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Ein dynamisches Modell für schwere Teilchen
von W. Scherrer, Bern.

(27. III. 39.)

Einleitung.

Eines der interessantesten Ergebnisse der Relativitätstheorie
ist zweifellos die Äquivalenz von Masse und Energie. In der
Kernphysik ist es üblich, derselben eine sehr weitgehende Bedeutung
beizumessen, indem man irgend zwei verschiedenen Ruhmassen
M und m die Energiebeträge Mc2 und mc2 zuordnet. In der Theorie
ist es meines Wissens noch nicht gelungen, Energieumwandlungen
darzustellen, die eine Erklärung für die Existenz verschiedener
Ruhmassen bilden könnten. So enthält der Energiesatz für ein
Elektron im Feld eines unendlich schweren Kerns

mcY ~o±=w (i.
Y

keinen Fall, wo Energie auf die Ruhmasse übertragen wird.
Bei der Verallgemeinerung der Gleichung (1) auf mehrere

Teilchen stehen die Dinge auch nicht besser. Bei einem Versuch,
die Verschiedenheit von Ruhmassen theoretisch zu erfassen, wird
es sich wohl vor allem um folgende Alternative handeln : Entweder
man führt diese Verschiedenheiten auf Geschwindigkeiten innerhalb
eines aus gleichartigen Teilchen zusammengesetzten Systems
zurück, oder aber man führt von vorneherein eine variable Masse in
die Dynamik ein. Der erste Fall hat eine befriedigende Lösung des

Zweikörperproblems der relativistischen Elektrodynamik zur
Voraussetzung und kann also so lange nicht ausgeschlossen werden,
als eine solche Lösung nicht vorliegt. Unter diesem Vorbehalt soll
nun im Folgenden ein Modell für den zweiten Fall auseinandergesetzt

werden, das insofern vielleicht einiges Interesse verdient,
als es die Entstehung eines schweren Teilchens aus zwei leichten
unter dem Einfluss hoher Energien illustriert.

Ob dieses Modell auf die Wirklichkeit angewendet werden kann,
muss vorderhand noch eine offene Frage bleiben.
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Den Ausgangspunkt bildet eine Lagrange-Funktion für zwei
geladene Teilchen, die ich in einer kurzen Note „über die Prinzipien
der Physik" mitgeteilt habe1). Daselbst findet der Leser die
allgemeinen Erwägungen, die mich zu ihrer Aufstellung geführt
haben. Doch sollen im Folgenden alle für das Detail der Theorie
notwendigen Entwicklungen Platz finden.

Schliesslich möchte ich den Leser ersuchen, die hier verwendete
Methode der älteren Quantentheorie nicht übel zu vermerken.
Zu ihrer Rechtfertigung mag folgendes dienen. Der Zusammenhang
zwischen der geometrisch vollkommen durchsichtigen klassischen
Punktdynamik und der nichtrelativistischen Wellenmechanik ist
sehr eng und verleiht der letzteren eine starke Stütze. Im
relativistischen Falle fehlt nun gerade dieser Untergrund, wodurch wohl
ein nicht geringer Teil der bestehenden Schwierigkeiten verursacht
wird. Jedenfalls erscheint die Frage berechtigt, ob durch eine
Analyse der relativistischen Punktdynamik etwas zu gewinnen sei.
Eine dem hier gegebenen Ansatz entsprechende einkomponentige
Wellengleichung wird in § 6 mitgeteilt.

§ 1. Wahl einer Lagrange-Funktion.

Wir charakterisieren die Lage zweier Elementarteilchen mit
den Ruhmassen m und M im vierdimensionalen Zeitraum durch
die Vektoren.

X — (xx, x2, x3, rr4) — (xx, x2, x3, y let),
$ (Vi, y2, Vz, Vi) (Vi, 2/2, y3, ]/ — 1 cu)

Die damit eingeführte orthogonale Schreibweise erlaubt uns, auf
den Gebrauch von Indizes zu verzichten. Für eine in einem festen
Koordinatensystem vorzunehmende Zerspaltung in Raum und
Zeit verwenden wir überdies die Symbole

r (xx, x2, xs) ; 9C (r ; y — 1 c t)

v (2/i> y*> Vz) ; ?3 (9; t/ —1cm)

Für einen Gradienten setzen wir

did d d d

d9i \dxx ' dx2 ' dx3 ' dx.

und entsprechend für ty.

(3)

(4)

Helvetica Physica Acta XI, S. 219 (1938).
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Schliesslich bedienen wir uns der skalaren Multiplikation.

*£ t) ~ xi Di Y- x2 y2 + x3 y3 + x$ y £ ,~,

w\ Xj ~r Xc -\- Xq "t" X^

Die als raumartig vorausgesetzte Distanz P der beiden Teilchen
ist dann definiert durch

B=\9l-®\ ]/(ÎX-W- (6)
+

Um die einzuführende Lagrange-Funktion bequem mit der
relativistischen Elektrodynamik vergleichen zu können, betrachten
wir zuerst eine Lagrange-Funktion, aus welcher man die pondero-
motorische Kraft des vom Teilchen in ?j erzeugten Feldes auf das
Teilchen in 9£ ableiten kann.

Zu diesem Zweck setzen wir:
ë Ladung des Teilchens in 9t.

0 Ruhrichtung des Teilchens in 93.

<p Retardiertes Potential des Teilchens in ?J, bezogen auf die
Ruhrichtung @. 33 ist also Quellpunkt.

t Eigenzeit des Teilchens in 9L Die Ableitung nach r werde
durch einen Punkt bezeichnet.
Unter diesen Voraussetzungen erweist sich die Lagrange-

Funktion
L \ m 3é2 + - <pe % (7)

c

als ausreichend für den oben genannten Zweck. Um die Wirkung
des Teilchens 9i auf das Teilchen ?J zu erhalten, musste man
diejenige Lagrange-Funktion nehmen, welche aus L durch
Vertauschung von 9£ und 93 sowie der entsprechenden Grössen hervorgeht.

Die Doppelspurigkeit der Beschreibung wird offenbar
verursacht durch die systematische Berücksichtigung der Retardierung.
Die dadurch bewirkten Abweichungen von der klassischen Dynamik
sind recht einschneidend. Zum Beispiel existiert kein
Systemparameter mehr. Jedes Teilchen hat seine Eigenzeit. Ausserdem
hat man während der Durchlaufung des Systems scharf
auseinanderzuhalten die „Bewegung" etwa des Teilchens 9£ und die
zugeordnete Variation des durch den Nullkegel der Vergangenheit
von 9£ auf der Bahn von 9J ausgeschnittenen Quellpunktes.

Als wichtigste Konsequenz ergibt sich eine Unbestimmtheit
in den Anfangsbedingungen, deren Natur man sich leicht klar
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macht, wenn man nur „ebene" Bewegungen x2 x2 yx y2 0

in Betracht zieht. Auf beiden Bahnen kann je ein Stück, von
denen mindestens eines eine endliche Länge hat, beliebig
angenommen werden. Diese Unbestimmtheit wird umso grösser, je
weiter die beiden Teilchen auseinanderliegen. Die damit
angegebenen Abweichungen erhöhen die mathematischen Schwierigkeiten

dieser Dynamik ganz wesentlich.
Nun sei noch eine letzte Konsequenz erwähnt, der wir im

Folgenden eine spezielle Bedeutung beimessen werden. Die
Auswertung von (7) führt auf die Gleichung

£2 konst. (8)

Ihr zufolge muss die Ruhmasse immer durch einen konstanten
Faktor zur Geltung gebracht werden. Analoges gilt für 93 und der

ganze Ansatz bietet keine Handhabe, Veränderungen der
Ruhmasse darzustellen. Wir haben damit in veränderter Form wiederum
dasselbe Argument gefunden, von dem wir in der Einleitung
ausgegangen sind. Man kann nun die in der vorliegenden
Untersuchung verfolgte Tendenz auch kurz so ausdrücken: Es wird
versucht, Variationen der Ruhmasse durch Variationen des Betrages
der Vierergeschwindigkeit darzustellen. Zu diesem Zwecke muss
die im engeren Sinne geometrische Deutung der Weltlinien
preisgegeben werden. Die Komponenten der Vierergeschwindigkeit
sollen unabhängig sein und ihr Betrag ist als eine Belegungsdichte
zu deuten.

Betrachten wir nun die Gleichung (7). Statt <S kann man
immer setzen 93/ | 93 |

• Um also die Normierung der
Vierergeschwindigkeit aufzuheben, brauchen wir nur | 93 | zu ersetzen
durch die Lichtgeschwindigkeit c, womit auch die Dimension
gewahrt bleibt. Die damit erhöhte Symmetrie legt weiter die Addition

des dem Teilchen in 93 entsprechenden Massenterms nahe, und
wir gelangen so zu der Lagrange-Funktion:

L= |m^2 + iM932 + — <p9Ït. (9)
c

Es ist nun wichtig, zu betonen, dass die durch (9) zum
Ausdruck gebrachte Symmetrie die Verwendung eines retardierten
Potentials verbietet. Um dies einzusehen, genügen die im Anschluss
an (7) gegebenen Erläuterungen. Die frühere Eigenzeit t geht jetzt
über in einen nicht mehr an die einzelne Weltlinie gebundenen
Systemparameter, und man ist gezwungen, <p als Funktion der
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Distanz derjenigen Bahnpunkte 9£ und 93 aufzufassen, welche
demselben Werte r entsprechen. Darin liegt vorderhand ein Verzicht
auf einen feldmässigen Ausbau des Ansatzes. Es ist wohl
anzunehmen, dass eine weitere Modifikation von (9), die sowohl die
angestrebte Variation der Vierergeschwindigkeit als auch die
Retardierung zum Ausdruck bringt, möglich ist. Die oben angegebenen
formalen Schwierigkeiten würden sich natürlich wieder geltend
machen.

Schon eine erste Analyse des Ansatzes (9) zeigt, dass er
tatsächlich eine Variation der Beträge der Viergeschwindigkeit nach
sich zieht. Dadurch wird die Forderung nahegelegt, den primären
Einsatz verschiedener Massen zu vermeiden und also die Entstehung
verschiedener Gewichte dynamisch herzuleiten. In diesem Sinne
schränken wir (9) durch die Gleichung M m weiter ein. Weiterhin

empfiehlt es sich, (9) mit m zu multiplizieren und als neuen
Systemparameter die Variable

S=— (10)
m

einzuführen. Bezeichnet man die Ableitung nach s mit einem
Strich, so gelangt man schliesslich zu folgender Lagrange-Funktion:

L= !9C'2 + §93'2 + 0 2£'93' (11)

Unter m soll die Elektronenmasse verstanden sein und für 0
setzen wir

*—£. (12)

wobei die Länge a so bestimmt werden soll, dass die beiden Teilchen
in grosser Entfernung aufeinander eine Anziehung nach Coulomb
ausüben.

In diesem Sinne soll uns also (11) ein Modell liefern für
dasjenige neutrale Gebilde, welches aus einem Elektron und einem
Positron besteht. Es wird also vorausgesetzt, dass diese Partikel
während längerer Zeit existieren und miteinander reagieren können.
Das Modell würde also hinfällig, falls beim Zusammentreffen
zweier derartiger Partikel ausnahmslos eine Zerstrahlung
stattfinden würde. Weitere Erläuterungen allgemeiner Natur
insbesondere über die durch den Parameter s vermittelte Phasen-
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Zuordnung findet der Leser an anderer Stelle2). Das engere Ziel
der vorliegenden Arbeit soll nun in der Ermittlung der stabilen
Zustände des durch (11) definierten dynamischen Systems bestehen.

§ 2. Energie und Impuls.

Wegen der Homogenität der Lagrange-Funktion (11) gilt

H=L,
wo H die Hamilton-Funktion bedeutet. Das formale Analogon
des Energiesatzes lautet demnach

L konst.

Die Festsetzung der Konstanten ist gleichbedeutend mit der
Normierung des Systemparameters s. Dieselbe soll so erfolgen, dass gilt

t' u' m

sobald die beiden Teilchen in unendlicher Entfernung
voneinander zur Ruhe gelangt sind. Die Gleichung L konst. nimmt
damit folgende Gestalt an

Ì9e'2 + |33'2 + <z>£'93' (13)

Inhaltlich entspricht sie offenbar der üblichen Normierung

Das formale Analogon des Impulssatzes erhalten wir durch
Addition der Lagrange'schen Gleichungen

d i dL
ds \dX'
d i dL

~ds~\xT^i

dL
Ô9C

dL
Ö93

0,

0.

Denn zufolge (11), (12) und (6) gilt

dL dL
d9i Ò93

0

und es folgt
dL dL
dW d93'

konst. €.

(14)

2) 1. c. 1) S. 223.
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Die rechte Seite ist ein zeitartiger Vektor von der Dimension mc.
Bezeichnen wir also mit 2t einen zeitartigen Einheitsvektor, so
kommen wir schliesslich auf die Impulsgleichung

(1 + 0) (9T + 93') 2 wmc 21 (15)

in der w eine reine Zahl bedeutet. Für die von uns beabsichtigte
Feststellung der stabilen Zustände ist eine vollständige, auch
asymmetrische Anfangsbedingungen berücksichtigende Lösung nicht
notwendig. Wir erhalten alles Notwendige, wenn wir uns auf die
Symmetrie

9L=(t,ctV=l)
93= (-r, ctV^A) [W)

beschränken, welche durch Transformation auf das durch den Vektor

2t festgelegte Ruhsystem nahegelegt wird.
Von (15) bleibt nur noch die vierte, die Energiekomponente.

An Stelle von (13) und (15) treten die beiden skalaren Gleichungen

L= (1-0) r'2 - (1 + 0) c2t'2 -m2c2, (17a)

(1 + 0)t' wm. (17b)

Diese beiden Gleichungen können wir in der üblichen Weise in eine
zusammenziehen, in welcher t die unabhängige Variable darstellt.
Bezeichnen wir die Ableitung nach t mit einem Punkt und setzen
wir noch £2 v2, so folgt wegen (12)

(18)

1 1 1 —
II

H
w — 1 <

\ 1 + IF V2,

1- a '
K

C2

Entwickelt man diese Gleichung für grosse B und kleine v und
multipliziert sie hierauf mit 2 mc2, so folgt in erster Näherung

mv2 mc2a
t2(w-l) mc2 2 •—-_—^-. (19)P

Diese Gleichung stellt den klassischen Energiesatz für zwei
Teilchen von der Masse m dar, welche sich nach dem Coulomb'sehen
Gesetz anziehen, falls man setzt

a -^- (20)
me1
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m
t'

a \ v

RI ~cyi

Wie man leicht aus (14) und (16) entnimmt, spielt t! tatsächlich
die Rolle der Masse. Sie berechnet sich aus (17a) und wegen (12) zu

(21)

Aus den Gleichungen (18) und (21) folgt, dass die beiden Teilchen
— auch bei einem Zentralstoss — die Distanz a nie unterschreiten
können. In dem Moment, wo die Minimaldistanz erreicht wird,
ist v 0 und t' oo. Wir werden später sehen, dass der Mittelwert

von t' während der ganzen Bewegung endlich bleibt.
Für B co geht (21) über in die bekannte Massenformel

der speziellen Relativitätstheorie. Sie vereinigt also in sich das
Verbot der Überlichtgeschwindigkeit mit einem Verbot der
Distanzen kleiner als a.

§ 3. Die Hamilton'sche partielle Differentialgleichung.

Wir gehen aus von (17a)

L (l-0) r'2 - (1 + 0) c2t'2 - m2c2

und führen ebene Polarkoordinaten für den Vektor je ein:

Es folgt

r«=|jt|-*B
je'2 r'2 + r2 qj'2

L= (1-0) (r'2 + r2 cp'2) -(1 + 0) c2t'2

(17a)

(22)

(23)

Die partiellen Ableitungen der zu L gehörigen Wirkungsfunktion
S ergeben sich in der bekannten Weise aus

dS
dr
dS

dL
dr
dL

dip dcp'

dS

dt

7 2 (1 - 0) r'

2(1 — 0)r2cp'

dL
W=-2(l + 0)cH'

(24)

Wie schon zu Beginn des vorigen Paragraphen bemerkt wurde,
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stimmt die Hamiltonfunktion mit der Lagrange-Funktion überein.
Um also die Hamilton'sehe partielle Differentialgleichung zu
erhalten, brauchen wir nur vermittels (24) die Grössen r', q>', V durch
die Ableitungen

dS dS dS
1)7' ~dq>' ~dT

auszudrücken und in (23) einzusetzen. Man bekommt

1 j/dSA J_(dS\2
4(1-0) (Ur/ + r2\d<p) j 4(l + 0)c2\di/

(d8Y
-rr — mici (25)

Unser System ist also vollständig separierbar und periodisch.
Die Separation ergibt:

dS
dt

dS

d(p

dS
dr

— 2 mc2w

J

2 mc ]/^V)(r%-) J2

4 m2c2r2

(26)

Die Konstante in der ersten dieser drei Gleichungen folgt aus der
dritten Gleichung von (24) in Verbindung mit (17b). Die
ausschlaggebende Abweichung von der üblichen Behandlung des

Zweikörperproblems beruht natürlich auf der dritten Gleichung
von (26). Damit die Wurzel reell ausfällt, muss gelten

w 2 > 2r-
2r

1
2 m2c2r (a + 2 r)

>0 (27)

Es empfiehlt sich, die Diskussion dieser Ungleichung für fest
vorgegebenen Drehimpuls J in einer (r, w) — Ebene vorzunehmen.
Es genügt, wenn man sich auf den Quadranten 2 r ^ a, w > 0

beschränkt. In diesem Gebiet betrachten wir die durch die
Gleichung

w 1/
Y 2r

1

2 m2c2r (a + 2 r)
(28)

17
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definierte Kurve P und führen eine rationelle Längeneinheit ein;

2r aq

J 0
\ (23)

ß
mca

Es folgt

'f.w= «/ e-1
Q

ß2

o(o + l
(30)

Wenn man für J die Grössenordnung des von der Quantentheorie

geforderten Drehimpulses annimmt, erhält ß die Grössenordnung

der reziproken Feinstrukturkonstante. Bei der
Diskussion von (30) kann man also ß2 als grosse Zahl ansehen. Dann
ergeben sich für die Kurve P näherungsweise folgende Hauptpunkte

:

A: 0'= 1; w 0

„ 1 + V"5 V 5 -1) t/a/5-2 ,MB : 0 -~— ; tu ~ — ^—L p (Maximum)

C: 0 ~ 2 (/» - 1) ; w ~ 1 - J- (Minimum)

D: o 00; w 1

(31)

Die Kurve P steigt also von der Ausgangsstelle A sehr rasch auf
einen beträchtlichen Maximalwert, senkt sich dann allmählich in
eine flache Mulde, um den weit entfernten Punkt C herum, um
schliesslich im Unendlichen asymptotisch von unten gegen die
Ordinate 1 zu streben. Für Punkte, die einigermassen rechts vom
Maximum liegen,' deckt sich der Verlauf mit dem der klassischen
Dynamik.

Die charakteristische Abweichung liegt im Stück A B. Sie

hängt offenbar mit dem Verbot der Distanzen B < a zusammen.
Die realisierbaren Zustände liegen nach (27) oberhalb der Kurve P.
Wir ersehen also, dass in genügender Nähe der Minimaldistanz
Energien von ganz kleinen bis zu beliebig grossen Beträgen
auftreten können. Über die dynamisch stabilen Zustände können wir
speziell folgendes feststellen: Neben dem der klassischen Dynamik
entsprechenden Stabilitätsintervall der flachen Mulde finden wir
ein zweites von der Grössenordnung der Minimaldistanz a, in
welchem grosse Energiewerte realisiert werden können.
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Angesichts der sich hier als Folgerung ergebenden Minimaldistanz

a mag darauf hingewiesen werden, dass in neuerer Zeit
verschiedene Autoren3) aus prinzipiellen Gründen die Existenz
einer kleinsten J^änge fordern. Bei unserem Modell ausschlaggebend
ist vor allem der Umstand, dass für B a die quadratische Form
(12) ausartet. Dieser Effekt ist weitgehend unabhängig von der
speziellen Potentialfunktion 0.

§ 4. Quantisierung.

Da unser System periodisch ist, besteht die Möglichkeit, die
provisorischen Quantenregeln

dS
dcp kh

dcp

dr nh
dr

(32)

zur Anwendung zu bringen. Der Kreis auf dem Integralzeichen
soll die Erstreckung des Integrals über eine volle Periode bedeuten.
Unter Beachtung von (29) erhalten wir aus (26)

(33)

(34)

J
kh

~2n

j/KHri--')-
k2h2

dg -4n2m2c2a2Q2

nh

mca' \ g 1

Nun ist wegen (20)

2 Timca 2ne2
oc.

J, 1
- - wh hc

wo oc die Feinstrukturkonstante darstellt. Setzen wir also zur
Abkürzung

kK - OLW

so geht (34) nach einer leichten Umformung über in

(36)

1 c/51/fi i 1\( * M K2 do- n
(37)2nK 9 |/ [1+ e)[i-~±- ^ e2 fc '

3) Vergleiche etwa A. March, Naturwissenschaften 26, S. 649 (1938), woselbst
weitere Literatur angegeben ist.
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Die Diskussion am Schlüsse des vorigen Paragraphen hat
gezeigt, dass zwei wesentlich verschiedene Stabilitätsintervalle in
Betracht kommen:

1. Für alle Werte von w zwischen Null und dem Maximum ein
sehr kleines Intervall von der Grössenordnung des „Elektronenradius"

a.

2. Für Werte w wenig unterhalb 1 das Intervall der flachen Mulde,
das wie man leicht feststellt, die Grössenordnung des Bohr'sehen
Atomradius besitzt.

Im zweiten Falle erhält man ein Termsystem, das demjenigen
des Wasserstoffs eng verwandt ist, in der absoluten Grösse aber
um einen endlichen Faktor von ihm abweicht. Es musste also
einem hypothetischen neutralen Gebilde von der Totalmasse 2 m
zugeordnet werden. Ich kann mir kein Urteil erlauben darüber,
ob seine Existenz mit Sicherheit ausgeschlossen werden kann.

Das Charakteristische des vorgeschlagenen Modells ergibt die
Behandlung des kleinen Stabilitätsintervalls. Wir fragen nach
denjenigen Zuständen, wo w dem in (31) angegebenen Maximum
möglichst nahe kommt. Aus (29), (31), (33) und (36) entnimmt

man, dass in diesem Falle — im Integral (37) im Vergleich zu den

übrigen Grössen vernachlässigt werden darf. Wir vereinfachen
also unsere Aufgabe, wenn wir nach denjenigen Werten von w —
respektive K — fragen, welche für vorgegebene k und n die Relation

erfüllen. Wir nehmen noch die Verschiebung

o 1 + t (39)

vor und erhalten statt (38)

ér 0 i^i K%
dr ~. (40)

(1 + t)2 k

Das für die Integration massgebende Intervall wird links begrenzt
durch den Punkt x 0, rechts durch die kleinste positive Nullstelle

des Radikanden r 0. Das linke Ende ist also eine
Unendlichkeitsstelle. Sie ist zugänglich, insofern in ihr die Energie
endlich bleibt.
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Lässt man nun w monoton von 0 nach oo wachsen, so durchläuft

gemäss (36) K alle Werte von oo bis 0 und gleichzeitig wächst
0 von 0 an so lange monoton, bis es in der Doppelwurzel 0O des
Radikanden mit der zweiten positiven Nullstelle zusammentrifft.
Dem Werte 0O entspricht also ein Wert K0 derart, dass für jedes
K > K0 ein Intervall vorhanden ist, für K < K0 aber nicht. Mit
w0 sei noch das zu K0 gehörige w bezeichnet. Die Werte 0O, K0, w0
berechnen sich zu

6>n V5-Ï

K0=y-

0,618

11 + 5V5
2

w0 —— 41,3 k
OC Kn

3,315 ¦ (41)

Wenn wir nun K von oo bis K0 laufen lassen, erhalten wir den

ganzen Wertevorrat, der durch die linke Seite von (40) dargestellt
werden kann. Man sieht aber leicht ein, dass während der Variation

von K diese linke Seite monoton wächst bis zu einem Maximalwert

®0

C
n Kn

K 2

(1+T)
dt. (42)

Für den Faktor vor dem Integral (40) ist das monotone Wachstum
evident. Im Integral selbst aber wächst sowohl das Intervall als
auch der Integrand. Für die Auswertung des Integrals (42) —
das wegen der Doppelwurzel des Integranden elementar ist —
empfiehlt sich die Substitution

4 + 2 0O + r
ze

4 + 3 6>0
(43)

Unter Beachtung von

(2 + gg) (1

6»„

0„)2
— K 2 (44)
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ergibt die Berechnung

c- 4^2
*(r,+x)V?-a

W. Scherrer.

(C2+1)V3C2-1 /V3c;2-
4VC2-i arctgl^VT^

(VC2-3)3 /C+l\
4VC2-1 gU-!/

3)

:

CVC2-3
Vf2-i

(45)

Die numerische Auswertung liefert

C 0,12899... (46)

Damit nun die Gleichung (40) eine Lösung hat, muss nach dem
Vorausgegangenen die rechte Seite offenbar kleiner sein als dieses
Maximum. Es folgt also

fc > -5r » (47)

Da nun C wenig grösser als 1fs ist, kann man näherungsweise
setzen

k > 8 n. (47')

Die letzte Bedingung deckt sich für n 1, 2, 3, 4, 5 noch genau
mit (47). Die Tatsache, dass zu einem vorgegebenen n eine stabile
Lösung nur möglich ist, wenn sich ihm ein gemäss (47) grösseres fc

beigesellt, bildet natürlich den eigentlichen Grund dafür, dass in
kleinen Dimensionen viel höhere Energien konzentriert werden,
als man nach der Formel (41) für den Maximalwert w0 erwarten
würde.

Um nun die Aufgabe der wirklichen Bestimmung von w respektive

K aus der Gleichung (40) bei vorgegebenen n und fc zu
diskutieren, müssen die Grenzen 0 und 0 sichtbar gemacht werden.
0 ist — wie schon oben erwähnt wurde — die kleinste positive
Nullstelle des Radikanden, und es gilt

g,=__ji£±_ (48)

An Stelle von (40) erhalten wir

f V* [V-V l*~A VY-v*)r-vz>\ n
'2+0./ " " t(1+t) dt~Y (y)ti (1 + 0) V 2+0 J t(1+t)
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also im wesentlichen ein elliptisches Integral, dessen Nullstellen
wir steigend geordnet bezeichnen mit

02, 0, 0, 0X.

Führen wir dieselben durch eine lineare Transformation*) über in
die Nullstellen

- -~ X'~ ' ' X'

so ergibt sich für den Modul X der Wert

i 2-4 02-0s — 4]/l— 2 02 — 0S
A ~ |/ 2 - 4 02 - 03 + 4 fl - 2 <92 - 03

* (° '

Nun unterscheiden wir zwei Fälle:

I. 0 liegt in der Nähe der Doppelwurzel 0O. Für die letztere
gilt

i -2V-V (i + e0) (i-0O-0O2) o.

Also ist der Modul nahe bei 1 und für das Integral in (49) ist eine
Entwicklung

e

Ij ^j-T^ dr 2 H< Lg (6>o - 0) + B,] (0O - 0Y (51)

zu erwarten. Dabei muss natürlich sein

A0=0;B0=C,
wo C durch (42) bzw. (45) und (46) gegeben ist. Die umfangreiche
Entwicklung des Integrals in (49) nach Normalintegralen und
Reihen ergibt weiter

„1 0; Bx=0,
wie es dem Charakter des Maximums entspricht, und schliesslich
A2 < 0 sowie vermutlich B2 > 0. Ergäbe eine exakte Berechnung
von B2 wider Erwarten ein negatives Vorzeichen, so würde sich
das nur günstig auswirken, insofern der in § 5 berechnete
Massenmittelwert in Richtung auf den empirischen Massenwert verschoben
würde.

*) Es empfiehlt sich, dieselbe in der Gestalt

x 0 —— • oc, -f. a,
at + a2 z

1 -

anzusetzen.
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Eine Abschätzung von A2 ergibt, dass die Differenz 0O — 0
schon recht klein sein muss, bis die zweite Näherung ausreichend
wird. Für die günstigsten Fälle (aber kleine n)

fc 8 n, (52)

wo also der Abstand vom Maximum

71/ 1

C- — C-tt= 0,0039 (52')
fc o

klein genug zu sein scheint, ergab eine direkte Approximation,
dass 0 zwischen 0,51 und 0,52 liegt, was nach (41)

0O - 0 ~ 0,103 (53)

ergibt. Für diese Distanz ist aber die zweite Näherung nicht mehr
brauchbar. Zu diesem 0 ergibt sich nach (48), (36) und (52)

w ~ 327 n,

was im Sinne von (26) auf die Totalenergien

2 mc2w ~ 654 n • mc2 (54)

führt. Die der Folge (52) entsprechenden Energien schreiten also
nach ganzzahligen Vielfachen eines Grundwertes fort.

II. 0 sei klein. Dann wird nach (48) K gross. Beschränken
wir uns auf Glieder erster Ordnung in t, so folgt statt (40)

AAK^1 (_2 —5)t dx
_ n

2nK T (/ T 1+T fc

Die Berechnung ist elementar und liefert

(55)

1 " — " n
k2 y k2 fc

•

Entsprechend der vorgenommenen Näherung begnügen wir uns mit
den beiden ersten Gliedern der binomischen Reihen und erhalten

also nach (36)

1 n
_2 k

w y kn
a
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und somit für die Totalenergie

(56)

Wenn man diese Termformel auf die unter I behandelten Grenzfälle

anwendet, ergibt sich ein Fehler, den man leicht feststellt,
indem man (52) in (56) einsetzt. Es folgt

2 wmc2 ~ 776 n ¦ mc2. (57)

Der Vergleich mit (54) zeigt, dass bei durchgehendem Gebrauch
von (56) im schlimmsten Fall ein Fehler von 19% resultiert.
Natürlich immer unter der Voraussetzung, dass man~r in (37)

vernachlässigen darf.

Die Betrachtung der Termformel (56) führt neben der positiven
Feststellung, dass das Modell die Realisierung grosser Energien
erlaubt, zu der wichtigen Frage, ob mit der aus (56) folgenden
Möglichkeit beliebig grosser Energien der Bogen nicht überspannt
worden sei. Solange keine schweren Neutronen gefunden worden
sind, wird sich das Modell kaum in die Wirklichkeit einordnen
lassen.

§ 5. Ein Massenmittelwert.

In § 2 wurde darauf hingewiesen, dass der Masse des einzelnen
Teilchens die Grösse t' entspricht. Sie verändert sich beständig
und wird für unser spezielles Zweikörperproblem dargestellt durch
die Formel (21). Für das grosse Intervall der flachen Mulde
(Totalenergie wenig unterhalb 2 mc2) hat die relative Abweichung
von m die Grössenordnung von oc2, also einen kleinen Wert.

Ganz anders liegen die Verhältnisse im kleinen Intervall. Um
das Numerische zu übersehen genügt es, mit Hilfe von (18) die
Geschwindigkeit v aus (21) zu eliminieren. Es folgt für die Totalmasse

2 mw 1 +T
2 t — 2 mw.a x (58)

R

Beschränken wir uns auf die tiefsten Quantenzahlen n 1, fc 8,
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so folgt auf Grund von (53), (41) und (54) für x 0 als Massenwert

2 t' ~ 1920 m. Für x 0 aber ist 2 t' oo. Man ist also

gezwungen, einen Mittelwert zu verwenden. Als naheliegendste
Bildung ist wohl der Ausdruck

($ t'ds
m 2 % (59)

é ds

anzusehen. Führen wir r als unabhängige Variable ein, so folgt

(ß^rdr
m 2 A-AL- -

<p^àr
Vermittelst (24), (26), (29), (39) und (48) ergibt sich schliesslich

/S(1+T)(2~T)
-dx

- o 0 V«
m 2 • —o-.--

'r(2+x)- dtf-
Q x (0 - x) [2 - (4 0 + 02) x - 0x2]

(60)

Da 0 nach (53) nicht genügend nahe bei 0O liegt, ergeben
sich für die Berechnung dieselben Schwierigkeiten, welche in § 4
im Anschluss an (51) geschildert worden sind. Eine direkte ziemlich

rohe Approximation liefert

m ~ 2700 ro. (61)

Der gefundene Wert liegt also etwa 50% über dem empirisch
bestimmten Gewicht der schweren Elementarteilchen.

Wie empfindlich der Wert auf die Differenz 0O — 0 reagiert,
mag folgende Berechnung dartun. Hätte man für den dem

Maximum am nächsten gelegenen Wert-r- | im Vertrauen auf die

Kleinheit von (52') die nullte Näherung, also w0 aus (41) mit
fc 8 und 0 ~ 0O, verwendet, so ergäbe sich aus (60) ein Mittelwert

ro0 ~ 1730 ro. (61')

Ob der gefundene Maximalmittelwert (61) auch als
Trägheitswiderstand gegenüber einer äussern Kraft in Betracht kommt,
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bleibt natürlich noch ungewiss. Vorderhand handelt es sich um
eine interne Angelegenheit unseres Systems:

Definiert man die Masse durch (59), so verhält sich die Masse
des Zustandes n= 1, fc 8, w 327 zu derjenigen der Zustände
W~lwie 2700:2.

Was die Überhöhung des gefundenen Wertes gegenüber dem
beobachteten betrifft, so mag daran erinnert werden, dass die
punktdynamische Berechnung des Heliumgrundterms eine
Überhöhung von ca. 15% ergab, welche durch den Übergang zur
Wellenmechanik beinahe restlos aufgehoben werden konnte. Es erhebt
sich also die Frage, ob in unserem Falle die Überhöhung der Masse

um 50% durch eine passende Wellengleichung kompensiert werden
kann. Ob in dieser Richtung eine Verbesserung oder eine
Verschlechterung zu erwarten ist, weiss ich nicht. Ich muss mich
damit begnügen, im nächsten Paragraphen die meines Erachtens
naheliegendste Wellengleichung mitzuteilen.

§ 6. Eine Wellengleiehung.

Da die linke Seite der formal dem klassischen Energiesatz
entsprechenden Gleichung (13) aus § 2

L _ \ 9£'2 + | %'2 + 0 X'<8' - m2c2 (13)

eine quadratische Form aller Geschwindigkeitskomponenten
darstellt, liegt es nahe, von der Metrik

2 m2c2ds2 - (d9t2 + d<$2 + 2 0 dXd%) (62)

Gebrauch zu machen.
Um die geläufigen Formeln der Tensoranalysis verwenden zu

können, setzen wir allgemein

L \gik x/ xk' —m2c2 (63)

und formen L gemäss

dL dS K df

um zu

dx/ dxi tp dxt

K2 dtp dip
2 tp2 a dx( dxk
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An Stelle von (63) erhalten wir so

r
dip dtp 2m2c2

dxt di K2 ip" 0. (64)

Die einfachste invariante Möglichkeit, aus (64) eine
Wellengleichung zweiter Ordnung zu erhalten, besteht offenbar darin,
den daselbst auftretenden Differentialausdruck erster Ordnung
durch den der Metrik entsprechenden Differentialausdruck zweiter
Ordnung zu ersetzen. Mit

K
h

27i-s/^ï
erhält man so aus (64)

1 à ,— dip

V7 dxi \y 9 g àxk

8 7i2m2c2

h2 ip 0

Die Anwendung auf (13) ergibt schliesslich im Sinne der in
§ 1 eingeführten Symbolik

+¦
d®

à

A%

(1 - 02)

(1 - 02)

dip

dip

d®
0

d9i

ip

0
dip

Ó9C

d®
8 7i2m2c2

h2
(1 -02)2ip

(65)

Schlussbemerkungen.

Um noch einmal die charakteristische Abweichung des hier
diskutierten Ansatzes gegenüber der relativistischen Lagrange-
Funktion (7) hervorzuheben, schreiben wir (7) vermittelst
<S ?5/|?}| in der Form

eip $£ (7')

und stellen dieser Definition die Gleichung (9) für M m gegenüber:

L= |ro9C2 + iro3)2
ecp •

(9')
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Die ausschlaggebende ¦ formale Abweichung liegt also vor allem
in der Einschiebung des dem zweiten Teilchen entsprechenden
quadratischen Gliedes. Dadurch, dass man auf diese Weise für
zwei (oder auch mehr) Teilchen eine einzige Lagrange-Funktion
herstellt, wird erst die ganze Technik der Hamilton'schen Dynamik
verwertbar. Dabei ergibt sich also die Möglichkeit einer
Quantisierung von Ruhmassen und dies zu zeigen war der Hauptzweck
der vorliegenden Untersuchung. Auf das Detail des hier gewählten
speziellen Ansatzes kann schon darum weniger Gewicht gelegt
werden, weil eine grosse Serie ähnlicher Ansätze ähnliche Effekte
zeitigen müssen.

Wenn man diese Wendung vermeiden will, ist man eben

gezwungen, soviele Gleichungen (7') zu verwenden, als Teilchen
vorhanden sind. Es ist sehr wohl möglich, dass dieses Verfahren
korrekter ist und es ist wohl eine Frage von prinzipiellem Interesse,
ob nicht auch schon in diesem Falle Masseneffekte vorhanden
sind, von denen unsere Gleichung (21) vielleicht ein vergröbertes
und verzerrtes Abbild liefert.

Bern, mathemat. Seminar der Universität.
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