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Ein dynamisches Modell fiir schwere Teilchen
von W. Scherrer, Bern.
(27. III. 39.)

Einleitung.

Eines der interessantesten Ergebnisse der Relativitdtstheorie
ist zweifellos die Aquivalenz von Masse und Energie. In der Kern-
physik ist es tiblich, derselben eine sehr weitgehende Bedeutung
beizumessen, indem man irgend zwel verschiedenen Ruhmassen
M und m die Energiebetrige M ¢? und me® zuordnet. In der Theorie
1st es meines Wissens noch nicht gelungen, Energieumwandlungen
darzustellen, die eine Erklirung fiir die Existenz verschiedener
Ruhmassen bilden kénnten. So enthélt der Energiesatz fiir ein
Elektron im Feld eines unendlich schweren Kerns
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keinen Fall, wo Energie auf die Ruhmasse iibertragen wird.

Bei der Verallgemeinerung der Gleichung (1) auf mehrere
Teilchen stehen die Dinge auch nicht besser. Bei einem Versuch,
die Verschiedenheit von Ruhmassen theoretisch zu erfassen, wird
es sich wohl vor allem um folgende Alternative handeln: Entweder
man fithrt diese Verschiedenheiten auf Geschwindigkeiten innerhalb
eines aus gleichartigen Teilchen zusammengesetzten Systems zu-
riick, oder aber man fiihrt von vorneherein eine variable Masse in
die Dynamik ein. Der erste Fall hat eine befriedigende Losung des
Zweikorperproblems der relativistischen Elektrodynamik zur Vor-
aussetzung und kann also so lange nicht ausgeschlossen werden,
als eine solche Losung nicht vorliegt. Unter diesem Vorbehalt soll
nun 1m Folgenden ein Modell fiir den zweiten Fall auseinander-
gesetzt werden, das insofern vielleicht einiges Interesse verdient,
als es die Entstehung eines schweren Teilchens aus zwel leichten
unter dem Einfluss hoher Energien illustriert.

Ob dieses Modell auf die Wirklichkeit angewendet werden kann,

muss vorderhand noch eine offene Frage bleiben.
*
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Den Ausgangspunkt bildet eine Lagrange-Funktion fiir zwel
geladene Teilchen, die ich in einer kurzen Note ,,iiber die Prinzipien
der Physik* mitgeteilt habe). Daselbst findet der Leser die all-
gemeinen Erwigungen, die mich zu ihrer Aufstellung gefiihrt
haben. Doch sollen im Folgenden alle fiir das Detail der Theorie
notwendigen Entwicklungen Platz finden.

Schliesslich mochte ich den Leser ersuchen, die hier verwendete
Methode der &lteren Quantentheorie nicht tibel zu vermerken.
Zu 1hrer Rechtfertigung mag folgendes dienen. Der Zusammenhang
zwischen der geometrisch vollkommen durchsichtigen klassischen
Punktdynamik und der nichtrelativistischen Wellenmechanik ist
sehr eng und verleiht der letzteren eine starke Stiitze. Im relati-
vistischen Falle fehlt nun gerade dieser Untergrund, wodurch wohl
ein nicht geringer Teil der bestehenden Schwierigkeiten verursacht
wird. Jedenfalls erscheint die Frage berechtigt, ob durch eine
Analyse der relativistischen Punktdynamik etwas zu gewinnen sei.
Eine dem hier gegebenen Ansatz entsprechende einkomponentige
Wellengleichung wird in § 6 mitgeteilt.

§ 1. Wahl einer Lagrange-Funktion.

Wir charakterisieren die Lage zweier Elementarteilchen mit
den Ruhmassen m und M im vierdimensionalen Zeitraum durch
die Vektoren.

X = ('/Els Lo, L3, (134) = (wl: Lo, T3, ]/E ¢ t) ’
?3 = (yb Y2, Ys» y4) = (yl: Ya, Ys, V_ 1 C’Lb) .

Die damit eingefithrte orthogonale Schreibweise erlaubt uns, auf
den Gebrauch von Indizes zu verzichten. Fiir eine in einem festen
Koordinatensystem vorzunehmende Zerspaltung in Raum und
Zeit verwenden wir tberdies die Symbole

X = (Ty, Ty, Tg) ; 96:(:‘;]/_1375)"

@)

. _ (3)
D= (Y1, Y% ¥s); B=0®;yY—1cu).
Fiir einen Gradienten setzen wir
0 _
S ( ; ’ 4 s ? ’ J ) (4)
0-X ox,’ Oz,  Ozg’ Oz,

und entsprechend fiir .

1) Helvetica Physica Acta XI, S. 219 (1938).
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Schliesslich bedienen wir uns der skalaren Multiplikation.

XB=21 Y1+ ToYo+ T3Ys+ L4 Y4, (5)
XK= + o5 + 73 + 2}

Die als raumartig vorausgesetzte Distanz R der beiden Teilchen
ist dann definiert durch

R=|%—9|=y&E-D. (6)

Um die einzufiihrende Lagrange-Funktion bequem mit der

relativistischen Elektrodynamik vergleichen zu kénnen, betrachten

wir zuerst eine Lagrange-Funktion, aus welcher man die pondero-

motorische Kraft des vom Teilchen in 9 erzeugten Feldes auf das
Teilchen in X ableiten kann.

Zu diesem Zweck setzen wir:

¢ = Ladung des Teilchens in ¥.

@ = Ruhrichtung des Teilchens in .

¢ = Retardiertes Potential des Teilchens in 9j, bezogen auf die
Ruhrichtung &. @ ist also Quellpunkt.

T = Eigenzeit des Teilchens in X. Die Ableitung nach T werde
durch einen Punkt bezeichnet.

Unter diesen Voraussetzungen erweist sich die Lagrange-
Funktion |

L—im%+ - 9% (M)

als ausreichend fiir den oben genannten Zweck. Um die Wirkung
des Teilchens X auf das Teilchen 9§ zu erhalten, miisste man die-
jenige Lagrange-Funktion nehmen, welche aus L durch Ver-
tauschung von X und ¢ sowie der entsprechenden Grdssen hervor-
geht.

Die Doppelspurigkeit der Beschreibung wird offenbar ver-
ursacht durch die systematische Beriicksichtigung der Retardierung.
Die dadurch bewirkten Abweichungen von der klassischen Dynamik
sind recht einschneidend. Zum Beispiel existiert kein System-
parameter mehr. Jedes Teilchen hat seine Eigenzeit. Ausserdem
hat man wéhrend der Durchlaufung des Systems scharf ausein-
anderzuhalten die ,,Bewegung* etwa des Teilchens X und die zu-
geordnete Variation des durch den Nullkegel der Vergangenheit
von X auf der Bahn von 9 ausgeschnittenen Quellpunktes.

Als wichtigste Konsequenz ergibt sich eine Unbestimmtheit
in den Anfangsbedingungen, deren Natur man sich leicht klar
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macht, wenn man nur ,,ebene’* Bewegungen 2, = z, = 9, = ¥y, = 0
in Betracht zieht. Auf beiden Bahnen kann je ein Stiick, von
denen mindestens eines eine endliche Lénge hat, beliebig ange-
nommen werden. Diese Unbestimmtheit wird umso grésser, je
weiter die beiden Teilchen auseinanderliegen. Die damit ange-
gebenen Abweichungen erhéhen die mathematischen Schwierig-
keiten dieser Dynamik ganz wesentlich.

Nun sei noch eine letzte Konsequenz erwihnt, der wir im
Folgenden eine spezielle Bedeutung beimessen werden. Die Aus-
wertung von (7) fihrt auf die Gleichung

%2 — konst. (8)

Ihr zufolge muss die Ruhmasse immer durch einen konstanten

Faktor zur Geltung gebracht werden. Analoges gilt fiir §§ und der
ganze Ansatz bietet keine Handhabe, Verinderungen der Ruh-
masse darzustellen. Wir haben damit in verinderter Form wiederum
dasselbe Argument gefunden, von dem wir in der Einleitung aus-
gegangen sind. Man kann nun die in der vorliegenden Unter-
suchung verfolgte Tendenz auch kurz so ausdriicken: Es wird ver-
sucht, Variationen der Ruhmasse durch Variationen des Betrages
der Vierergeschwindigkeit darzustellen. Zu diesem Zwecke muss
die im engeren Sinne geometrische Deutung der Weltlinien preis-
gegeben werden. Die Komponenten der Vierergeschwindigkeit
sollen unabhéngig sein und ihr Betrag ist als eine Belegungsdichte
zu deuten. -

Betrachten wir nun die Gleichung (7). Statt € kann man
immer setzen ¥/|P|. Um also die Normierung der Vierer-

geschwindigkeit aufzuheben, brauchen wir nur || zu ersetzen
durch die Lichtgeschwindigkeit ¢, womit auch die Dimension ge-
wahrt bleibt. Die damit erhéhte Symmetrie legt weiter die Addi-
tion des dem Teilchen in ¥ entsprechenden Massenterms nahe, und
wir gelangen so zu der Lagrange-Funktion:

-

L:lméeu%Maju%w’mj. (9)

Es ist nun wichtig, zu betonen, dass die durch (9) zum Aus-
druck gebrachte Symmetrie die Verwendung eines retardierten
Potentials verbietet. Um dies einzusehen, gentigen die im Anschluss
an (7) gegebenen Erlduterungen. Die frithere Eigenzeit 7 geht jetzt
tiber In einen nicht mehr an die einzelne Weltlinie gebundenen
Systemparameter, und man ist gezwungen, ¢ als Funktion der
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Distanz derjenigen Bahnpunkte X und 9 aufzufassen, welche dem-
selben Werte 7 entsprechen. Darin liegt vorderhand ein Verzicht
auf einen feldmiissigen Ausbau des Ansatzes. Es ist wohl anzu-
nehmen, dass eine weltere Modifikation von (9), die sowohl die
angestrebte Variation der Vierergeschwindigkeit als auch die Re-
tardierung zum Ausdruck bringt, méglich ist. Die oben angegebenen
formalen Schwierigkeiten wiirden sich natiirlich wieder geltend
machen.

Schon eine erste Analyse des Ansatzes (9) zeigt, dass er tat-
sdchlich eine Variation der Betrige der Viergeschwindigkeit nach
sich zieht. Dadurch wird die Forderung nahegelegt, den priméren
Einsatz verschiedener Massen zu vermeiden und also die Entstehung
~verschiedener Gewichte dynamisch herzuleiten. In diesem Sinne
schrinken wir (9) durch die Gleichung M = m weiter ein. Weiter-
hin empfiehlt es sich, (9) mit m zu multiplizieren und als neuen
Systemparameter die Variable

B o = | (10)

m

einzufiihren. Bezeichnet man die Ableitung nach s mit einem
Strich, so gelangt man schliesslich zu folgender Lagrange-Funk-
tion:

L=3%2+ 32+ OX Y (11)

Unter m soll die Elektronenmasse verstanden sein und fiir @
setzen wir :
a

wobei die Lénge a so bestimmt werden soll, dass die beiden Teilchen

in grosser Entfernung aufeinander eine Anziehung nach Coulomb
ausiiben.

In diesem Sinne soll uns also (11) ein Modell liefern fiir das-
jenige neutrale Gebilde, welches aus einem Elektron und einem
Positron besteht. Es wird also vorausgesetzt, dass diese Partikel
wihrend langerer Zeit existieren und miteinander reagieren kinnen.
Das Modell wiirde also hinfillig, falls beim Zusammentreffen
zweler derartiger Partikel ausnahmslos eine Zerstrahlung statt-
finden wiirde. Weitere Erlduterungen allgemeiner Natur insbe-
sondere tiber die durch den Parameter s vermittelte Phasen-
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zuordnung findet der Leser an anderer Stelle?). Das engere Ziel
der vorliegenden Arbeit soll nun in der Ermittlung der stabilen
. Zusténde des durch (11) definierten dynamischen Systems bestehen.

§ 2. Energie und Impuls.

Wegen der Homogenitit der Lagrange-Funktion (11) gilt
' H=1L,
wo H die Hamilton-Funktion bedeutet. Das formale Analogon
des Energiesatzes lautet demnach
L = konst.
Die Festsetzung der Konstanten ist gleichbedeutend mit der Nor-
mierung des Systemparameters s. Dieselbe soll so erfolgen, dass gilt
V' =u" =m,

sobald die beiden Teilchen in wunendlicher Entfernung von-
einander zur Ruhe gelangt sind. Die Gleichung L = konst. nimmt
damit folgende Gestalt an

%96,2_;_ %95’2,'{‘ dX %f = —m2e2 | (13)

Inhaltlich entspricht sie offenbar der tblichen Normierung
%2 = —¢2 .

Das formale Analogon des Impulssatzes erhalten wir durch
Addition der Lagrange’schen Gleichungen

d_(0L\ oL _
ds (096')*‘096* ’
(14)
d /oL oL _, o
ds (o 25) 0y
Denn zufolge (11), (12) und (6) gilt
oL oL _,
0% T 03
und es folgt
— konst. = €.
T —5—093, onst..

2) 1. c. 1) S. 223.
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Die rechte Seite ist ein zeitartiger Vektor von der Dimension mec.
Bezeichnen wir also mit U einen zeitartigen Einheitsvektor, so
kommen wir schliesslich auf die Impulsgleichung

14+ D)X +9)=2wmc (15).

in der w eine reine Zahl bedeutet. Fiir die von uns beabsichtigte
Feststellung der stabilen Zustinde ist eine vollstindige, auch asym-
metrische Anfangsbedingungen beriicksichtigende Losung ‘nicht
notwendig. Wir erhalten alles Notwendlge wenn wir uns auf die

Symmetne
X = (r, cty/=1)
C;'Bz (— ’ Ct'\/f;—l)

beschrinken, welche durch Transformation auf das durch den Vek
tor A festgelegte Ruhsystem nahegelegt wird.

Von (15) bleibt nur noch die vierte, die Energiekomponente.
An Stelle von (18) und (15) treten die beiden skalaren Gleichungen

L=(1—®)r2—(1+ ®)c?t'?=—m?c?, (17a)
1+ D)t =wm. (17h)

(16)

Diese beiden Gleichungen kiénnen wir in der iiblichen Weise in eine
zusammenziehen, in welcher ¢ die unabhiingige Variable darstellt.
Bezeichnen wir die Ableitung nach ¢ mit einem Punkt und setzen
wir noch #2 = 22, so folgt wegen (12)

1—— -
b = 1 1+—§* p2 . (18)
1——;%— c

Entwickelt man diese Gleichung fiir grosse R und kleine v und
multipliziert sie hierauf mit 2 mc2, so folgt in erster Néherung
o \ mv®  mcia

2(w—1)me?=2- 5 — R (19)
Diese Gleichung stellt den klassischen Energiesatz fiir zwei Teil-
chen von der Masse m dar, welche sich nach dem Coulomb’schen
Gesetz anziehen, falls man setzt

82
ch

(20)
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Wie man leicht aus (14) und (16) entnimmt, spielt ¢’ tatsdchlich
die Rolle der Masse. Sie berechnet sich aus (17a) und wegen (12) zu

Vi) @”

Aus den Gleichungen (18) und (21) folgt, dass die beiden Teilchen
— auch be1 einem Zentralstoss — die Distanz a nie unterschreiten
konnen. In dem Moment, wo die Minimaldistanz erreicht wird,
ist v =0 und ¢' = co. Wir werden spiter sehen, dass der Mittel-
wert von ' wihrend der ganzen Bewegung endlich bleibt.

Fir B = oo geht (21) iiber in die bekannte Massenformel
der speziellen Relativitdtstheorie. Sie vereinigt also in sich das
Verbot der Uberlichtgeschwindigkeit mit einem Verbot der Di-
stanzen kleiner als a.

§ 3. Die Hamilton’sche partielle Differentialgleichung.

Wir gehen aus von (17a)
L=(1—®)r?%—(1+ D) c?t'2 = — m2c? (17a)
und fithren ebene Polarkoordinaten fiir den Vektor x ein:

r=|xr|=3R

I’Z = ¢'2 EE r 90’2 (22)

Es folgt
L=1—®)(2+r2¢'2)— 1 + D) c2t'2=—m?2® (23)

Die partiellen Ableitungen der zu L gehérigen Wirkungsfunktion
S ergeben sich in der bekannten Weise aus

0S oL ,

o=y = 20—9)r

0S oL |

s 2 f

by =g = 20— )1 (24)
0S oL

- — 24

57 = 37 = — 21+ &) e

Wie schon zu Beginn des vorigen Paragraphen bemerkt wurde,
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stimmt die Hamiltonfunktion mit der Lagrange-Funktion iiberein.
Um also die Hamilton’sche partielle Differentialgleichung zu er-
halten, brauchen wir nur vermittels (24) die Grossen 7', ¢’,t" durch
die Ableitungen

08 0S8 98
or° 0’ ot

auszudriicken und in (23) einzusetzen. Man bekommt

Heg ?) {(g_s) o (%f?) }‘@“(ﬁ) = miet |(29)

Unser System ist also vollstindig separierbar und periodisch.
Die Separation ergibt:

%=—2mczw
oS
W=J . (26)
08 o oa w? J?
P 9 —1\=- <
or ch1+(2r)(1_L 1) Am2eir? |
2r

Die Konstante in der ersten dieser drei Gleichungen folgt aus der
dritten Gleichung von (24) in Verbindung mit (17b). Die aus-
schlaggebende Abweichung von' der iiblichen . Behandlung des
Zweikorperproblems beruht natiirlich auf der dritten Gleichung
von (26). Damit die Wurzel reell ausfillt, muss gelten

— 2 :
z 27 “[ o >0 @7

27 2m2c?r(a +27)

Es empfiehlt sich, die Diskussion dieser Ungleichung fiir fest vor-
gegebenen Drehimpuls J in einer (r, w) — Ebene vorzunehmen.
Es geniigt, wenn man sich auf den Quadranten 27 =a, w =0
beschréinkt. In diesem Gebiet betrachten wir die durch die Glei-

chung : ,
| 2r—a JE :

= s 28

v ]/ 2r [1+2m262r(a+2r)] 28)

' 17
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definierte Kurve I' und fithren eine rationelle Léngeneinheit ein;

2r=ap , ,
J (29)

mca

Wenn man fiir J die Grossenordnung des von der Quanten-
theorie geforderten Drehimpulses annimmt, erhilt g die Grossen-
ordnung der reziproken Feinstrukturkonstante. Bei der Dis-
kussion von (30) kann man also B2 als grosse Zahl ansehen. Dann
ergeben sich fiir die Kurve I' ndherungsweise folgende Haupt-
punkte:

Es folgt

A: p=1; w=0
B. Q~1+\/5 ;w~.(‘/5‘1)21/‘/3_“2

B (Maximum)

- (31)

1
852

C: o~2(p2—1); w~1— (Minimum)

D: g.ﬂ co; w=1

Die Kurve I' steigt also von der Ausgangsstelle A sehr rasch auf
einen betrdchtlichen Maximalwert, senkt sich dann allméhlich in
eine flache Mulde, um den weit entfernten Punkt C herum, um
schliesslich im Unendlichen asymptotisch von unten gegen die
Ordinate 1 zu streben. Fir Punkte, die einigermassen rechts vom
Maximum liegen; deckt sich der Verlauf mit dem der klassischen
Dynamik.

Die charakteristische Abweichung liegt im Stiick A B. Sie
héngt offenbar mit dem Verbot der Distanzen RE < @ zusammen.
Die realisierbaren Zustéinde liegen nach (27) oberhalb der Kurve I
Wir ersehen also, dass in gentigender Nahe der Minimaldistanz
Energien von ganz kleinen bis zu beliebig grossen Betrigen auf-
treten kémnen. Uber die dynamisch stabilen Zustinde kénnen wir
speziell folgendes feststellen: Neben dem der klassischen Dynamik
entsprechenden Stabilitdtsintervall der flachen Mulde finden wir
ein zweites von der Grossenordnung der Minimaldistanz a, in wel-
chem grosse Energiewerte realisiert werden konnen.
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Angesichts der sich hier als Folgerung ergebenden Minimal-
distanz a mag darauf hingewiesen werden, dass in neuerer Zeit
verschiedene Autoren®) aus prinzipiellen Griinden die Existenz
einer kleinsten.Liinge fordern. Bei unserem Modell ausschlaggebend
1st vor allem der Umstand, dass fiir R = a die quadratische Form
(12) ausartet. Dieser Effekt ist weitgehend unabhingig von der
speziellen Potentialfunktion @.

§ 4. Quantisierung.

Da unser System periodisch ist, besteht die Moglichkeit, die
provisorischen Quantenregeln .

0S

—de=Fkh ‘

0

g (32)
¢ —dr = nh

or

zur Anwendung zu bringen. Der Kreis auf dem Integralzeichen
soll die Erstreckung des Integrals iiber eine volle Periode bedeuten.
Unter Beachtung von (29) erhalten wir aus (26)

kh
2x

_|__ 1\ k%h? do — nh '
./5 1____ 4 7¥m2c2a®p? °7 mea B9

Nun 1st wegen (20)

J = .(335

2
2:mmca= 2me — 8, (35)

h he

wo « die Feinstrukturkonstante darstellt. Setzen wir also zur Ab-
kiirzung

K=_F_| (36)

‘w

so geht (34) nach einer leichten Umformung iiber in

1 1 K? no
MK jﬁl/1+— (1 M—- wz)_'{"d =% 87

3) Vergleiche etwa A. MARCH, Naturw1ssenschaften 26, S. 649 (1938), Woselbst
weitere Literatur angegeben ist.
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Die Diskussion am Schlusse des vorigen Paragraphen hat
gezelgt, dass zwel wesentlich verschiedene Stabilitdtsintervalle in
Betracht kommen:

1. Fiir alle Werte von w zwischen Null und dem Maximum ein
sehr kleines Intervall von der Grossenordnung des ,,Elektronen-
radius’’ a.

2. Fir Werte w wenig unterhalb 1 das Intervall der flachen Mulde,
das wie man leicht feststellt, die Gréssenordnung des Bohr’schen
Atomradius besitzt.

Im zweiten Falle erhalt man ein Termsystem, das demjenigen
des Wasserstoffs eng verwandt ist, in der absoluten Grosse aber
um einen endlichen Faktor von ithm abweicht. Es miisste also
einem hypothetischen neutralen Gebilde von der Totalmasse 2 m
zugeordnet werden. Ich kann mir kein Urteil erlauben dartiber,
ob seine Existenz mit Sicherheit ausgeschlossen werden kann.

Das Charakteristische des vorgeschlagenen Modells ergibt die
Behandlung des kleinen Stabilitatsintervalls. Wir fragen nach
denjenigen Zustdnden, wo w dem in (31) angegebenen Maximum
moglichst nahe kommt. Aus (29), (31), (33) und (36) entnimmt

man, dass in diesem Falle % im Integral (37) im Vergleich zu den

tibrigen Grossen vernachlidssigt werden darf. Wir vereinfachen
also unsere Aufgabe, wenn wir nach denjenigen Werten von w —
respektive K — fragen, welche fiir vorgegebene k und n die Relation

o+1 K2 n
2 nK 95 ]/g 1 2 1T, 39
erfilllen. Wir nehmen noch die Verschiebung
o=1+7 (39)
vor und erhalten statt (38)
2+7 K~ n
dr=—. . (40
2 nK 56 / A+08 ' & (0)

Das fiir die Integration massgebende Intervall wird links begrenzt
durch den Punkt 7 = 0, rechts durch die kleinste positive Null-
stelle des Radikanden 7= @. Das linke Ende ist also eine Unend-
lichkeitsstelle. Sie ist zuginglich, insofern in ihr die Energie
endlich bleibt.
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Lésst man nun w monoton von 0 nach oo wachsen, so durch-
lauft geméss (36) K alle Werte von oo bis 0 und gleichzeitig wichst
® von 0 an so lange monoten, bis es in der Doppelwurzel 6, des
Radikanden mit der zweiten positiven Nullstelle zusammentrifft.
Dem Werte @, entspricht also ein Wert K, derart, dass fiir jedes
K = K, ein Intervall vorhanden ist, fiir K < K, aber nicht. Mit
w, sel noch das zu K, gehorige w bezeichnet. Die Werte @, K,, w,
berechnen sich zu ’

1 |
@0::1555———,~4L618
1{0=:l/ftl*;§lv/5,\41315 (41)
wo= e~ 43k |

Wenn wir nun K von oo bis K, laufen lassen, erhalten wir den
ganzen Wertevorrat, der durch die linke Seite von (40) dargestellt
werden kann. -Man sieht aber leicht ein, dass wihrend der Varia-
tion von K diese linke Seite monoton wichst bis zu einem Maximal-

wert
B 2 .1 K2 B
_ v 0
O_nKOOf]/ T (1 +r)2dr' e

Fiur den Faktor vor dem Integral (40) ist das monotone Wachstum
evident. Im Integral selbst aber wiichst sowohl das Intervall als
auch der Integrand. Fiir die Auswertung des Integrals (42) —
das wegen der Doppelwurzel des Integranden elementar ist —
empfiehlt sich die Substitution

4+260,+7

T
(43
4536 | =
O, )
Unter Beachtung von
(2 + 6,) (1 + 0)?

=z 2
@0 - KO _ (44)
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ergibt die Berechnung

() vB=T (v_s c2—1)1
4 1 E\tvi—3
42 @"E_%LL (H_l) (45)
7 (241)V/E2—8 | 44/ 0=

C_
ivE-3

V £E—1 1 J
Die numerische Auswertung liefert
¢ =10,12899, .. (46)

Damit nun die Gleichung (40) eine Losung hat, muss nach dem
Vorausgegangenen die rechte Seite offenbar kleiner sein als dieses
Maximum. Es folgt also

C

1
e 4
k> o m (47)
Da nun C wenig grosser als /g ist, kann man niherungsweise
setzen

k =8n. (47"

Die letzte Bedingung deckt sich fiir n =1, 2, 3, 4, 5 noch genau
mit (47). Die Tatsache, dass zu einem vorgegebenen n eine stabile
Lésung nur moglich ist, wenn sich ihm ein gemiss (47) grosseres k
beigesellt, bildet natiirlich den eigentlichen Grund dafiir, dass in
kleinen Dimensionen viel hohere Energien konzentriert werden,
als man nach der Formel (41) fiir den Maximalwert w, erwarten
wiirde.

Um nun die Aufgabe der wirklichen Bestimmung von w respek-
tive K aus der Gleichung (40) bei vorgegebenen n und k zu disku-
tieren, miissen die Grenzen 0 und @ sichtbar gemacht werden.
@ ist — wie schon oben erwihnt wurde — die kleinste positive
Nullstelle des Radikanden, und es gilt

1+ 6)2(2+ 6)

2 _
K& o (48)
An Stelle von (40) erhalten wir
e
1 V7 (0—1)[2— (4 O+62) 7— O1?] n
e = — (49
n(1+@)v2+@0f T (1 +7) =7 9
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also im wesentlichen ein elliptisches Integral, dessen Nullstellen
wir steigend geordnet bezeichnen mit
@25 .O’ @: @1'

Fihren wir dieselben durch eine lineare Transformation*) iiber in
die Nullstellen '
1 1
_79 - 1: 1’ 7’

c0 ergibt sich fiir den Modul 2 der Wert

1/2-462—0*—4y1—20"_0°
V2402 —03+4yY1-260"— 6%

Nun unterscheiden wir zwei Falle:

I. O liegt in der Nihe der Doppelwurzel ©,. Fiir die letztere
gilt
1-2602—023=(1+0,)1—6,— 6,2 =0.

Also ist der Modul nahe bei 1 und fiir das Integral in (49) ist eine
Entwicklung '

@L_dr= 3[4, Le (8i— 6) + B(6n— ) - (51
[Yirgt- S id1a 00— 6) + ByO,— )¢ 61

~zu erwarten. Dabei muss natiirlich sein

wo C durch (42) bzw. (45) und (46) gegeben i5t. Die umfangreiche
Entwicklung des Integrals in (49) nach Normalintegralen und
Reihen ergibt weiter

A1=0; BIZO,

wie es dem Charakter des Maximums entspricht, und schliesslich
A4, < 0 sowie vermutlich B, > 0. Ergiibe eine exakte Berechnung
von B, wider Erwarten ein negatives Vorzeichen, so wiirde sich
das nur giinstig auswirken, insofern der in § 5 berechnete Massen-
mittelwert in Richtung auf den empirischen Massenwert verschoben
wiirde.

*) Es empfiehlt sich, dieselbe in der Gestalt
3 B 1+2

e i vty = 2
o + &g 2’ 1 2

anzusetzen.
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Eme Abschéatzung von 4, ergibt, dass die Differenz 6, — @
schon recht klein sein muss, bis die zweite Naherung ausreichend
wird. Fir die gilinstigsten Fille (aber kleine n)

k=8n, (52)

wo also der Abstand vom Maximum
n 1 ’
C—W;—C——g:O,OOSQ (52"

klein genug zu sein scheint, ergab eine direkte Approximation,
dass @ zwischen 0,51 und 0,52 liegt, was nach (41)

6, — O ~ 0,103 (53)

ergibt. Fir diese Distanz ist aber die zweite Ndherung nicht mehr
brauchbar. Zu diesem @ ergibt sich nach (48), (36) und (52)

w~82Tn,
was Im Sinne von (26) auf die Totalenergien
2mc2w ~ 654 n - mc? (54)

fihrt. Die der Folge (52) entsprechenden Energien schreiten also
nach ganzzahligen Vielfachen eines Grundwertes fort.

II. O sei klein. Dann wird nach (48) K gross. Beschrianken
wir uns auf Glieder erster Ordnung in 7, so folgt statt (40)

1 2 —(K2—5)tr dr n
2n K 56V T 14 Lk b}

Die Berechnung ist elementar und liefert

o 3 5 n
Vl—W_VI_F:T‘

Entsprechend der vorgenommenen Naherung begniigen wir uns mit
den beiden ersten Gliedern der binomischen Reihen und erhalten

L M

K2 K
also nach (36)

w — VEkn
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und somit fir die Totalenergie

2 wme? = 21{$mcz (56)

Wenn man diese Termformel auf die unter I behandelten Grenz-
falle anwendet, ergibt sich ein Fehler, den man leicht feststellt,
indem man (52) in (56) einsetzt. Es folgt

2wme? ~T76 n - mc. (57)

Der Vergleich mit (54) zeigt, dass bei durchgehendem Gebrauch
von (56) im schlimmsten Fall ein Fehler von 199, resultiert. Na-

T . [
tiirlich immer unter der Voraussetzung, dass man 5 in (37) ver-

nachléssigen darf.

Die Betrachtung der Termformel (56) fiihrt neben der positiven
Feststellung, dass das Modell die Realisierung grosser Energien
erlaubt, zu der wichtigen Frage, ob mit der aus (56) folgenden
Moglichkeit beliebig grosser Energien der Bogen nicht iiberspannt
worden sei. Solange keine schweren Neutronen gefunden worden
sind, wird sich das Modell kaum in die Wirklichkeit einordnen
lassen.

§ 5. Ein Massenmittelwert.

In § 2 wurde darauf hingewiesen, dass der Masse des einzelnen
Teilchens die Grosse ¢’ entspricht. Sie verindert sich bestandig
und wird fiir unser spezielles Zweikorperproblem dargestellt durch
die Formel (21). Fiir das grosse Intervall der flachen Mulde (To-
talenergie wenig unterhalb 2 mc?®) hat die relative Abweichung
von m die Gréssenordnung von a2, also einen kleinen Wert.

Ganz anders liegen die Verhiltnisse im klemnen Intervall. Um
das Numerische zu tibersehen geniigt es, mit Hilfe von (18) die
Geschwindigkeit v aus (21) zu eliminieren. Es folgt fiir die Total-
masse '

2 mw 1+t

A =2 o mw. (58)

R

2t =

Beschriinken wir uns auf die tiefsten Quantenzahlen n =1, k=8,
*



266 : ‘ W. Scherrer.

so folgt auf Grund von (53), (41) und (54) fir 7 = @ als Massen-
wert 21 ~1920m. Fir 7= 0 aber 18t 2¢ = co. Man ist also
gezwungen, einen Mittelwert zu verwenden. Als naheliegendste
Bildung 1st wohl der Ausdruck

gs t'ds
95 ds

anzusehen. Fihren wir » als unabhéngige Variable ein, so folgt

m = 2

(59)

: ¢ 1, 3.5 ’
i Ir .
Vermittelst (24), (26), (29), (39) und (48) ergibt sich schliesslich

y

farners,

_ 3 A% ,

my = F e |
IE C+7) 4 (60)
0 ]/_Q_ ]

Q=7(0—7)[2—(40+ 0%7—0O72]

Da O nach (53) nicht gentigend nahe bei @, liegt, ergeben
sich fiir die Berechnung dieselben Schwierigkeiten, welche in § 4
im Anschluss an (51) geschildert worden sind. Eine direkte ziem-
lich rohe Approximation liefert '

m ~ 2700 m. (61)

Der gefundene Wert liegt also etwa 509, tiber dem empirisch be-
stimmten Gewicht der schweren Elementarteilchen.

Wie empfindlich der Wert auf die Differenz @, — @ reagiert,
mag folgende Berechnung dartun. Hi#tte man fir den dem Ma-

ximum am néchsten gelegenen Wert —= § 1m Vertrauen auf die

Kleinheit von (52") die nullte Néherung, also w, aus (41) mit
k = 8und @ ~ 6, verwendet, so ergédbe sich aus (60) ein Mittelwert

my ~ 1730 m. (61)

Ob der gefundene Maximalmittelwert (61) auch als Tragheits-
widerstand gegeniiber einer #ussern Kraft in Betracht kommt,
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bleibt natiirlich noch ungewiss. Vorderhand handelt es sich um
eine interne Angelegenheit unseres Systems:

Definiert man die Masse durch (59), so verhélt sich die Masse
des Zustandes n =1, k = 8, w = 327 zu derjenigen der Zusténde

Gl o 2700 : 2.

Was die Uberhohung des gefundenen Wertes gegeniiber dem
beobachteten betrifft, so mag daran erinnert werden, dass die
punktdynamische Berechnung des Heliumgrundterms eine Uber-
héhung von ca. 15%, ergab, welche durch den Ubergang zur Wellen-
mechanik beinahe restlos aufgehoben werden konnte. Es erhebt
sich also die Frage, ob in unserem Falle die Uberhéhung der Masse
um 509%, durch eine passende Wellengleichung kompensiert werden
kann. Ob in dieser Richtung eine Verbesserung oder eine Ver-
schlechterung zu erwarten ist, weiss ich nicht. Ich muss mich
damit begniigen, im néchsten Paragraphen die meines Erachtens
naheliegendste Wellengleichung mitzuteilen.

§ 6. Eine Wellengleichung.

Da die linke Seite der formal dem klassischen Energiesatz
entsprechenden Gleichung (13) aus § 2

L=3X2+ 192+ dX'Y = — m2e? (18)

eine quadratische Form aller Geschwindigkeitskomponenten dar-
stellt, liegt es nahe, von der Metrik

2 m2e2ds? = — (A2 + dB? + 2 G dXdD) (62)

Gebrauch zu machen.

Um die gelaufigen Formeln der Tensoranalysis verwenden zu
konnen, setzen wir allgemein

L=}gax o =—mic? (63)
und formen L gemiss

0L 08 K oy

oz, Oz; w O0x;

um zu
K2 oy Oy

= ik
5 2’@])2 9 033,- 0:Ek

= H .
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An Stelle von (63) erhalten wir so

0y Oy 2 m2c?
9 ox, 9z, T K2

p2=0. (64)

Die einfachste invariante Moglichkeit, aus (64) eine Wellen-
gleichung zweiter Ordnung zu erhalten, besteht offenbar darin,
den daselbst auftretenden Differentialausdruck erster Ordnung
durch den der Metrik entsprechenden Differentialausdruck zweiter
Ordnung zu ersetzen. Mit |

h

K:2jr\/—1

erhdlt man so aus (64)

_1_* 0 — 0y 8 #2m2¢? —0
Vg or \V?9 oz mE YT

Die Anwendung auf (18) ergibt schliesslich im Sinne der in
§ 1 eingefithrten Symbolik

(o)

0 oy oy 8 m2m?2c? 5 5
+E[(1’"—@2)(0c~5m®09€)1|: h2 (1—®)_1/’

(65)

Schlusshemerkungen.

Um noch einmal die charakteristische Abweichung des hier
diskutierten Ansatzes gegeniiber der relativistischen Lagrange-
Funktion (7) hervorzuheben, schreiben wir (7) vermittelst

& =9/|9| in der Form

" _é'_y,l_ 5 ,

und stellen dieser Definition die Gleichung (9) fur M = m gegen-
tiber:

L=

o

m9€2+%m232+f§9.€@. (9"
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Die ausschlaggebende® formale Abweichung liegt also vor allem
in der Einschiebung des dem zweiten Teilchen entsprechenden
quadratischen Gliedes. Dadurch, dass man auf diese Weise fiir
zwel (oder auch mehr) Teilchen eine einzige Lagrange-Funktion
herstellt, wird erst die ganze Technik der Hamilton’schen Dynamik
verwertbar. Dabei ergibt sich also die Méglichkeit einer Quan-
tisierung von Ruhmassen und dies zu zeigen war der Hauptzweck
der vorliegenden Untersuchung. Auf das Detail des hier gewahlten
speziellen Ansatzes kann schon darum weniger Gewicht gelegt
werden, weil eine grosse Serie ahnlicher Ansétze dhnliche Effekte
zeitigen miissen.

Wenn man diese Wendung vermeiden will, ist man eben ge-
zwungen, soviele Gleichungen (7’) zu verwenden, als Teilchen ¥or-
handen sind. Es ist sehr wohl moglich, dass dieses Verfahren
korrekter ist und es ist wohl eine Frage von prinzipiellem Interesse,
ob nicht auch schon in diesem Falle Masseneffekte vorhanden
sind, von denen unsere Gleichung (21) vielleicht ein vergrobertes
und verzerrtes Abbild liefert.

Bern, mathemat. Seminar der Universitit.
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