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Masse und Energie im Schwerefeld
von H. Greinacher.

(24. VII. 39.)

Auf Grund der speziellen Relativitätstheorie ist jede
Energieänderung mit einer entsprechenden Massenänderung verknüpft.
Es liegt nahe, diesen Äquivalenzsatz auch auf die Bewegung eines

Körpers im Schwerefeld anzuwenden, obschon eigentlich die
allgemeine Relativitätstheorie hier zuständig wäre. Es dürfte aber
doch nicht ohne Interesse sein, den Äquivalenzsatz auch einmal
für diesen Fall durchzuführen, schon weil die Verhältnisse sich
besonders einfach und übersichtlich darstellen und weil die Resultate

immerhin den Wert von Näherungen besitzen. Welchen
Grad der Näherung sie beanspruchen können, bliebe allerdings
noch gesondert zu untersuchen. Vielleicht, dass die folgenden
Ausführungen eine Anregung zur weiteren Verfolgung des
Gegenstandes geben können.

Wir betrachten den speziellen Fall eines homogenen Schwerefeldes.

Bewegt sich ein Körper in diesem ohne äussere Kräfte,
so bleibt seine Energie, also auch seine Masse m konstant. Andererseits

erfährt er bei jeder Geschwindigkeitsänderung eine
Massenänderung gemäss der Beziehung

m
m*

_ (1)
VI-(vie)2

wo mr die Ruhemasse bedeutet. Da m im Schwerefeld konstant
bleiben soll, so muss demgemäss mr veränderlich sein. Diese
Änderung der Ruhemasse ist durch die Änderung der potentiellen
Energie zu erklären. mr setzt sich demgemäss aus einer Eigenmasse

und einer potentiellen Masse zusammen. Wenn wir die
Ruhemasse in der Höhe x über dem Erdboden mit mx und die
entsprechende Geschwindigkeit mit vx bezeichnen, so wäre also

m m* (la)
Vl-(vjc)*

Für x h sei vx 0 und für x 0 vx v0. Für die Ruhemasse
in der Höhe h ergibt sich dann

mh ^° (2)
VI-(v0lc)2
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wo m0 nun die Ruhemasse für x 0, d. h. die Eigenmasse bedeutet.
Hieraus berechnet sich die Fallgeschwindigkeit

iM^)' «
Die Zunahme der Ruhemasse, d. h. der potentiellen Masse mit
der Höhe h lässt sich nach dem Äquivalenzsatz unmittelbar
berechnen. Es ist

c2 dmx mx gdx
was ergibt

gh_

mh m0e °', (3)

Dies in (2a) eingesetzt liefert für die Endgeschwindigkeit

-i/ ____
Vo c y 1 - e c° (4)

Zum gleichen Resultat gelangt man auch durch Ansetzen der aus
(3) folgenden potentiellen Energie

_,-c»«i0(e7r-l) (5)

und durch Verwendung der bekannten Formel für die kinetische
Energie

- -l) (6)

indem man nach dem Energiesatz EP Ek setzt. Für 2gh<^.c2
geht (4) in die Formel der klassischen Mechanik über:

v= V2gh.
Für 2 gh ^> c2 nähert sich v der Geschwindigkeit c. Durch
Integration von (4) erhält man den Fallraum als Funktion der Fallzeit.
Die Durchrechnung führt zur Beziehung

r2 / gt gt\
h ~-\nite-+e-YT\ (7)

was sich kurz so schreiben lässt

h=C- lnSof-^-. (7a)
9 c

Für gt<A^c, d.h. kurze Fallzeiten gelangt man wieder zur klassischen

Formel des freien Falls

h lt*.
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Für gt^>c geht andererseits (7) über in das lineare Gesetz

h ct.
Die Differentiation von (7) liefert die Fallgeschwindigkeit als Funktion

der Zeit

v c Sang SL. (8)
c

Dies geht für gt-A^c, bzw. gt^>c über in

v gt bzw. v c.

Es hält nicht schwer, die entsprechenden Formeln auch unter
Berücksichtigung, dass die Schwere mit der Höhe h abnimmt,
aufzustellen. Setzt man

9-=9° (irb)2' (9)

wo B den Erdradius bedeutet, so erhält man
g«Rh

m»=m0ee'(B+*) (10)

was sich für den Fall h oo vereinfacht zu
g<,R

mao — mo e
c%

• (10a)

Für die Fallgeschwindigkeit ergibt sich

vn
was zum Höchstwert führt

2gaRh

va= e v i ¦— « cHR+h)

y_ 2g0R

I—e c*

Diese Beziehung geht für 2 g0 B <^ c2 in die klassische über :

v0= V2g0B.
Eine weitere Durchrechnung dürfte sich nicht rechtfertigen, da
in (9) Gebrauch vom Newtonschen Gravitationsgesetz gemacht
ist, dessen Anwendung ja nach der allgemeinen Relativitätstheorie

nur in erster Näherung zulässig ist. Ähnlich lässt sich auch
der allgemeine Fall der Bewegung zweier sich anziehenden Körper
auf Grund des Äquivalenzsatzes behandeln. Von einer Wiedergabe

der Rechnung soll indessen aus dem gleichen Grunde Abstand
genommen werden.

Bern, Physikalisches Institut der Universität.
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