
Zeitschrift: Helvetica Physica Acta

Band: 12 (1939)

Heft: VI

Artikel: Masse und Energie in der speziellen Relativitätstheorie

Autor: Lämmel, R.

DOI: https://doi.org/10.5169/seals-110951

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-110951
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Masse und Energie in der speziellen Relativitätstheorie
von R. Lämmel.

(26. VIII. 39.)

In der vorliegenden Arbeit wird die von der speziellen Relativitätstheorie
geforderte Vermehrung der trägen Masse infolge ihrer Geschwindigkeit aus elementaren

Betrachtungen geometrischer und mechanischer Art abgeleitet. Zum Unterschied

von den bisher bekannten Ableitungen dieser Art wird hier von der Voraussetzung

ausgegangen, dass die Weltlinie des Schwerpunktes zweier Massenpunkte
dieselbe objektive Bedeutung hat wie die Weltlinie eines Massenpunktes, und dass
daher für erstere dasselbe Additionstheorem der Geschwindigkeiten Geltung haben
müsse wie für letztere1).

Der Grundgedanke der speziellen Relativitätstheorie Einsteins
aus dem Jahr 1905 ist der : Raum und Zeit sind nicht voneinander
unabhängig und für sich bestehend, sondern sie hängen derart
miteinander zusammen, dass die Geschwindigkeit der Ausbreitung
des Lichtes für alle relativ zueinander in Bewegung befindliche
Beobachter gleich gross wird. Die Unveränderlichkeit der
Lichtgeschwindigkeit ist zugleich die experimentell erwiesene Voraussetzung

für ein neues mechanisches Begriffssystem. Dieses hat sich
aber nicht unmittelbar entwickelt, sondern es entstand auf einem
Umweg, nämlich aus Betrachtungen über elektrodynamische
Vorgänge.

Lewis und Tolman2) haben schon 1909 versucht, einen Weg
zu finden, der die mechanischen Folgerungen aus jener Voraussetzung

auf einem rein mechanischen Weg ergibt. Sie benützten
dabei das Einsteinsche Additionstheorem sowie die Erhaltungssätze
für Impuls und kinetische Energie beim elastischen Stoss.

Man kann aber aus elementaren Betrachtungen mechanischer
und geometrischer Art sowohl die Vermehrung der trägen Masse

infolge ihrer Geschwindigkeit, als auch unabhängig davon das
Additionstheorem der Geschwindigkeiten herleiten, ohne die
Erhaltungssätze zu benützen, wenn man den Schwerpunkt einführt.

*) Die Verantwortung für ihre Mitteilung tragen die Autoren selber.
2) G. N. Lewis und C. Tolman Phil. Mag. 18 (1909). Eine ähnliche

Ableitung stammt von P. Langevin, ist aber nicht veröffentlicht worden. Herr
A. Einstein teilte sie mir mit. Langevin verwendet eine Funktionalgleichung.
Vrgl. hierzu das Zitat bei A. Einstein, Vier Vorlesungen über Rei. Th.,
Braunschweig 1922, Seite 31.
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Wir gehen vom gravitationslosen Stoss aus, der für unser
mechanisches Denken immer noch eine Art Ur-Phänomen darstellt,
obgleich der makroskopische Stossvorgang eine Integralerscheinung
vorstellt, deren Differentialphänomen (Molekülstösse und Atom-
Stösse) gänzlich ausserhalb unserer täglichen Erfahrung liegt. Wir
werden durch ein Gedankenexperiment mit ideal elastischen
Kugeln nur zu einer provisorischen Orientierung gelangen können, da
die wirkliche Materie wegen der an den Stossflächen auftretenden
Molekularkräfte sich anders verhält als eine ideale kompakte
elastische Kugel. Mit dieser Reservation wollen wir uns einen
vollkommen elastischen idealen Stoss zweier gleich grosser Massen
vorstellen, der unserer Betrachtung zugrunde gelegt werde.

In der Newtonschen Mechanik spielt der Schwerpunkt zwischen
Massen eine wichtige Rolle. Er ist so etwas wie ein Repräsentant
der beiden Massen. Haben die beiden Massen eine Relativbewegung
zueinander, dann bewegt sich auch ihr Schwerpunkt. Es ist in
unserem Gedankenexperiment nur die Trägheit, nicht die Gravitation

im Spiel.
Nimmt man an, dass die Masse A sich mit der Geschwindigkeit

p nach rechts gegen die Masse B zu bewegt, die selber in Ruhe bleiben

möge, dann bewegt sich bei gleich grossen Massen _ und _
der in der Mitte von A—B befindliche Schwerpunkt S mit der
Geschwindigkeit y2 p nach rechts. So erscheint die Bewegung
von A und von S in der klassischen Physik.

Führen wir nun den Grundgedanken der Einsteinschen
Relativitätstheorie, die Konstanz der Lichtgeschwindigkeit, in die
Betrachtung ein. Wir nehmen an, dass der Schwerpunkt der
beiden bewegten Körper A und B, S, sein eigenes Koordinatensystem

mit sich nimmt. Wählen wir das Koordinatensystem derart,

dass die horizontale Achse x den Weg darstellt und weiterhin
die drei räumlichen Koordinaten überhaupt symbolisiert, die zu
einer linearen Welt zusammengelegt sind. Die senkrechte Achse u
messe die mit der Lichtgeschwindigkeit multiplizierte Zeit, also c-1.

Fig. 1 zeigt uns diese Verhältnisse in der Gedankenwelt der
Newtonschen Mechanik. Die Weltlinie von A ist die neue Raum-Achse.
Die alte ic-Achse ist auch die neue a;-Achse. Die Zeitkoordinate
bleibt unverändert bestehen, u' u.

Nach Annahme des Einsteinschen Grundsatzes kann diese

Figur nicht mehr aufrecht erhalten werden. Mit einer Veränderung
der M-Achse muss zugleich auch eine Veränderung der rr-Achse
verbunden sein derart, dass die Gleichung für den von A
ausgehenden Lichtstrahl in beiden Systemen dieselbe Geschwindigkeit

c ergibt. Das ist erfüllt (Fig. 2), wenn die neue «-Achse u'
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mit der alten w-Achse denselben Winkel a> bildet, wie die neu zu
errichtende «-Achse, _ mit der alten a;-Achse einschliesst. Denn
nun lautet die Gleichung der Medianen in beiden Systemen u x,
resp. u' _', oder x c ¦ t und x' c • f.

In der Newtonschen Mechanik bewegt sich der Schwerpunkt S
bei ruhendem B und bewegtem A derart nach rechts, dass er immer
die Mitte von A—B bildet und die halbe Geschwindigkeit von _

p

M»
ct •&I

&>¦S"

»
Ra Ach

Masse A B ruht;

S B

Fig. 1.

Der Stoss-klassisch.
Masse B 1 Distanz AB 1 A bewegt sich,

S ist die Mitte von A—B;
in P erfolgt der Stoss, dessen Ablauf nicht dargestellt ist.

Die Geschwindigkeit des Schwerpunkts ist v \ p.
M... .eine beliebige Station des beweglichen Körpers A im Moment u im Raum-
punkt x, der im Schwerpunktsystem die Koordinaten x' und u' _ u hat. In
der klassischen Mechanik bedingt die Transformation der räumlichen Koordinaten

keine Transformation der Zeit.

hat. Wir nehmen nun an, dass für den Schwerpunkt die gleichen
Überlegungen gelten, wenn wir die Vorstellungen der Relativitätstheorie

zur Anwendung bringen, wie für eine realen materiellen
Punkt. Wir legen durch den Schwerpunkt zweier gleich grosser
Massen _ 1 und _ 1, also durch den Punkt S der Fig. 2 eine
Weltlinie SS'P, die mit der Weltlinie BP von _ den Winkel co

bildet. Durch A ziehen wir die neue Zeitachse parallel zu SP
und ferner die neue X-Achse x' derart, dass den (nicht gezeichneten)
Medianen in beiden Systemen die Geschwindigkeit c zukommt.
Es muss also der Winkel BAB' gleich dem Winkel BPS sein.
Ein solcher Winkel existiert für jede Unterlichtgeschwindigkeit.

33
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Die Tangente v dieses Winkels gibt uns die Geschwindigkeit
des Schwerpunkts relativ zu _ an. Im bewegten System, das mit
dem Schwerpunkt geht, soll nun dieser Schwerpunkt auch immer
die Mitte von A und B sein. Das stellen wir als Postulat auf. Für
einen mit dem Schwerpunkt gehenden Beobachter sollen also die
beiden Massen A und B gleich bleiben. Ein Blick auf Fig. 2 zeigt,
dass dann für einen nicht mitbewegten Beobachter, der z. B. mit
B ruht, der Punkt S, durch den die Weltlinie des Schwerpunkts
geht, nicht mehr die Mitte von A—B sein kann. Wenn also eine
der beiden gleich grossen Massen A und B bewegt ist, so erscheint
von A wie von B aus der Schwerpunkt nicht in der Mitte von AB.
Das ist eine fundamentale Erkenntnis.

Man kann den Betrag der Abweichung des Punktes S von der
Mitte von A—B leicht trigonometrisch finden. Dazu rechnen wir
zunächst den Wert von v aus. Bei einer gegebenen Situation
A—B—P gibt es immer einen Winkel co, der die Bedingung erfüllt,
dass auf ihm S' genau die Mitte von A—B' bildet. Im Dreieck
AB'P ist PS' die Schwerlinie, sie teilt den Winkel durch den sie

läuft, derart, dass sich die Sinusse dieser Teilwinkel umgekehrt wie
die anliegenden Seiten verhalten. Es ist also

sin (co' — m) lip — v

sin co 1/p • Vi + P2

p tg co' V tg m

Daraus folgt:
sin co' cos co — cos co' sin co 1 — pv

sin co -\/l + p2

1 — pvsin co' - cot co — cos co'

Vl+P2
Drückt man die Winkelfunktionen in p und v aus, so wird

schliesslich

p v2 — 2v + p 0.

Daraus ergibt sich der Wert von v:

v _ 1 • (i - vr-^"2) • (i)
V

Entwickelt man diesen Ausdruck, so ergibt eine leichte Umformung
für kleine p folgenden Wert:

" Vz V + Vs P3 —i- • • •
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Fig. 2.

Der Stoss-relativistisch. Konstruktion der Schwerpunktsgeschwindigkeit v.

1) im System B: Geschwindigkeit von A p

» S o

im System iS": „ „ 4 f.
2) Damit 4/S" Ä_' sei, müssen die Massen A und S das Verhältnis

1 : Vi - P2 zeigen.6 8' ist Mitte für A'-B'
8 ist nicht Mitte für A—B

3) Die Nummern (@) geben die Reihenfolge an, in der die Bögen zu
konstruieren sind, um zur Geschwindigkeit

V — (1—-y/1- p2)

zu gelangen. Es wird ® von der Mitte von BP aus, © von B aus, © von P aus

konstruiert. Die Schwerpunktsgeschwindigkeit ist approximativ für kleine p

v \ p + ^ p3

4) Jl ist eine beliebige Station der Bewegung von A.
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Man sieht nun, dass v nicht mehr die Hälfte von p ist, sondern
etwas grösser. Die Geschwindigkeiten v und p sind in diesen
Formeln als Bruchteile der Lichtgeschwindigkeit zu verstehen. Bewegt
sich ein Körper gegen einen anderen von gleicher Masse mit der
Geschwindigkeit p 0,8, so nähert sich der Schwerpunkt A—B
dem Teilchen B mit der Geschwindigkeit v= 0,4+ 1/s ¦ 0,512
0,464, wobei die Lichtgeschwindigkeit c die Einheit ist.

In Fig. 2 ist AS' S'B, daher ist AS kleiner als SB. Wir
suchen nun das Verhältnis dieser beiden Entfernungen. Da SB
BP • tang co ist, so folgt SB v.p. Wir haben die Entfernung
AB 1 gesetzt, daher wird AS=l — v:p und das Verhältnis
hat den Wert

AS 1 — v/p p — v

SB v/p v

Setzen wir hier den Wert von v aus Gleichung (1) ein, so folgt

AS _p-llp-(l-VTYY-7p2
SB ~ 1/p • (1 - Vl^p2)

Dieser Ausdruck lässt sich leicht umformen, und man findet

AS
SB Vl-p2. (2)

Der Schwerpunkt erscheint nach links verschoben. Demnach
ist die Masse A grösser geworden als 1. Der Betrag der
Vergrösserung ergibt sich aus der Bemerkung, dass AS mal der Masse A
gleich sein muss BS mal der Masse _. Wenn beide Massen ruhen,
sind sie beide gleich 1. Bewegt sich A gegen B, so wächst demnach A
auf den Betrag

_' —r___- (Ruhemasse 1) (3)
vi—p2

an. Damit ist eine rein mechanisch-geometrische Herleitung der
Massenformel gegeben. Es handelt sich dabei um die träge Masse.
Von Kräften ist nicht die Rede.

Aus der Fig. 2 ist auch das Additionsgesetz ohne weiteres
abzulesen. Die Geschwindigkeit p' von A relativ zum Schwerpunkt S,
die in der Newtonschen Mechanik y2 p sein muss, findet sich als
das Verhältnis von Weg zur Zeit AS':S'P, wofür man nach dem
Sinussatz der Trigonometrie erhält (Fig. 3) :

AS' sin (co, — co)
p —

S'P sin (90-
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Formt man die Funktionen um und beachtet, dass tg co' p
und tg u v ist, so wird

p — v

1 — pv
(p, v, p' sind in Bruchteilen der Lichtgeschwindigkeiten gegeben.)

P

P' (4)

Kg. 3.

Geometrische Ableitung des Additionstheorems der Geschwindigkeiten.
Geschwindigkeit von S im System B.... v tg co

„ A „ „ „.... p tg m,

A C" / AS'
" Ä " " S p-AAP

Es ist im A AS' P:
st(cox— co) si m1-co co-co coj^-si co

p
co (col + co) co co^- c o co - s i coj • s i co

_ tgCüj-tg co p-v
1 - tg co1 • tg co 1-pv

d. h. das Additionstheorem ist identisch mit dem physikalisch interpretierten
Sinussatz im A AS'P.

Um den Kraftbegriff einzuführen, gehen wir von der
Impulsdefinition aus: wir nennen die zeitliche Ableitung des „Impulses"
mp, den die bewegte Masse m bei der Geschwindigkeit p besitzt,
die in der Richtung von p „wirkende Kraft".

./ mp
V

Es folgt dann:
dJ

Vl — p2

1 dp Kraft. (5)
dt V(l — p2)3 dt

Halten wir an der klassischen Vorstellung fest, dass das Ver
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hältnis zwischen einer wirkenden Kraft und der am Körper
hervorgebrachten Beschleunigung (dpidt) die Masse des bewegten Körpers
sein soll, so folgt hier für diese Masse der Ausdruck

m' TO°
(6)

V(l-P2)3
(m0 die Masse im Ruhezustand.)

Man kann den Unterschied zwischen den Formeln (3) und (6)
so deuten: der aktive Trägheitswert eines bewegten Körpers, der
das „Beharren" auf einer konstanten Geschwindigkeit bedingt,
ist kleiner als der passive Widerstand des gleichen Körpers, der
gegenüber einer Geschwindigkeitsveränderung, das ist also gegenüber

einer Krafteinwirkung, ausgelöst wird.
Dass gegenüber einer senkrecht zur Geschwindigkeit wirkenden

Kraft keine solche zusätzliche Vergrösserung der bewegten Masse

eintritt, kann man folgendermassen einsehen. In erster Annäherung
sind die Bedingungen eines horizontalen Wurfes gegeben, der Körper

bewegt sich in der Richtung seiner Geschwindigkeit im ersten
Moment unbeeinflusst weiter. Die sogenannte transversale Masse
ist also die Masse, die der Körper infolge seiner Geschwindigkeit
hat, gemäss Formel (3).

Das Wesen der mechanischen Arbeit ist Veränderung. Bei der
Berechnung der Arbeit muss also von jener Masse ausgegangen
werden, die gegenüber einer Geschwindigkeitsänderung ins Spiel
kommt, die wir passiv genannt haben, nach Formel (6). Im Übrigen
ist die nachfolgende Formel nicht als die Wiedergabe eines
Naturgesetzes zu verstehen, sondern lediglich als der mathematische
Ausdruck einer willkürlichen zweckmässigen Definition:

Arbeit J Impuls • dp j m' p • dp

Man findet so den Wert

L -___-. (7)
Vi-p2

Die gleiche Grösse ergibt sich, wenn man von der Definition
Arbeit Kraft mal Weg ausgeht und für die Kraft den Betrag
aus der Formel (5) einsetzt:

dpIK-d"f^è ds
V0- — P2)3 dt

-f ___-.p- J_J V0--V2)3 Vi-p2



518 R. Lämmel.

Indem wir die Integrationskonstante gleich Null setzen,
verfügen wir über eine Initialbedingung und geben der Masse eins
den Ruhe-Energiebetrag eins, wie man sieht, wenn p o gesetzt
wird. Entwickeln wir (7) so wird die Energie angenähert

L=l + ip2 + fp*... =1 +i_l + f^....cl c4

Multiplizieren wir beide Seiten mit ra0 • c2 und bezeichnen wir
L ¦ m0- c2 mit E, so ist

E=m0c2+im0v2 + lvi--L-- + ---- (8)
c2

In dieser Formel erscheint die klassische relative kinetische
Energie \ m0 v2 in der in der Mechanik üblichen Weise gemessen,
daher stellt das erste Glied m0 e2 die in erg gemessene Energie der
Masse m0 vor, die ihr ohne Rücksicht auf eine Relativgeschwindigkeit

zukommt. — Da auch in neueren Lehrbüchern1) angegeben ist,
dass sich diese Formeln für die Masse und die Energie nur auf dem
Umweg über die Elektrodynamik finden lassen, so teile ich hier die
elementare Herleitung mit.

x) Z. B. Westphal, Lehrbuch der Physik, Berlin 1937, Seite 535.
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