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über ein Kriterium für Ein- oder Zweiwertigkeit der
Eigenfunktionen in der Wellenmechanik

von W. Pauli.
(22. XII. 38.)

In der vorliegenden Note wird folgendes Kriterium vorgeschlagen zur
Entscheidung der Frage, ob bei einer bestimmten Wellengleichung eindeutige oder
zweideutige Lösungen physikalisch zulässig seien: Die einmalige Anwendung der
Drehimpulsoperatoren auf ein gegebenes System regulärer bzw. quadratisch
integrierbarer Eigenlösungen zum gleichen Wert der Gesamtimpulsquantenzahl j
darf nicht aus diesem System herausführen, d. h. die so erhaltenen neuen Lösungen
sollen sich linear durch die ursprünglichen ausdrücken lassen. Zur Begründung
des Kriteriums wird gezeigt, dass bei seiner Nichterfüllung kein eindeutiger
Zusammenhang zwischen Operatorkalkül und Matrixkalkül bei den Drehimpuls-
grössen mehr bestehen würde. Die Anwendung auf die skalare Wellengleichung
ergibt die Notwendigkeit eindeutiger Wellenfunktionen, während bei der Schrö-
dinger'schen Form der Dirac'schen Gleichungen in Polarkoordinaten das Kriterium
zur Notwendigkeit zweiwertiger Lösungen führt. Beide Ergebnisse sind im
Einklang mit der Erfahrung. Die Verallgemeinerung der Formulierung des Kriteriums
für endliche Drehungen wird angegeben und diejenige für die umfassendere
Drehgruppe des sphärischen Raumes wird erwähnt.

1. Problemstellung. Formulierung des Kriteriums.

Wie vom Verfasser bereits bei einer früheren Gelegenheit1)
betont wurde, gibt es kein a priori gültiges Argument dafür, dass
die Lösungen der Wellengleichung, welche das physikalische
Verhalten eines Systems quantentheoretisch beschreiben, notwendig
eindeutig sein müssten. Für die Eindeutigkeit der physikalischen
Grössen, die stets bilinear in der Wellenfunktion und ihrem
konjugiert komplexen sind, genügt es nämlich, wenn alle zugelassenen
Eigenlösungen sich bei Durchlaufen gewisser geschlossener Wege
mit einem Faktor eia vom Betrag 1 multiplizieren, der nur abhängig
ist vom betreffenden Weg, aber unabhängig von der gerade
herausgegriffenen Eigenlösung. Die weitere Behandlung dieser Frage
a. a. 0. stellte sich aber bald als ungenügend heraus, da es unter
den mehrdeutigen Eigenlösungen im allgemeinen auch solche gibt,
die allen Regularitätsforderungen genügen. Dies trifft auch zu
bei den 1. c. behandelten mehrdeutigen Kugelfunktionen als
Lösungen der gewöhnlichen unrelativistischen Wellengleichung
eines Teilchens.

Vgl. Handbuch d. Physik, Bd. XXIV/1, 2. Aufl. Berlin 1933. S. 126.
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Inzwischen wurde das in Rede stehende Problem verschiedentlich

in der Literatur behandelt1), insbesondere gelang es E. Schrö-
dinger wesentliche Fortschritte hiebei zu erzielen. Er bemerkte
zunächst, dass die Gleichberechtigung von Vergangenheit und
Zukunft (Umkehrbarkeit der Zeit) für den Verlauf physikalischer
Grössen nur gewahrt ist, wenn die Wellenfunktionen speziell
einwertig oder zweiwertig sind, von denen die zweiwertigen bei den
erwähnten Umläufen einfach ihr Vorzeichen ändern. Wir werden
deshalb sowie auch aus Einfachheitsgründen im folgenden
hauptsächlich nur diese beiden Möglichkeiten diskutieren. Weiter
konnte Schrödinger, ausgehend von seiner früheren Formulierung
der Dirac'schen Gleichungen des Elektrons in beliebigen
Koordinaten2), einen Fall auffinden, wo die Lösungen der
Wellengleichung notwendig als zweideutig angenommen werden müssen,
damit die Ergebnisse im Einklang mit der Erfahrung bleiben;
und zwar handelt es sich hierbei zunächst um eine neue
Darstellungsweise der Dirac'schen relativistischen Wellengleichung des
Elektrons in Polarkoordinaten im gewöhnlichen flachen Raum.
Diese Sachlage liess ernstliche Zweifel entstehen, ob für die
Entscheidung der Frage nach der Ein- oder Zweiwertigkeit der
Lösungen einer gegebenen Wellengleichung sich überhaupt ein
zureichender physikalischer Grund auffinden lasse.

Demgegenüber soll in dieser Note gezeigt werden, dass solchen
Zweifeln kein Raum gegeben werden darf und (anders als bei
den Symmetrieklassen des Vielelektronenproblems) ein
theoretisches Kriterium für die Entscheidung der Frage im einen
oder im anderen Sinn sich in der Tat angeben lässt. Hiefür genügt
es freilich nicht, die Regularität der Eigenlösungen allein zu
untersuchen, sondern es ist der Umstand wesentlich, dass der Hamilton-
operator eine Transformationsgruppe gestattet. Wir beschränken
die vorliegende Untersuchung auf die Gruppe der gewöhnlichen
Drehungen im flachen Raum und zwar einerseits für die un-

x) A. S. Eddington, Relativity Theory of Protons and Electrons,
Cambridge 1936, S. 60 und 150, dort auch ältere Literatur. Über zweideutige
Kugelfunktionen als Lösungen der unrelativistischen Wellengleichungen vgl. auch
F. Möglich, ZS. f. Phys. 110, 1, 1938. Die Gl. (2a) dieser Arbeit enthält jedoch
ein wesentliches Versehen, indem die aus den Integralen über die Kugelfläche
berechneten Ma,trixelemente der Drehimpulskomponenten, wie im § 2 dieser
Note gezeigt wird, nicht mehr der Forderung genügen, mit der Matrix des Quadrates
des totalen Drehimpulsvektors vertauschbar zu sein.

Über die Frage der Umkehrbarkeit der Zeit vgl. E. Schrödinger, Ann. d.
Phys. (5), 32, 49, 1938, über eine ausführliche Diskussion mehrdeutiger Lösungen
der relativistischen Wellengleichung des Elektrons, derselbe Commentationes
Pontificia Academia Scientiarum, 2, 321, 1938. Im folgenden zitiert als „P. A."

8) E. Schrödinger, Beri. Ber. phys. u. math. Klasse, S. 105, 1932.
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relativistische skalare Wellengleichung eines Teilchens, andererseits

für die relativistische Wellengleichung des Spinelektrons.
Diese Gruppe gibt bekanntlich Anlass zur Existenz der drei
Drehimpuls-Operatoren Px, P2, P3, die bei einem zentralsymmetrischen
Problem eine Eigenlösung stets wieder in eine Eigenlösung
überführen, da sie dann mit dem Hamilton-Operator vertauschbar
sind. Ferner ist jede der drei Grössen Pk (k 1,2,3) vertauschbar
mit dem totalen Quadrat

p2 Pi2 + p22 + p32 (J)

des Drehimpulses, das bekanntlich die Eigenwerte j (j + 1) besitzt,
worin eben besonders untersucht werden soll, wann die halb-
zahligen und wann die ganzzahligen Werte von j auszuschliessen
sind. Zu diesem Zweck gehen wir aus von einem System regulärer
Eigenlösungen us,m des Operators P2, für die also gilt

P2%,m j(j + 1) uj>m (la)

(Eventuell vorhandene Spinindices schreiben wir, wie üblich,
nicht explizite an.) Zu einem gegebenen Wert von j gibt es stets
nur endlich viele reguläre Eigenlösungen und es ist übrigens
für die Anwendung des Kriteriums nicht wesentlich, ob man eventuell

vorhandene, nicht mehr reguläre, aber noch quadratisch
integrierbare Eigenlösungen mit zum betrachteten System zählt
oder nicht. Betrachten wir jedoch alle möglichen (entweder
ganzzahligen oder halbzahligen) Werte von j, so möge in letzterem
Falle das System der Eigenlösungen so gewählt sein, dass die
zu verschiedenen /-Werten gehörigen Funktionen des Systems
die Bedingung der Orthogonalität erfüllen.

Wir wollen nun folgende zusätzliche physikalische Forderung
aufstellen: Die Anwendung der Drehimpuls-Operatoren Pk auf ein
vorgegebenes endliches System regulärer (oder nur quadratisch
integrierbarer) Eigenlösungen von P2 mit demselben Wert von j soll
aus diesem System nicht herausführen.

Oder positiv ausgedrückt, die neuen Eigenfunktionen Pkuit m
sollen sich linear durch die alten ausdrücken lassen:

"* Uj, m ZjCmm' Um', j • \")
m'

Offenbar ist in unserer Forderung eingeschlossen, dass auch die
neuen Eigenlösungen regulär bzw. quadratisch integrierbar sein
sollen. Dass in (2) links und rechts nur Eigenfunktionen mit
gleichem /-Wert erscheinen, hängt damit zusammen, dass die Pk
alle mit P2 vertauschbar sind.
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Wählt man übrigens die Eigenfunktionen u1>m speziell so,
dass auch eine der Drehimpulskomponenten, sagen wir P3, auf
Diagonalform gebracht ist, so gelten die bekannten Auswahlregeln
für Pj. und von den Termen auf der rechten Seite von (2) sind
dann im allgemeinen höchstens zwei von Null verschieden. (Wären
die Eigenfunktionen normiert, so würden ja die Amm> direkt die
Matrixelemente von Pk darstellen.)

Im folgenden § 2 soll zunächst gezeigt werden, dass das
angegebene Kriterium sowohl im Falle der skalaren als auch im
Falle der Spinorwellengleichung (Dirac-Gleichung) ausreichend ist,
um die Alternative, ob ein- oder zweiwertige Wellenfunktionen
zuzulassen sind, jeweils eindeutig zu entscheiden. Ein wichtiges
Resultat (§ 2) ist ferner, dass im Falle das Kriterium nicht erfüllt
ist, gewisse unter den neuen Eigenfunktionen Pk uit m nicht mehr
orthogonal sind auf einer Schar der ursprünglichen Uf, m, mit festem
m' und variablem j', obwohl j +o j'. Hieraus ergibt sich die
physikalische Notwendigkeit der Erfüllung unseres Kriteriums. Denn
die in der üblichen Weise durch Integrale berechneten
Matrixelemente von Pk wären sonst nicht mehr alle diagonal in bezug
auf j unter Verletzung der Vertauschbarkeit aller Pk mit P2. Man
kann daher das Ergebnis auch so formulieren, dass bei Verletzung
unseres Kriteriums der übliche Zusammenhang zwischen Matrizen
und Operatoren für die Drehimpuls-Komponenten unterbrochen
wird, was physikalisch offenbar unzulässig ist.

Eine andere mit der ursprünglichen äquivalente Formulierung
unseres Kriteriums, die vielleicht anschaulicher, aber für die
praktische Durchrechnung weniger geeignet ist, wird im § 3 gegeben.
Sie beruht darauf, dass die Drehimpuls-Operatoren den infinitesimalen

Drehungen zugeordnet sind und dass durch ihre Iteration
eine Operation entstehen muss, die bei einer endlichen Drehung
des Koordinatensystems aus einer Eigenlösung der Wellengleichung
eine neue zu erhalten gestattet. Infolge der Willkürlichkeit der
Wahl der Achsen des Polarkoordinatensystems sind alle diese

Eigenlösungen physikalisch gleichberechtigt. Die Fassung unseres
Kriteriums, die durch Übergang von den infinitesimalen Drehungen
zu den endlichen entsteht — sie ist in Wahrheit äquivalent der
ursprünglichen Fassung und enthält keine stärkere Forderung —
besagt aber eben, dass auch hier die neuen Eigenlösungen vu m (x)
sich durch die alten uiim(x), die zum gleichen j gehören, linear
ausdrücken lassen sollen.

Die Definition der Operation aber, die aus den uhm (x) die

vi,m (x) erzeugt, erfordert eine etwas eingehendere Überlegung.
Sie ist zunächst sehr einfach bei der skalaren Wellengleichung,
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da diese direkt invariant gegenüber Drehungen der Koordinatenachsen

ist. Man erhält also die vh m aus den %, m, indem man
zunächst bei unveränderter Funktionsform von ujt m die alten
Polarwinkel &, cp durch die neuen &', cp' ersetzt und dann diese durch
die alten &, cp und die drei Drehungsparameter (z. B. die 3 Euler'-
schen Winkel), die hier kurz mit o bezeichnet werden mögen,
ausdrückt:

V), m (V,<P; «) Uj, m (V Cp (Ö)

Durch unser Kriterium wird hier gefordert, dass

%, m (&', <p') y,Cmm, (a) • Uj, m (&, cp) (4)
m'

und dies ist offenbar nur für einwertige Wellenfunktionen u
erfüllbar. Die zweiwertigen Kugelfunktionen ujtm (&', cp') lassen sich
dagegen offenbar nicht durch die uittn (&, cp) mit gleichem j und
konstanten Koeffizienten linear ausdrücken, da die ui>m (&,cp) beim
Umlauf um den Punkt # 0, die %, m (#', cp') aber beim Umlauf
um den von diesem verschiedenen Punkt &' 0 ihr Vorzeichen
ändern; für die zweiwertigen Kugelfunktionen gibt es kein
„Additionstheorem".

Aus dem gleichen Grunde führt die Anwendung unseres
Kriteriums auf die gewöhnlichen Dirac'schen Wellengleichungen
des Elektrons zwangsläufig zu den eindeutigen Lösungen. Man
muss hier nämlich, um von den uhm zu den vj>m zu gelangen,
ausser der Substitution der &', cp' durch &,cp nur noch eine S-
Transformation der Spinindizes mit konstanten Koeffizienten
ausführen.

Anders liegen jedoch die Verhältnisse bei der von
Schrödinger aufgestellten Form der Dirac'schen Gleichungen in
Polarkoordinaten. Diese Gleichungen sind nicht einfach invariant beim
Übergang von einem Achsensystem zum andern, sondern, um die
ursprüngliche Form der Wellengleichung in den neuen
Koordinaten wieder herzustellen, muss noch eine von &, cp abhängige
S-Transformation der Spinindizes hinzugefügt werden. (Nebenbei
bemerkt ist dies charakteristisch für die von Schrödinger
aufgestellte allgemein kovariante Form der Dirac-Gleichungen.) Man
erhält daher in diesem Fall aus einer beliebigen Lösung ip (#, 93)

der Wellengleichung eine neue %(&, cp, a) gemäss

X({r,cp,a) S(&,cp,a)-V,(y,cp') (3a)

worin die S-Matrix in der üblichen Weise auf die (hier nicht explizite

angegebenen) Spinindizes wirkt. Statt (4) besagt dann unser
Kriterium

S(&,cp;a) %, m (&', cp') 2 Cmm, (a) %hm(&,cp). (4a)
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Wie in § 3 gezeigt wird, hängt im Schrödinger'schen Fall die
Matrix S in solcher Weise von &, cp ab, dass sie sowohl für einen
geschlossenen Weg auf der Kugel, der # 0 umschliesst und #'= 0
ausserhalb lässt, als auch für einen geschlossenen Weg, der #' 0
umschliesst und #=0 ausserhalb lässt, ihr Vorzeichen ändert. Daher
ist in diesem Fall die Gl. (4a) nur möglich, wenn Uj,m(&, cp)

zweiwertig ist, dagegen unmöglich, wenn ujtm(&, cp) einwertig ist.
Bei Kenntnis der Matrix S(&, cp; a) wäre also die Rechnung

mit den Drehimpulsoperatoren Pk (die übrigens aus S durch
Spezialisierung der a für infinitesimale Drehungen hervorgehen)
gewissermassen überflüssig. Die Durchführung des Kriteriums
für infinitesimale Drehungen scheint uns jedoch aus verschiedenen
Gründen ihre selbständige Bedeutung zu behalten. Erstens tritt
nur bei der letzteren Fassung die Wichtigkeit des Kriteriums für
den widerspruchsfreien Zusammenhang zwischen Operatorkalkül
und Matrixkalkül deutlich zu Tage. Ferner scheint, namentlich
bei allgemeineren Gruppen, eine direkte Ermittlung der S-Matrix,
ohne auf andere Formen der Wellengleichung zu rekurrieren, bei
endlichen Transformationen der Gruppe recht unübersichtlich zu
werden.

Wie bereits erwähnt, beschränken wir uns hier auf den Fall
des flachen Raumes und der gewöhnlichen dreidimensionalen
Drehgruppe, da das Prinzipielle unserer Überlegungen schon in
diesem Fall deutlich wird. Diese Überlegungen lassen sich jedoch
leicht verallgemeinern auf die Wellengleichungen des sphärischen
Raumes, wobei dann die sechs parametrige Drehgruppe mit den
6 Operatoren Mk,Nk (k 1,2,3) an die Stelle der drei para-
metrigen Drehgruppe mit den drei Pk, die Eigenwerte von
£ (M\ + JV|) an Stelle derjenigen von ^ PI und zwei Quantenzahlen

an die Stelle von m treten1). Unser Kriterium in der
infinitesimalen Fassung sagt dann wieder aus, dass die (Mku)
(Nku) sich linear durch diejenigen unter den ursprünglichen
regulären Eigenfunktionen (von denen eine u ist) ausdrücken
lassen, die zum gleichen Eigenwert von

tiMÎY-Nl)
k=l

gehören wie u. Und es sind gerade die von Schrödinger schliesslich

ermittelten Eigenfunktionen des sphärischen Raumes2), die
diesem Kriterium gegenüber standhalten. Auch bei anderer Wahl
der Koordinaten im sphärischen Raum scheint sich dieses Kriterium
zur Ermittelung der richtigen Eigenfunktionen zu bewähren.

x) Siehe Schrödinger, P. A. § 4. a) „P. A.", § 8.
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§ 2. Die Anwendung der Drehimpuls-Operatoren auf die Eigen¬
funktionen.

a) Die skalare Wellengleichung.

Wir betrachten ein zentralsymmetrisches Potential und denken
uns in der Wellenfunktion den von den Polarkoordinaten
abhängigen Faktor u (&, cp) absepariert. Er genügt bekanntlich der
Wellengleichung

p»«=—___--( Bin*—.) _T___r=7(7 + l)tt 5
sm ff off \ dv 1 sm2 & dcp2

worin wir den Eigenwert von P2 mit j(j + 1) bezeichnen. Es ist
bequem, die folgenden Linearkombinationen der
Drehimpulskomponenten zu betrachten

P+-Pl + iPt-*(^ + i»»*') (6a)
\ dir sin # dcp J

P^P1-iP2 e-<*(- -i^Y-i^L M (6b)
\ dir sm.iT dcp J

P3=_iJL. (6c)
09?

Wie üblich betrachten wir die Eigenlösungen von P3, dessen Eigenwerte

sich nur durch eine gemeinsame Konstante von ganzen
Zahlen unterscheiden. Der Deutlichkeit halber verstehen wir im
folgenden unter m stets eine nicht negative Zahl und unterscheiden
die Eigenlösungen

«£»(*, /*,« (cos 0)««»*. (7a)

Hm (#, 9) fi.m (cos ff) e-im*. (7b)

Damit /,-, m für & 0 und ff n regulär ist, muss notwendig

j—m ganz und nicht negativ (8)
sein.

Die bekannten Darstellungen der Kugelfunktionen ergeben
in diesem Fall mit

z cos # (9)

m 1 d \ >~m

fj>m(z)=(i-zT^(-^j (i-*y (10)

m a + ganze Zahl, 0 < « < 1 (lia)
a < m < j. (lib)



154 W. Pauli.

Eine Normierung dieser Eigenlösungen wird für das Folgende
nicht erforderlich sein. Man erhält auf diese Weise alle regulären
Lösungen der aus (9) folgenden Differentialgleichung

Jl
dz dz Y-^f^idY-Vf. (12)

Für das Folgende wird von besonderem Interesse sein der Fall
cn 0 (ganzes j und m) und der Fall a \ (halbzahliges j und m).
Für a | sind die Lösungen

m I d \ i + m
fjt_m(z) (l-z*)^(j-)j (l-z*y (13)

singular. Der Fall j und m ganz ist dagegen dadurch besonders
ausgezeichnet, dass

h, -m (A const. fj,m (z), für j,m ganz, (14)

während für m unganz schon aus der Singularität von /,, _m an den
Stellen z ± 1 zu ersehen ist, dass fs, _m eine von fit m völlig
verschiedene Lösung sein muss.

Zum Beweise von (14) für ganzes j und m können wir die
aus (10) unmittelbar folgende Darstellung von /3>ra durch ein
komplexes Integral heranziehen, die auch sonst nützlich ist.

J» (j-m)\ f[l — (z + f)*yfi,m(z) (l-z2) 2 u J .._„,/ J dt. 15)
2 71% io P m+1

Der Integrationsweg K0 ist hier ein Kreis um den Nullpunkt. Da
für unganzes j (und ra) der Integrand noch Verzweigungsstellen
bei t 1 — z und f — (1 + z) besitzt, muss in diesem Fall
ausdrücklich hinzugefügt werden, dass diese ausserhalb des Kreises K0
liegen sollen:

\t\< \l—z\ und |i|<|l + $| auf K0 für j,m nicht ganz; (15a)

nur für j, m ganz ist die Grösse des Kreises K0 gleichgültig. Der
Ausdruck für /,-, _m (z)

/,,_M(«) (i-*»)2 2?ti y —^txi^ï— dt (16)

lässt nun eine Umformung zu durch die Substitution

1-Z2
t

die ergibt
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Avobei nun
|*| > |1—*|, |*| > |1 +z\ auf Kx (16b)

Nur für ganze j und ra lässt sich der Kreis Kx auf den Kreis K0
zusammenziehen und es gilt die Relation (14).

Wir zeigen ferner, dass die reguläre Eigenfunktion

tt+j (ff cp) fjA (z) e***

auf der singulären, (aber wie leicht aus (10) zu sehen noch
quadratisch integrierbaren) Eigenfunktion

up>_i(ff,<p) ff_i{z)eii*
im allgemeinen nicht orthogonal ist (gleiches gilt natürlich von
w;~j, und ujr__i). Zunächst gilt

1
+1

-J^-J Kti)* ut', -i sin &d& dcp \ J fJA ff> _j dz.
—i

Aus (12) folgt ferner
• +i

[j(j+i)-jAj'+mìffi,iU,-iaz
-i
~*(1 2)l^ir /?''*^r

+i

—i

Die rechte Seite ist nun gerade endlich an jeder der Grenzen
z + 1 und 2 — 1 und die Beiträge dieser beiden Grenzen
haben dann dasselbe Vorzeichen, wenn j—]' ungerade ist, während
sie sich andernfalls aufheben. In der Tat sind bei halbzahligem ra
und j nur für ungerades j — j' die Funktionen fit j und /^ _j
zugleich gerade oder ungerade in z. Unser Resultat ist also

Wir wenden nun die Operatoren P+ und P_ auf die Eigen-
lösungen an und zeigen

P+ (fi,meimv) const fj<m+x e* (">+««»;

p- (//,m eim<p) const /,-_ m_! ë("»-1' " (18a)

•P+ (fi, m e'im<p) const. fhm_x tr*0—U " ;

P- (fi, m e-imv) const /,. m+1 e-««w-»". (18b)
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Hierin ist übrigens für den Randwert j m stets fjj+x identisch
Null zu setzen. In der Tat ergibt sich aus (6) und (15) z. B.

dfj,m

— ei (m+1) <p /J _ z1\ 5^

— 2mz[l—(z + t)2]'}

-(!-*«)¦ ra«

d* (1
m+1 (/—¦ ra)!

:/,•.

2 71 * J

dt

-z2)i'

-Z2) (z+ t)[l-(z+ t)2]'-1
X.

*?'• -m+1

Der Integrand lässt sich umformen zu

(j+m+1) [l-(0+*)2]'*-ö"-m)--|-{[l-(2+*)2]3'(2«+*) *-«-»>}.

Der zweite Term verschwindet bei Integration über den Kreis K0
und es ergibt sich

P+ /,>«""» (j + m + 1) (?' - ra) /,. m+1 e^(™+1)^.

Weiter findet man in etwas einfacherer Weise

& fi, mP-fi, -1)9 (1-Z2]

gi (m—1) ?> /J

W-2

dz fi,i

2._JLri d

_
m—1

ei(m-l)<p n — z2\- 2 _d_

dz

(l~z2)i
m

fi,m(l-z2)~ï
i—m +1

(1-Z2)*
\ aa i

_ ei(m-l)q>f.° /;, m— 1*

Die Relationen (18b) berechnen sich ganz analog. Für uns ist
nun wichtig, dass insbesondere in den Relationen

LW vki*"")const 4 _j e 2 P+ \/;. je 2 j const /,_ _j e 2

im Resultat die singulare Lösung /,- _j auftritt, dagegen für ganze j,
m nach (14)

P_ /;!o const fu __x e-i<p const fu x
e~i,p const ujx(ff, cp).

Für halbzahlige /, ra führt also in der Tat die Anwendung der
Drehimpuls Operatoren aus unserem System (7), (10) von
Eigenfunktionen heraus, was nach (17) zur Folge hat, dass die in der
üblichen Weise aus den Integralen berechneten Drehimpuls-
matrizen für ro | nicht mehr diagonal in j sind, wie in § 1

angegeben wurde. Nach unserem Kriterium sind also diese halb-
zahligen Kugelfunktionen hier auszuschliessen.
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b) Die Wellengleichung des Spinelektrons.

Wir beginnen hier mit derjenigen Form der Dirac'schen
Gleichungen in Polarkoordinaten, die Schrödinger als Spezialfall

seiner allgemeinen Theorie des Spinelektrons im Gravitationsfeld

aufgestellt hat. Die Erläuterung des Zusammenhanges dieser
Darstellung der Theorie mit der sonst üblichen soll dem folgenden §

vorbehalten bleiben.
Wir schreiben die Schrödinger'sehen Gleichungen in der

Form1)
1 dtp 11 d 1 dip

iti *9?oV+ai ,-.—g-"TTT (i/sin ff w)+x2—-—q -^—c dt r -j/sm ff à ff v Y> 2 r sm ff d cp

1 d(rip) mc _ ,„„.+ «3 All + i ßw 0 (20)ràr h

worin die Matrices ak, ß den bekannten Dirac'schen Vertauschungsrelationen

genügen und cp0 ein als zentralsymmetrisch angenommenes

skalares Potentialfeld (multipliziert mit efh c) bedeutet.
Man erhält die Drehimpulskomponenten nach der üblichen

Methode, indem man die entsprechenden Ausdrücke (6) durch
solche Terme ergänzt, dass sie mit dem Hamiltonoperator
vertauschbar werden. Auf diese Weise ergibt sich

„ _ _ / d i cos & d 1 s, \ ,„_.PJ.==P1 + iP,=e1'' h ^ r-V (21a)1 2 \d ff sin ff d cp 2 sin * / v ;

t> r. -r, ¦ I à i cos ff d 1 s, \ ,M.,P_ P, — %P„=e~l<f — 1 1 r^r (21b)1 2
V à & sin & d cp 2 sin ff I K '

P,= -iJL (21c)
dcp

mit der Abkürzung s3 =—icnxa2, (und zyklisch vertauscht).
Abweichend von der sonstigen Form der Theorie erhält hier die
Komponente P3 keinen Zusatz, während die Matrix s3 im Zusatzterm

von Px und P2 auftritt statt wie sonst in dem von P3.

• l') Schrödinger, P. A., Gl. (5, 12) und (8, 1) im Limes R -* co. Wir haben
hier für die von Schrödinger mit ia4a2, *<x4a3, ia^a^, — a4 bezeichneten Matrices
die neue Bezeichnung at, ot2> °h> ß eingeführt. Dies rechtfertigt sich dadurch,
dass auch für diese Matrices die Dirac'schen Vertauschungsrelationen folgen,
wenn sie für die ursprünglichen o^.. .a4 gelten. Ferner führt Schrödinger
bisweilen die Abkürzung ein : cu r Vsin & ip, was jedoch für das folgende nicht
zweckmässig sein wird.
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Ein weiterer mit dem gesamten Hamiltonoperator sowie mit
den Pk vertauschbarer Operator ist definiert durch

K y> ßn l-jXç A ysÄAff + -4% -JL)*' (22)
\ y sm 9 à ff v sm 9 dcp /

Das totale Quadrat der PÄ lässt sich durch das Quadrat von K
ausdrücken gemäss

P2 P2 + P2 + P32 K2- i. (23)

Sind daher j(j + 1) die Eigenwerte von P2, so sind k ± (j + J)
die Eigenwerte von K. Die mit einem Vorzeichen behaftete
Quantenzahl k spielt bekanntlich bei der Feinstruktur des H-Atoms
eine entscheidende Rolle.

Für die weitere Integration kann man zum Beispiel für die
Matrices a.k, ß den Ansatz machen

VD> '-(Lì)
mit

ffl=(î o)' ff2 o)' a^{l- 0

-i
aus welchem übrigens folgt

*-(î",ÎH*-i.M- (24a)

Ferner ist y zu zerlegen in einen nur von #, cp und einen nur von r
abhängigen Faktor

V X (r) u (&> <f) (^5)
worin

Ku ku (26)
und mit

à

-i(^+9o)xY-^3ßkX +^dM + iA^ß^o. (27)
\c I r r or h

Für die beiden ersten Komponenten von u (ff, cp) ergibt sich
aus (22)

7 te, d ,-.—_ ia, du ,__.k u ' - -— n/sin 5 «) — — -^ -r— (28)
y q -T-j- (ysm ffu) — r -Q -t—

ysin ff à ff ' sm ff dcp

Vund entsprechende Gleichungen für u3, % in denen k durch — h

ersetzt ist. Die Lösung dieser Gleichungen erhält man durch
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Vorzeichenänderung einer der Komponenten des Paares, z. B.
von u2. Wir erhalten also schliesslich die Lösung

fx F (r) ux (ff,cp); y>2 F(r) u2(ff,cp); ip3=iG(r) ux (ff,cp);

xpt -%Q(r)u2(ff,cp). (29)

Für F und G ergibt sich aus (27)

l + JF+ifcG_iM_^F=0 (30a)
c r r dr h

v \ r, 1
-rr

1 d(rF) mc „ „ ,„„,.—+ ç>o) G + — kF + \-J- + ——G 0. (30b)
c / r r dr h

Die letzteren Gleichungen stimmen mit den in den Lehrbüchern
hergeleiteten überein und werden hier nicht weiter behandelt.

Setzen wir nun analog zur skalaren Wellengleichung in (28),
unter k und ra nicht negative Zahlen verstehend,

«Î; t,m h, m (cos ff) eim * ; «+,_ m gK m (cos ff) ë™.*- (31)

so folgt für / und cy aus (28)

-7-Ì-T -^ (i/suT^g) + -^L 3 - fc/ 0 (32a)
ysm 9 d9 y sm 9

~o±%-J-(Ysm-9f)-^n\f + kg 0A) (32b)
ysin 9 dff ' sm?

Hieraus folgen sofort die weiteren Lösungen

«*ì;M=9t,»rÌ"?; «2;*,™=-/*,^-^* (31)

f—k, m /fr, m 9—le, m= 9k, m • (»")

Die regulären Lösungen der Gleichungen (32) sind unter
Verwendung früherer Ergebnisse Weyls von Schrödinger2)
angegeben worden. Bedeutet wieder

z cos ff (34)
so hat man anzusetzen

k — ra — | > 0 und ganz, k > 0 (35)

fk,m (z)^(l+z)-^m+i)A-A-iim-i)(jL) (1+*)* (l-*)*-1 (36a)

/ /7 \^—m—£

fc »(*)=(l+*)-*(~_*) (1-*)-*<*+*> (—) (l+^)*"1 (1-*)* (36b)
"_' VW

x) Die Bezeichnungen bei Schrödinger sind etwas anders, indem wir für
die von ihm mit (/, g) bezeichneten Grössen schreiben: i Vsin ê f, Vsin & g.

2) P. A., § 7.
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wobei wir wieder die Fälle k ganz, ra halbganz und k halbganz,
ra ganz gesondert diskutieren wollen. Gemäss (33) genügt es,
sich auf positive k zu beschränken (für k 0 gibt es keine bei
z + 1 und z — 1 regulären Lösungen).

Einer genaueren Diskussion bedürfen die Lösungen

u -m~fk,—me > UL>;k,-m~9k,—me ' ' ("la
und

<*,-*= Ä.-»6*"'; <;k,~m—h,-m^mV (31a+
die aus (36) hervorgehen, wenn man formal ra durch — ra ersetzt.

Wir zeigen zunächst, analog wie im § 1, dass der Fall k ganz,
ro halbganz dadurch besonders ausgezeichnet ist, dass

Ih,—m I _ „™„+ I 9k,

I:

const j ' ™ für fc ganz, ra halbganz (37)
î/ft, —m I '

/£, m

d. h. dass dort die regulären Lösungen (31) auch dadurch gewonnen
werden können, dass in (31) und (36a, b) formal ra durch — ra
ersetzt wird. Zunächst kann man unter Einführung eines Kreises K0
um den Nullpunkt als Integrationsweg in der komplexen i-Ebene
statt (36) schreiben

k.(*) (l+*)-*(™+i>(l-*)~*<™-*> (fc-w-*)!
2n%

-^(l+.+t)* (I-.-*)*-* (38a)
-Ko

<j,,.M-(i+»)-*<-*> d - »)-"-+» "°~"~i]'

(m^xrT^—f. m
Für ganze fc > 1 ist hierin die Grösse des Kreises K0 gleichgültig,
während andernfalls besonders darauf zu achten ist, dass die
Verzweigungsstellen t — — (1 + z) und * 1 — z ausserhalb des
Kreises liegen:

|*|<|1+«| und |*|<|1— z\ auf K0 für fc, m—\ nicht ganz. (39)

In den Ausdrücken für fk, _m und gk, _m

/*,-(*) (i+^<»-*>(i-#(»+*>(fc+0mT*)!

dt-r(l + z + tf-(l~z-tf^ (40a)
**+»>

#0
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fe,-m(^)=(l+#(m+Ì)(l"#(OT-ì)(fc+qm~ì)!
2n%

hfk+m+i
Kr,

machen wir nun die Substitution:

dt
(l + z + t)"-l(l-z-tf (40b)

welche ergibt

fi-, -m (•*) (1 + ^)-* (m"4) (1 -z)-ì <m+*> «-*««»-*> ifc_+TO7^)-

•il^+f+^-i.(1_,_^ (41a)

K,

9k, -» (A=-(l+z)-H™+i- (1 _*)-*<«-*> e-»(m-t)(fc + m7*)!

^d+' + ^.tl-,-^! (41b)

/J

/ £ft—m+J
wobei nun Ri

\t\>\l + z\;\t\>\l — z\miKx (42)

Da aber für ganze fc und ganze ra — \ der Kreis Kx sich auf den
Kreis K0 zusammenziehen lässt, ist für diesen besonderen Fall
die Beziehung (37) bewiesen.

Anders im Falle fc halbganz, ra ganz. Hier sind die Lösungen
(36 a), (36 b) nur für ra > 0 an beiden Stellen z — 1 und z + 1

regulär, während die Lösungen (31a) für — m < 0 singular sind.
Für ra 0 sind sie eben noch quadratisch integrierbar in z. Es
ist aber bemerkenswert, dass wir für ra 0 aus (36) und (37)
zwei verschiedene Lösungen erhalten. Erstens

Ul; k, 0 h 0 ' Ul; k, 0 9k, 0 i4^)
zweitens

uv, k,o=9k,o, «2;k, o - /s, o • (43b)

Wir zeigen weiter, dass diese beiden Scharen von Lösungen für
fc — fc' ungerade nicht orthogonal aufeinander sind. Es gilt sogar
allgemeiner mit ra 2g 0 ganz und fc halbganz

1 C

t— 2 / M° ;*,m <; ft',-m sin ff dff dtpIti gâf^J -

4

-i
71

e i,2-/
ft, m "'g; ft', —m sin 9 dff dcp

i f (/*;». 9k',-m-9k,mfk',-m) dzdf° für fc~fc' ungerade (45)

ii
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ein Ergebnis, das zu § 1, Gl. (17) analog ist. Man kann übrigens
aus (36) folgern, dass der Integrand von (45) gerade in z ist, wenn
fc halbganz und fc — fc' ungerade ist, während für gerades fc — fc'

der Integrand ungerade in z ist, das Integral dann also
verschwindet.

Zum Beweise von (45) folgern wir aus (32a, b)

+i
(fc — fc') \ J (fk> m gv _m - gk m fK _m) dz

-i +i
~ 2

I (1 Z2r (/ft, m fk', -m + 9k, m 9k', -m) I •

—1

Gemäss (43), (44) ist die rechte Seite in der Tat an den beiden
Grenzen endlich und die Beiträge der beiden Grenzen kompensieren

sich nicht für ungerades fc — fc', womit (45) bewiesen ist.
Die Anwendung der durch (21a, b) definierten Operatoren

P+ und P_ auf die Eigenfunktionen gibt ferner das zu den
Relationen (18) des § 1 analoge Resultat

p ifk,me%m'P f/ft,m+leîmT *
+ U,meim*= const ifc,m+1ei(m+1)"

7ft,m^ f/ft.m-l^-1'*
\g,meim*~ const Wm-Xë^-»v

(46a)

(46b)

p\ 9k,meim* I 3ft,m-i6l(ml)9 (46c)
A~fk,me-im'p const I-/*-_! e-»*»-1"' '

9k,m<rim,P j !?ft,m+l^(m + 1)*

-/ft,m e-im" const | -/,,„+! e-*(«+»*
(46d)

Hierin ist in (46a) und (46d) für den Randwert ra fc — \ die
rechte Seite identisch Null zu setzen.

Mit Rücksicht auf (21) und (24a) erhält man in der Tat aus
(36a, b) zunächst

P- (fk,m eÌm,P) ë^-V *(l — Z2f

_ gi(m-l)ç) /J ZZ

dfa.m mz f i_2_t

Ì/ft,m +i (m + i) i» _ 1 (m_ l) 1»L
d2 1 + 2 1 — 2

gl O»-« f (l+«)-J(»-*)(l+Ä)-K»-'W -£- [/t „¦ (1 +«)*<*•+»
d^

H 0)è(m-i)I gi(m— l)ç) J
m—1
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und ebenso

P- (9km eim") ë^-^f (1 — z2)i

dgk.

dgk.rr,

dz
mz

-

x o 9k, m '
1—Z2

1

ei(m-l)<p (l_z2ji dz
+ Hm-i)-f^ _9k,m__llm

Z

d

1 o 9k, m1—Z2

i 1\ 9k, m

1-0
e*0»-l)» (l+2)-Hm-a«(l — *)-*ö»-*>_ [g, • (1 +0)i(»»-i)

d0
(1-.#<-+*>] *<--«» fl^i.

Ferner ergibt sich mittels der Integraldarstellung (38)

P+ (/ft,m eim*') e^m+1''' (1 — z2)i

i(m-±)-p>m-
1—z

àfK fi (m+|) J*f-
d0 l+^

e*(m+l)ï>(l+^)-è(m+3/2)(l_2)-*(TO+*)-
^ m *''

2 ni
f dt

+ (i - 22) (fc -1) (i + z + ty- (i - 2 - t)fc-2

+ [(ro + |) (1 -0) - (to- I) (1 + z)] (1 + 0 + tf (1 - z - J)*-1}.

Der Integrand lässt sich umformen zu

(k+m+ì) f-(*-m-*> (i+z+t)k (l—z — t)h-x

--^ [*-<*-»»-*> (2*+*) A+z+kf- (1—z-tf-1}.

Der zweite Term verschwindet bei Integration über den Kreis
K0 und es ergibt sich

P+ (fa,m eim") (fe+ro+|) (fc - ra - |) /,. m+1 é**+**
Ebenso erhält man

P+(9k,m<Ym,f)

piCm+l)<p /1 r,2\i(l-z2)i d9k, m jl
d0

(w-i)^s—l(m+i)-^5-
1+0 1—*

e«(m + l)C.(l+^-e(m+l)n_0\-i(m+ 3/O (^ ™ Hl. /".
2n% J

d*

2ttì 7 **-m+*

.{-(1-z2) (fc-1) (l+z+t^A-z-tf+A-z^kA+z+tf-^l-z-tf-1
+[(ro-|) (l-0)_(m+i) (1+2)] (1+0+i)^1 (1-0-*)*}.
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Der Integrand lässt sich umformen zu

(fc+ra + |) *-<*-»*-*>(1+0+*)*-1 (1—0—*)*

—[t-<-k-m-V(2z + t)(l+z+tf-uA-z-t)k]
Cl z

und die Integration über den Kreis K0 ergibt

P+ (9k,m eim,f) (fc+ra+i) (fc-ra-f) gk>m+x e*«»+i)*.

Die Durchrechnung von (46 c) und (46 d) verläuft analog.
Für die Anwendung unseres Kriteriums ist speziell wichtig,

dass im Fall fc halbganz, m ganz in den Relationen

fh>ie]V= const 4°; pj grk-l6~l9= const j **• °

P_ ^°= const 4-i e"L p 3ft,o= const 3ft,-i «;*
Uft.O Ì!?ft,-l^" +l-/ft,o W*,-!«"

singulare Lösungen im Resultat auftreten. Daher verlangt unser
Kriterium die Ausschliessung des Falles fc halbganz, ro ganz. In
der Tat ergeben sich in diesem Fall stets Widersprüche für die
in üblicher Weise aus den Integralen berechneten Drehimpulsmatrizen.

Rechnet man einerseits die eine der beiden Lösungen
(/ft,o> 9k,o) oder (9k,o>—fk,o) zum ursprünglichen System der
Lösungen, so werden die berechneten Matrixelemente gemäss (45),
(45a), (45) teilweise nicht diagonal in fc, im Widerspruch zur
Vertauschbarkeit der Operatoren P+ und P_ mit dem durch (22)
definierten Operator K. Würde man anderseits die (nicht
regulären, aber noch quadratisch integrierbaren) Lösungen für ra 0
nicht zu den zugelassenen Eigenlösungen zählen1), so würden,
da die gemäss (46) erzeugten Lösungen für ro 0 dann auf allen
ursprünglich zugelassenen Lösungen orthogonal wären, aus den
Matrixelementen von P+ und P_ Stücke am Rande abgeschnitten,
was die Gültigkeit der notwendigen Vertauschungsrelationen für
diese Matrizen verhindern würde.

Dagegen führt im Fall fc ganz (+0), ro halbganz als Folge
von (37) die Anwendung der Operatoren P+ und P_ auf das

ursprüngliche Orthogonalsystem uk<m (ff, cp), u~km (ff, cp), worin
\ 5S ra ^ fc — |, nicht aus diesem System heraus, wie unser
Kriterium es verlangt, so dass also dieser Fall die physikalisch richtigen
Eigenlösungen liefert.

*) Vgl. E. Schrödinger, P. A., Anm. bei der Korrektur am Schluss.
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§ 3. Zusammenhang der Schrödinger'schen mit der gewöhnlichen Form
der Dirac'schen Gleichungen. Verhalten der Lösungen bei endlichen

Drehungen.

Es möge W der gewöhnlichen Dirac'schen Gleichung

1 dW .„
» dW mc .,„ _

T-w-^w+^j^+'-irßW=0 (47)

genügen, während ip die Gleichung (20) in Polarkoordinaten

xx r sin ff cos cp, x2 r sin & sin cp, x3 r cos & (48)

erfüllt, die wir schreiben können

1 dip 1 i dw cos 9 \ law— — l Q9n V + *i — r- + ï 'Vi + as>cd* ro r 1

r \dff 2
sin * V 2

r sin * d ç>

-AL + — v\+—-—ßv=0. (49)
or r j h

Der Übergang von ¥ zu ip wird nun durch die von ff, cp abhängige
unitäre Matrix R(&, cp) vermittelt, die sich aus den durch

Sx — i <x2 a3, s2 — i a3 ax, s3= — i <xx <x2 (50)

definierten Spinmatrizes und der Einheitsmatrix linear zusammensetzt

gemäss der Formel1)
o_ <p ff w ff w

R(ff, ip) e
s"

2 • eH 2 cos —cos -£-1 — i sin — sin -£- sx
2 2 2 2

ff cp ff cp
+ tsm — cos ¦+- • s9 + % cos — sm — ¦ s,. (51)

2 2 2 2

Wie man sieht, ist B mit der Matrix ß vertauschbar. Auf Grund
der bekannten Vertauschungsrelationen für die sk bestätigt man
ferner leicht, dass man die zu B inverse Matrix durch Vertauschen
von i mit — i sowie der Reihenfolge der beiden Exponential-
faktoren erhält:

_• £. _• YL ff cp ff cp

ß-i (ff, cp) e
ls° 2 • e ÎSs"2" cos — cos AL I+ism-—sin -A • sx

2 2 2 2

ff cp ff w
— i sm —- cos -+- • So — i cos —- sm —¦ ss. (51a)

2 2 2 2

Man kann nun in der Tat zeigen, dass die Zuordnung

ip=BW oder W B"1 w (52)

x) Die Kenntnis der Schreibweise für R (#, tp) als Produkt zweier Exponential-
faktoren, die auch für den Beweis der folgenden Relationen (53), (55) zweckmässig

ist, verdanke ich einer freundlichen Mitteilung von Herrn E. Schrödinger.
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von der Gleichung (47) zur Gleichung (49) führt oder umgekehrt.
Dies beruht auf den aus (51) folgenden Relationen1)

B'1 cnxB u.x cos 9 cos cp + a2 cos 9 sin cp — oc3 sin 9 (53j)

B~x ol2 B — — <zx sin cp + a2 cos cp (532)

P_1 c3B a.x sin # cos cp + a2 sin # sin ç> + a3 cos 9. (533)

Mittels der Relationen

A
Q

1 Ô X TO Q
cos ir cos 9? —— sin ç? I —:—- —— 1 + sin ff cos cp ¦

dxx r à ff \ r sin ff dcp J dr
à „ 1 à t x v -cos t> sin 9> — + cos cp I —;— + sm 9 sin tp

1 ö

r sin

1

* dcp

d -

àx2 r à ff \ r sin 9 dcp J dr
¦ a 1 à a

à
¦ — sm & —- +COS ff -

dx, r dff dr<3

folgt aus (53) weiter
3 d lo Idy *k-A—= (B"1 y-i B) — -A- + (P-1«, B)

£—î àxk r d9 r sin ff dcp

+ B-xaL3B~. (54)3 dr J

Schliesslich findet man für die durch

B-i Kl i^ + -.-1- f E"1 *2 Ä B-1 X B1 dff smff \ dtp J

definierte Matrix X das Ergebnis

v dB 1 öß / 1 cos* \X ocx —— B1 + -- _ a2 -— B"1 — — -r—- ax+a3 55
à 9 sm 9 dcp \ 2 sm 9 J

x) Um diese Relationen sowie die folgenden (55) zu verifizieren, kann man
auch die spezielle Darstellung (24) der Diracmatrioes zugrunde legen, die nach

/ak 0^

\0 «**/

ergibt. Man erhält dann aus (51), (51a)

mit der zweireihigen
«AÏ

Matrix
9

~(.
$ iœ/2

cos-j^- e vl

-sm~elv'-,

Bin 4- e-*^\
; T-

cos-|- e-tvvj -i
/cos

Vsin

2
e

* Aqotl
2

e '

— sin

eos

&
2

»

e-iW2\

e*W2 J
und die Relationen (53) reduzieren sich auf die einfacheren, in denen R durch T
und die ak durch die ak ersetzt sind.
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Aus (54) und (55) gewinnt man endlich mittels der Substitution
(52) aus den ursprünglichen Dirac'schen Gleichungen (47) ihre
Schrödinger'sehe Form (49).

Wie hier nicht näher ausgeführt werden soll, lassen sich auch
die durch (21) definierten Drehimpulsoperatoren der Gleichungen
(49) aus den gewöhnlichen Drehimpulsoperatoren

P" — l x2 — x3 —— + \ sx — (und zyklisch vertauscht) (56)

der Gleichungen (47) durch Umrechnung mittels der E-Matrix
gewinnen.

Wir können nun auch die im § 1 diskutierte Frage nach dem
Verhalten der Lösungen von (49) bei endlichen Drehungen der
Polarachsen beantworten, da sich diese Frage mittels der Matrix B
auf das bekannte Verhalten der Lösungen von (47) zurückführen
lässt. Betrachten wir also wieder eine durch 3 Parameter a
charakterisierte endliche Drehung des Koordinatensystems, die neue
Koordinaten xk bzw. Polarwinkel ff', cp' als Funktionen der alten
Koordinaten xk bzw. Winkel 9, cp und der a bestimmt. Für ein
kugelsymmetrisches Potential cp0 cp0 (r) erhält man beim gewöhnlichen

System (47) der Dirac'schen Gleichungen aus einer
beliebigen Lösung W (x) der Gleichungen in den xk eine neue Lösung
X (x, a) derselben Gleichungen, indem man erstens bei unge-
änderter Funktionsform von ¥ die x durch die x' ersetzt und
diese durch die x und a ausdrückt und zweitens noch eine von den
a abhängige S-Transformation mit konstanten Koeffizienten
ausfuhrt.

X(x,a) S°(a)iF(x'). (57)

(Wir schreiben hier in üblicher Weise die Spinindizes nicht explicite
an.) Die Matrix S°(a) ist aus der Theorie der Spinoren bekannt
und braucht hier nicht näher angegeben zu werden.

Wir erhalten nun sogleich die entsprechende Relation

x(ff,cp,a) S(ff,cp,a)ip(ff',cp'), (58)

die einer beliebigen Lösung f von (49) eine neue Lösung % von (49)
zuordnet, durch den Zusammenhang (52)

W(x') B-A&', cp') w (ff, cp'), x=B(ff, cp) X
der für die Matrix S(ff,cp,a) ergibt

S (ff, cp, a) B(ff, cp)-S° (a)-P-1 (ff, cp') (59)

worin ff', cp' als Funktion von ff, cp und den a zu denken sind.
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