2 f —1 linear

unabhingigen linearen Differentialgleichungen dar, aus denen die
2 f—1 unabhingigen Komponenten von ¢,..., ;. 4...p,, bestimmt
werden konnen. Durch (15) ist die Eichung vollstdndig festgelegt.

Die Nebenbedingung (2) nimmt bei solcher Eichung die
Gestalt an:

afa,,, =0. (16)

Die Gleichungen (6) erhalten die Form:

Oad'u... o Oa’a . - _—
diag, + 5t =1bf, ;—dla,, + 0; =1bg,.
Somit gelten die Gleichungen
oa,,. . 2 _
—5 = (b b )
+ o by 17
B (5 ) A

_ 2\/—tort
thl...a2f: (T) ()tf—1bu1...a2f'
Der Drehimpuls nimmt die Gestalt an

de{a*“l o (2,5 A3+ 25,5 40) Aoy .y, + Qo .y, (T, 583

2f g+ -
+ midd‘i)a*al' . .Otgf —I—- 2f(a;l;at2. “ -ag_f ald2- N -agf _I_ai‘uz- . -dzfa

g - « .azf
. * .
— Gg- - pf — axog-. - -
aﬂaz...azf a}_ 7 a?-ouz...cxzf 123 f)}

Die Operation &, ad;’—i—mudz ist eine Differentiation nach dem

Azimut um die Achse (u4). Man kann deshalb durch eine partielle
Integration P,, auf die Form bringen

P o= ~/dV {d*“l' T ef (5;21%. . agg) TR azf((s:ld“l- - “23‘)} - (19)

Wir zerlegen jetzt die speziell geeichten Felder in ,,monochro-
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matische Bestandteile, a(w,z), welche durch folgende Glei-
chungen definiert sind:

1 - sl x—zx’ -
a(w,a*c):fa(k) -—z(k:v)dQ_ fd333’ sin w*lw ,’w ' a(mf)

2 72 |z —T'|
dabe1 1st

a (k)= (25‘5 ;[ [a@)e®Pwdodo; [k = o

a(z)= fwgdwa(m w); da(Z,w)+ow*a(Z,w)=0. (20)

Fir diese ,,monochromatischen* Felder kann man die speziell
geeichten Feldgrossen mittelst der Formeln (16) und (17) durch
B;,... w, U0d B, ., bzw. deren erste zeitliche Ableitungen aus-
driicken, je nachdem f gerade oder ungerade ist. Die Fallunter-
scheidung nach der Paritdat von f ist auch fir die Vertauschungs-

relationen (V.R.) der Bfl_ .z, 10 denen die Zeiten ¢, ¢’ gleichgesetzt
sind, notig. Hier bleiben ndmlich rechts nur die Terme stehen,
die eine ungerade Anzahl Ableitungen der D-Funktion nach der
Zeit enthalten; und da 1m ganzen f Ableitungen vorkommen,
so ist die Zahl der raumlichen Ableitungen gerade oder ungerade,
je nachdem f ungerade ist oder gerade. Die raumlichen Ableitungen
haben nun verschiedenes Vorzeichen in den V. R. fiir B* und
fir B-, was sich aber nur bei ungerader Anzahl von rédumlichen
Ableitungen #ussert. Hs treten daher in den V.R. Vorzeichen-
unterschiede auf, je nachdem f gerade oder ungerade ist.

f gerade

+ —
w (Bal. . '0‘2!' (w) +B111. . .Clzf (w))

. N
Bal. cedgy (CU) = E_ (2 w)f (a’al. ce gy —_w__2da1 Qag Oy - .ocgf)

- 1 1 :
B“l' .- gy = E (2 w)f (a’al. . azf_f"_a;é_dal Qag Oy -« uzf)' - (21)

Den Drehimpuls schreiben wir wie folgt:
P#1=/dew2dwv?a—)—?fw’2dw' ‘(B+ %1+ a2f((x) QL')

o B_*al. Y (CU,CL‘ ) 5,uA Bl & ¢ B ((U 3 (E)—'(B+ Gy .- Oy ((1), (L')
ofi B—*ocl. gy (w, 33)) 6:; gy . . oy (CU’, SC)} . (22)
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Die Vertauschungsrelationen fiir B+* (w), B* (w) und B+*(w) findet
‘man gemiss (14) falls man t =t setzt

[B :l:*ocl. ‘o Ggy (60, ﬂ)), B-:é i Tay (d)’, .’B')]

i I N 0 (0—o')
BRI .
2n! (722"0)(12,-) % 2f—2n—1)! (2 n+1)' 272 w?
. (__ wZ)“ O% v %2 a1 d*2n+2. .« gd*2f — 2z l
o 2l T2n+2 2 Ia;——$’|

e @)
[B:I: oL azf( T), BTJ. fzf (o, ‘/E’)}

= 1 0 (w—w)
2 2'2)(2(2]‘ —2n)! 2n)! 2a2w?

E- >,
(@) 2 dznl - - g2 o w_lw = |
T @We 2a+l Tof w-lm _g;".

Damit kann man die Vertauschung [P,;, B*(w)] ausrechnen.
Man hat dabei die Gleichungen (20) und (21) zu beniitzen.

Da 6% mit den Differentiationen d? vertauschbar ist, findet

unv

man Ielcht |
[P, B, (@)= 043 B oy, (). (18)
f ungerade

Anstelle von (21), (22) und (28) treten die folgenden Glei-
chungen: |

AL

oy . .. apf (w) = E W (Bal. . .azf(w) +Ba—1 . -azf(w))
i 1 o ’
Bu.copy (@) = = 20 (... gy + 2, Gy ) e (217)
- 1 :
Boy oy (0) = = QY ™ (g oy, — B, By )

Poim [V [ s [ ot (B,

_}_B‘ a. .- ogp ((D, T ) 61# dy. - agy (a) g .’,B) (22’)

L sz . ;
I 5§(B+*a1. - Y (w’w)'*‘B_*'“l' . .azf(a),ﬂﬁ))é:‘u aal, . 'a2_f(m’, :L‘)}-
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[B:I:*ocl. ce Oy (C!), $), Bj; ey (CU’, :Bl)] )
& =3 0 (0—a)
T (2f):§0% ;”(2 F—2n—1)! @n+1)! 2 2% 0?

3 > i

‘(—ow?)” 0% ... §%2nt1 §%2nte. .. §%r S @ \:B—:E l
1 T2n+l T2ndte Taf w ia _E'I

. . (23")

[B:t* Oy gy (C!), 3,)) Bi

‘I.'l . Tzf (w’ w’)

_ ; é (0—a)
B (2 22;(2 @f—2m)! (2n)! 22 w?

)
.____(w2)n 5:1... a“znd“2n+1...d¢2f sin wlm & ]
1

Tom  T2ntl Tay mIE“E'I )

Aus diesen Gleichungen folgt nun wieder die Gleichung (13)

1P, By oy, (0)]= 03, Bis. . o, (00). (13)

Die analogen Rechnungen lassen sich auch fiir halbzahligen Spin
f = m + % durchfiihren. _
Wir gehen aus von den Gleichungen

+i...d A M .

D; .0 #;in = 0; pthb Y ’;Li 0 (24)

b* und b~ sind wieder symmetrische Spmoren, die hier aber eine

ungerade Anzahl Indices haben. Bei Spiegelungen wird b+ mit b~

vertauscht. Die Gleichungen (24) lassen sich durch Variation
aus der Lagrangefunktion

(b i Py O a0
Lpe Aty AL o . 3 SATAs 1 Malen |
by ip*ﬁ%f"f-k% iy 0 ""H%p bl
R LA A @)

herleiten, falls man noch die Glelchungen

moy A d Y T P S,
10 #1..-u;i§:0; Pub Wl =0 (26)
als Nebenbedingungen hinzufiigt. Aus den Gleichungen (24)
folgt, dass bt und b~ der Wellengleichung zweiter Ordnung gentigen.
Wieder folgt die Existenz einer Eichgruppe, indem sich die La-
grangefunktion bei der Transformation

+ 1. Z.f_|_%. “Fir da-- 1f+%. L 11 +Az---i'f_{_%.
bﬂl L T b Hilfiz...tp_1 (ﬂ%@) ﬂl R e [

i F.z lf_% +iiie... /'lj_%. 4+ A —de--. lf—%.

b R S b My fg . . -M;H—%, (”,,;)Z(‘ji) oy Ha..-Ufi L

@)
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nur um ein vollstdndiges Differential &ndert. C* und C- geniigen
den Gleichungen

P o I Thy p—fg. e
Py CT 0 =05 pPhehe =0

und sind in punktierten und unpunktierten Indices symmetrisch.
Die durch (8) definierten Integrale: Energie, Impuls und Dreh-
impuls sind wiederum eichinvariant. Weiter existieren die eich-

invarianten Feldgrossen B+*f--- und Bys...:

Btabr —peptle bl s Brp, = PaPop.. V70 @8)
pot_B—H:}...:O, pzx'&B;—ﬁ'” =0.

In bloss drehinvarianter Schreibweise, bei der die Zeitkoordinate
vor dem Raume ausgezeichnet ist, kann man durch eine spezielle
Eichung erreichen, dass die Grossen bt und b~ in allen Indices
symmetrisch werden. Bei dieser speziellen Eichung lassen sich
b* und b~ wieder durch die eichinvarianten Bt und B~ ausdriicken,
und zwar gilt

. o .
i gy — 0, b7y tgy =05 D gy A8 By gy = 0 l
2 \m om (29)
=- S _ | = =+ _4_1
Bdl--~d2f_ ( ’if ) dtm bal...(xzf (m_i 2)' [

Man kann die Gréssen bII---azf und b, .. 4, durch Differentiation
aus Potentialen herleiten:

(30)

e . .7+
dﬂ1a9m2---M2‘f+a€x1...a2f—%ba1.--d2f }

e . :
_dalagaz. Ogy +a’a1. Celgp ’Lbal. coogpt

Dabei hat as,....,, neben der Wellengleichung 2. Ordnung noch
die Nebenbedingung

do %2 Ooy g v gy = 0 | (81)

zu erfilllen. Fiir die Losung der Feldgleichungen ist es sehr bequem,
diese Potentiale aq,... x, einzufithren, da hiedurch bel ganzem wie
bei halbganzem Spin dasselbe Verfahren anwendbar wird. Die
Gleichungen (30) sind allerdings nicht Lorentzinvariant, was aber
fiir unsere Zwecke gleichgiiltig ist. Genau so wie b* und b~ lassen
sich auch die @,...4,, durch die eichinvarianten Gréssen B* und
B~ bzw. deren erste Ableitungen nach der Zeit ausdriicken.
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Der nach der Vorschrift (8) gebildete Drehimpuls hat bei der
speziellen Eichung die Gestalt

1
Pru=~ [aVEr*a o (2, d; + 3,8 b7

1 ..a2f

+2f(b:*a2"'a2fbj°‘2"'“2f+b§*a2 acsz':m2 a2f)
+b oy (AT, dY) by oy (82)
+2f (b e mar by, +by 0t b, ey )}

=—?:—de {b+*m1"'a2f (tsrub;;azf)
_li_b—*al--'%f (6:”b;1...a2f)}' J

Falls wir wieder die durch (20) definierten monochromatischen
Komponenten einfithren, kénnen wir die b+ und b~ durch die
eichinvarianten B+ und B- ausdriicken. Wieder hat man eine
Fallunterscheidung zu machen, je nachdem m = f—} gerade
oder ungerade ist.

m jgr_ade
' = m =+
1 _ 1
P,_”=devfw2dw 2o {B+*a1...0€2f(w, x) (6:Hb:1...a2f(fl}))

+ B %o oy ( (azpbm1 m(m))}

die V. R. lauten fiir t=1¢

[Bj:*al...cr.gf(w, w),B;b.”Tnf (Q)” x')]-i- |
1 1=1 0 (0—w)

(@ vz(%;(zf 2n—1)! 2 n+1)! 2 a%w?

(38)

—

sin |z —'|

. (__ wz)n o%... 6“2 ntl %2 nt2. - d%er -
1 T2nt1 Tz pte2 T2f Iw —zc [

Dabe1 bedeutet '
[a, b]*=[ab+ ba]

Man verifiziert wieder leicht, dass die Gleichung (13) gilt:

: * Dt
’l’ [Pyi.s --azf] = 6#1Bul-.-a2f'
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m ungerade.

Hier gilt
2 . | g
+ N m—1 3+ . Bt - -
Bal...azf_ 7 (20)) b°¢1---°¢2f’ bocl...azf“_ ?,(2 w)m,{.lBal...oczf‘

Demnach kommt im Drehimpuls B+* und B-* vor. Deshalb
benodtigen wir hier die folgenden V. R.

'*:I:a...ocz gl r 1t
[B ™ f(w,:l:) B,1 R (8 z')]

0 (w—a)
1222 (2f—2n)! (2 n)! 2% w? L - (84)

Nis@ @

. (__wz)n 52 coo 0% dOnt1. .. J%2f

Tn Tl Ty arﬁ—-b?']

sin | —Z’|

Damit bestitigt man wieder die Giiltigkeit der Gleichung (13).

3. Losung der Wellengleichungen durch bei Drehungen irreduzible
Funktionen.

Wir haben gezeigt, dass der Drehimpuls in der ¢-Zahl-Theorie
gleich dem Operator der Infinitesimalen Drehungen der eich-
mvarianten Grossen ist. Wir miissen jetzt zeigen, dass die bei
Drehungen irreduziblen, eichinvarianten Losungen der Feld-
gleichungen in unserem Falle sich stets nach einer Darstellung &
der Drehgruppe mit § > f transformieren.

Wir betrachten Lésungen der Gleichung

Ao+ w2e=0. (35)
Die spezielle Kugelwelle |
sin @ r

@0 = - (36)
r

15t elne Lﬁsung von (35). Nun bilde man

(87)

o= P
(2l oy Ay - - - tx2z_1a21 990_ oy .2y

> bedeutet die Summe aller Permutationen der «, Es gibt,
(xz)
da @! in allen Tndices symmetrlsch ist, 21 + 1 linear unabhéngige

Funktionen @' die sich bei Drehungen nach &#; transfor-

al...a2l)
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mieren. Die @' sind daher Linearkombinationen der (21 4+ 1)
Funktionen

1 .
—= Y (cos #) &™ 7, , (wr) mit | >m>—1.

\/,r l+3
Die Funktionen ! erfiillen neben der Gleichung (35) noch folgende
Identitat
2 (38)
d @I _ ¢I+1 w ? -1
06 T oy .0y 0oy +(2 l-"l) (2 l-—l)‘jgale cxgo'q) <09

Dies folgt aus den Gleichungen (35) und (36). Als Folge von
(38) gelten noch die Relationen

21

i =
P 2
aﬁotl :le_z— w 2l__1 Qal...agz,z

a*f @' (39)

d"* D, .. 4, = T l—~

Z o B (40)
Mit den Funktionen (bir . .ay, WOllen wir nun Linearkombinationen
bilden, welche Losungen der Gleichungen (16) bzw. (31) sind.
Wir machen den Ansatz:

(.
a;l) a2f (w)

f+i—n
ATeY 2) AL Pt P () By ey (1)

Ail___a“ (w) 1st ein symmetrischer, rdumlich konstanter Spinor
von Rang 29, der der Gleichung

dz . .
Al () + oA

dtz al...cegj, o ..CC2J‘(

w)=10

gentigt. 7 ist ganz oder halbganz, je nachdem f ganz oder halb-
ganz ist; denn f + § — » muss stets ganz sein. Die Summe tber n
kann sich von n = 0 bis n = 2 f erstrecken, falls § > f; sonst geht
sie nur von 0 bis 29 weil n die Anzahl der Indices «; ist, welche
am Spinor 47 auftreten. Die Koeffizienten ¢, miissen so bestimmt
werden, dass die Gleichung

de’a =0 (42)

Qo dg. .. Aoy

erfillt wird. Die Losungen sind deshalb, wie wir sehen werden,
im wesentlichen durch die 4; . , (@) bestimmt.
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- Bestimmung der Koeffizienten ¢, : Wir setzen unseren Ansatz
(41) in (42) ein und erhalten

deaa"”’aa 20
— ﬁnJl_ .82 f+? —n
va(gf n) 12{7“ L I)Aewa Y D, s (43)
+2n(2f—n) Al Putt--Prjgec @ftimn
LERRL N | Fap41-++P25
+@f—n) @f—n—1) 4], Sesr-Faidec@ltion 4

In (43) haben wir schon eine kleine Umformung vorgenommen.
Wir haben ndmlich die (Z; in (41) aufgeteilt in 3 Teilsummen:

In der ersten ist die Anzahl der Indices «;, die an A7 auftreten
n — 2, In der zweiten n — 1 und in der dritten n. Die Zahlfaktoren
kommen davon her, dass in (41) Z eine symmetrische Summe mit

(2/)! Summanden bedeuten, in (43) dagegen nur eine solche mit
(2f—2)! Summanden. Wir kénnen nun die Differentiationen
ausfithren, indem wir die Formeln (38), (39) und (40) beniitzen.
Dabel treten Terme auf, die ¢,4,, €,5, bzw. 65 und 6% enthalten.

Da Ail...agj eln symmetrischer Spinor ist, so geben diese Terme
null. Falls man dies beachtet, findet man '

de’ o’

QG dAg. . . Upy | |
Cn . c v Ba; m—n—+1
:? WZ){ (nﬁl)Aig--.anQﬁnH ﬁj@‘-"’%ﬂ"-ﬁz,
2f—n—1)2f—n) |
2 2m—mn) @m—mn+1
e 2m— 2n+1)(2m 2n—1) 2m—mn) @m—n+1)
.Af _ ﬁnﬂ...ﬁ”@m—n——l (44)

Oge - gy Cpyz- B2 ”

Wir haben hier zur Abkiirzung f + j = m gesetzt.

Damit (44) verschwindet, muss sich @™+l das durch Dif-
ferenzieren aus @™~* entstanden ist, wegheben gegen ®@™-"+1 das
aus @mn+2 entstanden ist. Daraus folgt erstens, dass die Koeffi-
zienten ¢, mit geradem = unabhingig sind von denjenigen mit
ungeradem n. Weiter ist jedoch die obere und die untere Grenze
der Summation hierdurch bestimmt. An der unteren Grenze der
Summe (44) muss der erste Term in der geschwungenen Klammer
fir sich allein verschwinden. Also beginnt die Summe mit n=0
oder n=1. An der oberen Grenze muss der zweite Term in der
geschwungenen Klammer verschwinden. Dies 1st nur moglich, falls

=1 (45)
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angenommen wird, da dann die Summe sich bis n = 2 f oder bis

n=2f—1 erstreckt, je nachdem man L&sungen betrachtet, in

denen nur gerade oder nur ungerade n von null verschieden sind.
Fir 0 =n =2f muss gelten

s (2m—n) 2 m—n+tl) p
2m—2n+1) @m—2n—1) "

Die Rekursionsformel ergibt folgende Losung fiir die ¢,, falls
¢o = 1 gesetzt wird

Cn+2 -

(46)

m! (2m—2 n)! 27
2m—mn)! (m—mn)!’ 0<n<2f. (47)

Da Realteill und Imaginirteil der ¢, voneinander unabhingig
sind, so gibt es zu einem vorgegebenen Ail_“a“, falls 9 > f ist,
zwel voneinander linear unabhingige Losungen, von denen eine
nur Funktionen @' mit geradem [, die andere nur solche mit un-
geradem [ enthalt. Diese beiden Typen von Lésungen entsprechen

in der Maxwell’schen Theorie, wo f= 1 ist, dem Strahlungsfeld
eines elektrischen und eines magnetischen Multipols. Aus den

! .oy, (@) erhdlt man gemiss den Gleichungen (21), (29), (80)

Cni1= (:*3 iw)ﬂh1

% -
eichinvariante Grossen. Zu vorgegebenem j gibt es zwel Scharen
von (27+41) linear unabhingigen Ldsungen, von denen sich je
27 + 1 nach der Darstellung der Drehgruppe &; untereinander
transformieren. Das wesentliche Ergebnis ist hierbei dieses, dass

9 >f sein muss, damit die aj x, (@) und damit die eichinvarian-
ten Grossen nicht verschwmden

Zum Schluss méchte ich Herrn Prof. PAULI fiir viele hilf-

-~ -reiche Diskussionen danken.

Zirich, Physikalisches Institut der E.T. H.
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