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Sur 1’énergie propre de 1’électron
par André Mercier?).
(9. XIL 38.)

Résumé. — 1’énergie propre électrodynamique de I’électron provient de la
possibilité d’échange de quantité de mouvement entre I’électron et le champ de
fluctuation de la radiation du vide. On I’a calculée, au moyen de la méthode
d’approximation de BoRN, uniquement jusqu’a un terme qui fournit une ex-
pression divergente ayant 1/137 en facteur (deuxiéme approximation). On'a
cherché des méthodes permettant de supprimer cette divergence. Or les méthodes
proposées concernent la seconde approximation, mais rien ne permet d’affirmer
que la série des diverses approximations auxquelles elles conduisent soit elle-méme
une expression finie, car on ne sait pas si cette série converge. C’est pour cette
raison que nous avons calculé 'ordre de grandeur de chaque approximation, au
moyen de la méthode d’approximation de BorN et en prenant 4/1/137 comme para-
métre dans le développement en série. Les résultats sont les suivants: dans I'ap-
proximation d’ordre 2 n, le nombre de combinaisons possibles d’états intermé-
diaires est de I'ordre de n!; mais il ne nous a pas été possible de déterminer par
une méthode générale le signe de chacun des termes. Dés lors il semble impossible
de savoir si la somme de toutes les approximations converge. Nous faisons les
calculs dans le cas d’un électron libre et dans celui de la Théorie des lacunes de
Dirac. Dans lapproximation d’ordre 2 n, ’énergie propre est proportionnelle a
Q27/137n (ol @ - o) dans le cas d’un électron libre, et proportionnelle &

Q—>»
1 qu d gy d’]3“'dqﬂ
1377 Y 0 In
dans la théorie des lacunes.

Cela montre entre autres que la divergence logarithmique trouvée par WEiss-
KOPF dans la seconde approximation pour la théorie des lacunes est fortuite et
qu’'elle est due & une compensation de certains termes particuliére & cette appro-
ximation et ne se produisant pas dans celles d’ordres supérieurs.

Il résulte de 13 qu’il ne suffit pas de considérer la seconde approximation:
la théorie des lacunes conduit & des résultats beaucoup plus dlvergents que ne le

suggére cette seconde approximation.

Enfin, en ce qui concerne le procédé de limitation des petites longueurs
d’onde des photons, on ne peut pas non plus affirmer qu’il supprime toute diver-
gence a cause de la divergence de la série-méme des approximations, et il semble
d’ailleurs actuellement difficilement justifiable. Peut-étre la découverte de I’élec-
tron lourd permettra-t-elle de résoudre le probléme?).

1) Ce travail a été effectué lors d’un séjour de 'auteur & 'Institut de Physique
Théorique de Copenhague. L’auteur désire remercier tout spécialement M. le
prof. NieLs BoHr de son accueil et de ses conseils, ainsi que MM. CER. MoLLER,
L. RoseNrFELD et V. WEISSKOPF.

?) L’auteur a publié avec M. GUSTAFSON une note sur I’énergie propre de
I’électron parue dans les C. R. Acad. Sc. Paris, 206, 1217, 1938.
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1. Introduetion.

La théorie des quanta attribue & I’électron une énergie propre
d’origine électrodynamique qui n’a pas son correspondant dans la
théorie classique. Ceci est dt au fait que, dans la théorie quantique,
un électron est a priori en interaction avec un champ électromagné-
tique, et comme un électron est toujours susceptible d’émettre et
d’absorber (virtuellement ou réellement) des quanta de lumiére,
1l doit de ce fait posséder une énergie propre électro-dynamique.
La radiation émissible par 1’électron peut étre considérée comme
un champ ne consistant qu’en une fluctuation, mais pouvant étre,
comme tout champ électromagnétique, caractérisé par un potentiel

vecteur @. Or dans la théorie de I’électron de Dirac, I'interaction
entre 1’électron et un champ est mesurée par le produit scalaire
de l'opérateur x associé a I’électron et du potentiel vecteur de ce
champ. L’énergie propre d'un électron se calcule donc & partir
de I'expression .

o D

On peut dire que cette énergie propre tire son origine de la
possibilité d’échange de quantité de mouvement entre 1’électron
et ce champ de radiation virtuel. Etant donné un systéme soumis
aux lois de la mécanique quantique, on a coutume de le traiter
sous la forme dun probléme de perturbation et, celle-ci étant
considérée comme petite, les diverses approximations sont données
par des grandeurs proportionnelles aux puissances croissantes d’un
parametre. Pour ce dernier nous prendrons 4/1/137.

Les divers phénoménes (chocs entre particules, etc.) sont,
suivant le cas, donnés par une approximation ou une autre. Deux
approximations différentes correspondent a deux effets physique-
ment différenciés. Mais dans le probleme particulier de I’énergie
propre on a affaire & un systeme composé dun électron unique,
dont on calcule I’action sur lui-méme, de sorte que chaque approxi-
mation contribue dans une certaine part & la valeur de I’énergie
propre totale.

Jusqu’ici on ne s’est occupé & notre connaissance que de la deu-
Xieéme approximation, et nous remarquons tout de suite qu’il ne
faut pas confondre l'expression d’énergie propre employée dans la
littérature (voir les diverses citations bibliographiques) avec celle
de I’énergie propre totale qui nous intéresse dans ce travail. C’est
pourquol nous dirons towjours: énergie propre dans I’approxima-
tion d’ordre m.

Du fait que la théorie de I'électron suppose celui-ci ponctuel,
son énergle propre est infinie, & moins que I’on ne prenne des pré-
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cautions trés particuliéres. Par précautions, il faut entendre Iin-
troduction d’une hypothése supplémentaire ayant pour but de
corriger 'effet dit a4 la concentration de l’électron en un point
(Born, WaraeHIN, MARCH), soit celle d'un artifice mathématique
au cours des calculs, du genre p. ex. d’un prolongement analytique
(WeNTZEL). Le procédé le plus commun qui consisterait & abolir
sans autre toute émission de quanta lumineux ayant une impulsion
supérieure & une certaine limite a le désavantage fatal de détruire
Pinvariance relativiste. A cause de ce fait, WATAGHIN!) a proposé
d’introduire une modification dans la fonction hamiltonienne, ayant
pour effet de rendre extrémement rares les émissions de photons
de grande fréquence, ce procédé étant choisi de maniére & garder
Vinvariance relativiste. Mais 1l est naturellement arbitraire.
WEeNTZEL?) a montré qu’en procédant & un passage a la limite
par un chemin détourné grace & 'introduction du formalisme pluri-
temporel de Dirac-Fock-PoporLski, on améliore les résultats.

Mais 1l n’est pas parvenu & supprimer toute divergence, et
ses conclusions ne sont valables que dans le cadre d’une approxima-
tion déterminée (en particulier, la seconde). MArcH3) a montré
qu’on peut justifier une limitation supérieure des impulsions des
photons émis en postulant que la géométrie ordinaire de MiIn-
KOWSKI n’est pas valable dans I'infiniment petit de la physique
quantique, ou plus précisément que le ds? ne peut pas étre mesuré
avec une précision rigoureuse. Il pose

o Yaas
1

et son hypothése revient & dire qu’il n’y a pas d’interaction entre
I’électron et des photons dont la longueur d’onde est inférieure & y.
Cela permet une limitation qui ne détruit pas I'invariance relativiste.
Mais, comme dans le procédé de WENTZEL, cette maniére de faire
est correcte dans une approximation, sans qu’il soit certain qu’elle

I’est dans ’ensemble des approximations successives (énergie propre
totale).

M. WEISSKOPF nous a fait remarquer l'intérét qu’il y aurait
a4 étudier le probléme suivant: que peut-on dire de la convergence
ou de la divergence des termes de 1’énergie propre proportionnels

1) G. WaraeHIN, Zeitschr. f. Phys. (88, 92, 1934).
%) G. WENTZEL, Zeitschr. f. Phys. (86, 479 et 635, 1933, et 87, 726, 1934).

3) A. MarcH, Zeitschr. f. Phys. (104, 93 et 161, 1937, 105, 620, 1937,
106, 49, 291 et 532, 1937, 107, 144, 1937, 108, 128, 1938).
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aux diverses puissances de 4/1/137, ainsi que de la série de ces
termes ?

La réponse a cette question dépend sans doute de la définition
que 'on donne du vide: on bien 'on considére 1’électron comme
absolument libre, c’est-a-dire capable (virtuellement) de passer
par des états d’énergie positive ou négative quelconques, — ou
bien, dans la théorie des lacunes de Dirac, on le considére comine
libre uniquement par rapport aux états d’énergie positive, puisque
tous les états d’énergie négative sont supposés occupés par des
électrons; de plus il se peut que I’électron envisagé entre en inter-
action avec les «électrons du vide». Ces deux faits: interaction
possible et liberté restreinte, doivent avoir une influence telle que
I’énergie propre (autant dans chaque approximation que dans sa
totalité) differe vraisemblablement considérablement suivant qu’on
la calcule dans la théorie des lacunes ou dans I’hypotheése dun
électron absolument libre.

On sait que c’est le cas déja en seconde approximation, dans
laquelle WALLER?Y) a calculé I’énergie propre de 1’électron libre, et
We1sskopr2) celle de I'électron dans la théorie des lacunes. Nous
désignerons, dans n’importe quelle approximation ces deux pos-
sibilités par les expressions théorie ordinaire et théorie des lacunes.

La constante de structure fine 4/1/137 contient la charge
de D’électron en facteur. Or l’énergie propre ne peut dépendre
des signes de la charge, de sorte que seules les approximations
d’ordre pair (puissances de 1/187) doivent fournir un résultat dif-
férent de zéro.

Dans ce travail, nous calculons tout d’abord avec quelque
détail la quatriéme approximation (terme proportionnel & 1/187)2)
dans les deux théories. Puis nous cherchons ce qui se passe dans
chacune de ces théories dans les approximations supérieures et
discutons les avantages et les inconvénients de 'une et de l'autre.

' 2, Méthode de caleul.

On calcule les approximations successives au moyen de la
formule de Borx, grice a l'introduction d’un opérateur de pertur-
bation exprimant la possibilité d’échange d’impulsion entre 1’élec-
tron et le champ de radiation dont le vide pourrait étre le siége.
Cette radiation n’est due qu’d des fluctuations.

1) I. WALLER, Zeitschr. f. Phys. 62, 673, 1930.
) V. WEisskorpr, Zeitschr. f. Phys. 89, 27, 1934 et 90, 817, 1934.
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Soit o le vecteur (tridimensionnel) dont les composantes sont
les opérateurs de Dirac, et @ le potentiel vecteur du champ élec-
tromagnétique des fluctuations. Soit & la charge de I’électron et
Ya, Pp deux fonctions d’onde décrivant I’état du systéme électron-
radiation. L’opérateur de perturbation qui fait passer le systéme
de I'état b & 1’état a s’écrit

Vas=¢ | Vao @ p,- | (1)

Le signe f désigne une intégration sur l’espace ordinaire, une
sommation sur ’espace de configuration des photons, et une sur
I'indice de spin. Les divergences qui apparaitront dans la suite
et qui sont le sujet de la discussion proviennent de la’ sommation
sur les photons, parce qu'il n'y a en principe pas de limite & la
grandeur de I'impulsion qu’un électron peut transmettre au champ
de la radiation.

La fonction p d’un systéme composé d’un électron et de
photons se développe comme suit:

p=Sa(MLyw (pyet” 116 (Ng)
® . Y

p est I'impulsion de I'électron, x le vecteur de sa position. /7 est

le produit des fonctions &(N7) associées aux photons prégents.
N> est le parametre de la distribution des photons et désigne le
nombre de photons présents dont l'impulsion vaut g.

Les opérateurs a(M;) satisfont aux conditions de la Statlsthue
de FErMI-DIRAC:

« (M)a(Mi)=M;, a(Mi)a (ML)=1—DM,

ou My = {%) est le nombre d’électrons d’impulsion P et dans I'état
p(u=1,2,3,4 désigne d’'un méme coup le signe de ’énergie et
I'état du spin). Les w* (p) sont des spineurs. La fonction ¢ est
supposée normée de maniére que f p =1

Pour introduire explicitement l'impulsion des photons, on
développe le potentiel vecteur en série de FoURIER

e e
Z [c(q Yrc@e 7

ot ¢ est le vecteur de polamsatmn de 'onde partielle associée au
photon d’impulsion g, (¢ _Lq), ¢(q) et ¢*(q) sont les opérateurs de
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la statistique de Bosg; il y correspond respectivement 1’absorption
et ’émission d’un photon. 7T a pour carré:

2 PPe

ou 2 est le volume du vide.

La sommation sur 'espace d’impulsion se fait au moyen de
I'introduction d’une fonction densité des états au point q; soit dw
un angle solide infinitésimal d’axe q, et ¢ = /q /. La sommation

est &4 la limite une intégrale f dg(...), on

-  Rq¢*dgdow
dq = s ﬁ’s" - .

Disons tout de suite que pour chaque émission suivie de
I’'absorption d’un quantum g arbitraire, il interviendra dans les
calculs I'opération

-

2T2dq (...)
I
et I'on a
e2T*dq dowc®qdq
q 187

Comme le calcul sera fait en détail en quatriéme approxima-
tion, écrivons la formule de Borx pour ce cas et donnant 1'énergie
propre E¢ d'un électron e dont I’état est fixé par I'indice [ (la fonction
d’onde u, est celle d'un état ou aucun photon n’est présent):

Viw Ve Vi V5 e Py Emp Pom Ve
E‘: 7 Im mk ki i1l *\1, Ilm m 1 in n%m 2
‘ %l (Ez_El) (Ek_El) (Em_El) g (Eaz—El)2(Em_E1) ( )

m 1

v, k, m, n sont des indices d’états intermédiaires, K, ... B, I’énergie
du systéme dans 'état [, ... n.

Par raison de commodité (ou si 'on préfére, par suite d'une
transformation de LorENTZ convenable) nous choisissons pour état
I celui d’un électron au repos:

E, = mc? dans la théorie ordinaire,

E, = mc? + somme des énergies des électrons du vide, dans
la théorie des lacunes.
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Nous désignerons enfin par 4 une suite d’états intermédiaires
rentrant dans la somme
2 Vlm -V'mk Vlci ]7il (3)
wki (B — By) (B — B) (B, — By)
et par B une suite rentrant dans la somme '
Z/ Vlmvmllfln an (4)
(B — Ey)? (B — H))

mn

3. Théorie ordinaire en quatriéme approximation.

Désignons par ¢(p) un électron d’impulsion p et par ¢(g) un
photon d’impulsion §. Un électron libre peut passer par des suites
d’états intermédiaires au nombre de deux du type 4, que nous
appelons 4, et 4,, et une du type B. A4, est la série suivante:

A,: état fondamental e(p=0)

ler état interméd. (P, ¢(q)
2iéme état interméd. £(p"), ¢(q), ¢(q")
3itme état interméd. ('), (a)

état final e(p = O)
L’opérateur (1) qui fait passer de I'état | a l'état ¢ est
* 1 L W Gl .—fi%’.; B P
¥~ / fda:& ,)a(M;,)W (phe " ,%°a ¢ (q)
v q nr L — 1 oam we
——qx px

xe B Ta(MIyu(B)et [5(05)6(05)
—const. & (—p —q+p) 2,00y d(1;) (MZ) a(My)
‘ a5 wd o (15) 6 (0,)

o §(—p —7q -+ p) est la fonction delta, et {u', u'} le prodmt
scalaire de deux spineurs % et «’. Si 'on calcule les autres V...
on obtient pour 4,, aprés quelques transformations

4: 68T S M%HTM%—E] L1 —M%—E—?]W[l_Mf—?]
xhpo TP qq (b; —E;) (B, — E) (B, — B)
(o (@), 3 5w (p— D)} (0" (p—1), %3 W (h—
x{w"(p—9—-7"), @ o' w(p—7)} {w" (p—7), &
— const. >, fqdqq dq do do’

xiuwv

71—}
‘o w (p) }

52 {w*, o 5w} {w", o 5" w}{w", a0 w}{uw", o 5wy}
(B,—E)) (E,—LE) (E,—E)
do et do’ sont les angles solides d’axes § et q'.
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Les valeurs de g, ¢’ qui conduisent & des divergences éventuelles
sont celles qui tendent vers I'infini. On a pour celles-c1 approxima-
tivement

B, = i(;]/(——*q')-‘2 + m%2+ cq L2 c(+ q + q)
E.wc(+s+q+q) (E:a+§’, S:/E/) (5)
E,m: Ez'.

C’est donc le signe — qui conduit a la plus grande divergence;
on a dans ce cas
B, — B, — mc?, etc.

On effeetue la sommation sur les indices de spin & l’aide de
Popérateur 3 [1 4+ D(p)/E(P)], ot D(p)=ca-p+ Bmc?, et E
est la valeur propre de D. Le produit des quatre accolades se
raméne alors & une expression S;, dont le calcul est celui de la
trace d’une matrice.

La série des états intermédiaires de 4, et celle de B sont les
suivantes:

Ay e(p=0) B: ¢(p=0)
e(p), ¢(q) &(p'), ¢(q')
e(p"), ¢(q@), ¢(q') e(p=0)
("), ¢(@’) e(p"), ¢(q")
e(p=10) e(p =0)

Le calcul des accolades fournit une expression S, pour 4, et
la valeur 1 pour B. Les dénominateurs de 4, et A4, sont les mémes,
et celul de B est (mc?)3. 1l en résulte pour la valeur de I’énergie

propre:

2 14
By == L /sm ﬁdﬁ/ dq dq qq’ { 515 + !
0

1872 q+q¢—me—s me
ou %= < (7, 7).

Quelles que soient les valeurs de § et ¢’, S; et S, restent
bornés. On peut alors chercher 'ordre de grandeur de l'intégrale

fsin Sdo—atS Or g+q'—mec — s peut s’annuler. Sil’on

g+ q —mc—s
calcule la valeur principale de CaucmY, on trouve que cette
intégrale est de 'ordre de 1/g'). Cela montre que le terme 1/me

1) Le calcul rigoureux nous a été indiqué par M. T. GUSTAFSON.
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dans Paccolade joue seul un role dans le calcul de la plus grande
divergence de F, et pour celle-ci on trouve donc
(2m)2¢

L Tg7rmegs | 1l

Donc dans la théorie ordinaire, B, diverge comme la quatriéme
puissance d’'un paramétre tendant vers l'infini.

4. Théorie des lacunes en quatriéme approximation.

Le vide, dans la théorie des lacunes, est défini par le systéme
des électrons infiniment nombreux qui occupent les niveaux
d’énergie négative. Soit I, 'énergie propre de ce systéme. Si au
vide ainsi défini, on ajoute un électron (désigné par g,) on obtient
un systéme de « co + 1» électrons dont 1’énergie propre sera dé-
signée par Ky, ,. On définit alors I’énergie propre de I’électron
g par la relation : '
Ea,): EVJ,-SO”‘EV- (6)

Pour le calcul de (6), on emploie la formule de Borx (2).
Mais 1l est cependant impossible d’évaluer I, et K}, séparément,
et 1l faut tout d’abord trouver une autre expression de K., que (6),
ou I’énergie du vide n’apparaisse plus explicitement. On y arrive
par le raisonnement suivant: K, , se compose de trois parties,
19 I'énergie I’ de ’électron &, considéré comme libre dans le demi-
espace des énergies positives; 29 'énergie C de couplage entre g
et les électrons du vide; 3° I'énergie des électrons du vide corrigée
pour tenir compte du fait que dans les états intermédiaires, les
électrons n’ont pas le droit d’occuper la place de g, c’est-a-dire
I'énergie du vide E, diminuée de termes exprimant des sauts qui
sont interdits aux électrons du vide; soit J la contribution & E,,
de ces sauts interdits. (6) s’écrit donc "

Boy=Ee+C+(Ey—J)—Ey=Eo+C—J. (7)

Si on cherchait & décomposer la formule (6) en portant son
attention sur les valeurs que peuvent prendre les paramétres de
distribution Mz des électrons, on se persuaderait que la relation
(7) est exactement la transposition de (6), étant convenu que dans
chacun des trois termes de (7) on égale systématiquement & un
les parameétres en question. En effet, soit f(.. .Mg_ ...) la fonction
des paramétres de la distribution des électrons qui apparait dans
chaque terme par suite des conditions imposées aux opérateurs
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a(M2), a* (M:). L’énergie du systéme des (o0 +1) électrons (élec-
trons du vide et électron g, considéré) est donnée en quatriéme
approximation par la somme de tous les termes comportant n’im-
porte quels états intermédiaires au nombre de trois, mais ou la

valeur de f(...M; ...) doit étre calculée rigoureusement. Or

F Lo s Mg ..) est précisément nulle pour les termes que nous avons

mnterdits, de sorte qu’en soustrayant E, de E, . dans cette dé-
finition, ces termes persistent avec le signe —; ce sont justement
les termes — .J.

o © ¢
*— @ 9—©
..OQOO‘O.. ..O.OOO...
i I
® © e O ©
— O
.O.OOOOQ.. OO.OOO‘O..
i v
@ @
© —@
..O....O.O .Q.O‘.O...
% VI
Fig. T a VL.

Schéma d’états intermédiaires (appartenant a J).

La relation (7) est beaucoup plus commode puisqu’elle ne
contient plus 'énergie F,. Elle est naturellement valable dans
toutes les approximations. Considérons en particulier la quatriéme.
Nous séparons d’aprés (3) et (4) I’énergie propre en des termes A
et des termes B. , _

Envisageons tout d’abord J, c’est-a-dire I’énergie & soustraire
provenant des sauts interdits aux électrons du vide. Les figures I,
II, II1, IV représentent certains termes du type A et les figures V
et VI d’autres du type B. Ces figures (cf. aussi la fig. 1) repre-
sentent par cing colonnes I’état fondamental, les trois états inter-
médiaires et [’état final: @ désigne un électron; 'énergie de celui-ci
y est mesurée par la hauteur au-dessus de mc? ou au-dessous de
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—mc¢% Un cercle O signifie une lacune apparue dans le vide.
Dans les séries I & VI, I’émission d’un photon par l'un des électrons
du vide entrant en jeu est soumise & la restriction que cet électron
se trouve dans un des états intermédiaires au niveau mec?® (celui
de &). L’autre électron par contre émet un quantum d’impulsion
arbitraire. Il en résulte que dans ces termes se présentent trois
sommations: l'une sur I'impulsion contrainte du photon émis (et
réabsorbé) par I'un des électrons, ou ce qui revient au méme sur
I'impulsion initiale de cet électron, la seconde sur l'impulsion
arbitraire du second électron, et la troisiéme sur 'impulsion ar-
bitraire du photon que ce dernier électron émet (et réabsorbe).

Energies
. =posi£i'ues o O @) O o
@& & + me?
—mc? —&
Energies
. O O O . ]négatives . ®
Etat  Etats intermédiaires  Etat
initial final
Fig. 1. Electron: e, Lacune: o Fig. 2.

Chacune de ces trois sommations, qui & la limite sont des intégra-
tions, nécessite 'introduction d'un facteur dp proportionnel au
volume 2. Or I’émission suivie de I’absorption de deux photons
au total n’introduit en dénominateur que £22, de sorte que certains
termes J contiennent {2 & la premiére puissance.

Tous les termes de couplage sont représentés dans les figures
i, 1, ... W (type A), et v et vi (type B). Ils sont pour les mémes
ralsons proportionnels a £.

Or 1l serait fort étonnant que I'énergie propre de 1'électron &,
dépende du volume £ de l'espace, car dans la définition (6) il
n’est pas tenu compte des actions entre les électrons dépendant
de leurs distances mutuelles, et d’autre part I'introduction de £
ne sert qu’a permettre le dénombrement des états énergétiques
possibles.

Nous allons montrer que les parties de J et de C qui sont
proportionnelles & £ sont identiquement nulles. Considérons tout
d’abord J. Soit p I'impulsion d’un électron du vide, P celle d'un
autre, ¢ et ¢’ 'impulsion des photons émis. Dans le cas I par
exemple, P = q. Posons

cyYpi+mieE+met+eq=cP,
cYp:+mEct4cyYp?+mict+me?

+c(p' -9 )2+ m2e2+cqteq=cP,
cyYp?t+miet+ey(p'—q )2+ mPc2+cq = cPs.

p (8)

w
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Le terme I s’écrit au complet

B dodo’ qdqq dq' 5), %+ 5% () v (F
I= 1372 7 Spin.[ P1P2 S #uif) e (0);
x{u* (@) v* (), %o }{u v* (1), 2+ o’ u(0)v (7)}
X{“ﬁ( v (p'), %0 %( )v(P')} 9)

ol % et v sont les spineurs des électrons considérés, o et o’ les
vecteurs de polarisation des photons et dw, dw’ les angles solides

'0 ° °.0.0—J L ° _... '—j

ooool looooo|

.
lo—lo.'.'-—{ {..o.o.o'_l

oooool

!o.oo.o—{ 'L—o:.O’_i

v Fig. 7 a vi. vi
Schémas d’états intermédiaires (appartenant a C).

d’axes g et g’. Pour II, IIT... VI on trouve des expressions ana-
logues & (9). Dans ces expressions, le produit des accolades se
raméne a la trace © d'une matrice. Du fait que deux électrons
entrent en jeu dans les états intermédiaires, les traces & sont
toutes les mémes pour les termes I & VI. Nous pouvons donc, en
laissant de coté l'opération

...__._Zfda) do'qdqq' dq’ S[...]

) 1872
écrire
1 1 1 1
e RS I mer e T o IV ~
1 P1P2P3’ - PPy ’ P Py P P P3
Vel oyt

P P, ’ P, P:
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Or en vertu des définitions (8), P, = P; + P;. Donc
I+II—V=0, III+IV—-VI=0,

ce qui montre que les séries d’états intermédiaires interdits conte-
nant £ ne jouent aucun role.

Quant au couplage, il est représenté complétement par les
figures ¢ & wt. Les six termes contiennent la méme trace &, et
comme les dénominateurs s’obtiennent simplement & partir de
ceux de I & VI en remplagant m par —m, 1l en résulte que

C=0,

Les figures 1 et 2 représentent des séries d’états intermé-
diaires pour les termes interdits de J ou un seul électron du vide
est mis en jeu. Elles sont du type A. Il existe deux autres pos-
sibilité du type A ot Pordre d’émission des deux photons n’est pas
le méme que celui de leur absorption. II y a deux possibilités du
type B. Ces 6 termes de J ne sont pas proportionnels & £.

Appelons J' les termes non nuls de J. L’énergie propre s écrit
maintenant en quatriéme approximation

B, = B, —J. (10)

Avant de calculer (10), il est indiqué de faire une remarque
sur le calcul de I’énergie propre fait par Weisskopr en deuxiéme
approximation?!). Tout d’abord il est impossible qu’en seconde
approximation il apparaisse des termes proportionnels & £, et il
n’y a d’ailleurs pas de couplage entre g, et le vide, vu qu’il n’y a
qu’un seul état intermédiaire. L’énergie propre dans cette appro-
ximation, et dans la théorie des lacunes, se réduit donc d’emblée
4 une expression trés semblable & (10), écrivons-la

B, = B, —K (11)

ou il est entendu que K;' et E, n’ont pas la méme signification
que dans (10). Dans (11), E. est représenté par le schéma de la
figure 3, trait plein, indiquant le saut qu’effectue 1’électron ¢, &
un niveau énergétique 4 + me? dans I’état intermédiaire. Le trait
pointillé de la méme figure est le schéma qui donne K, c’est-a-dire le
saut particulier interdit aux électrons du vide. Or si 4> mc?,
on peut confondre approximativement mc¢? et — mc?, en les égalant
a zéro, de sorte que si I’électron du vide part d’un niveau d’énergie
—m¢* — A, pour sauter au niveau + mec2, on peut dire appro-
ximativement que les sauts de ¢, et de 1'électron du vide sont les

1) V. WEisskopyF, loc. cit.
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mémes a un déplacement pres. Or WEeIsskorr a montré, par une
méthode de correspondance équivalente & celle des états inter-
médiaires, qu’il se produit une compensation considérable dans le
calcul de K, ayant pour effet d’en réduire la divergence de linéaire
(comme on doit s’attendre & la trouver tout d’abord) & logarith-
mique. C’est justement du fait de la similitude des deux sauts
indiqués & la figure 3 et par conséquent du fait qu’on peut négliger
mec devant des valeurs suffisamment grandes de l'impulsion du
photon mis en jeu, que cette compensation se produit.

Ainsi s’explique le fait que dans la théorie des lacunes la
divergence est réduite en seconde approximation. On peut se
demander si un fait pareil se produit dans la quatriéme. Pour
examiner cette question, on se rapportera a la figure 4. Le trait

Fig. 3. Fig. 4.
Compensation des ternmes en Absence de compensation des termes
seconde approximation. en quatrieme approximation.

plein y donne une série du type A pour E’'c, et le trait pointillé
une série du méme type pour J’, ou I'un des quanta émis a une
énergie (si elle est suffisamment grande) a peu pres la méme dans
les deux cas. Jusqu’ici 1l y a analogle avec le cas de WEISSKOPF.
Mais lors des passages du premier au deuxiéme état et du deuxieéme
au troisieme état intermédiaire, 1l n’y a pas de compensation pos-
sible entre le trait plein et le pointillé, parce que ce dernier seul
passe par le niveau zéro. La réduction de la divergence est donc
un phénoméne propre a la deuxiéme approximation seulement.
Toutefois, dans des séries du type B, la compensation se produit,
parce que le type B en quatriéme approximation est formellement
la suite de deux de la seconde.

De cette discussion résulte qu’il suffit de considérer les termes
du type A dans le calcul du second membre de la relation (10).
La figure 4 montre aussi que les termes de E'g et ceux de —J’
dans (10) présentent une divergence du méme ordre de grandeur.
C’est pourquoi Eg est a un facteur prés, — d’ailleurs au plus
égal & 6 (nombre total des séries), — de l'ordre d'un terme A4,’,
par exemple, obtenu en calculant au lieu de 4, (défini au § 3) de
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la théorie ordinaire, ce que I'on obtient en choisissant dans les re-
lations (5) le signe + pour l’énergie de l'électron dans les états
intermédiaires, au lieu du signe —. On trouve donc en quatriéme
approximation dans la théorie des lacunes

8nlec

Eﬁog 73?7‘277 E}/‘Slll 19‘d19qu-/dq’ qq’ 12 (q, q’)

ou la fonction ¢ (g, q) est de I'ordre de Q3 lorsque q et ¢’ tendent
vers une valeur trés grande ). Il en résulte que la divergence
contenue dans (12) n’atteint pas l'ordre de grandeur de 2.

9. Approximations suceessives.

Nous avons déja remarqué que ce sont seules les approxima-
tions d’ordre pair qui conduisent a un résultat différent de zéro.
Le passage de 'approximation d’ordre 2n & celle d’ordre 2n - 21)
signifie 'introduction de deux états intermédiaires supplémentaires,
donc I’émission et I'absorption d'un photon. Dans I’approxima-
tion d’ordre 2n, n photons sont mis en jeu. Pour chacun d’eux
on a dans l'expression de l'énergie propre un facteur 2T,
L’approximation d’ordre 2n conduit donc & une énergie propor-
tionnelle & (137)~"; c¢’est un terme d’une progression géométrique.
Dans chaque approximation on a une somme de termes, des types A
et B, et dont le nombre est d’autant plus grand que n est grand;
d’abord, autant dans la théorie ordinaire que dans la théorie des
lacunes, parce qu’on peut combiner les émissions et les absorptions
de maniéres d’autant plus nombreuses que 7 est grand; ensuite,
mais dans la théorie des lacunes seulement, parce que les quanta
mis en jeu sont émis éventuellement par divers électrons.

Le nombre de possibilités de ranger dans un ordre ou dans un
autre les émissions et absorptions des photons est soumis a la
condition que I’émission d’'un certain photon ne soit jamais pré-
cédée de son absorption. On doit donc chercher & ranger n couples
d’objets dans 2n cases, chaque couple étant composé d’une émission

et d’une absorption. On calcule le nombre de possibilités de le

. . : 2n(2n—1)

faire comme suit: Plagons le premier couple. Il y & ————

possibilités de le faire. Placons le deuxiéme couple dans I'une des

2n-2)2n-2-1)
2

2n —2 cases restantes. Il y a maniéres de le

1) Nous dirons pour simplifier le passage d’une approximation & la suivante.
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Zn-2p)2n-2p-1
2
couple dans 2n — 2 p cases. Le nombre de possibilités de placer
les m couples est égal au produit de ces expressions, et il vaut
(2 n)!
2n
pas possible de différencier les n couples de photons qu’il s’agit
de distribuer, autrement dit leurs permutations ne sont pas
considérées comme fournissant des distributions différentes. Ces
permutations sont au nombre de n!. D’ou le nombre RN de pos-
sibilités de ranger les m quanta émis en émissions et absorptions
lors des passages d'un état intermédiaire & l'autre:

2n)!
N == .
2nn!

Pour n =1, A =1; 1l y a une seule possibilité d’émettre et
absorber un quantum en deuxiéme approximation (cas de WALLER).
Pour n =2, % = 3; il y a trois maniéres de distribuer 1’émission
et I'absorption de deux photons en quatriéme approximation,
lorsqu’un électron unique est en jeu (ce sont les possibilités A4,,
A4, et B dans la théorie ordinaire).

Théorie ordinaire. — Ces remarques préliminaires étant
faites, considérons de plus prés tout d’abord le cas de la théorie
ordinaire. Nous avons vu que dans la quatriéme approximation le
terme B est d’un ordre de grandeur supérieur & 4, et 4, Dans
les approximations successives, la formule de Borx est plus com-
pliquée que (2). (La formule (2) est d’ailleurs déja simplifiée du
fait qu’en troisiéme approximation 1’énergie propre n’a pas signifi-
cation); elle contient au second membre des termes de types C,
D, .. F, G, ou G, par exemple, est une somme de termes ayant
pour dénominateur une expression de la forme

(B, — E)2 (B, —E)* ... (B, —E)? (E, — E)).

Or il y a une seule possibilité pour G, celle ou I’électron repasse
par le niveau d’énergie mc¢? dans tous les états intermédiaires
d’ordre pair. Pour les mémes raisons que dans la quatriéme ap-
proximation, ce sont les énergies négatives dans les états inter-
médiaires qui conduisent & la plus grande divergence. Le terme du
type G contient alors approximativement (m¢?)27-1 en dénomina-
teur, et diverge plus que les termes des autres types: I'une des R
possibilités contient la divergence la plus forte. L’énergie propre
en 2niéme approximation est donc de l'ordre de grandeur

faire, etc.; 1l y a )possibilités de placer le pieme

. En réalité, dans le probléme que nous étudions, il n’est

(13)

E.x

.. dw, q; dq . .. g, dg, (14)

¢
1877 (m ¢)2n-1 fdw’
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dans la théorie ordinaire. Comme il ne se présente pas de fonction
des angles entre les q,, l'intégration sur les angles donne (4 m).

Done
2 n
By ~me? (WQ i % )
137 m Qoo

Cette expression ne conduirait & aucune divergence si elle
était finie et si elle était de plus le terme d’une progression géo-
metnque soumis & la condltlon 27 )2/187 - m2e* < 1, condition
qu'on peut écrire

2 7 2
Q < 137 me _
m 2n

(15)

Il n’est toutefois pas certain que la condition (15) suffise pour
assurer la convergence de la série des approximations successives
qui donnent E;, vu que dans une pareille condition les termes des
types C, D, ... F prennent tout autant d’importance que ceux
du type G. On majore alors I'expression compléte de E; en multi-
pliant (14) par le nombre de termes possibles RN ce qui donne

E, < (z—n)imﬁ( il )n (16)

n! 187 m2¢2

Q—®

Pour des valeurs grandes de » on simplifie cette expression
au moyen de la formule de STirLING, qui montre que (2n)!/n! est
de 'ordre de n!; cette divergence ne peut étre réduite par aucun
procédé, et cela laisse peu d’espoir que ’on trouve une majorante
plus petite qui donne un sens & une condition du genre de (15).

En résumé, dans la théorie ordinaire, le passage d’une approxi-
mation & la suivante introduit en dénominateur sous un signe [
une parenthése (K, — E;) qui n’atteint pas 'ordre de grandeur de ¢
lorsque ce parameétre tend vers I'infini, et par conséquent il intro-
duit au total une opération que lon peut représenter symbohque-
ment par

—fq dq (... (17)

m2¢?

ou H est peut-étre proportionnel a .

Théorie des lacunes. — Considérons maintenant la théorie
des lacunes. A cause de l’hypothése selon laquelle une infinité
de niveaux énergétiques sont occupés, il se peut que le volume £
dans lequel les électrons se trouvent ne soit pas compensé au
cours des calculs. Si aucune compensation ne se produisait dans
la 2miéme approximation, cela voudrait dire que l’énergie propre
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dans la théorie des lacunes diverge non seulement proportionnelle-
ment & une certaine puissance d’'un parameétre (), mais aussi pro-
portionnellement & 27-1. Il est clair qu’aucun procédé se rattachant
a lattribution d’un rayon & l'électron ne supprime la divergence
contenue dans 2. Il nous semble d’autre part difficilement raison-
nable que ce volume apparaisse dans l’expression de l’énergie
propre d'un électron. Pour ces deux raisons, et dans I'idée que
dans toutes les approximations il se produit une compensation
semblable a celle‘que nous avons reconnue en quatriéme approxima-
tion, nous ne considérerons dorénavant que des termes ne pouvant
pas contenir 2 en facteur. Or les parentheses (E,—K,), ... qui
interviennent dans la formule de Born sont dans la théorie des
lacunes toujours de I'ordre des impulsions g des photons apparus
dans les états intermédiaires. Les termes ne contenant pas £
présentent des intégrations soit sur ces impulsions, soit sur les
1mpulsions d’électrons choisis dans le vide, mais I’hypothese faite
1mphque que chaque électron du vide mis en jeu passe par le niveau
d’énergie mc? dans l'un ou l'autre des états intermédiaires. Or
le passage d’'une approximation & l'autre signifie I'introduction
d’'un nouveau photon, donc un facteur 1/g, et de plus les deux
nouveaux états intermédiaires introduisent deux parenthéses
(E,—E,)) (BE,— E;), donc un facteur de 'ordre de 1/¢q%. Comme
une seule intégration supplémentaire intervient, il en résulte qu’une
nouvelle approximation comparée & la précédente correspond sym-
boliquement a l'opération

, [ dq
H f“&“@")‘ (...)) (18)

ol o0(q) est de 'ordre de ¢ quand ce parametre tend vers de grandes
valeurs. S1 'on compare (18) & (17) on voit que 'augmentation
de la divergence due uniquement au paramétre g est beaucoup
plus considérable dans (17) que dans (18), c¢’est-a-dire plus consi-
dérable dans la théorie ordinaire que dans la théorie des lacunes.
Mais nous ne savons pas comment divergent H et H'. Le nombre
des séries d’états intermédiaires dans la théorie des lacunes est
supérieur & celui de la théorie ordinaire, car les » photons mis en
jeu dans la 2niéme approximation peuvent étre distribués entre n,
ou (n—1), ou (n —2) ... ou 1 électron. Toutefois le nombre de
ces possibilités n’est pas si considérable qu’il n’y ait aucun espoir
pour que la théorie des lacunes ne présente pas une divergence
tres grande. En effet, le nombre de maniéres de distribuer » quanta
soit entre n, soit entre n — 1, ... soit & un seul électron est égal a
n®, mais il faut naturellement tenir compte du fait qu’on ne peut
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pas différencier les électrons du vide mis en jeu (qui sont au nombre
de m — 1 au plus dans 'énergie de couplage et de n au plus dans
les termes interdits), et qu’une certaine distribution des n quanta,
doit étre regardée comme équivalente & celle obtenue en permutant
les électrons provenant du vide. Les termes de couplage contiennent
toujours £2; ils n’entrent donc plus en considération. Le nombre
de possibilités de distribuer les n quanta & n électrons au plus est
alors inférieur & ’expression n%/(n — 1)!, qui vaut pour des grandes
valeurs de n approximativement 4/2x e®nt et ne contient pas de
factorielle. La plus petite valeur que les parentheses (K, — E))
puissent prendre est de 'ordre de 2¢q. Il en résulte que 'on peut
choisir pour majorante en 2niéme approximation l’expression

Ry2zernt(@m)r g dgs  dday g
92u-1137n f "

L’intégration sur les valeurs des impulsions ne peut diverger
pour les petites valeurs des ¢q;. De sorte que cela n’aurait pas de
sens de prendre pour limite inférieure de ces intégrations la valeur
g = 0. Mais comme au dénominateur (E, — E;) ne peut en réalité
jamais s’annuler, il n’y a de toute maniére aucune divergence
provenant des valeurs trés petites des ¢, L’mégalité ci-dessus

s’écrit encore

— 2me\" dq adq,_1 |
E€0<2\/2n!e( )cf R s dq., (19)
137 9. Qn—1
(e= 2-71828).

Le second membre de (19) diverge moins que celui de (16),
parce que l'intégration sur les ¢; dans (16) fournit une puwissance
croissante de @), tandis que (19) conduit & un produit de ¢ par des
logarithmes. Mais comme ces relations expriment des inégalités
qui majorent, I'une He, 'autre E., on ne peut tirer évidemment
aucune conclusion décisive de la comparaison de ces deux gran-
deurs.

Ce qui est certain, c’est que la divergence due a

Q) — o

se fait sentir beaucoup plus dans la théorie ordinaire que dans
la théorie des lacunes. Mais & cause du grand nombre de possi-
bilités de ranger les quanta émis dans les états intermédiaires, et
a cause aussi du fait qu'on ne peut pas estimer sans les calculer
les divers termes correspondant & ces possibilités, en particulier
pas leur signe (le calcul de traces telles que S;, S,;, ©, donne des



74 André Mercier.

valeurs positives ou négatives suivant les cas), il semble trés dif-
ficile de décider si, dans le probléme de ’énergie propre, cela a un
sens de considérer comme inexistants les photons dont les impulsions
dépassent une certaine limite, autant dans la théorie ordinaire
que dans la théorie des lacunes.

6. Conclusion.

Les conclusions que I'on peut tirer des calculs qui précédent
sont de nature négative, mais elles méritent toutefois quelque
attention parce qu’elles doivent mettre en garde sur quelques
difficultés du probléme qui n’ont a notre connaissance pas été
relevées jusqu’ici.

Comme nous I'avons déja remarqué, les tentatives de rendre
finies les expressions de I’énergie propre ne se rapportent qu’a une
approximation déterminée, et, en particulier dans l'esprit des mé-
molres sur ce sujet, & la seconde. D’autre part, dans les approxima-
tlons supérieures, on sait que les divers effets que 'on calcule dans
la théorie des quanta ne sont en accord avec l'expérience que
lorsque les longueurs d’onde mises en jeu sont supérieures & une
limite du genre de celle donnée par la condition (15). Jusqu’a la
découverte de 1’électron lourd, on avait coutume de dire que la
théorie des quanta ne convient pas pour des domaines pareils.
Il semble par contre qu’on puisse se passer de cette hypothése
désagréable?). Toutefois, dans le probléme de I’énergie, la difficulté
persiste, et la tentative d’une limitation des longueurs d’onde
garde son Intérét du point de vue théorique.

Le procédé proposé par WeNTzEL (loc. cit.) a le désavantage
d’étre drtificiel, mais il présente toutefois I'imtérét de montrer que
les diverses maniéres d’affectuer les passages & la limite ne sont pas
univoques. Mais 1l semble qu’a la lumiére de nos remarques concer-
nant la suite des approximations, et méme déja parce que, autant
dans la théorie des lacunes que dans la théorie ordinaire, chaque
approximation contient une divergence proportionnelle a4 ¢ au
moins?), il nous semble douteux que le procédé de WENTZEL
conduise & la solution des difficultés de l’énergie propre.

Le chemin proposé par MarcH pour tourner la difficulté im-
plique P'existence d’un postulat nouveau dans la physique quan-
tique: le ds ne peut étre déterminé qu’a une grandeur y prés. Il

1) Voir & ce sujet I'article de J. BuaBHA dans les Proc. Roy. Soc. 164, 257,
1938.

?) Nous rappelons que la divergence logarithmique trouvée par WEISSKOPF
est fortuite. Voir a ce sujet V. WrIsskopF, Zeitschr. f. Phys. 89, p. 27, Fussnote 5.
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en résulte que la fonction delta doit étre remplacée par une fonction
dont la valeur est indéterminée dans le domaine correspondant,
sl bien que le développement en série de FoUuriER perd son sens.
Marcu modifie alors le développement en y introduisant une in-
détermination sur le paramétre ¢ dans le domaine en question.
Cette précaution étant prise, le procédé conduit effectivement &
une valeur finie de l’énergie propre en seconde approximation.
Mais la difficulté concernant la suite des approximations persiste.

Des procédés qui consistent & définir comme trés rare I’émission
de certains quanta de lumiére ont le défaut d’étre arbitraires.

La conclusion que nous devons tirer de nos calculs consiste en
cecl: Si tel procédé ou tel autre a I'avantage de détruire la diver-
gence de I’énergie propres, il ne le fait en principe que dans l'une
ou I’autre des approximations successives, fournissant dans chacune
d’elles une contribution finie

E:2), B.@),.... B.2n), ....

Mais nous ne savons pas si la somme

l\?

> Ee (2n)

n=1
converge ou non lorsque N — co. Cela est peu satisfaisant, et la
méthode d’approximation de Bor~ que nous avons suivie ne semble
pas apte & conduire & une solution. On peut précisément craindre
que les difficultés qui ont surgi au cours des calculs lui soient
propre, ce qui condamnerait son emploi. On doit espérer qu’en
remplacant la méthode d’approximation de BorN par une autre,
on soit conduit & des résultats plus précis. C’est avec cette idée
que M. T. GusTtarson s’est proposé d’attaquer le probléme dif-
féremment; dans un travail devant paraitre ailleurs?), il recherche
quelle est 'influence du procédé de limitation lorsqu’on emploie
la méthode exacte de solution des équations en mécanique quan-
tique qui consiste & résoudre un déterminant séculaire.

1) Arkiv for Mat., Astr. och Fysik (Bd. 26).
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