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Sur l'énergie propre de l'électron
par André Mereier1).

(9. XII. 38.)

Résumé. — L'énergie propre électrodynamique de l'électron provient de la
possibilité d'échange de quantité de mouvement entre l'électron et le champ de
fluctuation de la radiation du vide. On l'a calculée, au moyen de la méthode
d'approximation de Borst, uniquement jusqu'à un terme qui fournit une
expression divergente ayant 1/137 en facteur (deuxième approximation). On a
cherché des méthodes permettant de supprimer cette divergence. Or les méthodes
proposées concernent la seconde approximation, mais rien ne permet d'affirmer
que la série des diverses approximations auxquelles elles conduisent soit elle-même
une expression finie, car on ne sait pas si cette série converge. C'est pour cette
raison que nous avons calculé l'ordre de grandeur de chaque approximation, au
moyen de la méthode d'approximation de Born et en prenant Vl/137 comme
paramètre dans le développement en série. Les résultats sont les suivants: dans
l'approximation d'ordre 2 n, le nombre de combinaisons possibles d'états intermédiaires

est de l'ordre de k!; mais il ne nous a pas été possible de déterminer par
une méthode générale le signe de chacun des termes. Dès lors il semble impossible
de savoir si la somme de toutes les approximations converge. Nous faisons les
calculs dans le cas d'un électron libre et dans celui de la Théorie des lacunes de
Dirac. Dans l'approximation d'ordre 2 n, l'énergie propre est proportionnelle à

Qinßyjn (où §->- œ) dans le cas d'un électron libre, et proportionnelle à

W—:

37« J dq.
dq3 dqa âqn

J ""J1
12 % '" In

dans la théorie des lacunes.
Cela montre entre autres que la divergence logarithmique trouvée par Weiss-

kopf dans la seconde approximation pour la théorie des lacunes est fortuite et
qu'elle est due à une compensation de certains termes particulière à cette
approximation et ne se produisant pas dans celles d'ordres supérieurs.

Il résulte de là qu'il ne suffit pas de considérer la seconde approximation:
la théorie des lacunes conduit à des résultats beaucoup plus divergents que ne le
suggère cette seconde approximation.

Enfin, en ce qui concerne le procédé de limitation des petites longueurs
d'onde des photons, on ne peut pas non plus affirmer qu'il supprime toute divergence

à cause de la divergence de la série-même des approximations, et il semble
d'ailleurs actuellement difficilement justifiable. Peut-être la découverte de l'électron

lourd permettra-t-elle de résoudre le problème2).

*) Ce travail a été effectué lors d'un séjour de l'auteur à l'Institut de Physique
Théorique de Copenhague. L'auteur désire remercier tout spécialement M. le
prof. Niels Bohr de son accueil et de ses conseils, ainsi que MM. Chr. M0Ller,
L. Rosenteld et V. Weisskope.

2) L'auteur a publié avec M. Gustafsoh une note sur l'énergie propre de
l'électron parue dans les C. R. Acad. Se. Paris, 206, 1217, 1938.
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1. Introduction.

La théorie des quanta attribue à l'électron une énergie propre
d'origine électrodynamique qui n'a pas son correspondant dans la
théorie classique. Ceci est dû au fait que, dans la théorie quantique,
un électron est a priori en interaction avec un champ électromagnétique,

et comme un électron est toujours susceptible d'émettre et
d'absorber (virtuellement ou réellement) des quanta de lumière,
il doit de ce fait posséder une énergie propre électro-dynamique.
La radiation émissible par l'électron peut être considérée comme
un champ ne consistant qu'en une fluctuation, mais pouvant être,
comme tout champ électromagnétique, caractérisé par un potentiel
vecteur <P. Or dans la théorie de l'électron de Dirac, l'interaction
entre l'électron et un champ est mesurée par le produit scalaire
de l'opérateur a associé à l'électron et du potentiel vecteur de ce

champ. L'énergie propre d'un électron se calcule donc à partir
de l'expression

a • 0.
On peut dire que cette énergie propre tire son origine de la

possibilité d'échange de quantité de mouvement entre l'électron
et ce champ de radiation virtuel. Etant donné un système soumis
aux lois de la mécanique quantique, on a coutume de le traiter
sous la forme d'un problème de perturbation et, celle-ci étant
considérée comme petite, les diverses approximations sont données

par des grandeurs proportionnelles aux puissances croissantes d'un
paramètre. Pour ce dernier nous prendrons Vl/137.

Les divers phénomènes (chocs entre particules, etc.) sont,
suivant le cas, donnés par une approximation ou une autre. Deux
approximations différentes correspondent à deux effets physiquement

différenciés. Mais dans le problème particulier de l'énergie
propre on a affaire à un système composé d'un électron unique,
dont on calcule l'action sur lui-même, de sorte que chaque approximation

contribue dans une certaine part à la valeur de l'énergie
propre totale.

Jusqu'ici on ne s'est occupé à notre connaissance que de la
deuxième approximation, et nous remarquons tout de suite qu'il ne
faut pas confondre l'expression d'énergie propre employée dans la
littérature (voir les diverses citations bibliographiques) avec celle
de l'énergie propre totale qui nous intéresse dans ce travail. C'est
pourquoi nous dirons toujours: énergie propre dans l'approximation

d'ordre n.
Du fait que la théorie de l'électron suppose celui-ci ponctuel,

son énergie propre est infinie, à moins que l'on ne prenne des pré-
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cautions très particulières. Par précautions, il faut entendre
l'introduction d'une hypothèse supplémentaire ayant pour but de
corriger l'effet dû à la concentration de l'électron en un point
(Born, Wataghin, March), soit celle d'un artifice mathématique
au cours des calculs, du genre p. ex. d'un prolongement analytique
(Wentzel). Le procédé le plus commun qui consisterait à abolir
sans autre toute émission de quanta lumineux ayant une impulsion
supérieure à une certaine limite a le désavantage fatal de détruire
l'invariance relativiste. A cause de ce fait, Wataghin1) a proposé
d'introduire une modification dans la fonction hamiltonienne, ayant
pour effet de rendre extrêmement rares les émissions de photons
de grande fréquence, ce procédé étant choisi de manière à garder
l'invariance relativiste. Mais il est naturellement arbitraire.
Wentzel2) a montré qu'en procédant à un passage à la limite
par un chemin détourné grâce à l'introduction du formalisme pluri-
temporel de Dirac-Fock-Podolski, on améliore les résultats.

Mais il n'est pas parvenu à supprimer toute divergence, et
ses conclusions ne sont valables que dans le cadre d'une approximation

déterminée (en particulier, la seconde). March3) a montré
qu'on peut justifier une limitation supérieure des impulsions des

photons émis en postulant que la géométrie ordinaire de
Minkowski n'est pas valable dans l'infmiment petit de la physique
quantique, ou plus précisément que le ds2 ne peut pas être mesuré
avec une précision rigoureuse. Il pose

-nds=vydxï

et son hypothèse revient à dire qu'il n'y a pas d'interaction entre
l'électron et des photons dont la longueur d'onde est inférieure à y.
Cela permet une limitation qui ne détruit pas l'invariance relativiste.
Mais, comme dans le procédé de Wentzel, cette manière de faire
est correcte dans une approximation, sans qu'il soit certain qu'elle
l'est dans l'ensemble des approximations successives (énergie propre
totale).

M. Weisskopf nous a fait remarquer l'intérêt qu'il y aurait
à étudier le problème suivant : que peut-on dire de la convergence
ou de la divergence des termes de l'énergie propre proportionnels

G. Wataghin, Zeitschr. f. Phys. (88, 92, 1934).
-) G. Wentzel, Zeitschr. f. Phys. (86, 479 et 635, 1933, et 87, 726, 1934).
3) A. March, Zeitschr. f. Phys. (104, 93 et 161, 1937, 105, 620, 1937,

106, 49, 291 et 532, 1937, 107, 144, 1937, 108, 128, 1938).
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aux diverses puissances de \/1/137, ainsi que de la série de ces
termes

La réponse à cette question dépend sans doute de la définition
que l'on donne du vide: on bien l'on considère l'électron comme
absolument libre, c'est-à-dire capable (virtuellement) de passer
par des états d'énergie positive ou négative quelconques, — ou
bien, dans la théorie des lacunes de Dirac, on le considère comme
libre uniquement par rapport aux états d'énergie positive, puisque
tous les états d'énergie négative sont supposés occupés par des
électrons ; de plus il se peut que l'électron envisagé entre en
interaction avec les «électrons du vide». Ces deux faits: interaction
possible et liberté restreinte, doivent avoir une influence telle que
l'énergie propre (autant dans chaque approximation que dans sa
totalité) diffère vraisemblablement considérablement suivant qu'on
la calcule dans la théorie des lacunes ou dans l'hypothèse d'un
électron absolument libre.

On sait que c'est le cas déjà en seconde approximation, dans
laquelle W'aller1) a calculé l'énergie propre de l'électron libre, et
Weisskopp2) celle de l'électron dans la théorie des lacunes. Nous
désignerons, dans n'importe quelle approximation ces deux
possibilités par les expressions théorie ordinaire et théorie des lacunes.

La constante de structure fine -\/l/137 contient la charge e

de l'électron en facteur. Or l'énergie propre ne peut dépendre
des signes de la charge, de sorte que seules les approximations
d'ordre pair (puissances de 1/137) doivent fournir un résultat
différent de zéro.

Dans ce travail, nous calculons tout d'abord avec quelque
détail la quatrième approximation (terme proportionnel à 1/137)2)
dans les deux théories. Puis nous cherchons ce qui se passe dans
chacune de ces théories dans les approximations supérieures et
discutons les avantages et les inconvénients de l'une et de l'autre.

2. Méthode de calcul.

On calcule les approximations successives au moyen de la
formule de Born, grâce à l'introduction d'un opérateur de perturbation

exprimant la possibilité d'échange d'impulsion entre l'électron

et le champ de radiation dont le vide pourrait être le siège.
Cette radiation n'est due qu'à des fluctuations.

1) I. Waller, Zeitschr. f. Phys. 62, 673, 1930.
2) V. Weisskopï, Zeitschr. f. Phys. 89, 27, 1934 et 90, 817, 1934.
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Soit a le vecteur (tridimensionnel) dont les composantes sont
les opérateurs de Dirac, et 0 le potentiel vecteur du champ
électromagnétique des fluctuations. Soit e la charge de l'électron et
ipa, rpb deux fonctions d'onde décrivant l'état du système électron-
radiation. L'opérateur de perturbation qui fait passer le système
de l'état b à l'état a s'écrit

Vab efwl'j.-^fi-
Le signe J désigne une intégration sur l'espace ordinaire, une
sommation sur l'espace de configuration des photons, et une sur
l'indice de spin. Les divergences qui apparaîtront dans la suite
et qui sont le sujet de la discussion proviennent de la sommation
sur les photons, parce qu'il n'y a en principe pas de limite à la
grandeur de l'impulsion qu'un électron peut transmettre au champ
de la radiation.

La fonction tp d'un système composé d'un électron et de

photons se développe comme suit:
W ¦*- *r

W 2 a (M-t)w Cp) e
h ' '" n ô (NT)

» " *

p est l'impulsion de l'électron, x le vecteur de sa position. JJ est
<*

le produit des fonctions <5(2Vj) associées aux photons présents.
N~ est le paramètre de la distribution des photons et désigne le
nombre de photons présents dont l'impulsion vaut q.

Les opérateurs a(Mt) satisfont aux conditions de la statistique
de Fermi-Dirac:

a(M-l)a(Mt)^Mi, a(Mi)a(Mi) - 1-AC,

oùMt j q est le nombre d'électrons d'impulsion p et dans l'état

fi (/j 1, 2, 3, 4 désigne d'un même coup le signe de l'énergie et
l'état du spin). Les W (p) sont des spineurs. La fonction ip est

supposée normée de manière que j y>* xp — 1.

Pour introduire explicitement l'impulsion des photons, on
développe le potentiel vecteur en série de Fourier

*^=2fq
q • x (r x

t t

c(q)e n +c*(q)e h

où a est le vecteur de polarisation de l'onde partielle associée au
photon d'impulsion g, (ÔAq), c(q) et c* (q) sont les opérateurs de
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la statistique de Bose; il y correspond respectivement l'absorption
et l'émission d'un photon. T a pour carré:

m2 _
fe2 c

Q

où Q est le volume du vide.

La sommation sur l'espace d'impulsion se fait au moyen de

l'introduction d'une fonction densité des états au point g; soit dea

un angle solide infinitésimal d'axe q, et q /\/. La sommation
est à la limite une intégrale I d\j(...), où

Qg2dqdcod^ W ¦

Disons tout de suite que pour chaque émission suivie de
l'absorption d'un quantum q arbitraire, il interviendra dans les
calculs l'opération

e2T2dq(...)f
et l'on a

e2 T2 dq dco c2 qdq
q 137 '

Comme le calcul sera fait en détail en quatrième approximation,
écrivons la formule de Born pour ce cas et donnant l'énergie

propre Ee d'un électron e dont l'état est fixé par l'indice l (la fonction
d'onde tpl est celle d'un état où aucun photon n'est présent) :

P ^ir r Im r mk y k % v t l -^-i/ r Im r m l r In r n l /q^
£~à (Ë^Ëi) (Ek-El) (Em-Ez) ~- (EH-El)2(E'm-E;) [

i, k, m, n sont des indices d'états intermédiaires, Ex, En l'énergie
du système dans l'état l, n.

Par raison de commodité (ou si l'on préfère, par suite d'une
transformation de Lorentz convenable) nous choisissons pour état
l celui d'un électron au repos:

Ex mc2 dans la théorie ordinaire,
Et mc2 + somme des énergies des électrons du vide, dans

la théorie des lacunes.
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Nous désignerons enfin par A une suite d'états intermédiaires
rentrant dans la somme

•sry r vlni'mkyktril /q\
£ki (Ei — Et) (Ek — E\) (Êm — Et)

et par B une suite rentrant dans la somme

¦sr,, vlmrmlrlnrnl /x\

mn (En — E,)2(Em — Et)

3. Théorie ordinaire en quatrième approximation.

Désignons par s(p) un électron d'impulsion p et par cp (q) un
photon d'impulsion q. Un électron libre peut passer par des suites
d'états intermédiaires au nombre de deux du type A, que nous
appelons Ax et A2, et une du type B. Ax est la série suivante:

Ax: état fondamental e(p=0)
1er état interméd. e(p')> <p(q)
2ième état interméd. e(p"), cpÇq), cp(q')
3ième état interméd. e(p'), cp(q)
état final e (p 0).

L'opérateur (1) qui fait passer de l'état l à l'état i est

^=i7^2 [d* ô (h) à (%)\a*(MZ)u»*(p')e **'* ,W'Ï A (q)
vl i"J i ^ ^ i ~ ~)

xe h a(Ml)uv(v)eh )ó(0j)ó(0p)

const. à (-p'-q+p) S à (0?) «5 (lj-) a* (M£) a(Mvf

{u»*,*-a w} ô (ltr) ô (0g,)

où ô (— p' — \ + p) est la fonction delta, et {u*, %'} le produit
scalaire de deux spineurs u et u'. Si l'on calcule les autres V...,
on obtient pour Ax, après quelques transformations

Ax: £4T4 V V E v~q p—q—q'x L p—q'i

x a », tvV aa' (ßi — Ei) (ßk — Et) (Em — Et)
{V* (p),x-oW(p — q)} {u"*(p — q), « -a'u'(p — q-q')}
x{ul* (p — q — q'), â • a' u"(p — q)} {u"* (p — q), a• a W(p)}

const. 2 f qdq q'dq'dco dco'
Xf./x Vj

{uv\ a. • a u") {W*,a.-g' U}) {u'-*, â-g' u"} {uß*, a-gu"}
(Et-Et) (Ek-Et) (Em-E{)

dco et dco' sont les angles solides d'axes *q et q'.
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Les valeurs de q, q' qui conduisent à des divergences éventuelles
sont celles qui tendent vers l'infini. On a pour celles-ci approximativement

Et ±C]/(— q)2 + m2c2+ cqiQc(± q + q) j

Ek^c(±s + q + q') (s q + q', s /s/) (5)

S« -B* •
J

C'est donc le signe — qui conduit à la plus grande divergence ;

on a dans ce cas

Ei-Et^ — mc2, etc.

On effectue la sommation sur les indices de spin à l'aide de

l'opérateur J [1 ± D(p) IE(p)], où D(p) coc-p + ßmc2, et E
est la valeur propre de D. Le produit des quatre accolades se

ramène alors à une expression Sx, dont le calcul est celui de la
trace d'une matrice.

La série des états intermédiaires de A2 et celle de B sont les
suivantes :

A2: £(p 0) B: e(p 0)

£(ì>')> <p(q) Ap')> v (q')
s(p"), <p(q), <p(q') e(p o)

Ap"), v(q') «(?"). ?(«")
e(p=0) e(p 0).

Le calcul des accolades fournit une expression S2 pour A2 et
la valeur 1 pour B. Les dénominateurs de Ax et A2 sont les mêmes,
et celui de B est (mc2)z. Il en résulte pour la valeur de l'énergie
propre :

J5
8n* I\;„ajia f i„ C i„>„„>\ Sx+S2

_

1

,„ fsin&d& f dq f dq' q q' -^
1372 -m2c J J „' * HH \qY-q'- -mc — s mc

o

où # A (q, q').

Quelles que soient les valeurs de q et g', Sx et S2 restent
bornés. On peut alors chercher l'ordre de grandeur de l'intégrale/S +Ssin & d & —¦—r—-— • Or q+q' —mc — s peut s'annuler. Si l'on

q+ q - mc- s oi i i-
calcule la valeur principale de Cauchy on trouve que cette
intégrale est de l'ordre de 1/g1). Cela montre que le terme 1/mc

x) Le calcul rigoureux nous a été indiqué par M. T. Gustafson.
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dans l'accolade joue seul un rôle dans le calcul de la plus grande
divergence de Ee, et pour celle-ci on trouve donc

(2n)2eE? <=Q - '- / ai£= l372m3c3 Iq '"^
Donc dans la théorie ordinaire, Ee diverge comme la quatrième

puissance d'un paramètre tendant vers l'infini.

4. Théorie des lacunes en quatrième approximation.

Le vide, dans la théorie des lacunes, est défini par le système
des électrons infiniment nombreux qui occupent les niveaux
d'énergie négative. Soit Ev l'énergie propre de ce système. Si au
vide ainsi défini, on ajoute un électron (désigné par e0) on obtient
un système de « oo + 1 » électrons dont l'énergie propre sera
désignée par Er+er On définit alors l'énergie propre de l'électron
e0 par la relation

Eea Ev+B-Er. (6)

Pour le calcul de (6), on emploie la formule de Born (2).
Mais il est cependant impossible d'évaluer EF+Co et Ev séparément,
et il faut tout d'abord trouver une autre expression de Ee<) que (6),
où l'énergie du vide n'apparaisse plus explicitement. On y arrive
par le raisonnement suivant: Er+e se compose de trois parties,
1° l'énergie E'e de l'électron e0 considéré comme libre dans le demi-
espace des énergies positives; 2° l'énergie C de couplage entre %
et les électrons du vide; 3° l'énergie des électrons du vide corrigée
pour tenir compte du fait que dans les états intermédiaires, les
électrons n'ont pas le droit d'occuper la place de e0, c'est-à-dire
l'énergie du vide Er diminuée de termes exprimant des sauts qui
sont interdits aux électrons du vide; soit J la contribution h Ev
de ces sauts interdits. (6) s'écrit donc

Eeo E'eo + C + (Er-J)- Ey E'e0 + C-J. (7)

Si l'on cherchait à décomposer la formule (6) en portant son
attention sur les valeurs que peuvent prendre les paramètres de

distribution Mt des électrons, on se persuaderait que la relation
(7) est exactement la transposition de (6), étant convenu que dans
chacun des trois termes de (7) on égale systématiquement à un
les paramètres en question. En effet, soit f(...Mt...) la fonction
des paramètres de la distribution des électrons qui apparaît dans
chaque terme par suite des conditions imposées aux opérateurs
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a(Mt), a* (Ml). L'énergie du système des (oo+l) électrons
(électrons du vide et électron e0 considéré) est donnée en quatrième
approximation par la somme de tous les termes comportant n'importe

quels états intermédiaires au nombre de trois, mais où la
valeur de / Mt...) doit être calculée rigoureusement. Or

/ Mt...) est précisément nulle pour les termes que nous avons
interdits, de sorte qu'en soustrayant Ev de Ev+Sii dans cette
définition, ces termes persistent avec le signe —; ce sont justement
les termes — J.

A
• •

A
•

Éfcw w v V W

•• °. °o •o •• •• °. °o °. ••

• • • •
m.

•
W W W

•• •o °o °. •• •• •o °o •o ••
/// IV

M
• •

AW W

•• °. •• "o •. •• •o •• °. *.
V VI

Pig. I à VI.
Schéma d'états intermédiaires (appartenant à J).

La relation (7) est beaucoup plus commode puisqu'elle ne
contient plus l'énergie Er. Elle est naturellement valable dans
toutes les approximations. Considérons en particulier la quatrième.
Nous séparons d'après (3) et (4) l'énergie propre en des termes A
et des termes B.

Envisageons tout d'abord J, c'est-à-dire l'énergie à soustraire
provenant des sauts interdits aux électrons du vide. Les figures I,
II, III, IV représentent certains termes du type A et les figures V
et VI d'autres du type B. Ces figures (cf. aussi la fig. 1)
représentent par cinq colonnes l'état fondamental, les trois états
intermédiaires et l'état final: • désigne un électron; l'énergie de celui-ci
y est mesurée par la hauteur au-dessus de mc2 ou au-dessous de
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— mc2. Un cercle O signifie une lacune apparue dans le vide.
Dans les séries I à VI, l'émission d'un photon par l'un des électrons
du vide entrant en jeu est soumise à la restriction que cet électron
se trouve dans un des états intermédiaires au niveau mc2 (celui
de e0). L'autre électron par contre émet un quantum d'impulsion
arbitraire. Il en résulte que dans ces termes se présentent trois
sommations: l'une sur l'impulsion contrainte du photon émis (et
réabsorbé) par l'un des électrons, ou ce qui revient au même sur
l'impulsion initiale de cet électron, la seconde sur l'impulsion
arbitraire du second électron, et la troisième sur l'impulsion
arbitraire du photon que ce dernier électron émet (et réabsorbe).

A
•

A

1 Energies
i positives
+ mc2
— mc2

1 Energies
j négatives

• o o o •
W w A

• O o O • • •
Etat
initial

Etats intermédiaires Etat
final
Lacune : Kg- 2.Pig. 1. Electron: •,

Chacune de ces trois sommations, qui à la limite sont des intégrations,

nécessite l'introduction d'un facteur dp proportionnel au
volume Q. Or l'émission suivie de l'absorption de deux photons
au total n'introduit en dénominateur que Q2, de sorte que certains
termes J contiennent Q à la première puissance.

Tous les termes de couplage sont représentés dans les figures
i, ii, iv (type A), et t; et vi (type B). Ils sont pour les mêmes
raisons proportionnels à Q.

Or il serait fort étonnant que l'énergie propre de l'électron e0

dépende du volume Q de l'espace, car dans la définition (6) il
n'est pas tenu compte des actions entre les électrons dépendant
de leurs distances mutuelles, et d'autre part l'introduction de Q
ne sert qu'à permettre le dénombrement des états énergétiques
possibles.

Nous allons montrer que les parties de J et de C qui sont
proportionnelles à û sont identiquement nulles. Considérons tout
d'abord J. Soit p l'impulsion d'un électron du vide, p' celle d'un
autre, q et q' l'impulsion des photons émis. Dans le cas I par
exemple, p q. Posons

¦} 2 /i2•j/p2 mc2 + cq= cPx

c]/p2 + m2c2 + c Ap"2 + m2c2 + mc2

+ c-\/(p'-q')2 + m2c2 + cq+cq'=cP2
c-]/p'2 + m2c2 + c ]/(p' — q')2 + m2 c2 + c q' cP3.

(8)
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Le terme I s'écrit au complet

1
137;

p spin ^ M -^2 -^ 3

X{u* (p) v*(r), k -a u(0)v(r)}{m*(0) v* (r), x • a' «(0) v (r')}
X{u*_(0)v*(p'),x-âu(p)v(p')} (9)

où u et v sont les spineurs des électrons considérés, a et a' les

vecteurs de polarisation des photons et dw, diu' les angles solides

A • •• •
^ • •# • äw w w v

• • O O • • • 0 • •

• •• • Aw

• O O • •

• •• •

• 0 o o •

A • • • • #w

• • • O • • o • • •
v Pig. i à vi. vi

Schémas d'états intermédiaires (appartenant à C).

d'axes q etq'. Pour II, III... VI on trouve des expressions
analogues à (9). Dans ces expressions, le produit des accolades se

ramène à la trace <5 d'une matrice. Du fait que deux électrons
entrent en jeu dans les états intermédiaires, les traces @ sont
toutes les mêmes pour les termes I à VI. Nous pouvons donc, en
laissant de côté l'opération

écrire

PiP*Pz

c

1372"

II -

V-

2 [dm dm'qdqq'dq' €>[...]
fi' J

1

P\P*
1_

~pJK

ni

VI

i
P1P2P3

i_

IV
Poßl
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Or en vertu des définitions (8), P2 Px + P3. Donc

I + II - V s 0, III + IV - VI 0,

ce qui montre que les séries d'états intermédiaires interdits contenant

Q ne jouent aucun rôle.
Quant au couplage, il est représenté complètement par les

figures i à vi. Les six termes contiennent la même trace €5, et
comme les dénominateurs s'obtiennent simplement à partir de

ceux de I à VI en remplaçant m par — m, il en résulte que

(7=0.
Les figures 1 et 2 représentent des séries d'états intermédiaires

pour les termes interdits de J où un seul électron du vide
est mis en jeu. Elles sont du type A. Il existe deux autres
possibilité du type A où l'ordre d'émission des deux photons n'est pas
le même que celui de leur absorption. Il y a deux possibilités du
type B. Ces 6 termes de J ne sont pas proportionnels à Q.

Appelons J'les termes non nuls de J. L'énergie propre s'écrit
maintenant en quatrième approximation

Ee>l Ee'-J'. (10)

Avant de calculer (10), il est indiqué de faire une remarque
sur le calcul de l'énergie propre fait par Weisskopf en deuxième
approximation1). Tout d'abord il est impossible qu'en seconde

approximation il apparaisse des termes proportionnels à û, et il
n'y a d'ailleurs pas de couplage entre e0 et le vide, vu qu'il n'y a
qu'un seul état intermédiaire. L'énergie propre dans cette
approximation, et dans la théorie des lacunes, se réduit donc d'emblée
à une expression très semblable à (10), écrivons-la

ESo E£g'-K (11)

où il est entendu que EBg' et EE n'ont pas la même signification
que dans (10). Dans (11), Ee<>' est représenté par le schéma de la
figure 3, trait plein, indiquant le saut qu'effectue l'électron e0 à

un niveau énergétique A + mc2 dans l'état intermédiaire. Le trait
pointillé de la même figure est le schéma qui donne K, c'est-à-dire le
saut particulier interdit aux électrons du vide. Or si A ^> me2,
on peut confondre approximativement mc2 et — me2, en les égalant
à zéro, de sorte que si l'électron du vide part d'un niveau d'énergie
— mc2 — A, pour sauter au niveau + mc2, on peut dire
approximativement que les sauts de e0 et de l'électron du vide sont les

*) V. Weisskopf, loc. cit.
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mêmes à un déplacement près. Or Weisskopp a montré, par une
méthode de correspondance équivalente à celle des états
intermédiaires, qu'il se produit une compensation considérable dans le
calcul de EEo ayant pour effet d'en réduire la divergence de linéaire
(comme on doit s'attendre à la trouver tout d'abord) à logarithmique.

C'est justement du fait de la similitude des deux sauts
indiqués à la figure 3 et par conséquent du fait qu'on peut négliger
mc devant des valeurs suffisamment grandes de l'impulsion du
photon mis en jeu, que cette compensation se produit.

Ainsi s'explique le fait que dans la théorie des lacunes la
divergence est réduite en seconde approximation. On peut se
demander si un fait pareil se produit dans la quatrième. Pour
examiner cette question, on se rapportera à la figure 4. Le trait

/ \ A

z \ _ J

-r---
A

Fig. 3. Pig. 4.

Compensation des termes en Absence de compensation des termes
seconde approximation. en quatrième approximation.

plein y donne une série du type A pour E'E(j, et le trait pointillé
une série du même type pour J', où l'un des quanta émis a une
énergie (si elle est suffisamment grande) à peu près la même dans
les deux cas. Jusqu'ici il y a analogie avec le cas de Weisskopp.
Mais lors des passages du premier au deuxième état et du deuxième
au troisième état intermédiaire, il n'y a pas de compensation
possible entre le trait plein et le pointillé, parce que ce dernier seul

passe par le niveau zéro. La réduction de la divergence est donc
un phénomène propre à la deuxième approximation seulement.
Toutefois, dans des séries du type B, la compensation se produit,
parce que le type B en quatrième approximation est formellement
la suite de deux de la seconde.

De cette discussion résulte qu'il suffit de considérer les termes
du type A dans le calcul du second membre de la relation (10).
La figure 4 montre aussi que les termes de E'£g et ceux de — J'
dans (10) présentent une divergence du même ordre de grandeur.
C'est pourquoi EEfs est à un facteur près, — d'ailleurs au plus
égal à 6 (nombre total des séries), — de l'ordre d'un terme A.x,
par exemple, obtenu en calculant au lieu de Ax (défini au § 3) de
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la théorie ordinaire, ce que l'on obtient en choisissant dans les
relations (5) le signe + pour l'énergie de l'électron dans les états
intermédiaires, au lieu du signe —. On trouve donc en quatrième
approximation dans la théorie des lacunes

Q 2 " 00 oc

EEo m -~~- J sin &d&fdqf dq' qq' cp (q, q')
o

où la fonction cp (q, q') est de l'ordre de Q-3 lorsque q et q' tendent
vers une valeur très grande Q. Il en résulte que la divergence
contenue dans (12) n'atteint pas l'ordre de grandeur de Q2.

5. Approximations successives.

Nous avons déjà remarqué que ce sont seules les approximations

d'ordre pair qui conduisent à un résultat différent de zéro.
Le passage de l'approximation d'ordre 2n à celle d'ordre 2n + 21)

signifie l'introduction de deux états intermédiaires supplémentaires,
donc l'émission et l'absorption d'un photon. Dans l'approximation

d'ordre 2n, n photons sont mis en jeu. Pour chacun d'eux
£2 J2 (fa

on a dans l'expression de l'énergie propre un facteur •

L'approximation d'ordre 2n conduit donc à une énergie
proportionnelle à (137)-m; c'est un terme d'une progression géométrique.
Dans chaque approximation on a une somme de termes, des types A
et B, et dont le nombre est d'autant plus grand que n est grand;
d'abord, autant dans la théorie ordinaire que dans la théorie des

lacunes, parce qu'on peut combiner les émissions et les absorptions
de manières d'autant plus nombreuses que n est grand; ensuite,
mais dans la théorie des lacunes seulement, parce que les quanta
mis en jeu sont émis éventuellement par divers électrons.

Le nombre de possibilités de ranger dans un ordre ou dans un
autre les émissions et absorptions des photons est soumis à la
condition que l'émission d'un certain photon ne soit jamais
précédée de son absorption. On doit donc chercher à ranger n couples
d'objets dans 2n cases, chaque couple étant composé d'une émission
et d'une absorption. On calcule le nombre de possibilités de le

faire comme suit: Plaçons le premier couple. Il y a s

possibilités de le faire. Plaçons le deuxième couple dans l'une des

o o t. i n (2«-2) (2»-2-1) ,¦2n — 2 cases restantes. 11 y a —~ manières de le

x) Nous dirons pour simplifier le passage d'une approximation à la suivante.
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(2n-2p)(2«-2p-l)taire, etc.; il y a £-i-^ possibilités de piacer le pieme
couple dans 2 n — 2 p cases. Le nombre de possibilités de placer
les n couples est égal au produit de ces expressions, et il vaut

—s—-. En réalité, dans le problème que nous étudions, il n'est

pas possible de différencier les n couples de photons qu'il s'agit
de distribuer, autrement dit leurs permutations ne sont pas
considérées comme fournissant des distributions différentes. Ces

permutations sont au nombre de n\. D'où le nombre 2Ì de
possibilités de ranger les n quanta émis en émissions et absorptions
lors des passages d'un état intermédiaire à l'autre:

* PÏ. dB)
2nn\

Pour n= 1, 31=1; il ya une seule possibilité d'émettre et
absorber un quantum en deuxième approximation (cas de Waller).
Pour n 2, 91 3; il ya trois manières de distribuer l'émission
et l'absorption de deux photons en quatrième approximation,
lorsqu'un électron unique est en jeu (ce sont les possibilités Ax,
A2 et B dans la théorie ordinaire).

Théorie ordinaire. — Ces remarques préliminaires étant
faites, considérons de plus près tout d'abord le cas de la théorie
ordinaire. Nous avons vu que dans la quatrième approximation le
terme B est d'un ordre de grandeur supérieur à Ax et A2. Dans
les approximations successives, la formule de Born est plus
compliquée que (2). (La formule (2) est d'ailleurs déjà simplifiée du
fait qu'en troisième approximation l'énergie propre n'a pas
signification); elle contient au second membre des termes de types C,
D, F, G, où 67, par exemple, est une somme de termes ayant
pour dénominateur une expression de la forme

(Em - Et)2 (En - E,)2 ...(Er- Et)2 (Es - Et).
Or il y a une seule possibilité pour G, celle où l'électron repasse
par le niveau d'énergie mc2 dans tous les états intermédiaires
d'ordre pair. Pour les mêmes raisons que dans la quatrième
approximation, ce sont les énergies négatives dans les états
intermédiaires qui conduisent à la plus grande divergence. Le terme du
type G contient alors approximativement (me2)2"-1 en dénominateur,

et diverge plus que les termes des autres types: l'une des 9Î
possibilités contient la divergence la plus forte. L'énergie propre
en 2 même approximation est donc de l'ordre de grandeur

Ee m 137"(mc)2"-i/da)' " " • doin qi dqi'-- qn dqn (14)
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dans la théorie ordinaire. Comme il ne se présente pas de fonction
des angles entre les q{, l'intégration sur les angles donne (4n)n.
Donc

2nQ2Eo
137 m2 c2

Cette expression ne conduirait à aucune divergence si elle
était finie et si elle était de plus le terme d'une progression
géométrique, soumis à la condition 2n C}2/137 • m2»2 < 1, condition
qu'on peut écrire

^<137mç2_
m 2n

Il n'est toutefois pas certain que la condition (15) suffise pour
assurer la convergence de la série des approximations successives

qui donnent Ee, vu que dans une pareille condition les termes des

types C, D, F prennent tout autant d'importance que ceux
du type G. On majore alors l'expression complète de Ee en multipliant

(14) par le nombre de termes possibles 91 ce qui donne

n\ U37m2c2/Q^OD
V '

Pour des valeurs grandes de n on simplifie cette expression
au moyen de la formule de Stirling, qui montre que (2n)!/n! est
de l'ordre de ni; cette divergence ne peut être réduite par aucun
procédé, et cela laisse peu d'espoir que l'on trouve une majorante
plus petite qui donne un sens à une condition du genre de (15).

En résumé, dans la théorie ordinaire, le passage d'une approximation

à la suivante introduit en dénominateur sous un signe /
une parenthèse (Et — Et) qui n'atteint pas l'ordre de grandeur de q
lorsque ce paramètre tend vers l'infini, et par conséquent il introduit

au total une opération que l'on peut représenter symboliquement

par

w/« *<¦••» (17)

où H est peut-être proportionnel à n.
Théorie des lacunes. — Considérons maintenant la théorie

des lacunes. A cause de l'hypothèse selon laquelle une infinité
de niveaux énergétiques sont occupés, il se peut que le volume Q
dans lequel les électrons se trouvent ne soit pas compensé au
cours des calculs. Si aucune compensation ne se produisait dans
la 2wième approximation, cela voudrait dire que l'énergie propre
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dans la théorie des lacunes diverge non seulement proportionnellement
à une certaine puissance d'un paramètre Q, mais aussi

proportionnellement à Qn~1. Il est clair qu'aucun procédé se rattachant
à l'attribution d'un rayon à l'électron ne supprime la divergence
contenue dans û. Il nous semble d'autre part difficilement raisonnable

que ce volume apparaisse dans l'expression de l'énergie
propre d'un électron. Pour ces deux raisons, et dans l'idée que
dans toutes les approximations il se produit une compensation
semblable à celle que nous avons reconnue en quatrième approximation,

nous ne considérerons dorénavant que des termes ne pouvant
pas contenir Q en facteur. Or les parenthèses (Et — E,), qui
interviennent dans la formule de Born sont dans la théorie des
lacunes toujours de l'ordre des impulsions q des photons apparus
dans les états intermédiaires. Les termes ne contenant pas Q
présentent des intégrations soit sur ces impulsions, soit sur les

impulsions d'électrons choisis dans le vide, mais l'hypothèse faite
implique que chaque électron du vide mis en jeu passe par le niveau
d'énergie mc2 dans l'un ou l'autre des états intermédiaires. Or
le passage d'une approximation à l'autre signifie l'introduction
d'un nouveau photon, donc un facteur 1/q, et de plus les deux
nouveaux états intermédiaires introduisent deux parenthèses
(Er — Et)(Es — Ei), donc un facteur de l'ordre de 1/q2. Comme
une seule intégration supplémentaire intervient, il en résulte qu'une
nouvelle approximation comparée à la précédente correspond
symboliquement à l'opération

H' f-% (18)
J o(q)

où o(q) est de l'ordre de q quand ce paramètre tend vers de grandes
valeurs. Si l'on compare (18) à (17) on voit que l'augmentation
de la divergence due uniquement au paramètre q est beaucoup
plus considérable dans (17) que dans (18), c'est-à-dire plus
considérable dans la théorie ordinaire que dans la théorie des lacunes.
Mais nous ne savons pas comment divergent H et H'. Le nombre
des séries d'états intermédiaires dans la théorie des lacunes est
supérieur à celui de la théorie ordinaire, car les n photons mis en
jeu dans la 2 même approximation peuvent être distribués entre n,
ou (n — 1), ou (n — 2) ou 1 électron. Toutefois le nombre de

ces possibilités n'est pas si considérable qu'il n'y ait aucun espoir
pour que la théorie des lacunes ne présente pas une divergence
très grande. En effet, le nombre de manières de distribuer n quanta
soit entre n, soit entre n — 1, soit à un seul électron est égal à

nn, mais il faut naturellement tenir compte du fait qu'on ne peut
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pas différencier les électrons du vide mis en jeu (qui sont au nombre
de n — 1 au plus dans l'énergie de couplage et de n au plus dans
les termes interdits), et qu'une certaine distribution des n quanta
doit être regardée comme équivalente à celle obtenue en permutant
les électrons provenant du vide. Les termes de couplage contiennent
toujours Q; ils n'entrent donc plus en considération. Le nombre
de possibilités de distribuer les n quanta à n électrons au plus est
alors inférieur- à l'expression nn/(n — 1) qui vaut pour des grandes
valeurs de n approximativement \/2nennl et ne contient pas de
factorielle. La plus petite valeur que les parenthèses (Ef — E,)
puissent prendre est de l'ordre de 2cq. Il en résulte que l'on peut
choisir pour majorante en 2wième approximation l'expression

^,^2Arcenn\(4nY r dq^ dq^ dqn_x

22-il37« CJ qx ?2 "" ?,-i
L'intégration sur les valeurs des impulsions ne peut diverger

pour les petites valeurs des qt. De sorte que cela n'aurait pas de

sens de prendre pour limite inférieure de ces intégrations la valeur
q 0. Mais comme au dénominateur (Ef — Ef) ne peut en réalité
jamais s'annuler, il n'y a de toute manière aucune divergence
provenant des valeurs très petites des qt. L'inégalité ci-dessus
s'écrit encore

Q-^oto

E..<2v^(4?f)V*-*7* (19)

(e 2 • 71828).

Le second membre de (19) diverge moins que celui de (16),

parce que l'intégration sur les qt dans (16) fournit une puissance
croissante de Q, tandis que (19) conduit à un produit de Q par des

logarithmes. Mais comme ces relations expriment des inégalités
qui majorent, l'une EE, l'autre Ee<), on ne peut tirer évidemment
aucune conclusion décisive de la comparaison de ces deux
grandeurs.

Ce qui est certain, c'est que la divergence due à

C]->- GO

se fait sentir beaucoup plus dans la théorie ordinaire que dans
la théorie des lacunes. Mais à cause du grand nombre de
possibilités de ranger les quanta émis dans les états intermédiaires, et
à cause aussi du fait qu'on ne peut pas estimer sans les calculer
les divers termes correspondant à ces possibilités, en particulier
pas leur signe (le calcul de traces telles que Sx, S2, <S, donne des
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valeurs positives ou négatives suivant les cas), il semble très
difficile de décider si, dans le problème de l'énergie propre, cela a un
sens de considérer comme inexistants les photons dont les impulsions
dépassent une certaine limite, autant dans la théorie ordinaire
que dans la théorie des lacunes.

6. Conclusion.

Les conclusions que l'on peut tirer des calculs qui précèdent
sont de nature négative, mais elles méritent toutefois quelque
attention parce qu'elles doivent mettre en garde sur quelques
difficultés du problème qui n'ont à notre connaissance pas été
relevées jusqu'ici.

Comme nous l'avons déjà remarqué, les tentatives de rendre
finies les expressions de l'énergie propre ne se rapportent qu'à une
approximation déterminée, et, en particulier dans l'esprit des
mémoires sur ce sujet, à la seconde. D'autre part, dans les approximations

supérieures, on sait que les divers effets que l'on calcule dans
la théorie des quanta ne sont en accord avec l'expérience que
lorsque les longueurs d'onde mises en jeu sont supérieures à une
limite du genre de celle donnée par la condition (15). Jusqu'à la
découverte de l'électron lourd, on avait coutume de dire que la
théorie des quanta ne convient pas pour des domaines pareils.
Il semble par contre qu'on puisse se passer de cette hypothèse
désagréable1). Toutefois, dans le problème de l'énergie, la difficulté
persiste, et la tentative d'une limitation des longueurs d'onde
garde son intérêt du point de vue théorique.

Le procédé proposé par Wentzel (loc. cit.) a le désavantage
d'être artificiel, mais il présente toutefois l'intérêt de montrer que
les diverses manières d'affectuer les passages à la limite ne sont pas
univoques. Mais il semble qu'à la lumière de nos remarques concernant

la suite des approximations, et même déjà parce que, autant
dans la théorie des lacunes que dans la théorie ordinaire, chaque
approximation contient une divergence proportionnelle à C} au
moins2), il nous semble douteux que le procédé de Wentzel
conduise à la solution des difficultés de l'énergie propre.

Le chemin proposé par March pour tourner la difficulté
implique l'existence d'un postulat nouveau dans la physique
quantique: le ds ne peut être déterminé qu'à une grandeur y près. Il

*) Voir à ce sujet l'article de J. Bhabha dans les Proc. Koy. Soc. 164, 257,
1938.

2) Nous rappelons que la divergence logarithmique trouvée par Weisskopf
est fortuite. Voir à ce sujet V. Weisskopf, Zeitschr. f. Phys. 89, p. 27, Pussnote 5.
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en résulte que la fonction delta doit être remplacée par une fonction
dont la valeur est indéterminée dans le domaine correspondant,
si bien que le développement en série de Fourier perd son sens.
March modifie alors le développement en y introduisant une
indétermination sur le paramètre q dans le domaine en question.
Cette précaution étant prise, le procédé conduit effectivement à

une valeur finie de l'énergie propre en seconde approximation.
Mais la difficulté concernant la suite des approximations persiste.

Des procédés qui consistent à définir comme très rare l'émission
de certains quanta de lumière ont le défaut d'être arbitraires.

La conclusion que nous devons tirer de nos calculs consiste en
ceci: Si tel procédé ou tel autre a l'avantage de détruire la divergence

de l'énergie propres, il ne le fait en principe que dans l'une
ou l'autre des approximations successives, fournissant dans chacune
d'elles une contribution finie

EE(2), EE(4), ....EE(2n),....
Mais nous ne savons pas si la somme

yiEE(2n)
«1=1

converge ou non lorsque N —>- co. Cela est peu satisfaisant, et la
méthode d'approximation de Born que nous avons suivie ne semble

pas apte à conduire à une solution. On peut précisément craindre
que les difficultés qui ont surgi au cours des calculs lui soient

propre, ce qui condamnerait son emploi. On doit espérer qu'en
remplaçant la méthode d'approximation de Born par une autre,
on soit conduit à des résultats plus précis. C'est avec cette idée

que M. T. Gl'Stapson s'est proposé d'attaquer le problème
différemment; dans un travail devant paraître ailleurs1), il recherche
quelle est l'influence du procédé de limitation lorsqu'on emploie
la méthode exacte de solution des équations en mécanique quantique

qui consiste à résoudre un déterminant séculaire.

Arkiv for Mat., Astr. och Fysik (Bd. 26).
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