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Uber ein Kriterium fiir Ein- oder Zweiwertigkeit der
Eigenfunktionen in der Wellenmechanik
von W. Pauli.
(22. XII. 38.)

In der vorliegenden Note wird folgendes Kriterium vorgeschlagen zur Ent-
scheidung der Frage, ob bei einer bestimmten Wellengleichung eindeutige oder
zweideutige Losungen physikalisch zulassig seien: Die einmalige Anwendung der
Drehimpulsoperatoren auf ein gegebenes System regulirer bzw. quadratisch
integrierbarer Eigenlosungen zum gleichen Wert der Gesamtimpulsquantenzahl §
darf nicht aus diesem System herausfithren, d. h. die so erhaltenen neuen Losungen
sollen sich linear durch die urspriinglichen ausdriicken lassen. Zur Begriindung
des Kriteriums wird gezeigt, dass bei seiner Nichterfiillung kein eindeutiger Zu-
sammenhang zwischen Operatorkalkiill und Matrixkalkiill bei den Drehimpuls-
grossen mehr bestehen wiirde. Die Anwendung auf die skalare Wellengleichung
ergibt die Notwendigkeit eindeutiger Wellenfunktionen, wihrend bei der Schro-
dinger’schen Form der Dirac’schen Gleichungen in Polarkoordinaten das Kriterium
zur Notwendigkeit zweiwertiger Losungen fithrt. Beide Ergebnisse sind im Ein-
klang mit der Erfahrung. Die Verallgemeinerung der Formulierung des Kriteriums
fiir endliche Drehungen wird angegeben und diejenige fiir die umfassendere Dreh-
gruppe des sphirischen Raumes wird erwahnt.

1. Problemstellung. Formulierung des Kriteriums.

Wie vom Verfasser bereits bei einer fritheren Gelegenheit?!)
betont wurde, gibt es kein a priori giiltiges Argument dafiir, dass
die Losungen der Wellengleichung, welche das physikalische Ver-
halten eines Systems quantentheoretisch beschreiben, notwendig
eindeutig sein missten. Fir die Eindeutigkeit der physikalischen
Grossen, die stets bilinear in der Wellenfunktion und ihrem kon-
jugiert komplexen sind, gentigt es nadmlich, wenn alle zugelassenen
Eigenlosungen sich bei Durchlaufen gewisser geschlossener Wege
mit einem Faktor ¢!* vom Betrag 1 multiplizieren, der nur abhéngig
ist vom betreffenden Weg, aber unabhéngig von der gerade heraus-
gegriffenen Eigenlosung. Die weitere Behandlung dieser Frage
a. a. 0. stellte sich aber bald als ungeniigend heraus, da es unter
den mehrdeutigen Eigenlésungen im allgemeinen auch solche gibt,
die allen Regularitétsforderungen gentigen. Dies trifft auch zu
bei den l.c. behandelten mehrdeutigen Kugelfunktionen als
Losungen der gewdhnlichen unrelativistischen Wellengleichung
eines Teilchens.

1) Vgl. Handbuch d. Physik, Bd. XXIV/1, 2. Aufl. Berlin 1933. S. 126.
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Inzwischen wurde das in Rede stehende Problem verschiedent-
lich in der Literatur behandelt?), insbesondere gelang es E. ScHRO-
DINGER wesentliche Fortschritte hiebei zu erzielen. Er bemerkte
zunichst, dass die Gleichberechtigung von Vergangenheit und
Zukunft (Umkehrbarkeit der Zeit) fiir den Verlauf physikalischer
Grossen nur gewahrt ist, wenn die Wellenfunktionen speziell ein-
wertlg oder zweiwertig sind, von denen die zweiwertigen bei den
erwiahnten Umléufen einfach ihr Vorzeichen éndern. Wir werden
deshalb sowie auch aus Einfachheitsgriinden im folgenden haupt-
sichlich nur diese beiden Moglichkeiten diskutieren. Weiter
konnte SCHRODINGER, ausgehend von seiner fritheren Formulierung
der Dirac’schen Gleichungen des Elektrons in beliebigen Koor-
dinaten?), einen Fall auffinden, wo die Lésungen der Wellen-
gleichung notwendig als zweideutig angenommen werden miissen,
damit die Ergebnisse im Einklang mit der Erfahrung bleiben;
und zwar handelt es sich hierbei zun#ichst um eine neue Dar-
stellungsweise der Dirac’schen relativistischen Wellengleichung des
Elektrons in Polarkoordinaten im gewohnlichen flachen Raum.
Diese Sachlage liess ernstliche Zweifel entstehen, ob fiir die Ent-
scheidung der Frage nach der Ein- oder Zweiwertigkeit der Lo-
sungen einer gegebenen Wellengleichung sich iberhaupt ein zu-
reichender physikalischer Grund auffinden lasse.

Demgegentiber soll in dieser Note gezeigt werden, dass solchen
Zweifeln kein Raum gegeben werden darf und (anders als bei
den Symmetrieklassen des Vielelektronenproblems) ein theo-
retisches Kriterium fiir die Entscheidung der Frage im einen
oder im anderen Sinn sich in der Tat angeben lasst. Hiefiir gentigt
es freilich nicht, die Regularitit der Eigenlosungen allein zu unter-
suchen, sondern es ist der Umstand wesentlich, dass der Hamilton-
operator eine Transformationsgruppe gestattet. Wir beschriinken
die vorliegende Untersuchung auf die Gruppe der gewohnlichen
Drehungen im flachen Raum und zwar einerseits fiir die un-

1) A. 8. EppinaToN, Relativity Theory of Protons and Electrons, Cam-
bridge 1936, S. 60 und 150, dort auch altere Literatur. Uber zweideutige Kugel-
funktionen als Losungen der unrelativistischen Wellengleichungen vgl. auch
F. Mooricy, ZS. f. Phys. 110, 1, 1938. Die Gl. (2a) dieser Arbeit enthélt jedoch
ein wesentliches Versehen, indem die aus den Integralen iiber die Kugelfliche
berechneten Matrixelemente der Drehimpulskomponenten, wie im § 2 dieser
Note gezeigt wird, nicht mehr der Forderung geniigen, mit der Matrix des Quadrates
des totalen Drehimpulsvektors vertauschbar zu sein.

Uber die Frage der Umkehrbarkeit der Zeit vgl. E. SCHRODINGER, Ann. d.
Phys. (5), 32, 49, 1938, iiber eine ausfiihrliche Diskussion mehrdeutiger Lésungen
der relativistischen Wellengleichung des Elektrons, derselbe Commentationes
Pontificia Academia Scientiarum, 2, 321, 1938. Im folgenden zitiert als ,,P. A.**

%) E. SCHRODINGER, Berl. Ber. phys. u. math. Klasse, S. 105, 1932.
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relativistische skalare Wellengleichung eines Teilchens, anderer-
seits fiir die relativistische Wellengleichung des Spinelektrons.
Diese Gruppe gibt bekanntlich Anlass zur Existenz der drei Dreh-
impuls-Operatoren P, P,, Py, die bei einem zentralsymmetrischen
Problem eine Figenlosung stets wieder in eine Eigenlosung iiber-
fiuhren, da sie dann mit dem Hamilton-Operator vertauschbar
sind. Ferner ist jede der drei Grissen P, (k = 1,2,8) vertauschbar
mit dem totalen Quadrat

P2:P12’_]“P22“;_P32 . (1)

des Drehimpulses, das bekanntlich die Eigenwerte j(7 + 1) besitzt,
worin eben besonders untersucht werden soll, wann die halb-
zahligen und wann die ganzzahligen Werte von § auszuschliessen
sind. Zu diesem Zweck gehen wir aus von einem System reguléirer
Eigenlosungen u;, , des Operators P2, fir die also gilt

Puj = + 1) 4s,m (1a)

(Eventuell vorhandene Spinindices schreiben wir, wie iiblich,
nicht explizite an.) Zu einem gegebenen Wert von § gibt es stets
nur endlich viele regulire Eigenlosungen und es ist iibrigens
fir die Anwendung des Kriteriums nicht wesentlich, ob man even-
tuell vorhandene, nicht mehr reguldre, aber noch quadratisch
integrierbare Eigenlosungen mit zum betrachteten System zidhlt
oder nicht. Betrachten wir jedoch alle moglichen (entweder ganz-
zahligen oder halbzahligen) Werte von §, so mdge in letzterem
Falle das System der Eigenlosungen so gew#hlt sein, dass die
zu verschiedenen §-Werten gehorigen Funktionen des Systems
die Bedingung der Orthogonalitidt erfiillen.

Wir wollen nun folgende zusiitzliche physikalische Forderung
aufstellen: Die Anwendung der Drehimpuls-Operatoren P, auf ein
vorgegebenes endliches System regulirer (oder nur quadratisch inte-
grierbarer) Kigenlosungen von P? mit demselben Wert von 4 soll
aus diesem System micht herausfiihren.

Oder positiv ausgedriickt, die neuen Eigenfunktionen Pju;,
sollen sich linear durch die alten ausdriicken lassen:

Pkuj,mzzczcnm,um,’j. (2)
oy

Offenbar ist in unserer Forderung eingeschlossen, dass auch die
neuen Eigenlosungen regulir bzw. quadratisch integrierbar sein
sollen. Dass in (2) links und rechts nur Eigenfunktionen mit
gleichem §-Wert erscheinen, hingt damit zusammen, dass die Py
alle mit P? vertauschbar sind.



150 W. Pauli. .

Wihlt man ibrigens die Eigenfunktionen u;,, speziell so,
dass auch eine der Drehimpulskomponenten, sagen wir Pg, auf
Diagonalform gebracht ist, so gelten die bekannten Auswahlregeln
fir P; und von den Termen auf der rechten Seite von (2) sind
dann 1m allgemeinen héchstens zwel von Null verschieden. (Wéaren
die Eigenfunktionen normiert, so wiirden ja die cf,,- direkt die
Matrixelemente von P, darstellen.)

Im folgenden § 2 soll zunéchst gezeigt werden, dass das an-
gegebene Kriterium sowohl im Falle der skalaren als auch im
Falle der Spinorwellengleichung (Dirac-Gleichung) ausreichend ist,
um die Alternative, ob ein- oder zweiwertige Wellenfunktionen
zuzulassen sind, jeweils eindeutig zu entscheiden. Ein wichtiges
Resultat (§ 2) ist ferner, dass im Falle das Kriterium nicht erfiillt
ist, gewisse unter den neuen Eigenfunktionen P w; ., micht mehr
orthogonal sind auf einer Schar der wrspriinglichen uy, ,, mit festem
m’ und variablem j’, obwohl j +4’. Hieraus ergibt sich die physi-
kalische Notwendigkeit der Erfillung unseres Kriteriums. Denn
die in der iiblichen Weise durch Integrale berechneten Matrix-
elemente von P; wiren sonst nicht mehr alle diagonal in bezug
auf 7 unter Verletzung der Vertauschbarkeit aller P; mit P2 Man
kann daher das Ergebnis auch so formulieren, dass bei Verletzung
unseres Kriteriums der iibliche Zusammenhang zwischen Matrizen
und Operatoren fiir die Drehimpuls-Komponenten unterbrochen
wird, was physikalisch offenbar unzuléssig ist.

Eine andere mit der urspriinglichen &dquivalente Formulierung
unseres Kriteriums, die vielleicht anschaulicher, aber fir die
praktische Durchrechnung weniger geeignet 1st, wird im § 3 gegeben.
Sie beruht darauf, dass die Drehimpuls-Operatoren den infinite-
simalen Drehungen zugeordnet sind und dass durch ihre Iteration
eine Operation entstehen muss, die bei einer endlichen Drehung
des Koordinatensystems aus einer Eigenlosung der Wellengleichung
eine neue zu erhalten gestattet. Infolge der Willkiirlichkeit der
Wahl der Achsen des Polarkoordinatensystems sind alle diese
Eigenlosungen physikalisch gleichberechtigt. Die IFassung unseres
Kriteriums, die durch Ubergang von den infinitesimalen Drehungen
zu den endlichen entsteht — sie ist in Wahrheit dquivalent der
urspriinglichen Fassung und enthiilt keine stérkere Forderung —
besagt aber eben, dass auch hier die neuen Eigenlosungen v, ()
sich durch die alten u;,,, (z), die zum gleichen § gehoren, linear
ausdriicken lassen sollen.

Die Definition der Operation aber, die aus den u;,, (z) die
v;,m (z) erzeugt, erfordert eine etwas eingehendere Uberlegung.
Sie 1st zunéchst sehr einfach bei der skalaren Wellengleichung,
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da diese direkt invariant gegeniiber Drehungen der Koordinaten-
achsen ist. Man erhilt also die v;,,, aus den #,,,, indem man zu-
nichst bel unverdnderter Funktionsform von u;, ,, die alten Polar-
winkel &, ¢ durch die neuen &', ¢’ ersetzt und dann diese durch
die alten #, ¢ und die drei Drehungsparameter (z. B. die 3 Euler’-
schen Winkel), die hier kurz mit @ bezeichnet werden mogen,

ausdriickt: . ;
ﬁj,m(ﬂ:(nv;a’):%i,m(ﬁ’qp)' : (3)

Durch unser Kritertum wird hier gefordert, dass
Uiym (' @) = 2 Con e (@) 05, m (9,9) (4)

und dies st offenbar nur fir einwertige Wellenfunktionen u er-
fiillbar. Die zweiwertigen Kugelfunktionen u;, ., (9', ¢”) lassen sich
dagegen offenbar nicht durch die %; , (#, ¢) mit gleichem § und
konstanten Koeffizienten linear ausdriicken, da die %;, ,, (¢, ¢) beim
Umlauf um den Punkt & =0, die u;,,, (¢, ¢') aber beim Umlauf
um den von diesem verschiedenen Punkt &' = 0 ihr Vorzeichen
dndern; fir die zweiwertigen Kugelfunktionen gibt es kein ,,Addi-
tionstheorem*’. ‘

Aus dem gleichen Grunde fithrt die Anwendung unseres
Kriteriums auf die gewothnlichen Dirac’schen Wellengleichungen
des Elektrons zwangsliufig zu den eindeutigen Losungen. Man
muss hier nédmlich, um von den %, zu den v;, zZu gelangen,
- ausser der Substitution der &', ¢" durch &#,¢ nur noch eine S-
Transformation der Spinindizes mit konstanten Koeffizienten aus-
fihren.

Anders liegen jedoch die Verhiltnisse bei der von ScHRO-
DINGER aufgestellten Form der Dirac’schen Gleichungen in Polar-
koordinaten. Diese Gleichungen sind nicht einfach invariant beim
‘Ubergang von einem Achsensystem zum andern, sondern, um die
urspriingliche Form der Wellengleichung in den neuen Koor-
dinaten wieder herzustellen, muss noch eine von &, ¢ abhingige
S-Transformation der Spinindizes hinzugefiigt werden. (Nebenbei
bemerkt ist dies charakteristisch fiir die von ScHRODINGER auf-
gestellte allgemein kovariante Form der Dirac-Gleichungen.) Man
erhdlt daher in diesem Fall aus einer beliebigen Lésung o (2, ¢)
der Wellengleichung eine neue x (¥, ¢, a) geméss

2 (@, 9,0)=80, ¢,a) v, ¢) (3a)
worin die S-Matrix in der iiblichen Weise auf die (hier nicht expli-
zite angegebenen) Spinindizes wirkt. Statt (4) besagt dann unser
Kriterium '

S (8, 950) s (8 9) = X O () s (9,9). (d0)
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Wie in § 3 gezeigt wird, hingt im Schrodinger’schen Fall die
Matrix S in solcher Weise von &, ¢ ab, dass sie sowohl fiir einen
geschlossenen Weg auf der Kugel, der #= 0 umschliesst und #'=0
ausserhalb liasst, als auch fiir einen geschlossenen Weg, der 4" =0
umschliesst und #=0 ausserhalb ldsst, thr Vorzeichen dndert. Daher
1st i diesem Fall die Gl. (4a) nur moglich, wenn %;, , (2, @) zZwei-
wertig ist, dagegen unmoglich, wenn w;, ,, (¢, @) einwertig ist.

Bei Kenntnis der Matrix S(¢, ¢; a) ware also die Rechnung
mit den Drehimpulsoperatoren P, (die ibrigens aus S durch
Spezialisierung der a fiir infinitesimale Drehungen hervorgehen)
gewissermassen tberfliissig. Die Durchfithrung des Kriteriums
tir infinitesimale Drehungen scheint uns jedoch aus verschiedenen
Griinden ihre selbstindige Bedeutung zu behalten. Erstens tritt
nur bel der letzteren Fassung die Wichtigkeit des Kriteriums fir
den widerspruchsfreien Zusammenhang zwischen Operatorkalkiil
und Matrixkalkiil deutlich zu Tage. Ferner scheint, namentlich
bei allgemeineren Gruppen, eine direkte Ermittlung der S-Matrix,
~ohne auf andere Formen der Wellengleichung zu rekurrieren, bei
endlichen Transformationen der Gruppe recht uniibersichtlich zu
werden.

Wie bereits erwihnt, beschrinken wir uns hier auf den Fall
des flachen Raumes und der gewohnlichen dreidimensionalen
Drehgruppe, da das Prinzipielle unserer Uberlegungen schon in
diesem Fall deutlich wird. Diese Uberlegungen lassen sich jedoch
leicht verallgemeinern auf die Wellengleichungen des sphérischen
Raumes, wobei dann die sechs parametrige Drehgruppe mit den
6 Operatoren M;, N, (k= 1,2,8) an die Stelle der drei para-
metrigen Drehgruppe mit den drei P,, die Eigenwerte von
%‘ (M%+ N%) an Stelle derjenigen von %’ P% und zwei Quanten-

zahlen an die Stelle von m treten'). Unser Kriterium in der
infinitesimalen Fassung sagt dann wieder aus, dass die (M u)
(Nxu) sich linear durch diejenigen unter den urspriinglichen
reguliren Kigenfunktionen (von denen eine % ist) ausdriicken
lassen, die zum gleichen Eigenwert von

3
3, 043+ N}

gehoren wie . Und es sind gerade die von SCHRODINGER schliess-
lich ermittelten Eigenfunktionen des sphirischen Raumes?), die
diesem Kriterium gegeniiber standhalten. Auch bei anderer Wahl
der Koordinaten im sphérischen Raum scheint sich dieses Kriterium
zur Ermittelung der richtigen Eigenfunktionen zu bewihren.

1) Siehe SCHRODINGER, P, A, § 4. %) ,,P. A, § 8.
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§ 2. Die Anwendung der Drehimpuls-Operatoren auf die Eigen-
funktionen.

a) Die skalare Wellengleichung.

Wir betrachten ein zentralsymmetrisches Potential und denken
uns in der Wellenfunktion den von den Polarkoordinaten ab-
hingigen Faktor u (#, ¢) absepariert. Er gentigt bekanntlich der
Wellengleichung

1 0 /. ou 1 024
=T sn g 09 (Sm PE] ) SmEd 0¢?

worin wir den Eigenwert von P2 mit §(j 4+ 1) bezeichnen. Es ist
bequem, die folgenden Linearkombinationen der Drehimpuls-
komponenten zu betrachten

jU+1)u  (5)

) . 0 . cosd 0
— — pl® I
P,=P+iPy=¢ (Oﬁ—r?} in 9 mp) (6a)
. . 0 .cosd 0
— —_ f— -t p—— -]-- 6b
Fl= By —i By = ( 09 sin & Otp) (6b)
P3=—~f:}i. (6c)
og

Wie tiblich betrachten wir die Eigenlosungen von P;, dessen Eigen-
werte sich nur durch eine gemeinsame Konstante von ganzen
Zahlen unterscheiden. Der Deutlichkeit halber verstehen wir im
folgenden unter m stets eine nicht negative Zahl und unterscheiden
die Eigenlosungen

U} (3, 9) = f1,m (cos §) eime, (Ta)
U, (#, @) = f1,m (cos F) €™, (7b)
Damit fi,m fir & = 0 und & = = regulir ist, muss notwendig
' j—m ganz und nicht negativ (8)
sein.

Die bekannten Darstellungen der Kugelfunktionen ergeben
in diesem Fall mit

2 = cos ¥ 9)
_m o d \i—m
fom ()= (1— 2272 (—--—) (1 — &%) (10)
dz
m = a + ganze Zahl, 0 <o <1 (11a)

a<m=<j. (11b)
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Eine Normierung dieser Eigenlésungen wird fiir das Folgende
nicht erforderlich sein. Man erhilt auf diese Weise alle requldren
Losungen der aus (9) folgenden Differentialgleichung

-—Eg{a—ﬁ>jiy+;fﬁf=fu+1w. (19

Fiir das Folgende wird von besonderem Interesse sein der Fall
« = 0 (ganzes § und m) und der Fall « = } (halbzahliges § und m).
Fir o« = } sind die Lésungen

m

mood \itm .

fiom ()= (=2 % () (12 (13)
dz

singuldr. Der Fall j und m ganz ist dagegen dadurch besonders

ausgezeichnet, dass

f1,-m (2) = const. f;,, (2), fiir j, m ganz, (14)

wahrend fir m unganz schon aus der Singularitit von f,, _, an den
Stellen 2= + 1 zu ersehen ist, dass f; _,, eine von f;, ,, vollig ver-
schiedene Losung sein muss.

Zum Beweise von (14) fiir ganzes 7 und m konnen wir die
aus (10) unmittelbar folgende Darstellung von f; , durch ein
komplexes Integral heranziehen, die auch sonst niitzlich ist.

A

Der Integrationsweg K, ist hier ein Kreis um den Nullpunkt. Da
fiir unganzes § (und m) der Integrand noch Verzweigungsstellen
bei t=1—2z und t = — (1 + 2) besitzt, muss in diesem Fall aus-
driicklich hinzugefiigt werden, dass diese ausserhalb des Kreises K,
liegen sollen:

[t|<|1—2| und |t|<|1+2| auf K, fiir §, m nicht ganz; (15a)

nur fir j, m ganz ist die Grosse des Kreises K, gleichgiiltig. Der
Ausdruck fir f;, _, (2) _

dt.  (15)

m o rm)! 11— (282

f,-, _m(2)=(1—2% P rmil dt (16)
lasst nun emne Umformung zu durch éie Substitution
t—> — s
die ergibt

o im (FmM) (1 — (2 1)2)
. —(1 — 22 2
fa, —m (Z) (1 Z ) € 2 x ‘b 2 ti—m+1

dt (16a)
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wobel nun
[t] > |1 —z|, [t > |1 + 2| aul K, (16b)
Nur fiir ganze § und m lisst sich der Kreis K; auf den Kreis K,
zusammenziehen und es gilt die Relation (14).
Wir zeigen ferner, dass die regulire Eigenfunktion

uiy (9, @) = 1,4 (2) *7

auf der singuldren, (aber wie leicht aus (10) zu sehen noch qua-
dratisch integrierbaren) Eigenfunktion

w5, 4 (3, ¢) = fr, 4 (2) A1

im allgemeinen nicht orthogonal ist (gleiches gilt natiirlich von
u; 3, und wy ;). Zunéchst gilt

] ' 4t
Ez_.[ (u;:%)*u;?, _3 Sin Pddde = %ffj,%— fr, —3dz.
g

Aus (12) folgt ferner

+1

[§G+1) = G+ 01 [ f,4 7, d2

] (1___-32) (f, _y—tb dfg% —f?, dfv = )

Die rechte Seite ist nun gerade endlich an jeder der Grenzen
z=+1 und 2= —1 und die Beitriige dieser beiden Grenzen
haben dann dasselbe Vorzeichen, wenn j—j’ ungerade ist, wéhrend
sie sich andernfalls autheben. In der Tat sind bei halbzahligem m
und j nur fiir ungerades j —j’ die Funktionen f; ; und f; _; zu- |
gleich gerade oder ungerade in z. Unser Resultat ist also

— 1
- 2

-1

fiir y—4’ ungerade

17
7,7 halbzahlig. a7

f( ) uF _ysindddde+0
Wir wenden nun die Operatoren P, und P_ auf die Eigen-
lésungen an und zeigen
P+ (fj, " eim"’) = const fj’ a1 et (M+1)¢; |
P_ (fj’m eim"’) = const f?-’ m—1 et m—1) ¢ (18a)

P, (f; m €™%) = const. f; ,_, e Do
P_ (fz, - e—"im‘l’) = const fj, L e‘-‘i (m+1) ¢ . (18b)
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Hierin ist tibrigens fir den Randwert j = m stets f; ;; identisch
Null zu setzen. In der Tat ergibt sich aus (6) und (15) z. B.

df;i,m
dz  (1— 2)%ff»m]

f{2; (1—22) (z-+1) [1—~(z-+1) 2~

N L [— (1—2

m+1 (]_H_m)
2m1

omal (o )y H

f—m+1

=gt mt1e(] . z2)~

Der Integrand lidsst sich umformen zu
(g+m-+1) [1—(e+1)2)i t=G—m) #Edt—{[l-——(ﬁt)?]f (22-+t) t—0—m},

Der zweite Term verschwindet bei Integration tiber den Kreis K,
und es ergibt sich

P, fym 6% = (+m+ 1) — m) f; i & 500,

Weiter findet man in etwas einfacherer Weise
' ; df; mz
: ime — i (m—1) 2 hm
P_fimem®=e ¢k1 - ﬂ—ﬁﬁhm]
4 [f,—,m (1—z2)-”%J
2

=19 (1 2)—de d j_m“(l 22)i
— e'lr m— —_z - —
( dz) )

= ei(mul)q’fj, m—1°
Die Relationen (18b) berechnen sich ganz analog. Fiir uns ist
nun wichtig, dass insbesondere in den Relationen
e i e S 439
P_ (f,-’%e 2 ) =const f; ;e 2, P+(fj,%e 2 ) = const f; _ye 2
im Resultat die singulidre Losung f; _; auftritt, dagegen fiir ganze 4,
m nach (14)

P_f; o= constf; _, e*% = constf;, e"? = constw; (3, ¢).

Fir halbzahlige §, m fiihrt also in der Tat die Anwendung der
Drehimpulsoperatoren aus unserem System (7), (10) von Eigen-
funktionen heraus, was nach (17) zur Folge hat, dass die in der
dblichen Weise aus den Integralen berechneten Drehimpuls-
matrizen fiir m = } nicht mehr diagonal in § sind, wie in § 1 an-
gegeben wurde. Nach unserem Kriterium sind also diese halb-
zahligen Kugelfunktionen hier auszuschliessen.
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b) Die Wellengleichung des Spinelektrons.

Wir beginnen hier mit derjenigen Form der Dirac’schen
Gleichungen in Polarkoordinaten, die ScurODINGER als Spezial-
fall seiner allgemeinen Theorie des Spinelektrons im Gravitations-
feld aufgestellt hat. Die Erlauterung des Zusammenhanges dieser
Darstellung der Theorie mit der sonst tiblichen soll dem folgenden §
vorbehalten bleiben.

Wir schreiben die Schrddinger’schen Gleichungen in der
Form?)

10y 11 0 1 0y
¢ 0t "oy r ]/Slnﬁ 09 ]/smﬁi,u 2 ) sin & O(p
0
rag L 1 0(ry) ﬂw—O (20)
rooor

worin die Matrices o, # den bekannten Dirac’schen Vertauschungs-
relationen gentigen und @, ein als zentralsymmetrisch angenom-
menes skalares Potentialfeld (multipliziert mit e/hc) bedeutet.

Man erhélt die Drehimpulskomponenten nach der tiblichen
Methode, indem man die entsprechenden Ausdriicke (6) durch
solche Terme ergénzt, dass sie mit dem Hamiltonoperator ver-
tauschbar werden. Auf diese Weise ergibt sich

) . 0 sco8d 0 1 s,
P, ==P 1P, =¢" I . . 21
' 11y =e (019‘ + sin ¢ Qg ) 2 smﬁ) ey

; ; ; 0 jcosd 0 1 s
P_=P,—iPy=eiv(—_2 25
e ( 05 T sn9 09 2 snd

Pg= —4 2 (21c)

0¢
mit der Abkiirzung s;= —14 o a,, (und zyklisch vertauscht).
Abweichend von der sonstigen Form der Theorie erhélt hier die
Komponente Pj; keinen Zusatz, wihrend die Matrix s; im Zusatz-
term von P; und P, auftritt statt wie sonst in dem von Pj.

1) SCHRODINGER, P. A., Gl (5, 12) und (8, 1) im Limes R — coc. Wir haben
hier fiir die von SCHRODINGER mit Gt 00y, 04,05, 10,0, — 0, bezeichneten Matrices
die neue Bezeichnung o;, o,, ¢, f eingefithrt. Dies rechtfertigt sich dadurch,
dass auch fiir diese Matrices die Dirac’schen Vertauschungsrelationen folgen,
wenn sie fiir die urspriinglichen «;...x, gelten. Ferner fithrt SCHRODINGER bis-
weilen die Abkiirzung ein: w =7 x/ sin ¥ v, was jedoch fiir das folgende nicht
zweckmaéssig sein wird.
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Ein weiterer mit dem gesamten Hamiltonoperator sowie mit
den P; vertauschbarer Operator 1st definiert durch

0
Ky= 1 %2 ) 29
Y ﬁmﬂ(ysma rER R PG

Das totale Quadrat der P, lisst sich durch das Quadrat von K
ausdriicken gemiss

P:= P2+ P2+ P2=K?— 1 (23)
Sind daher 7(7 + 1) die Eigenwerte von P2, so sind k= + (j + %)
die Eigenwerte von K. Die mit einem Vorzeichen behaftete
Quantenzahl k spielt bekanntlich bei der Feinstruktur des H-Atoms
eine entscheidende Rolle.

Fir die weitere Integration kann man zum Beispiel fiir die
Matrices «;, f den Ansatz machen

(o o) 2o 1) @

0y 00—y 10
"1_(1 0)’ 2_(i 0)’ 3_(0-—1)

aus welchem tbrigens folgt

mit

By = (g’c 0) mit k—1,2,38. (24a)

(o7

Ferner ist y zu zerlegen in einen nur von &, ¢ und einen nur von 7
abhéngigen Faktor

_ p =7 () u(?, ¢ (25)
worin
Ku=ku (26)
und mit
o .
57 ) v

1 10(r
( +‘Po)% +—"°‘313RZ+ g e (X)
r 07

Fir die beiden ersten Komponenten von u (z‘}, @) ergibt sich
aus (22)

+ 2 5 x=0. (27)

q0, __lfl 0 u 98
J/sin & 0& CEE ey 1y (29)
und entsprechende Gleichungen fiir s, %, in denen k durch —k

ersetzt 1st. Die Losung dieser Gleichungen erhélt man durch

ku =
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Vorzeichendnderung einer der Komponenten des Paares, z. B.
von #,. Wir erhalten also schliesslich die Liosung

pi=F(r)u (&, 9); va=F(r)uy (P, ¢); p3=1G ) uy (3, 9);
vo=—1G(r) uy (&, ¢). (29)
Fir F und G ergibt sich aus (27)

(14_(;90) F lk(}_i d (TG)A_ M E—0 (30a)
¢ r r dr h

v 1 1 d(rF) mec
—— G+ —kF+—
(c—l_%) +r r dr +h
Die letzteren Gleichungen stimmen mit den in den Lehrbiichern
hergeleiteten tiberein und werden hier nicht weiter behandelt.
Setzen wir nun analog zur skalaren Wellengleichung in (28),
unter £ und m nicht negative Zahlen verstehend,

G=0. (80b)

Uk m= fim (008 B) €m0 = g (cOs F) €77 (31)
so folgt fir f und g aus (28)
1 d S m
] ~—g—kf=20 32
e s s st g gk (822)
1 d

g m
Ysin & 4o (Vsin #f) — 5 T Hkg=0.7) (82)
Hieraus folgen sofort die weiteren Losungen

uI;k,mz gk,me—imq); u-z-;k,m:_fk,me—imqj ‘ (31)

f—k,msz,m; 9—t,m= — 9, m- (33)

Die reguléren Losungen der Gleichungen (32) sind unter Ver-
wendung fritherer Ergebnisse WEYLS von SCHRODINGER?) ange-
geben worden. Bedeutet wieder

2z = cos ¥ (34)
so hat man anzusetzen
k—m—3% =0 und ganz, k > 0 (35)
E—m—3% : '
fim (@)= () H0d (=) b b ()T 1 (1= (360)
k—m—%
G m ()= (142) 4 vb (L—z)homeb () (1t (12 (36b)
b

1) Die Bezeichnungen bei SCHRODINGER sind etwas anders, indem wir fir
die von ihm mit (f, g) bezeichneten Gréssen schreiben: 74/sin @ f, v/sin & g.
2 P.A, §7.
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wobel wir wieder die Fille k£ ganz, m halbganz und k halbganz,
m ganz gesondert diskutieren wollen. Gemiss (33) geniigt es,
sich auf positive k zu beschréanken (fir k= 0 gibt es keine bei
2= +1 und 2z = —1 regularen Losungen).

Einer genaueren Diskussion bediirfen die Losungen
—ime, o (=) e~ ime (81la—)

{1} — —
ul;k, —m fk,—-me ’ u2;k, -m gk, —m

und
’u,]-i_; k) ___mz gk! —m elmq)
die aus (36) hervorgehen, wenn man formal m durch — m ersetzt.
Wir zeigen zun#chst, analog wie im § 1, dass der Fall k ganz,

m halbganz dadurch besonders ausgezeichnet ist, dass

; u;_;k, ~m=_fk, _meimqa (8]-&—{_)

fr, _m} = const{g"”m fiir k ganz, m halbganz (87)
9k, —m — Ik, m '

d. h. dass dort die reguldren Losungen (31) auch dadurch gewonnen

werden konnen, dass in (81) und (36a, b) formal m durch —m

ersetzt wird. Zunéchst kann man unter Einfithrung eines Kreises K|,

um den Nullpunkt als Integrationsweg in der komplexen #-Ebene
statt (36) schreiben

P T

foom @) = (1) d s (1 — p)—tnmp (PR

Qm

ﬁg%g%1+%Hﬁ(rﬂz~ﬂ%4 (38a)
K,
| k—m—3)!
(g b= (1 — - mtb ]
dt (1 +z+t)%1 )
[T g (30)

K,
Fir ganze k = 1 ist hierin die Grosse des Kreises K, gleichgiiltig,
wihrend andernfalls besonders darauf zu achten ist, dass die
Verzweigungsstellen ¢t = — (1 +2) und t =1 —2z ausserhalb des
Kreises liegen:

[t|<|1+2| und |t|<|1—¢| auf K, fir k, m—% nicht ganz. (39)
In den Ausdriicken fur f;, _, und g, _m

k+m—13)!
Qw1

fr. —m (2) = (1+2)t =D (1 — )t m+D (

fmﬂt (1424t (1—z—tp~"  (40a)

fh+m+%
K,
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kE+m—13)!
Qm

. —m (2) = (1+2) 004D (1 — )k m—D) (

fdt (2481 (1—z—0F  (40D)

fetm+d

(]

machen wir nun die Substitution:

1—22
t— — —
welche ergibt
; k+m—1%)!
s —3(m—3) (1 — p)—3% m+d) p—ni(m—3) ( 2
. — (&)=1+2) (1—2) e P
1 k—1
/ i (;Jf_f::) (l—z—tff  (4la)
(k+ m—1)!
. 1 +m—3).
—— =t m+d) (1 — )2 m—D) p—ni(m—13)
g]c, —m (Z) (1_{—2) (1 Z) € 9 71;'2,
]5 2
/ dt(::mi O (—emtp (41h)
wobel nun K,
|t| > |1+2]; |t]| > |1 —2|auf K, (42)

Da aber fiir ganze k und ganze m — % der Kreis K, sich auf den
Kreis K, zusammenzichen ldsst, ist fiir diesen besonderen Fall
die Beziehung (37) bewiesen.

Anders im Falle k halbganz, m ganz. Hier sind die Lisungen
(36a), (36b) nur fiir m > 0 an beiden Stellen 2= —1und z= + 1
regulidr, wihrend die Losungen (31a) fir —m =< 0 singuldr sind.
Fir m = 0 sind sie eben noch quadratisch integrierbar in z. Es
1st aber bemerkenswert, dass wir fiir m = 0 aus (36) und (37)
zwel verschiedene Losungen erhalten. Erstens

u};k,f,: fk,(): u%;k’(): glc,O (43&)

zweltens
11 — —_
Wy k0™ 9k, 0> r""'2;175,0“_fk,0- (43b)

Wir zeigen weiter, dass diese beiden Scharen von Losungen fiir
k —k ungerade nicht orthogonal aufeinander sind. Es gilt sogar
allgemeiner mit m = 0 ganz und k halbganz

1 .
5 fu;_f;*k,m Ul _msin 9 dd dg
— f U o U g, _y S0 D AP dop

4
+
= % f (fk;w? gk’, -—m"gk,m fk’,—m) dz#() fir k- ungera,de (45)

11
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ein Ergebnis, das zu § 1, Gl. (17) analog ist. Man kann iibrigens
aus (36) folgern, dass der Integrand von (45) gerade in 2 ist, wenn
k halbganz und k — k' ungerade ist, wihrend fiir gerades k — &’
der Integrand ungerade in z ist, das Integral dann also ver-
schwindet.

Zum Beweise von (45) folgern wir aus (32a, b)

+1
(k=) % [ (Fom 90, —m = Gom frr,—m) 42
. —1 +1
= 3| A =2 (fom fr,—m+ G O, —m) |_-1

Geméss (48), (44) ist die rechte Seite in der Tat an den beiden
Grenzen endlich und die Beitrige der beiden Grenzen kompen-
sieren sich nicht fiir ungerades k — k', womit (45) bewiesen ist.

Die Anwendung der durch (21a,b) definierten Operatoren
P, und P_ auf die Eigenfunktionen gibt ferner das zu den Re-
lationen (18) des § 1 analoge Resultat

im i (m+1)
P+{fkme ¢ {fk,m-!—le ? (46&)

em? = const | gy ypq €™V

P fF m etmlp fk, m—1 ei(m_l)‘p (46b)
Ik, m e-tme { e, m—1 e~tm—1e (460)
fk m e~"m? — const fk, m—1 et m—1)¢

P gL m e—tmyg gk,m+1 e—t(m+1) g (46d)
fk m e—%m(p —_— COnst mfk,m+1 e—’l‘:(m+1)¢

Hierin ist in (46a) und (46d) fir den Randwert m =k — % die
rechte Seite identisch Null zu setzen.

Mit Riicksicht auf (21) und (24a) erhélt man in der Tat aus
(86a, b) zunichst

P_ (fy, €m7) = ¢n=D (1 — 2)} [dc';"’ﬂ—lmig
2 21

1
femt %i—_-_—gfkm}

== g =T (] —ptk [—-2@;—”1 +3 (m+4) I’:_Z — 3} (m—3) {k_]

= gilm—1) ¢ (]_ —}—Z)_% (m—1) (1 _}_z)*% (m—2/.) Ed_ [fk,m . (1 ol Z)% (m+3)
&

(1 — g =] = gin—Dof,
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und ebenso

P_ (i €m7) = eim—Dr (1 — zz)%[dgk-m N

. dgy .
=e”m—1>¢(1~22>%[%m +Hn—p) hm —y(m o+ 3y Jom ]

— glm—1Do (1+Z)—%(m_z/2)(1 - Z)*% (m—%) di [gk m (1 —!—Z)%(m*%)
2 ;

(1— z)é(mﬁ)} = elm—Do g
Ferner ergibt sich mittels der Integraldarstellung (38)
: . Afxm ,m
Py (fmein) = et (i [ Sm s g gy fe
fk m
_ — 1) tkm
3 (m—13) 1—2

i N1
= gttmtl)e (1 +z)~%(m+3/2) (1___2)—%(m+§). (h—m—3)!

Q7

. / tk__er% [—A—2) k(A +2+ 81 (1 —z—t)1
(1 —2) k=1 1+2+)k(1—2z—1F2
+[m+3)(Q—2)—(m—3 A+2)] A +e+F (1 —z—t)F1}.
Der Integrand ldsst sich umformen zu
(k+m+3) t—@—m—D (1 +z+t) b (1—z—1t)k—

i D[ Gom=b (@ 1) (124 (1— 2 —t)e-1].

Der zweite Term verschwindet bei Integration iiber den Kreis
K, und es ergibt sich

P+ (fk,m eim(p) = (k_}_m_*_%) (k —m — %) fk,m+1 gi(m+1)¢ .
Ebenso erhilt man

P-{— (gk,m eimqn)

1—2z
k—m—%)! . dt
27 fh—m+i
{-(1-2% (k-1) (42482 (1—2—tfF+(1 -22) k (1+2+ 1) (1 —z—t)t—1
+(m—3) A —2)—(m+3) (1+2)] A+z+F 1 (1 —2—1)F}.

= 6?3(m+1)¢(1__z2)§ _@lc,_m_{_% (m_;_) 9k, m 1 (m—{—l) G, m ]

= el m+1)e (1.7)—dontd) (1 — )~ mrpy
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Der Integrand lasst sich umformen zu
(k+m-+3) t—E—m=D (1 4 a8k (1—2—H)*
- % [t—@—m=D(2z 4+ 1) (1+2+EF 1 (1—z—1)F]

und die Integration tiber den Kreis K, ergibt
P (g,m €™%) = (k+m+3) (k—m—3) o msq €07

Die Durchrechnung von (46¢) und (46d) verlauft analog.

Fiir die Anwendung unseres Kriteriums ist speziell wichtig,
dass im Fall k halbganz, m ganz in den Relationen

i@ —i@
P_{ f’””le_ =const{f’“’°; P+{ I, 1 ¢ = const | k0

Jr,1 €7 Yr,0 fr,e l—fk 0
—i @ i@

P_{ 0 const | -1 e; ; P+{ I, 0_, C-onst-{ Ik, —1 ei
9%, 0 lgk,—l e’ —fk,o "fk,—l er?

singulidre Losungen im Resultat auftreten. Daher verlangt unser
Kriterium die Ausschliessung des Falles k halbganz, m ganz. In
der Tat ergeben sich in diesem Fall stets Widerspriiche fiir die
in dblicher Weise aus den Integralen berechneten Drehimpuls-
matrizen. Rechnet man einerseits die eine der beiden Lodsungen
(fr.0» 9x.0) oder (gg o, —fr o) zum urspriinglichen System der
Lésungen, so werden die berechneten Matrixelemente gemiss (45),
(45a), (45) teilweise nicht diagonal in k, im Widerspruch zur
Vertauschbarkeit der Operatoren P, und P_ mit dem durch (22)
definierten Operator K. Wiirde man anderseits die (nicht regu-
laren, aber noch quadratisch integrierbaren) Losungen fiir m = 0
nicht zu den zugelassenen KEigenlosungen zéhlen!), so wiirden,
da die gemiss (46) erzeugten Losungen fiir m = 0 dann auf allen
urspriinglich zugelassenen Loésungen orthogonal wiren, aus den
Matrixelementen von P, und P_ Stiicke am Rande abgeschnitten,
was die Giiltigkeit der notwendigen Vertauschungsrelationen fiir
diese Matrizen verhindern wiirde.

Dagegen fiihrt im Fall k¥ ganz (+0), m halbganz als Folge
von (37) die Anwendung der Operatoren P, und P_ auf das
urspriingliche Orthogonalsystem w; ,, (&, ¢), w; ,, (¥, ¢), worin
3 =m =< k—1%, nicht aus diesem System heraus, wie unser Kri-
terium es verlangt, so dass also dieser Fall die physikalisch richtigen
Eigenlosungen liefert.

1) Vgl. E. ScCHRODINGER, P. A., Anm. bei der Korrektur am Schluss.
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§ 3. Zusammenhang der Schriédinger’schen mit der gewéhnlichen Form
der Dirac’schen Gleichungen. Verhalten der Lisungen bei endlichen
Drehungen.

'Es moge ¥ der gewthnlichen Dirac’schen Gleichung

1 o% 3 0¥ . mc
?W—‘LQEOT—I—EO%O kT’L h ﬂT—_—'O (47)

geniigen, wihrend % die Gleichung (20) in Polarkoordinaten

@y = rsin 9 cos ¢, Ty = 7sin ¥sin ¢, x3 = 7 cos ¥ (48)

erfiillt, die wir schreiben kénnen

1 oy : 1 /0y  ,cosd \ 1 0y
c 0t PPo¥ T (()19 T2 sinz‘}w/ %2 sin 9 0
0 1 me '
+ oy (_w +-~w) ' By=0. (49)
or P

Der Ubergang von ¥ zu y wird nun durch die von &, ¢ abhiingige
unitire Matrix R (&, ¢) vermittelt, die sich aus den durch

81=—?:0t20(3, 82:"""“?:0(-30(1, 83:_'2.10510(2 (50)

definierten Spinmatrizes und der Einheitsmatrix linear zusammen-
setzt gemiiss der Formel?)

ing | in D
R(ﬁ;W)ze'LQ-e se%cosg—cos éil—-—?,snlisnl_g_sl

Wie man sieht, ist R mit der Matrix 8 vertauschbar. Auf Grund
der bekannten Vertauschungsrelationen fiir die s; bestitigt man
ferner leicht, dass man die zu R inverse Matrix durch Vertauschen
von % mit —¢ sowie der Reihenfolge der beiden Exponential-

faktoren erhilt:
i . ? & &
B (%, ¢p)=e et 2mcos—cos—l—msm——sm£~ 8

2 2 2 2
—isin%cos% -sz—icosgsin%%. (51a)
Man kann nun in der Tat zeigen, dass die Zuordnung
py=RY¥Y oder Y=R1lyp (52)

1) Die Kenntnis der Schreibweise fiir R (&, ¢) als Produkt zweier Exponential-
faktoren, die auch fiir den Beweis der folgenden Relationen (53), (55) zweck-
méssig ist, verdanke ich einer freundlichen Mitteilung von Herrn E. SCHRODINGER.
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von der Gleichung (47) zur Gleichung (49) filhrt oder umgekehrt.
Dies beruht auf den aus (51) folgenden Relationen?)
R~ oy R = o, cos & cos ¢ + aycos & sin ¢ —agsin & (53))
R*ay R=—a;sin ¢ + oy cOS @ (53,)
R-tog R = o,sindcos ¢+ aysin &sin g +ogcos d.  (53y)

Mittels der Relationen

9 cos ¥ cos ! —g—msm 19 + sin & cos 9
oz, Y 00 (p(v"sin& Ocp) “or
L cos ¥ sin l o . cos @ |- 8 + sin ¢ sin 0
02, " o9 '(p(rsin& 0g Y or
0 1 0 0
- —gn 88— 2 9
oz, sin Y +cos P
folgt aus (53) weiter
0 1 0 1 0
X R1'yR)— —+ (R 'y, R) ————
,b\ a’” oy, = % B r 09 ( ) rsin ¢ 0@
0
R-ta; R—. 54
.a O"3 ()7’ ( )
Schliesslich findet man fir die durch
0R 1 0R
R R = RB1X
" 019+811119~( “"‘ocp) B
definierte Matrix X das Ergebnis
0R 1 oOR 1 cosﬁ
K e —1 4 a "Ll —
R e P (2 sm o “3) (55)

1 Um diese Relationen sowie die folgenden (55) zu verifizieren, kann man
auch die spezielle Darstellung (24) der Diracmatrices zugrunde legen, die nach

(24a) fur die s; einfach o 0
0 o
ergibt. Man erhilt dann aus (51), (5la)
T, 0
o Ry )
mit der zweireihigen Matrix
cos—g—eiwz, sin i; e~ o2 , cosﬁe_i‘p/z, —s:;inj—%e_i"""f2
= 9 P! S S 9
i U e R Y gl P g2
sin - ¢" %%, cos - e sin - ¢* ¥, cos 5 ¢

und die Relationen (53) reduzieren sich auf die einfacheren, in denen R durch T
und die «; durch die o; ersetzt sind.
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Aus (54) und (55) gewinnt man endlich mittels der Substitution
(562) aus den urspriinglichen Dirac’schen Gleichungen (47) ihre
Schrodinger’sche Form (49).

Wie hier nicht néher ausgefiihrt werden soll, lassen sich auch
die durch (21) definierten Drehimpulsoperatoren der Gleichungen
(49) aus den gewohnlichen Drehimpulsoperatoren
P= n1~(:r2 0 J -~) +1s; ... (und zyklisch vertauscht) (56)

: Ly ——
oy 015 ® 0,

der Gleichungen (47) durch Umrechnung mittels der R-Matrix
gewinnen. :

Wir kénnen nun auch die im § 1 diskutierte Frage nach dem
Verhalten der Losungen von (49) bei endlichen Drehungen der
Polarachsen beantworten, da sich diese Frage mittels der Matrix B
auf das bekannte Verhalten der Lésungen von (47) zuriickfiihren
ldsst. Betrachten wir also wieder eine durch 3 Parameter a charak-
terisierte endliche Drehung des Koordinatensystems, die neue
Koordinaten x;" bzw. Polarwinkel ¢, ¢’ als Funktionen der alten
Koordinaten z; bzw. Winkel &, ¢ und der a bestimmt. Iir ein
kugelsymmetrisches Potential ¢, = ¢, () erhilt man beim gew6hn-
lichen System (47) der Dirac’schen Gleichungen aus einer be-
liebigen Losung ¥ (x) der Gleichungen in den z, eine neue Lisung
X (x, a) derselben Gleichungen, indem man erstens bei unge-
anderter Funktionsform von ¥ die x durch die z’ ersetzt und
diese durch die z und @ ausdriickt und zweitens noch eine von den
a abhéngige S-Transformation mit konstanten Koeffizienten aus-
fiihrt.

X (z, a) = 8%a) ¥(z)) . (57)

(Wir schreiben hier in iiblicher Weise die Spinindizes nicht explicite
an.) Die Matrix S°a) ist aus der Theorie der Spinoren bekannt
und braucht hier nicht n#her angegeben zu werden.

Wir erhalten nun sogleich die entsprechende Relation

4 (79'5 @, a’) = 8 (19, @, a’) (2 ('9"9 99’), (58)

die einer beliebigen Losung » von (49) eine neue Lisung x von (49)
zuordnet, durch den Zusammenhang (52)

P(@') = R, ¢)p(#, ¢), =B X
der fiir die Matrix S (&, ¢, a) ergibt |
S (%, ¢,a) = R(&, ¢)- 8 (a) R~ (&, ¢') (59)

worin &', ¢" als Funktion von &, ¢ und den @ zu denken sind.
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