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Masse und Energie in der speziellen Relativitiitstheorie
von R. Limmel.
(26. VIIL. 39.)

In der vorliegenden Arbeit wird die von der speziellen Relativitatstheorie
geforderte Vermehrung der trigen Masse infolge ihrer Geschwindigkeit aus elemen-
taren Betrachtungen geometrischer und mechanischer Art abgeleitet. Zum Unter-
schied von den bisher bekannten Ableitungen dieser Art wird hier von der Voraus-
setzung ausgegangen, dass die Weltlinie des Schwerpunktes zweier Massenpunkte
dieselbe objektive Bedeutung hat wie die Weltlinie eines Massenpunktes, und dass
daher fir erstere dasselbe Additionstheorem der Geschwmdlgkelten Geltung haben
miisse wie fir letztere?).

Der Grundgedanke der speziellen Relativitétstheorie EINSTEINS
aus dem Jahr 1905 ist der: Raum und Zeit sind nicht voneinander
unabhéngig und fiir sich bestehend, sondern sie hidngen derart
miteinander zusammen, dass die Geschwindigkeit der Ausbreitung
des Lichtes fiir alle relativ zueinander in Bewegung befindliche
Beobachter gleich gross wird. Die Unverdnderlichkeit der Licht-
geschwindigkeit ist zugleich die experimentell erwiesene Voraus-
setzung fir ein neues mechanisches Begriffssystem. Dieses hat sich
aber nicht unmittelbar entwickelt, sondern es entstand auf einem
Umweg, namlich aus Betrachtungen tiber elektrodynamische Vor-
gange. |

Lewis und Torman?) haben schon 1909 versucht, einen Weg
zu finden, der die mechanischen Folgerungen aus jener Voraus-
setzung auf elnem rein mechanischen Weg ergibt. Sie bentitzten
dabel das Einsteinsche Additionstheorem sowie die Erhaltungssétze
fir Impuls und kinetische Energie beim elastischen Stoss.

Man kann aber aus elementaren Betrachtungen mechanischer
und geometrischer Art sowohl die Vermehrung der trigen Masse
infolge ihrer Geschwindigkeit, als auch unabhéngig davon das
Additionstheorem der Geschwindigkeiten herleiten, ohne die Er-
haltungssétze zu beniitzen, wenn man den Schwerpunkt einfiihrt.

1) Die Verantwortung fiir ihre Mitteilung tragen die Autoren selber.

2) (. N. Lewis und C. Torman Phil. Mag. 18 (1909). Eine éhnliche Ab-
leitung stammt von P. LANGEVIN, ist aber nicht veriffentlicht worden. Herr
A. EInsTEIN teilte sie mir mit. LANGEVIN verwendet eine Funktionalgleichung.
Vrgl. hierzu das Zitat bei A. EINsTEIN, Vier Vorlesungen iiber Rel. Th., Braun-
schweig 1922, Seite 31.
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Wir gehen vom gravitationslosen Stoss aus, der fiir unser
méchanisches Denken immer noch eine Art Ur-Phéanomen darstellt,
obgleich der makroskopische Stossvorgang eine Integralerscheinung
vorstellt, deren Differentialphdnomen (Molekiilstosse und Atom-
Stosse) génzlich ausserhalb unserer téglichen Erfahrung liegt. Wir
werden durch ein Gedankenexperiment mit ideal elastischen Ku-
geln nur zu einer provisorischen Orientierung gelangen koénnen, da
die wirkliche Materie wegen der an den Stossflichen auftretenden
Molekularkréafte sich anders verhilt als eine ideale kompakte
elastische Kugel. Mit dieser Reservation wollen wir uns einen voll-
kommen elastischen idealen Stoss zweier gleich grosser Massen vor-
stellen, der unserer Betrachtung zugrunde gelegt werde.

In der Newtonschen Mechanik spielt der Schwerpunkt zwischen
Massen eine wichtige Rolle. Er ist so etwas wie ein Représentant
der beiden Massen. Haben die beiden Massen eine Relativbewegung
zueinander, dann bewegt sich auch ihr Schwerpunkt. Es ist in
unserem Gedankenexperiment nur die Tragheit, nicht die Gravi-
tation 1m Spiel.

Nimmt man an, dass die Masse 4 sich mit der Geschwindigkeit
p nach rechts gegen die Masse B zu bewegt, die selber in Ruhe blei-
ben mige, dann bewegt sich bei gleich grossen Massen 4 und B
der in der Mitte von 4—B befindliche Schwerpunkt S mit der
Geschwindigkeit 1% p nach rechts. So erscheint die Bewegung
von 4 und von S in der klassischen Physik.

Fihren wir nun den Grundgedanken der Einsteinschen Re-
lativitatstheorie, die Konstanz der Lichtgeschwindigkeit, in die
Betrachtung ein. Wir nehmen an, dass der Schwerpunkt der
beiden bewegten Korper 4 und B, S, sein eigenes Koordinaten-
system mit sich nimmt. Wihlen wir das Koordinatensystem der-
art, dass die horizontale Achse x den Weg darstellt und weiterhin
die drei rdumlichen Koordinaten iiberhaupt symbolisiert, die zu
einer linearen Welt zusammengelegt sind. Die senkrechte Achse u
messe die mit der Lichtgeschwindigkeit multiplizierte Zeit, also ¢-t.
Fig. 1 zeigt uns diese Verhiltnisse in der Gedankenwelt der New-
tonschen Mechanik. Die Weltlinie von A4 ist die neue Raum-Achse.
Die alte z-Achse ist auch die neue z-Achse. Die Zeitkoordinate
bleibt unverdndert bestehen, u' = w.

Nach Annahme des Einsteinschen Grundsatzes kann diese
Figur nicht mehr aufrecht erhalten werden. Mit einer Verinderung
der u-Achse muss zugleich auch eine Veréinderung der z-Achse
verbunden sein derart, dass die Gleichung fiir den von A aus-
gehenden Lichtstrahl in beiden Systemen dieselbe Geschwindig-
keit ¢ ergibt. Das ist erfiillt (Fig.2), wenn die neue #-Achse w’



Masse und Energie in der speziellen Relativitits-Theorie. 513

mit der alten u-Achse denselben Winkel o bildet, wie die neu zu
errichtende z-Achse, ', mit der alten z-Achse einschliesst. Denn
nun lautet die Gleichung der Medianen in beiden Systemen u = z,
resp. w' = &', oder £ =c¢-tund ' =¢- 1.

In der Newtonschen Mechanik bewegt sich der Schwerpunkt S
bei ruhendem B und bewegtem A4 derart nach rechts, dass er immer
die Mitte von 4—B bildet und die halbe Geschwindigkeit von 4
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Fig. 1.
Der Stoss-klassisch.
Masse A = Masse B=1 Distanz AB=1 A bewegt sich, B ruht;
S ist die Mitte von A—B;

in P erfolgt der Stoss, dessen Ablauf nicht dargestellt ist.
Die Geschwindigkeit des Schwerpunkts ist v = { p.
M....eine beliebige Station des beweglichen Kérpers 4 im Moment % im Raum-
punkt z, der im Schwerpunktsystem die Koordinaten z* und %’ =« hat. In
der klassischen Mechanik bedingt die Transformation der rdumlichen Koordinaten
keine Transformation der Zeit.

hat. Wir nehmen nun an, dass fiir den Schwerpunkt die gleichen
Uberlegungen gelten, wenn wir die Vorstellungen der Relativitits-
theorie zur Anwendung bringen, wie fiir eine realen materiellen
Punkt. Wir legen durch den Schwerpunkt zweier gleich grosser
Massen 4 =1 und B = 1, also durch den Punkt S der Fig. 2 eine
Weltlinie SS'P, die mit der Weltlinie BP von B den Winkel w
bildet. Durch A ziehen wir die neue Zeitachse parallel zu SP
und ferner die neue X-Achse z’ derart, dass den (nicht gezeichneten)
Medianen in beiden Systemen die Geschwindigkeit ¢ zukommt.
Es muss also der Winkel BAB’ gleich dem Winkel BPS sein.
Ein solcher Winkel existiert fiir jede Unterlichtgeschwindigkeit.

33
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Die Tangente v dieses Winkels gibt uns die Geschwindigkeit
des Schwerpunkts relativ zu B an. Im bewegten System, das mit
dem Schwerpunkt geht, soll nun dieser Schwerpunkt auch immer
die Mitte von 4 und B sein. Das stellen wir als Postulat auf. Fir
einen mit dem Schwerpunkt gehenden Beobachter sollen also die
beiden Massen 4 und B gleich bleiben. Ein Blick auf Fig. 2 zeigt,
dass dann fiir einen nicht mitbewegten Beobachter, der z. B. mit
B ruht, der Punkt S, durch den die Weltlinie des Schwerpunkts
geht, nicht mehr die Mitte von 4—B sein kann. Wenn also eine
der beiden gleich grossen Massen 4 und B bewegt 1st, so erscheint
von A wie von B aus der Schwerpunkt nicht in der Mitte von AB.
Das 1st eine fundamentale Erkenntnis.

Man kann den Betrag der Abweichung des Punktes S von der
Mitte von A—DB leicht trigonometrisch finden. Dazu rechnen wir
zundchst den Wert von v aus. Bel einer gegebenen Situation
A—B—P gibt es immer einen Winkel o, der die Bedingung erfiillt,
dass auf ithm S’ genau die Mitte von 4—B’ bildet. Im Dreieck
AB’'P ist PS’ die Schwerlinie, sie teilt den Winkel durch den sie
lauft, derart, dass sich die Sinusse dieser Teilwinkel umgekehrt wie
die anliegenden Seiten verhalten. Es ist also

sin (0 —w) 1/p—v
sin o 1p-/1+ p?
p=tg o v=tgw.
Daraus folgt:
sinw cos w —cos @ smow  1-—pv
sin /14 p2
1—opo

simow cotw—cosw = ———1

Vitpt

Driickt man die Winkelfunktionen in p und v aus, so wird
schliesslich
pvi—20v4+p=0.

Daraus ergibt sich der Wert von v:

1 o
== (1 — TP, 1
v » (1 —4/1—p?) (1)

Entwickelt man diesen Ausdruck, so ergibt eine leichte Umformung
fir kleine p folgenden Wert:

v=1op + Y p?— +.
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Der Stoss-relativistisch. Konstruktion der Schwerpunktsgeschwindigkeit = v.

1) im System B: Geschwindigkeit von 4 = p
LRl 2 B = G
im System S7: i . A=

2) Damit AS’ = S’B’ sei, miissen die Massen A und B das Verhéltnis

1: 4/1 —p? zeigen.
VL~ meigen S ist Mitte fiir 4’— B’

S ist nicht Mitte fiir A—B

3) Die Nummern (@) geben die Reihenfolge an, in der die Bégen zu kon-
struieren sind, um zur Geschwindigkeit

V= —;;—(1—\/1— p?)
zu gelangen. Es wird @ von der Mitte von BP aus, @ von B aus, ® von P aus

konstruiert. Die Schwerpunktsgeschwindigkeit ist approximativ fiir kleine p

ve=14p+ 4 Plesiiecs

2

4) M ist eine beliebige Station der Bewegung von 4.
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Man sieht nun, dass v nicht mehr die Hilfte von p ist, sondern
etwas grosser. Die Geschwindigkeiten v und p sind in diesen For-
meln als Bruchteile der Lichtgeschwindigkeit zu verstehen. Bewegt
sich ein Korper gegen einen anderen von gleicher Masse mit der
Geschwindigkeit p = 0,8, so nihert sich der Schwerpunkt A—B
dem Teilchen B mit der Geschwindigkeit v = 0,4+ /30,512 =
0,464, wobe1l die Lichtgeschwindigkeit ¢ die Einheit ist.

In Fig. 2 ist AS" = §8'B, daher ist A8 kleiner als SB. Wir
suchen nun das Verhiltnis dieser beiden Entfernungen. Da SB =
BP - tang o ist, so folgt SB = v:p. Wir haben die Entfernung
AB =1 gesetzt, daher wird 4S=1-—wv:p und das Verhéltnis
hat den Wert

A8 1—o/p p—vo
SB wvp v

Setzen wir hier den Wert von v aus Gleichung (1) ein, so folgt
48 _p—1jp-(1—+v1i—p?
SB p-(1—+/1—p?

Dieser Ausdruck lisst sich leicht umformen, und man findet

A8 :
@—“—"\/1—13- (2)

Der Schwerpunkt erscheint nach links verschoben. Demnach
15t die Masse 4 grosser geworden als = 1. Der Betrag der Ver-
grosserung ergibt sich aus der Bemerkung, dass 4 S mal der Masse 4
gleich sein muss BS mal der Masse B. Wenn beide Massen ruhen,
sind sie beide gleich 1. Bewegt sich 4 gegen B, so wichst demnach 4
auf den Betrag

A’ !

S ViI—pt

an. Damit ist eine rein mechanisch-geometrische Herleitung der
Massenformel gegeben. Es handelt sich dabei um die trige Masse.
Von Kriften ist nicht die Rede. .

Aus der Fig. 2 ist auch das Additionsgesetz ohne weiteres ab-
zulesen. Die Geschwindigkeit p” von 4 relativ zum Schwerpunkt S,
die in der Newtonschen Mechanik = 14 p sein muss, findet sich als
das Verhéltnis von Weg zur Zeit = AS8": 8’ P, wofiir man nach dem
Sinussatz der Trigonometrie erhilt (Fig. 8):

,_ A48  sin (0, — o)
S'P  sin (90— w;— o)

(Ruhemasse = 1) (8)
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Formt man die Funktionen um und beachtet, dass tg o’ = p
und tg w = v ist, so wird

, —
p=F (4)

(p, v, p” sind in Bruchteilen der Lichtgeschwindigkeiten gegeben.)

A

Geometrische Ableitung des Additionstheorems der Geschwindigkeiten.
Geschwindigkeit von S im System B.... v =tgw

I s A s 3 e Po= t’gAwT,I

, S
2 1] A 1] sy S, :p‘“: orp

S

Es ist im 4 AS’ P:

, St (w—w)  stw;rcom— 0w St

p= o (w+®) cowcow—Ssiw St

,_ tgo—tgow  p-v

p= I—tgw;"tgew 1—po

d. h. das Additionstheorem ist identisch mit dem physikalisch interpretierten
Sinussatz im A AS’P.

Um den Kraftbegriff einzufiihren, gehen wir von der Impuls-
definition aus: wir nennen die zeitliche Ableitung des ,,Impulses**
mp, den die bewegte Masse m bei der Geschwindigkeit p besitzt,
die in der Richtung von p ,,wirkende Kraft®.

P

N =

Es folgt dann:
deJ 1 dyp

= - e — == K ft. 5

= T - K (5)

Halten wir an der klassischen Vorstellung fest, dass das Ver-
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héltnis zwischen einer wirkenden Kraft und der am Kérper hervor-
gebrachten Beschleunigung (dp/dt) die Masse des bewegten Kérpers
sein soll, so folgt hier fiir diese Masse der Ausdruck
’ mO
m=————=— (6)
vV(1—p??

(my, = die Masse im Ruhezustand.)

Man kann den Unterschied zwischen den Formeln (8) und (6)
so deuten: der aktive Tragheitswert eines bewegten Korpers, der
das ,,Beharren** auf einer konstanten Geschwindigkeit bedingt,
ist kleiner als der passive Widerstand des gleichen Kérpers, der
gegeniiber einer Geschwindigkeitsverdnderung, das ist also gegen-
tiber einer Krafteinwirkung, ausgelost wird. ,

Dass gegeniiber einer senkrecht zur Geschwindigkeit wirkenden
Kraft keine solche zusétzliche Vergrosserung der bewegten Masse
eintritt, kann man folgendermassen einsehen. In erster Anniherung
sind die Bedingungen eines horizontalen Wurfes gegeben, der Kér-
per bewegt sich in der Richtung seiner Geschwindigkeit im ersten
Moment unbeeinflusst weiter. Die sogenannte transversale Masse
1st also die Masse, die der Korper infolge seiner Geschwindigkeit
hat, geméss Formel (3).

Das Wesen der mechanischen Arbeit ist Verdanderung. Bei der
Berechnung der Arbeit muss also von jener Masse ausgegangen
werden, die gegeniiber einer Geschwindigkeitsinderung ins Spiel
kommt, die wir passiv genannt haben, nach Formel (6). Tm Ubrigen
1st die nachfolgende Formel nicht als die Wiedergabe eines Natur-
gesetzes zu verstehen, sondern lediglich als der mathematische
Ausdruck einer willkiirlichen zweckméssigen Definition:

Arbeit = fImpuls “dp = fm’p ~dp

m,
L= [ —% .p-dop.
vi—pr 0
Man findet so den Wert
m,
L = “——TO;—— . i

Die gleiche Grosse ergibt sich, wenn man von der Definition
Arbeit = Kraft mal Weg ausgeht und fiir die Kraft den Betrag
aus der Formel (5) einsetzt:

r 1 dp
L= | K=ds= - d
./ ’ f\/(lwp2)3 dt ’
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Indem wir die Integrationskonstante gleich Null setzen, ver-
figen wir iiber eine Initialbedingung und geben der Masse eins
den Ruhe-Energiebetrag eins, wie man sieht, wenn p = o gesetzt
wird. Entwickeln wir (7) so wird die Energie angenihert

2 a L 02 g vt
L=1+14%p —I—%p:1+"§? ‘04..
Multiplizieren wir beide Seiten mit m, * ¢® und bezeichnen wir
L - mgy- ¢ mit B, so ist

E=m062+%m0@2+304.%_+.... (8)
In dieser Formel erscheint die klassische relative kinetische
Energie 3 m,v? in der in der Mechanik iiblichen Weise gemessen,
daher stellt das erste Glied m,c? die in erg gemessene Energie der
Masse m, vor, die ihr ohne Riicksicht auf eine Relativgeschwindig-
keit zukommt. — Da auch in neueren Lehrbiichern!) angegeben ist,
dass sich diese Formeln fiir die Masse und die Energie nur auf dem
Umweg iiber die Elektrodynamik finden lassen, so teile ich hier die
elementare Herleitung mit.

1) Z. B. WEsTPHAL, Lehrbuch der Physik, Berlin 1937, Seite 535.
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