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Über die relativistische Theorie kräftefreier Teilchen
mit beliebigem Spin*)

von Markus Fierz.
(3. IX. 38.)

Zusammenfassung. Im kräftefreien Falle ist es möglich, quantisierte Wellenfelder

anzugeben, welche Teilchen mit ganzem oder halb-ganzem Spin grösser
als eins beschreiben. Es zeigt sich, dass Teilchen mit ganzem Spin stets
Bosestatistik, Teilchen mit halbganzem Spin stets Fermi-Dirac-Statistik nahen müssen.
Die Wellenfelder mit Spin kleiner oder gleich eins sind aber schon im kräftefreien
Falle dadurch ausgezeichnet, dass für sie allein die Ladungsdichte und Energiedichte

eindeutig hestimmte und eichinvariante Grössen sind, während dies für
höheren Spin nur für Gesamtladung und Gesamtenergie der Fall ist.

Einleitung.

In vorliegender Arbeit wird die relativistische Theorie von
Wellenfeldern untersucht, denen sich durch Quantisierung nach
Jobdan und Pauli1) Teilchen mit beliebigem, aber konstantem
ganz- oder halbzahligem Spin zuordnen lassen. Wir haben uns
dabei vorerst auf den kräftefreien Fall beschränkt. Es zeigt sich,
dass durch Angabe von Spinwert und Masse der Teilchen das
zugehörige Wellenfeld schon eindeutig bestimmt ist, überdies ist
durch den Spin die Statistik der Teilchen festgelegt. Aus den
sehr allgemeinen Forderungen, dass die Vertauschungsrelationen
der Feldgrössen relativistisch invariant und infinitesimal sein sollen,
und dass die Energie positiv sein soll, folgt nämlich, dass Teilchen
mit ganzzahligem Spin stets Bose-Statistik, Teilchen mit
halbzahligem Spin Fermi-Statistik haben müssen.

Während es möglich ist, die Felder, die zu ganzzahligem Spin
gehören, durch Tensoren zu beschreiben, wodurch man den van der
Waebden'sehen Spinorkalkül2) umgehen kann, war es uns im
Falle halbzahligen Spins leider nicht möglich, diesen recht schwerfälligen

Kalkül durch etwas Übersichtlicheres zu ersetzen. Diese
darstellungstechnische Schwierigkeit hängt aber wohl mit dem
physikalischen Umstände zusammen, dass die zu halbzahligem
Spin gehörigen Felder wegen des Ausschliessungsprinzips niemals
klassischen Feldern korrespondieren können, also auch nie in
klassischem Sinne beobachtbar sind, im Gegensatz zu den der
Bose-Statistik genügenden Tensorfeldern.

*) An der Abteilung für Mathematik und Physik an der E.T.H., Zürich,
eingereichte Habilitationsschrift. .^^l) £
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4 Markus Fierz.

Die hier betrachteten Wellengleichungen wurden im wesentlichen

schon von Dibac3) angegeben. Die physikalische Bedeutung
dieser Gleichungen wird jedoch aus Dibac's Arbeit nicht klar,
vielmehr finden sich darin Angaben, die teils zu Missverständnissen

Anlass geben können, teils unzutreffend sind. Insbesondere
ist der Operator H von Dirac, den er mit „Hamiltonian" oder
„Energy operator" bezeichnet, ganz verschieden von der
Feldenergie im gewöhnlichen Sinn. Weiter kann eine Wechselwirkung
mit elektrischen Feldern nicht einfach dadurch beschrieben werden,
dass man p durch p — e/c 0 ersetzt, wie Dirac behauptet, da dadurch
die Verträglichkeit der Feldgleichungen zerstört wird. Auch die
Bemerkung, dass der Spin im allgemeinen durch zwei Zahlen k
und l charakterisiert werde, scheint den physikalischen Sachverhalt

nicht zu treffen, da es nur auf die Summe k + l ankommt,
und die Aufteilung in die Summanden k und l nur rein formal zu
sein scheint.

Sakata und Yukawa4) haben ebenfalls eine Note über diese
DiBAc'schen Gleichungen erscheinen lassen, die uns aber ganz
missglückt scheint. Die dort als Stromdichte bezeichnete Grösse

ist nämlich im allgemeinen gar kein Vektor, sondern ein Teil
eines Tensors hoher Stufe. Im Falle des Spin 1 (k 1, l %)
sind insbesondere diese Grössen die Energie- und Impulsdichte,
d.h. die (fc4)-Komponenten des Energie-Impulstensors, wie man
durch Vergleich mit der Maxwell'sehen Theorie sofort erkennt.
Weiter untersuchen diese Autoren auch die Spinwerte, die zu
den von Dirac angegebenen Gleichungen gehören. Sie gehen aber,
wie uns scheint, hierbei viel zu formal vor, indem einfach die
Darstellungen der Drehgruppe, nach denen sich die Feldgrössen
transformieren können, betrachtet werden. Dies ist aber nur dann
ausreichend, falls man sicher weiss, dass der Bahndrehimpuls
null ist, z. B. im Ruhsystem einer ebenen Welle. In diesem Falle
zeigt sich, dass wegen der Wellengleichungen die Feldgrössen nicht
nur irreduzibel gegen Lorentztransformationen, sondern auch irre-
duzibel bei Drehungen sind. Im Ruhsystem eines Wellenzahl-
vektors gibt es gerade 2k + 21 linear unabhängige zugehörige
ebene Wellen, die sich bei Drehungen nach der Darstellung &k+[^
untereinander transformieren. Da im übrigen alle Gleichungen
mit festem fc + l mathematisch gleichwertig sind, so geht daraus
hervor, dass der Spin den Wert k + l — % hat.

Herr Jauch hat in einer Diplomarbeit zum ersten Male
richtige Ausdrücke für Energie-Impulstensoren und Stromvektoren,
welche den DiRAc'schen Feldern zugeordnet werden können, an-
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gegeben. Der Spezialfall des Spins 1 wurde von verschiedenen
Autoren, insbesondere im Hinblick auf Kernkräfte, ausführlich
behandelt. Die c-Zahl-Theorie betrachtete zuerst Proca5), vier-
dimensionale Vertauschungsrelationen für diesen Fall hat Stückelberg6)

aufgestellt, in etwas anderer Form auch Kemmer7).
Obwohl die vorliegende Untersuchung zeigt, dass wenigstens

im kräftefreien Fall Felder mit beliebigem halb- oder ganzzahligem
Spin möglich sind, so sind doch die kleinen Spinwerte 0, %, 1

in mancher Beziehung ausgezeichnet. In diesen drei Fällen ist
nämlich sowohl Energie wie Ladungsdichte schon im kräftefreien
Falle eindeutig bestimmt, und es ist im Falle 0 und 1 die Energiedichte,

im Falle % die Ladungsdichte der c-Zahl-Theorie positiv
définit. Beides ist, falls der Spin grösser wird als 1, nicht mehr
der Fall, nur die Gesamtenergie bzw. die Gesamtladung sind
dann noch eindeutig und définit. Weiter sind in quantisierten
Theorien für Spin grösser als 1 die Ladungsdichten an verschiedenen
Orten aber zur selben Zeit nicht mehr vertauschbar, vielmehr
bleiben Ableitungen der D(x)-Funktion stehen. Es treten weiter
beim Versuch, Wechselwirkungen mit andern Feldern einzuführen
schon in der c-Zahl-Theorie Komplikationen auf, falls der Spin
grösser ist als 1. Dieser letzte Punkt bedarf deshalb noch einer
eingehenden Untersuchung.

I. Ganzzahliger Spin.

1. Feldtensoren und Wellengleichungen.

Wir wollen hier kräftefreie, klassische Wellenfelder
betrachten, denen man mittelst der relativistischen Feldquantisierung
nach Jordan und Pauli1) Teilchen mit der Masse m und dem
Spin fe • / zuordnen kann. / soll eine ganze, positive Zahl sein.
Ein solches Wellenfeld kann im kräftefreien Fall durch einen,
im allgemeinen komplexen, symmetrischen Welttensor Aik t der
/ten Stufe (/ Indices) beschrieben werden, welcher der
Wellengleichung genügt:

nAa_t= x* Aa_, (l.i)
dabei ist

4 d2

i=x " %i

x ist eine Konstante von der Dimension einer reziproken Länge,
welche eine für das Feld charakteristische Frequenz definiert.
Die dem Felde zugeordneten Feldquanten erhalten die Masse

hx/c m.
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Weiter erfüllt Aik t noch die beiden Nebenbedingungen

^«...,= 0 (1.2)

d 4^-^=0. (1.8)
dxi

Die physikalische Bedeutung dieser Gleichungen ist folgende:
Die Wellengleichung (1.1), welche vom Typus der Schrödinger-
Gordon'schen Gleichung ist, hat zur Folge, dass in der quantisierten

Feldtheorie die relativistische Theorie klassischer Massenpunkte

der Masse in als Grenzfall enthalten ist.
Die Nebenbedingungen (1.2) und (1.3) sorgen in erster Linie

dafür, dass dem Tensorfeld nur Teilchen mit dem Spin / und
nicht noch solche kleineren Spins zugeordnet werden können. Aus
(1.2) folgt, wegen der Symmetrie vonAikl, dass sämtliche Spuren
des Feldtensors verschwinden.

Wie im Anhang gezeigt wird, besitzt deshalb Aik_[(f+1)2
linear unabhängige Komponenten, welche sich bei Lorentztrans-
formationen gemäss der irreduziblen Darstellung #^ tj der
Lorentzgruppe untereinander transformieren. Soll das AiJt j-Feld
zum Spin / gehören, so muss es zu jeder vorgegebenen Wellenzahl
und Frequenz kt, welche die Gleichung k{kt — x2 erfüllen 2 / + 1

linear unabhängige ebene Wellen geben, die sich durch die
Orientierung des Spins unterscheiden. Dass dies der Fall ist, sieht man
wie folgt ein: Man betrachte die betreffenden ebenen Wellen in
deren Ruhsystem, welches immer existiert falls x ^ 0 und wo
fc4 zhix. Dort sagt die Nebenbedingung (1.3), dass sämtliche
Komponenten von Ailc A, bei denen einer der Indices gleiche ist,
verschwinden; es laufen daher im Ruhsystem die Indices
tatsächlich nur von 1 bis 3 und Aik t hat die Gestalt

A JO „xx,^ik.-.l^- Aik..-l "

A-lk...i ist ein symmetrischer, räumlich konstanter Tensor der
/ten Stufe in 9?3, dessen Spuren verschwinden. Ein solcher Tensor
hat 2 /+1 linear unabhängige Komponenten, die sich bei Drehungen
des Koordinatensystems nach der irreduziblen Darstellung &f der
Drehgruppe untereinander transformieren. Daraus folgt, dass sich
die zugehörigen Teilchenzustände durch die 2 / + 1 verschiedenen
Orientierungen des Spins unterscheiden. Weiter ermöglicht die
Nebenbedingung (1.3) die Aufstellung eines Energie-Impulstensor's
für das ^4-Feld und sorgt dafür, dass die Gesamtenergie positiv
bleibt, womit erst eine physikalische Deutung der Theorie möglich
wird.
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Bei der Diskussion der Nebenbedingungen (1.3) machten wir
von der Existenz eines Ruhsystems für jede ebene Welle Gebrauch.
Die Existenz des Ruhsystems ist dabei für die ganze Schlussweise
wesentlich und der Fall m 0 muss deshalb als ausgearteter
Grenzfall betrachtet werden. Wir werden daher den Fall der
Ruhmasse null gesondert betrachten. Hier möchten wir nur
erwähnen, dass in diesem Fall nur zwei physikalisch wirklich
verschiedene ebene Wellen gleicher Wellenzahl und Frequenz
existieren, wie dies von den Elektromagnetischen Wellen her bekannt
ist, welche / 1 entsprechen.

Man kann nun die Differentialgleichungen des A -Feldes durch
ein Gleichungssystem erster Ordnung ersetzen, was für die
folgenden Betrachtungen bequem sein wird. Die Gleichungen lauten :

_ » Akr...l " Air,
>im.r...i d dXk

R(l) _
u Akr...l u^-ir...l (-1 a\

-^BkV..,= *2Ar...r (1.5)

Diese Gleichungen sind analog den Maxwell'schen Gleichungen.
Als Folge von (1.2), (1.4) und (1.5) genügt B(1) ebenfalls der
Wellengleichung zweiter Ordnung, sowie den weiteren Gleichungen

B%]k... 0,B^k]r...l+B{%k..,+B[icr]i...l=0 (1.6)

- R(D -II. - 73(1) j Ln(l) .L. 7j(D =o
dxr ^*]'-«-0' dxm *W«-'+ dxk *W"'+ dXi "™-1 U('L7)

In den uneingeklammerten Indizes ist Blik]r _ j symmetrisch, in
dem eingeklammerten Paar schief. Aus den Gleichungen (1.6)

folgt unabhängig von der Definition der B[ii]r...z, dass B§\]rr j=0.
Wenn man dies beachtet, so kann man die Komponentenzahl von
jB(1) abzählen und findet, dass B(1> 2/2 + 4/ linear
unabhängige Komponenten hat. Aus den Gleichungen (1.6), (1.7)
können alle übrigen Gleichungen gefolgert werden, so dass wir
unser Wellenfeld ebensogut durch die Grössen B(rfk]r t wie durch
die Aik j beschreiben können. Wir können nun aus B(1) eine
weitere Grösse

bilden :

R(2)
"[•«[ri].

ß(2) " Ptt) — R<»
n\.ik][rl-\-..t~- ^x D\ikV.---t f)x D\ik]r.
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jB(2) ist symmetrisch bei Vertauschung der Indexpaare [i k]
und [r l] sowie in den uneingeklammerten Indizes und genügt
analogen Gleichungen wie Bm. Es gilt weiter

73(2) _ ,.2 A

Indem wir nun fortgesetzt die Rotation nach einem der
uneingeklammerten Indizes bilden, erhalten wir eine Folge von / + 1

Feldgrössen :

^i*...n D[ik].-.r--- DH*]lrl\...[»<]

B[iij...{,/]«...< enthält demgemäss (g) Klammern, die untereinander
symmetrisch sind und / — q untereinander symmetrische Einzel-
Indices. In jedem eingeklammerten Indexpaar ist JB(î) schief.
Weiter genügt B(î) den folgenden Gleichungen:

nßw „2 Bfe) (I)

R(9) o (IIa)
R(«)
D--.[ik]r
R(«)
a[ik][rs]

+ U...[ri]k.

+ ¦*>.*.. [r<] Bri

-4- R®

_i_ R(«)
s]...^-"[iritis]...

0

0

(IIb)

dxr w.™...+,t «.«•••+
d

dz,-
B(4)

(*»¦)¦ 0.
"(HI)

Diese Gleichungen beschreiben das betrachtete Wellenfeld
genau so wie die Gleichungen (1.1) bis (1.3).

Es gilt als Folge von I bis III:

da;,- *'" da;»:

R(«J _ V.2 73(8-2)
¦"[fcJHiH]... x D...n... •

2. Energie-Impulstensor, Stromvektor.

Um das durch die Bto) beschriebene Tensorfeld physikalisch
deuten zu können, muss es möglich sein, mittelst der _B(?) und
ihren konjugierten einen symmetrischen, „reellen" Tensor 2. Stufe
zu bilden, der der Kontinuitätsgleichung genügt. Einen solchen
Tensor kann man dann als Energie-Impulstensor des Feldes auf-
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fassen. Zuerst müssen wir genauer präzisieren, was wir unter dem
konjugierten Tensor C* eines Tensors C verstehen, woraus sich
auch ergeben wird, was ein „reeller" Tensor ist.

Sei die Anzahl der Indizes von C, welche gleich 4 sind n und C
das konjugiert-komplexe von C, so ist

C* s (-1)» C (2.1)

der zu C konjugierte Tensor. Ein Tensor ist „reell", falls C* C.

In diesem Sinne sind unsere Koordinaten (X, Y, Z, ict) (X{)
„reelle" Vektoren. Ebenso ist das elektromagnetische Feld (§, i <&)

ein „reelles" Feld. Mittelst der B(*> und der B<«-1) sowie ihrer
konjugierten bilden wir nun die Tensoren Tk9\:

x2
Tkl ~2 (Air...kAir_l+Air_lAir_l)+ 2 (Bi,..r[tkl Bir.-.[tl]

+ B^mB^.^-hôkl(A*r.._Air....x2+iB^mB^[tr^
r(«) —^R*(«-D Rto-1) + R*(«-D R(«-l) ^xkl £ \Dlrs\-.-tk û[rs]...tîT D[t%\...llr>\ti\...tk)

^ 2 \alrs)...[tk]...m °[rs]...[tti ¦ m

_l_ R(a)* 73(«) ^ _ 1 A (J* R(«-D* R(î-i)
1 x>[r«]...[tn...m-°[r»]...[t*]...my 2 ukA D[rs]...l D[rs]...i

2 ¦0[ri]...ftj»]...n-D[f«]...[«m]...n/'

Diese Tensoren genügen auf Grund der Differentialgleichungen
für die B(î) der Kontinuitätsgleichung:

d2Ü 0.
da;*

Es ist nun zu fordern, dass die Gesamtenergie des Feldes

positiv ist, was bedeutet, dass das Integral J T^\dv über den

ganzen Raum définit sein muss, da dieses, bis auf das Vorzeichen,
die Gesamtenergie des Feldes darstellt. Das ist nun in der Tat
der Fall, was wir zuerst für den Tensor Tf\, der aus A und B(1)

aufgebaut ist, zeigen werden. Zu diesem Zwecke zerlegen wir
Aih in ebene Wellen gemäss

Ak...r$A)=^^Ath...Ak)-eikx+iamt + Ark_r(k)eik*-i»Wt.
VV * (2.3)

Dabei ist

co(k)=+icki, kiki — x2.
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Weiter erfüllen die A+ und A~ als Folge der Gleichung (1.3) die
Gleichung

EM^.+M4t.=2Mi-..-Mr..= o. (2.4)
i=l i=l

Falls wir dies beachten, die BW durch die A+ und A~ ausdrücken
und dies in das Integral / T®> dV einsetzen, erhalten wir

-fT^dV=^\ki\2{At_,A^Ar..Ak)+Ar^Xk)Ar,(k)}-E. (2.5)
J k

Die Energie ist hier als Summe der Energien der einzelnen Fourier-
komponenten dargestellt. Es genügt daher zu zeigen, dass der
Beitrag jeder einzelnen Komponente positiv définit ist. Es ist
also zu zeigen, dass hY[k* (fc) AYk (fc) positiv définit. Betrachten wir
diesen Ausdruck im Ruhsystem von fc,-, wo also (fc,) (0,0,0, % x).
Wegen der Gleichung (2.4) sind hier alle Komponenten von AYk
bei denen ein Index gleich 4 ist null. Für die anderen gilt
gemäss (2.1)

A*k,..=Äik...
so dass im Ruhsystem die Energie einer ebenen Welle die positiv
definite Form

Aik... -^ik...
annimmt.

Da in einem anderen Bezugssystem sich die Energie mit dem
positiven Faktor

_1

multipliziert, folgt daraus, dass die Gesamtenergie unseres Feldes
positiv définit ist. Auch für die hier diskutierte Frage ist die
Existenz eines Ruhsystems für jede ebene Welle wesentlich.
Falls x null gesetzt wird, ist zwar, wie wir weiter unten sehen werden,
die Energie niemals negativ, kann jedoch verschwinden, ohne
dass die Feldtensoren Aik null sind.

Auf die gleiche Art, wie beim Tensor T(1>, kann man den
allgemeineren Tensor T^ behandeln. Mann findet dann

— /"T(«>r7pr V!fc |2fR+(«-l)* » + (8-1) _r-(8-i)* R-(«-D t
k

oder, falls wir die B(«-1' durch die A ausdrücken:

-fT$dV=(-2x2y-^\ki\z{A*t..Atl...+Arl*^Arl...}.
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Alle Energie-Impulstensoren ergeben also bis auf den Faktor
(—2 x2)Q~x zur gleichen Gesamtenergie Anlass. Die Lokalisierung
der Energie im Feld ist jedoch weitgehend unbestimmt, indem
sie vom gewählten (q) abhängt. Zudem ist T^ nicht positiv
définit, falls / > 1 ist. Diese Eigenschaften der hier betrachteten
Felder scheinen uns jedoch keine hinreichenden Gründe zu sein,
um Teilchen mit Spin > 1 auszuschliessen. Im kräftefreien Falle
ist also der Energie-Tensor nicht eindeutig bestimmt, es gibt
vielmehr / linear unabhängige Möglichkeiten, die Energie zu
lokalisieren, wobei aber der Wert der Gesamtenergie ungeändert
bleibt. Inwieweit diese Mehrdeutigkeit durch Einführung von
Wechselwirkungen mit anderen Feldern eingeschränkt werden
kann, oder ob sie in diesem Falle zu ernsteren physikalischen
Schwierigkeiten führt, muss einer gesonderten Untersuchung
vorbehalten bleiben.

Neben dem Energie-Impulstensor T$\ kann aus B(î) und
B<«_1) auch ein Vektor gebildet werden, welcher ebenfalls der
Kontinuitätsgleichung genügt, und der als Stromvektor des Feldes
aufgefasst werden kann:

¦Sffe) -Ì- f R* (8-1) R(«) __ 73(8-1) 73(8) * \
2i t [**!¦• ¦">'••• ¦Dlik]..-[mv]l... D[ik]...ml... "[ik].. .[mv]l...S'

Dieser Vektor ist ebenfalls „reell". Falls die Feldtensoren B(*>

„reelle" Grössen sind, verschwindet er identisch. Bei vorgegebenem
Feld können Strom und Ladungsdichte wieder auf / verschiedene
Arten definiert werden, welche im kräftefreien Falle gleichwertig
sind. Die Gesamtladung fs^f dV wird wieder in allen Fällen,
bis auf einen Faktor, dieselbe:

« 2 I K\{At:... W Afk...(k)- A-*(fc) ATl(fc)}.
t

Ob man allerdings die so definierte Strom- und Ladungsdichte
als elektrische Strom- und Ladungsdichte interpretieren kann,
das kann hier nicht entschieden werden, da dies von der Art,
wie das elektrische Feld eingeführt wird, abhängt. Dadurch, dass

man in allen Gleichungen p durch p — ejc 0 ersetzt, ist dies im
allgemeinen Falle nicht möglich, da man dann mit den algebraischen
Relationen, welche die Aik erfüllen müssen, falls />1 ist, in
Schwierigkeiten gerät. Nur für / 1, wo die Spurbedingung (1.2)
wegfällt, gelangt man so zu einer widerspruchsfreien Theorie,
welche mit der von Proca diskutierten identisch ist.
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3. Verhältnis der hier entwickelten Theorie zu Dirac's relativistischen

Wellengleichungen 3).

Dirac hat Differentialgleichungen angegeben, die in Spinoren-
Schreibweise folgende Gestalt haben:

p'"oM;v..= *iC:." (8.i)

p*çWy?:r =>***&:..- (8-2)

Dabei hat a 2 fc unpunktierte Indizes und 2 1 — 1 punktierte
b 2 l punktierte Indizes und 2 fc — 1 unpunktierte
fc und l sind ganze oder halbganze Zahlen.

a und b sind in punktierten und unpunktierten Indizes symmetrisch,
daher irreduzibel bei Lorentztransformationen, wo sie sich gemäss
der Darstellung &k,i-i bzw. &k-i,i untereinander transformieren.
Falls k + l — \ — f ganz ist, so sind diese Gleichungen den
Tensorgleichungen, die wir betrachtet haben, gleichwertig. Alle
Gleichungen mit vorgegebenem / beschreiben das gleiche Wellenfeld,
wobei die Aufteilung von / + \ in zwei Summanden den
verschiedenen, durch den Index (q) charakterisierten Möglichkeiten
im Tensorfalle entspricht.

Nimmt man insbesondere für a*A einen Spinor, der gleichviel

punktierte wie unpunktierte Indizes hat, d.h. fc l — \, so
erkennt man, dass diese Grösse a mit dem Tensor Aik identisch
ist. Man kann nämlich mittelst der Paulischen Matrizen <r*e je
einen unpunktierten und einen punktierten Index q,q in einen
Vektorindex fc verwandeln. Der so entstehende Tensor ist dann
symmetrisch in allen Indizes und seine Spuren verschwinden,
da nämlich die Spur e>*raßv= a" eines symmetrischen Spinors
apv= avß verschwindet. Weiter genügt er auch den Differentialgleichungen

(1.1) und (1.3). (1.3) folgt dabei aus der Spinor-
gleichung

P'"afcA,,... 0 (3.3)

welche durch Verjüngung aus (3.1) entsteht; dabei muss wieder
beachtet werden, dass die Spur des symmetrischen Spinors b^A"
verschwindet.

Aus af*-- bilde man nun neue Spinoren òfe> gemäss

xbf}éÀii--=péxai/>\\\
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allgemein
xtft+üeA- ¦ pi"b^;;-

^-»A.- P,eb^.- (3.4)

(q) ist jeweils gleich der halben Differenz der punktierten und
unpunktierten Indizes und läuft daher von — / bis + /. a*/ ¦ ¦ ¦

hat / punktierte und / unpunktierte Indizes und transformiert
sich nach der irreduziblen Darstellung der Lorentzgruppe ^//2,//2.
^(e)AA.. hat f + q punktierte und /—q unpunktierte Indizes und
transformiert sich bei eigentlichen Lorentztransformationen nach
der irreduziblen Darstellung &f-t f+q. Bei Spiegelungen ver-

tauscht sich fc(s) mit ft*-^. Die 6(4) sind also, im Gegensatz
zu den B(ä) irreduzible Grössen. Sie entsprechen Tensoren mit
(q) Indexpaaren, in denen der Tensor schief und selbstdual
ist gemäss

«"'"^.B»] *%]... falls g>0

si,elmFl.%mh=F%kh. falls q < 0.

Bei Spiegelung vertauscht sich entsprechend F<q) mit F<_8). Mittelst
der Uq) können wir ebenso wie mit den B(î) / Energie-Impulstensoren

bilden, welche symmetrisch sind und der Kontinuitätsgleichung

genügen:

/(8-1) =- hk)* h(-q) 4. h*(-0 J,[8l 4. hk)* h(-t) 4. U-i)* Util
lgö,ßv — "gß "vö ' UQ ß "vä^"vä Ueß > Uv6 "gß

+ &(«-«* M-«-« 4- /,(-«-«* hk-» 4. hk+D* {,(-e+D 4. h(~a+ «* hk+x)
^Uvg ußd ' "gv ußö ^ ußö "gv ~uß9 "gv

Dabei soll über die nicht-angeschriebenen Indizes verjüngt werden
gemäss :

a*o^a*«5:;;d3«:::

Auf Grund der Gleichungen (3.4) folgt für t^""1*:

„$ à j(8-l) _ AP ig ô, v Y
U -

Da die Tensorformulierung und die Spinorschreibweise in
diesem Fall mathematisch äquivalent sind, folgt daraus, dass alle
Tensoren, die wir oben betrachteten, Linearkombinationen
entsprechender Spinoren sind. Wir können deshalb auf eine weitere
Diskussion der Gleichungen (3.4) verzichten und auf die Tensortheorie

verweisen.
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â. Quantisierung der Feldtheorie.

Um den oben besprochenen Feldtheorien Teilchen zuordnen
zu können, müssen wir Lorentzinvariante Vertauschungsrelationen
zwischen den Feldgrössen aufstellen. Es genügt, dies für die Aikl _

zu tun, da dann diejenigen für die anderen Grössen durch Differenzieren

daraus folgen. Da es sich hier um Theorien des kräftefreien
Falles handelt, so ist es zweckmässig, die Vertauschungsrelationen
in vierdimensionaler Form aufzustellen, analog zu der von Jordan
und Pauli beim ladungsfreien elektromagnetischen Felde
angegebenen Formulierung. Man hat dann den Vorteil, dass die
Lorentzinvarianz von vornherein gesichert ist. Die Vertauschungsrelationen

sollen zur Folge haben, dass die Energie einer ebenen

Welle ein ganzzahliges Vielfaches von |fc4| \/k2 + m2 wird und
es soll überdies die Gleichung

f=--l/i[H,f] (4.1)

gelten für alle Grössen, die die Zeit nicht explizite enthalten.

Im Falle / 1 kann die so gestellte Aufgabe dadurch gelöst
werden, dass man durch Einführen longitudinaler und
transversaler Wellen zu jedem Wellenzahl-Vektor kt 2 f + 1 3

unabhängige Amplituden einführt und nur zwischen diesen
Vertauschungsrelationen fordert. Bei höheren Spins scheint uns ein
entsprechendes Verfahren jedoch nicht mehr anwendbar, ohne
die Symmetrie des Problems völlig zu zerstören, was einerseits
wieder die Beurteilung der Invarianz so gewonnener Vertauschungsrelationen

verunmöglicht. Man kann jedoch an Stelle solchen
Vorgehens Vertauschungsrelationen zwischen den Aik_ und den
A*k aufstellen, von welchen sämtliche Gleichungen, denen die
Aik genügen, identisch erfüllt werden. Dadurch wird den
Nebenbedingungen (1.2) und (1.3) von selber Rechnung getragen, und
man erhält so die richtige Zahl unabhängiger Vertauschungsrelationen.

Wir setzen daher als Vertauschungsrelationen für den
symmetrischen Tensor A (ix.... if) an :

l/i[A(ix. ..if), A*(ix'. ..i/)] K {ZP(ik') R(ixix')...R (if it')
\ i
m—u y, R^i v> ZP(ik) B(h h')¦ ¦ ¦ R(ii *«')¦.• R(if i/)}¦H'~ ''-•- -D(x). (4.2)- l>m

Hier ist A(ik) an der Stelle f+x/2, A*(ik') an der Stelle £—xß zu
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nehmen. Es bedeutet: E P(ik) die Summe über alle Permutationen
der Indices ik R(ikit) ist der Operator

ßM ^^)Jr- (4-8)

welcher stets auf die invariante D-Funktion von Jordan und
Pauli anzuwenden ist, welche wie folgt definiert ist:

D (x) s D (x, t) i Y4 • /T; ^-"-77^ (4-3b)w ^ ; 2^y( tft,(fc) im(k) '

D(x) genügt der Wellengleichung

ZJD=x2D
weiter gilt

D(f,„» o. (¦£)-»«.
Da R(a.ß) stets auf D(x) angewendet wird, welches der

Wellengleichung genügt, so gelten folgende Relationen:

^M=E(a^)^_ 0, R(xP)R(ßy)=R(*y)
dxa dxa

B(aa) 8. (4.4)

Den konstanten Faktor K in (4.2) hat man so zu wählen, dass
die Eigenwerte der Ladung ganze Zahlen werden.

Die Vertauschungsrelationen (4.2) erfüllen nun in der Tat die
Gleichungen (1.1) bis (1.3) identisch und sie sind symmetrisch
in den gestrichenen und den ungestrichenen Indices, da über
sämtliche Permutationen der ik summiert wird. Ihre Divergenz
ist null wegen (4.4). Um einzusehen, dass auch die Spuren
verschwinden, betrachte man zwei Terme aus der Summe E in (4.2) :

l>m v ;

Ct) R(irik) ZP(in') R(iiii) ¦ • • R(if'ik'). .R(i,i,')
ß) R(ikit) E P(in') R(ixix)...R(ikit').. .R(ifi/)

Nun bilde man die Spur über (ikir) und beachte die Gleichungen
(4.4). Man erhält so aus

oc) SZP(in')R(ixix')...R(ik'ir')...R(ifif')
ß) E P(in') R(ixix').. .R(itir').. .R(i'At').. .R(i,if)

In beiden Ausdrücken kommen alle i„' vor; hingegen fehlen ik
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und ir. Man kann nun die R(inii) bezüglich der übrigen in in
beiden Ausdrücken in die gleiche Reihenfolge bringen. Da beide-
male sämtliche Permutationen der in' vorkommen, ergibt a bis
auf den Faktor 3 dasselbe wie ß. Bildet man nun in

y) EP(ik')R(ixix')...R(ifi/)
die Spur über (ikir) so erhält man, wie man sofort sieht, das gleiche

Resultat wie aus ß). In der Summe E haben wir nun / —s—r' l>m '
_

2

Summanden, von denen beim Bilden der Spur einer das Dreifache
der anderen ergibt. Deshalb muss zur Erfüllung der Gleichung (1.2)
der Faktor

AYAY*
vor der Summe E stehen.

l>m

Wir müssen nun zeigen, dass die Gleichung —— / [H, /] gilt,
sowie dass die Energie die richtigen Eigenwerte hat. Zu diesem
Zweck zerlegen wir die Aik wieder in ebene Wellen gemäss (2.3).
Aus den Vertauschungsrelationen folgt, dass A (fc) mit A(k')
vertauschbar ist, falls fc,- +. fc/. Es ist ebenso auch A+ mit A~
vertauschbar. Für vorgegebenes fc* gibt es nun 2 / + 1 linear
unabhängige Linearkombinationen der AYk t(k), die wir Am heissen.
Die Vertauschungsrelationen der A^ mögen lauten:

[Am,AlA fam>. (4-5)

Wir betrachten jetzt die Am wieder in dem zu k{ gehörigen
Ruhsystem. Dort transformieren sich die Am sowohl wie die A*m,

nach der irreduciblen Darstellung &f der Drehgruppe, spannen
also einen Raum B2/+iaus- D& die rechte Seite der Vertauschungsrelationen

(4.2) dieselben Relationen wie die Am erfüllt, so hat
die Matrix /mw', die Eigenschaft, dass sie die Vektoren Xm in
B2/+1 abbildet auf Vektoren YJ Xmfmu>', welche wieder einen
irreduziblen Raum aufspannen, welcher, da nicht alle YJ null
sind, wieder 2/ + 1 Dimensionen hat. Deshalb hat fmJ 2/ + 1

von null verschiedene Eigenwerte. Jetzt wählen wir die Am,
A*' so, dass die durch sie vermittelte Darstellung unitär wird.

Da die Vertauschungsrelationen bei Drehungen invariant
sind, so haben sie, bei geeigneter Normierung der Am die Gestalt

[Am,A*J-ômm,. (4.6)
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Die Energie ist ebenfalls drehinvariant und wird deshalb in diesen
A

m geschrieben die invariante Einheitsform

E(fci)=ski-c-^ra- (4-7)
cu l

Die in den Vertauschungsrelationen (4.2) auftretende Konstante K
ist nun so zu bestimmen, dass C 1 wird.

Nun ist nach (4.7)

(fc-tj Aik... Aik^ =2JiAajAC0

falls (7=1. Es muss deshalb auch gelten

\h\[Atk...>At:...] ^i[Am,Al]^2f + l.
CO

Daraus folgt durch Vergleich mit (4.2)

2 K, 4 l* P(**0 R(W) • • • R (if i/) lïfTT) 2 B (<« <-)
», * I 2 h ~ l>m

¦EP(ik') R(ixix').. .JD(s) ^±ü(x)
wodurch die Konstante K bestimmt ist.

Die Vertauschungsrelation haben jetzt in der Tat die
Eigenschaft, dass aus ihnen folgt, dass die Eigenwerte der Energie einer
ebenen Welle ganzzahlige Vielfache von ki sind; denn für die A~
folgt auf genau die gleiche Weise das entsprechende. Diese lassen
sich durch 2 / + 1 Grössen Bm darstellen, die die Vertauschungsrelationen

[Bm,Bt,] -ômo>, (4.8)

erfüllen, wobei das Minuszeichen vom Minuszeichen in der
Definition der D-Funktion herrührt. Da nun jede, die Zeit nicht
explizite enthaltende Grösse / aus A a

• ém ' und Bm • e"1 m ' linear
aufgebaut werden kann, so folgt die Gleichung

~f-[H,f]
%

für jedes /, da sie für Am und Bm zutrifft.
Damit ist gezeigt, dass die Vertauschungsrelationen (4.2) die

Lösung der zu Anfang gestellten Aufgabe bilden.
Die Vertauschungsrelationen in Spinorform finden sich im

zweiten Teile, der den Fall halbzahliger Spins behandelt, wo wir
sie mit denjenigen für diesen Fall vergleichen.

2
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II. Halbzahliger Spin.

5. Feldgrössen und Wellengleichungen.

Die Felder, welchen sich Teilchen mit halbzahligem Spin
/ (/ h f > \ ¦ • • zuordnen lassen, können natürlich nicht durch
Tensoren dargestellt werden, wohl aber durch Spinoren
(„Halbtensoren"). In Spinor-formulierung sind dann die Theorien von
ganz- und halbzahligem Spin in vielem sehr ähnlich, wenn auch
charakteristische Unterschiede auftreten, welche insbesondere den
Bau der Energietensoren und der Vertauschungsrelationen
betreffen. Sonst aber lassen sich die meisten Schlüsse, welche wir
beim ganzzahligen Fall machten, auch auf die folgende Theorie
übertragen, so dass wir uns hier kürzer fassen können.

Damit die durch ein Spinorfeid beschriebenen Teilchen zu
einem halbzahligen Spin gehören, müssen die Spinoren eine
ungerade Anzahl von Indices besitzen, während im ganzzahligen
Falle die Indexzahl gerade ist.

Wir gehen daher von einem Spinor akA- aus, der 2fc unpunktierte

und 21 — 1 punktierte Indices besitzt, wobei 2 fc+2 l — 1 2 f
eine ungerade Zahl ist. fc und l sind dabei ganz oder halbganz.

akf--- soll der Wellengleichung 2. Ordnung genügen:

<;;; *2a*/e;;; (5.1)

wo x wieder eine charakteristische Wellenzahl bedeutet, welche

die Masse der Teilchen gemäss x —=— bestimmt. Weiter soll

ak£--- in punktierten und unpunktierten Indices symmetrisch sein,
was auch so formuliert werden kann: es sollen sämtliche Spuren
von ak''--- verschwinden:

>Q.

^a<::: °. *««o#::; o (5-2)

wobei eiiä die schiefe Matrix (_? J) bedeutet. Weiter soll akf---
den Nebenbedingungen

^p'8«^::: o (5.3)

genügen. Diese bedeuten, dass die Spinoren pie cM--- und piz a'A--
in punktierten und unpunktierten Indices symmetrisch sind.

Da akA--- gegeben ist, wenn man weiss, wieviele punktierte
und wieviele unpunktierte Indizes gleich eins sind, so hat es

(2k + 1)21 linear unabhängige Komponenten, die sich bei Lorentz-
transformationen nach der irreduziblen Darstellung &kl_i
untereinander transformieren. Es ist nun wieder zu zeigen, dass auf
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Grund der Nebenbedingung (5.3) zu jedem Wellenzahlvektor
2 / + 1 linear unabhängige ebene Wellen existieren. Zu diesem
Zwecke begeben wir uns wieder ins Ruhsystem von fc*. Dort
hat pie die Form fc4 • die was sich bei räumlichen Drehungen wie
fc4(^transformiert. Ebenso transformiert sich afy- bei Drehungen
wie der Spinor a'gô

t A/l...*). Die Gleichung (5.3) lautet dann

^ Kä...«„... 0 (5.3a)

und sagt aus, dass der Spinor a' symmetrisch ist in den Indices X

und y, also in allen Indices. Im Ruhsystem ist daher akA--'
äquivalent einem in allen Indices symmetrischen Spinor aA^..y^.. vom
Rang 2k+ 21 — 1 2/ und hat daher 2k + 2l 2f + 1 linear
unabhängige Komponenten, die sich bei Drehungen nach der
irreduziblen Darstellung &f der Drehgruppe untereinander
transformieren. Damit ist gezeigt, dass der Spin, der dem Wellenfeld
zuzuordnen ist, / beträgt. Falls x 0 ist, existiert kein
Ruhsystem, und diese Schlüsse werden wiederum ungültig.

Die Differentialgleichungen (5.1) und (5.3) können nun wieder
durch ein Gleichungssystem 1. Ordnung ersetzt werden:

^,VQ nXß-- __ vhvXß---

n hvi./i — v nX ix-- ¦

Pvg°d... "Ugo...

wobei aus (5.3) folgt, dass b*/*--- wieder ein symmetrischer Spinor
ist, der der Wellengleichung 2. Ordnung und der Nebenbedingung
(5.3) genügt. Man kann daher alle Gleichungen mit festem fc + l
durch Differentiation aufeinander zurückführen, sie beschreiben alle
das gleiche Wellenfeld. Sei a*0^--- derjenige Spinor a, für den fe l
ist, der also 2 fc unpunktierte und 2 fc — 1 punktierte Indices hat.
Er genüge den Gleichungen

r,vg n(o)Xii... — v h(o)vXA-.-
P ugä... — Kü6...

n hWtXfi... — v„(0)i/i...Vie"»... — KUgd...
(5.5)

&(0> hat 2 fc punktierte und 2 fc — 1 unpunktierte Indices. Aus a(0)

bilden wir nun den Spinor o(1' gemäss

PXrUgö... Kaxgô...

und in gleicher Weise aus a(1) den Spinor a<2). Diese Spinoren sind

"*) Siehe hiezu Van dee Wabedbn2), Die gruppentheoret. Methode, S. 81.
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wegen der Gleichung (5.3) wiederum symmetrisch. Allgemein soll
gelten

PXragä... — Kaxg6...

P aigô... ~Kagö...
(5.6)

¥».. .oü_1/2> gemäss
^At î,(e)ßv... _c "x g...

¦¦ x b('t+v"-''i

rn hk+DXßV--
rXrue...

¦ *Kir:

Wir erhalten so die Folge von symmetrischen Spinoren a(0), am...
a(/~1/z), welche alle der Wellengleichung genügen und bis auf atf~1/2)

auch der Nebenbedingung (5.3) a(a) hat f + q + i unpunktierte
und /—q — | punktierte Indices. Ebenso bilden wir die Spinoren

(5.7)

wobei ò(ì) / + q + \ punktierte und / — q — i unpunktierte Indices
hat. Bei Spiegelungen wird b(q) mit a(î) vertauscht, so dass (5.6)
und (5.7) zusammen spiegelungsinvariant sind. Das Gleichungssystem

(5.5) d. i. der Fall fc l, ist daher insofern ausgezeichnet,
als dieses Gleichungssystem schon für sich allein spiegelungsinvariant

ist. Im Gegensatz zum Falle ganzzahligen Spins existiert
kein Spinor a, der für sich allein spiegelungsinvariant wäre.

6. Energie-Impulstensor und Stromvektor.

Wir können wieder mittelst der <x(î) und ¥q) Tensoren 2. Stufe
und Vektoren bilden, die als Energie-Impulstensoren und
Stromvektoren gedeutet werden können. Hierbei zeigt sich jedoch, dass,
wie aus dem Falle f \ bekannt, die Energie nicht positiv définit
ist, dagegen ist dies für die Gesamtladung der Fall, und zwar
wegen der Nebenbedingung (5.3). Wir bilden zuerst den Vektors^

<>(0) _ n(0)*gd... n(0)vi... i UO)*eà... u(0)vi...bXß~UXii aßgö... ^°ßvx... üXQa...

sfß 1 {af* &</-» + af of"1'* + 4*-« bf* + o</-"* bf)
(über weggelassene Indices verjünge man wie in sfA sfß genügt
der Kontinuitätsgleichung

pXß s$ 0

wie man leicht nachrechnet, falls man beachtet, dass axbl — axbk.
Es gibt daher f + \ verschiedene, im kräftefreien Falle
gleichwertige Weisen den Strom zu definieren. Wir wollen nun wieder
zeigen, dass alle diese Möglichkeiten zum selben Wert der Gesamt-
laduns f (s(q> + s(ä)) dV führen, welche in diesem Falle définit ist.° J lì 22
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Wir betrachten zuerst gfh Da Q-kß der Kontinuitätsgleichung
genügt, so ist die Gesamtladung zeitlich konstant und das Integral
zerfällt in die Summe über die Ladungsbeiträge der einzelnen
ebenen Wellen mit vorgegebener Wellenzahl und Frequenz. Wir
betrachten daher die Ladungsdichte einer ebenen Welle. Ist diese
positiv, so folgt, dass auch die Gesamtladung positiv ist. Die
ebene Welle betrachten wir in deren Ruhsystem. Dort sagt die
Nebenbedingung (5.3) aus, dass

Av... — Av... hi*--- _ /)2f..."2a... — "la... > u2ß...~ "lß...
Es gilt deshalb im Ruhsystem die folgende Gleichung:

affAyafl*;;- af^y af*\\- (6.2)

a(o)*g... ist aDer (jas konjugiert-komplexe von af^---, also hat
die rechte Seite von (6.2) die positiv definite Gestalt Ea*a. Die
Ladungsdichte einer ebenen Welle besteht aber aus Summanden
vom Typus (6.2), also ist die Gesamtladung positiv définit.

Um den allgemeineren Fall

f(sf + s<A)äV

zu diskutieren, genügt es wieder, eine bestimmte ebene Welle
vorgegebener Wellenzahl und Frequenz in deren Ruhsystem zu
betrachten. Wir wollen annehmen, die zeitliche Abhängigkeit der
Amplituden a(«\ ¥q) sei eimt; dann ist diejenige von a(î)* ¥q)*
gleich e~imt. a(q) und ò(ì~x) gehen nun aus a(0) durch q-malige
Anwendung des Operators 1/x p*ß hervor. Dieser wird aber im
Ruhsystem für a<°> und ò(0> gleich i o*ß, für a<0)* und ¥0)* gleich
— ioXß. Daraus geht sofort hervor, dass die Gleichung gilt :

f(sf + s%)dV f(s<» + s?>)dV.

Damit ist gezeigt, dass sämtliche Vektoren sf. zur gleichen
Gesamtladung führen. Die Lokalisierung der Ladung hängt jedoch
wieder von (q) ab.

Wir können weiter Spinoren bilden, welche Tensoren der
2. Stufe entsprechen, und die der Kontinuitätsgleichung genügen.
Diese können wieder als Energie-Impulstensoren unseres Feldes
aufgefasst werden. Wir betrachten den Spinor

$k n i {^piòaf-afpyi éf* + bf*pyì bf-bfVvì bf*)
41 ir=ì or vvì vr*- 6(ru vYi «r+*ru* v*^t

-afpiybf-»* + bf*Piya<f-»-a[«-»ptyltp
+ a<q-1)*Piybf-bfpyia<rin

(6.3)
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tfß iy genügt den Gleichungen

P^$,iv=°> Pirt?ß,.v=0-
Man kann deshalb aus i(4) den Spinor 6>(«> bilden, gemäss

®X%, iy "2" VXß, iv+ tir, Xß) '

Der &xß,iy zugeordnete Tensor Tki

Tki=®fß,iAß°v
ist symmetrisch in fc l und genügt der Kontinuitätsgleichung

—-51 0.
öxk

Tk x kann daher als Energie-Impulstensor des Feldes aufgefasst
werden. Man erkennt leicht, unter Zuhilfenahme der Fourier-
Zerlegung der Feldgrössen und indem man wieder die Existenz
eines Ruhsystems benützt, dass sämtliche (9(î) zum gleichen
Wert der Gesamtenergie führen, sowie dass der Beitrag zur Energie
von ebenen Wellen, die sich mit e+imt ändern, das entgegengesetzte
Vorzeichen hat wie der Beitrag der Wellen, die sich mit e-ia>t
ändern. Es gibt also Zustände positiver und negativer Energie,
wie das aus der Dirac'schen Theorie des Elektrons bekannt ist.
Wir werden deshalb postulieren müssen, dass die dem Wellenfeld
zugeordneten Teilchen das Paulische Ausschliessungsprinzip
erfüllen, damit mittels einer der Diracschen analogen Löchertheorie
die Energie positiv gemacht werden kann.

7. Die Matrizen uy (fc), vr (fc).

Die bis jetzt betrachteten Spinoren waren alle symmetrisch.
Sie sind deshalb gegeben, wenn die Anzahl der unpunktierten
und der punktierten Indices, die gleich eins sind, bekannt ist.
Man kann infolgedessen einen Spinor a^--- mit 2 fc unpunktierten
und 2 l punktierten Indices, der in diesen symmetrisch ist, durch
eine Grösse Ars ersetzen, deren Indices r, s angeben, wieviele der
punktierten und unpunktierten Indices eins sind. Es hat dann s

2 fc + 1 Werte, r 2 l + 1 Werte. Wir haben, um eine Zuordnung
zwischen der Grösse Ars und dem symmetrischen Spinor akA--- zu
gewinnen, eine Matrix aufzusuchen, die von den Spinorindices
auf die Indices r, s überführt. Man kann natürlich auch einem
Spinor ohne besondere Symmetrieeigenschaften eine solche

Grösse Ars zuordnen, die so erzeugte Abbildung ist jedoch nicht
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ein-eindeutig, da A\ nur den symmetrischen Teil des zugeordneten
Spinors bestimmt. Da nun ein Spinor ohne Symmetrieeigenschaften
sich nach einer Produktdarstellung der Lorentzgruppe
transformiert, welche 2 fc mal den Faktor #i/2i0 und 2 l mal den Faktor
#o, y2 enthält, A\ aber irreduzibel ist, so bedeutet die Zuordnung
einer solchen Grösse zu einem nicht-symmetrischen Spinor das
Herausgreifen eines irreduziblen Teilraumes, und zwar desjenigen
mit der grössten Dimensionszahl aus der zum Spinor gehörigen
Darstellung. Man kann deshalb eine Abbildung, die von Spinor-
indices auf einen Index s führt, mittels der Reduktionstheorie
von Darstellungen auffinden.

Wir betrachten deshalb die Produktdarstellung der
Drehgruppe #y2X#fc. &y2 und &k werden durch ihre infinitesimalen
Transformationen al und a.l(k) charakterisiert. Die
Produktdarstellung kann durch die schon von Dirac betrachtete Matrix

3

i(fc) 2ff'x A (fc)
i=i

gekennzeichnet werden. Die Matrix A(k) ist nämlich mit
sämtlichen Matrices der Produktdarstellung vertauschbar. Bringt
man sie auf Hauptachsen, so zerfällt zugleich die Darstellung
#SX^ in irreduzible Bestandteile. Die Reduktion ron&y2X&k
ist damit auf die Hauptachsentransformation von A(k)
zurückgeführt*). Eine Matrix, welche A(k) auf Hauptachsen bringt,
wurde schon von Dirac angegeben. Wir schreiben sie in der Form

MX(fc)

V2 (fc + l) U2 (fc)

Dabei haben wir das Dirac'sche bv uv (fc+j) und av V (fc+|)
gesetzt; denn diese Matrizen erfüllen genau die gleichen
Relationen, die für uv (fc), vv (fc) gelten, falls man fc durch fc + J
ersetzt. Durchläuft fc alle halbganzen Zahlen, so erhält man eine
Folge von Matrizen mit den folgenden Eigenschaften:

% (fc)> u2 (fc) sind rechteckige Matrices mit 2 fc + 1 Zeilen
und 2 fc Spalten.

vx (fc), v2 (fc) sind rechteckige Matrices mit 2 fc Zeilen und
2 fc + 1 Spalten.

*) Siehe hiezu: H. Casimir und B. L. vas deb. Waeedeu, Math. Ann. 111

(1935), S.l.

U-^(2k+V)--(^^
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Im Sinne des Matrixkalküls lassen sich daher die folgenden
Produkte bilden :

vv (fc) W (fc) Quadratische Matrix vom Rang 2 fc

«„(fc)«'(fc) „ „ „ „ 2fc + l
vvQi — \) v»Qi) Rechteckige Matrix mit 2 fc + 1 Spalten

und 2 fc — 1 Zeilen
W(k) W(k — \) Rechteckige Matrix mit 2fc —1 Spalten

und 2 fc + 1 Zeilen.

Aus der Tatsache, dass die aus den W und V aufgebaute Matrix U
die Matrix Aik) auf Diagonalform bringt, folgen die Gleichungen:

^(fcK(fc) (fcó?-sMfc))(-iP+i 1

(71)
v(k) uv(k) (s?, (k-i) + (k+i) ô:) (-1)" j l •}

Dabei ist s%(k) der den infinitesimalen Drehungen a* (fc)
zugeordnete Spinor.

Weiter folgt
Mi) M"(i) K
V(k)uAk) + uAk-\)vAk-\) 2kòuv-(-l)21e \ (7.2)

W(k) v^k) 2 fc (- l)2*+i; v^k) u»(k) (2fc+l) (-1)2*+1|

u"(fc) uß (fc - \) t>" (fc-1) »„ (fc) 0. (7.3)

Alle diese Gleichungen wurden im wesentlichen schon von Dirac
abgeleitet. Es werden aber dort die uv, vv nicht als Funktion von fc

betrachtet (Dirac betrachtet speziell uv (fc),ü„(fc) und uv(k+^)
b", V (fc + i) a" für festes fc).

Für unsere Zwecke sind nun die Gleichungen (6.3) besonders
wichtig. Diese sagen nämlich aus, dass die rechteckigen Matrices
W(k) u" (fc —i) und V(k — \) v"(k) in v und /n symmetrische Spinoren

sind. Man bilde nun die Operatoren

Rßlfi,...f,2kc^ =^i(i)^(l)...?;''«(fc) 1

und
"

(7.4)

pvlv,...vîkQ^ =uv, Q^u-ifi — I)... M>'2 k (|) j

(Rjfg--*) ist wegen (6.3) in allen Spinorindices symmetrisch.
Der Index l kann 2 fc + 1 Werte annehmen und bezüglich dieses
Indexes dann Ri"?---*- als Matrix mit einer einzigen Zeile aufgefasst
werden.

(P*e---A) ist ebenfalls in allen Spinorindices symmetrisch. Der
Index n kann 2 fc+1 Werte annehmen und Ptfe---A kann bezüglich
n als Matrix mit einer einzigen Spalte aufgefasst werden.
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Nach (6.2) und (6.4) gilt

Pte- ¦ -A(fc)Bn „...#) (2 k)lörg |
Mit der Umkehrformel \ (7.5)

ps,gö.,.,.(fc) Pr-¦ ¦v(fc)=2Perm (r »¦ ¦ ¦ ") ôl ôs ài I

Mittelst des Operators Ps(ky- ¦ » kann man nun jedem symmetrischen
Spinor ay/iv vom Rang 2fc eine Grösse As zuordnen, die nur
einen Index hat, der 2 fc + 1 Werte durchläuft. Umgekehrt kann
man mittelst Rs, (k)gö_A jedem As einen symmetrischen Spinor
zuordnen.

PV-vm^...v-]/WW-As j
^,w...v(fc)^=i/(pyT«w...J

Wendet man die Operation pvn---v auf einen nicht symmetrischen
Spinor an, so ist diese Operation gemäss (6.5) nicht mehr eindeutig
umkehrbar; man erhält vielmehr den symmetrisierten Spinor
zurück. Man kann deshalb Pve-" als Symmetrisierungsoperation
benützen.

Analoge Operatoren lassen sich auch für die punktierten
Indices definieren. Wir heissen sie

Più.. AI), R°'iA-Al)- (7-7)

Sie sind aus den u*, v* aufgebaut und genügen denselben
Gleichungen wie die Operatoren mit unpunktierten Indices, falls man
in den Formeln (7.1) bis (7.6) jeden Spinor C^ durch C*, b" durch ò;
ersetzt.

Man kann nun weiter mittelst der Produkte

V(k)vv(k + %)...vx(r)
und

W (fc)Uv (fc — |). .ue(l)

nur einen Teil der Indices eines Spinors in einen Index S
verwandeln, wodurch man eine Grösse erhält, die Indices beider
Art besitzt. Umgekehrt kann dann eine solche Grösse wieder
in eine Grösse As verwandelt werden. Insbesondere kann man

r
Grössen bilden, die einen Spinorindex enthalten. Auf diese Weise
gelangt man zu den von Dirac angegebenen Gleichungen

V* Qwi xwiB 1
1

(7.8)
PigWr B *v>i
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Dabei ist

'Q, I;=y2*t£4.(k)A;

Vp
Er'= yäi^'- Al)Bl

ipA, fB'i erfüllen die Nebenbedingung;en

f«(I--i)Piev>i 0 |

(7.9)
ve(k-i)piey>Bi 0\

Die A und B genügen deshalb den Gleichungen

p*evg(k)A= t/|A^(?)B

p«et>*(l)B |/|A-^e(fc)^ (7.9)

sowie den Nebenbedingungen:

vt{l - |) p** ve(k) A ve(k - i) pig tf*(l) B 0. (7.10)

S. Quantisierung der Feldtheorie zu halbzahligem Spin f.

Wir wollen wieder, wie im Falle ganzzahligen Spins,
Vertauschungsrelationen zwischen den Feldgrössen aufstellen, welche
sämtliche Gleichungen, denen die Feldgrössen genügen, identisch
erfüllen.

Um solche Relationen aufzustellen, gehe man von denen aus,
denen der oben definierte Spinor a^ genügt (m / — ¦§), der

nur unpunktierte Indices hat. Die Anzahl der Indices ist die
ungerade Zahl 2m + 1. affi ist symmetrisch in allen Indices, die

Nebenbedingung (5.3) fällt jedoch weg, was eine gewisse
Vereinfachung mit sich bringt.

Als Vertauschungsrelation zwischen a(m) und a*(m' setzen wir an :

— I nv"'• ["'aß-. ..y> "¦vg-.-Xl
rrt(m) „(m)*[u*ß....Y> av

H2m{2m + 1)l2Spe™(«---r)P«i...PrtD(x). (8.1)

Es bedeutet [a, b]+ [ab + ba]. D(x) ist wieder die nach (4.3b)
definierte, invariante Funktion. Auf der rechten Seite von (7.1)
steht eine ungerade Anzahl, nämlich 2 m+1 Differentiationen pé6.
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Die Relationen (8.1) haben, falls sie überhaupt erfüllbar sind,
zur Folge, dass die so beschriebenen Teilchen das Pauli'sche
Ausschliessungsprinzip erfüllen; ein Umstand, der es ermöglicht,
durch eine „Löchertheorie" die Energie positiv zu machen. Dass
die Relationen erfüllbar sind,. zeigen wir wie folgt :

Sei kj.ß der dem Wellenzahlvektor kt gemäss kj,ß=kiol)tß
zugeordnete Spinor. Dann lauten die Vertauschungsrelationen im
Impulsraum, falls man die Definition von D(x) beachtet

.(fc)>«*è(fc')] +

<W ^ „ „ i
-2.,-(2Wl + l)!Spenn(a^...)fca#fc,,..1-. (8.2)

Daraus sieht man, dass Wellen, die zu verschiedenen kt gehören,
die plus-Vertauschung null ergeben. Betrachten wir nun zwei zum
gleichen kt gehörige Wellen und zwar in deren Ruhsystem. Dort
ist kai fc4 ¦ ôai. Die rechte Seite von (8.2) ist deshalb nur dann
ungleich null, wenn axß y

das konjugiert-komplexe von a*g...x ist.
Die linke Seite ist deshalb niemals negativ, also muss es auch die
rechte sein. Die rechte Seite ist nun aber entweder null oder gleich

1 /2m + l\-1/ki\2m 1 /2m + l\-1

was positiv ist. (Es bedeutet S die Anzahl der Indices von aa/3...(fc)
welche gleich 1 sind.) Die Vertauschungsrelation haben daher die
gewünschte Gestalt

[o,-, ctr*] ô{k- konst.

Dass die Ladung auf Grund der Vertauschungsrelationen (8.2) die
richtigen Eigenwerte hat, folgt sofort, falls man die Ladung einer
ebenen Welle im Ruhsystem betrachtet. Sie hat dort die positiv
definite Form Eaa* (nach (6.2), wobei ein jeder Term gerade
2. (2™+t) mal vorkommt, welcher Faktor gemäss (8.3) durch
unsere Vertauschungsrelationen gerade kompensiert wird.

Falls der Spin ganzzahlig ist, können wir die Vertauschungsrelationen

zwischen den im Abschnitt 3 definierten Grössen a(6)

im Impulsraum ebenfalls in der Gestalt

iKß...Y(k),atl.,k(k)}-=C.okkr%Perm(ve...)k^...~ (8.4)

schreiben. Hier treten aber eine gerade Anzahl von Faktoren kXd
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auf, nämlich 2 /. Deshalb hat im Ruhsystem die rechte Seite
von (8.4) die Form

/ t- \ 2 /—1

°-(t)
Dies ist positiv oder negativ, je nachdem kji Ax ist. Man kann
deshalb die linke Seite von (8.4) nicht als Vertauschungsrelationen
mit Plus-Zeichen schreiben, da dann die linke Seite die positiv-
definite Gestalt

[a* a + aa*]
annehmen würde, während die rechte Seite positiv oder negativ
sein könnte. Man kann demnach Teilchen mit ganzzahligem Spin
nicht nach Ausschliessungsprinzip quantisieren, ohne auf den
infinitesimalen Charakter der Vertauschungsrelationen zu
verzichten, sondern nur nach Bose-Statistik.*) Teilchen mit
halbzahligem Spin kann und muss man dagegen nach Ausschliessungs-
prinzip quantisieren, damit die Energie positiv wird. Durch obige
Betrachtung scheint der schon lange vermutete Zusammenhang
zwischen Spin und Statistik auf einfache Weise mathematisch
bewiesen. Dabei ist es übrigens unwesentlich, dass die Spinoren
irreduzibel sind. Es wird lediglich die Existenz eines Ruhsystems
für jede ebene Welle, die Eigenschaften der D-Funktion und die
Tatsache, dass die Anzahl der Indices gerade oder ungerade ist,
je nach dem der Spin ganz oder halbzahlig ist, benützt. Das
Auftreten der D-Funktion bedeutet dabei, dass die Vertauschungsrelationen

relativistisch invariant und infinitesimal sein sollen.
Aus den Vertauschungsrelationen (8.1) für die tÄ' kann

man solche für beliebige a^ und a'4'*, welche punktierte und
unpunktierte Indices haben, gewinnen, indem man auf (7.1) die
Operation pXßfx anwendet gemäss

P'Vf^n2m+2(12-fflTI)!2Perm(^---)P^PaA---Pr^(^

Man erhält auï diese Weise Vertauschungsrelationen für den
Spinor a(m—")'•¦¦, der 2m + 1 — n — p unpunktierte und n punktierte

Indices enthält, mit seinem konjugierten folgendes
1 j,—2 m n

i IV..,, »aA...*, J_(2m+l)!éo ^
¦p ¦ Vu ià iòXl oh .oh «"i+i^H-i...p;n*nD(x) (8.5)ffi,/i, Ffp—IPp—l"ßp_i+x"iiv_i+x- • "ßvf •••f -^W Vw'"7

*) Siehe hiezu: W. Pauli, Annales Poincaré VI (1936) S. 147 ff.
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Etcj bedeutet dabei denjenigen Permutationsoperator der Indices
des darauffolgenden Summenterms, der mit möglichst wenig
Vertauschungen den Term symmetrisiert. Die Anzahl sämtlicher
Summanden ist dann gerade (2 m + 1) wie es sein muss, da
durch die Differentiation diese Anzahl nicht verändert wird. Wir
können mittelst der nach (7.4) bis (7.6) definierten Operatoren P$

unsere Relationen auch in der folgenden Gestalt schreiben:
m\ rn\ „-2t»AL r A (m—n) i A (m-n)* q] K pj p* 8

%
I ' 'Ar J

(2m + l)! *>¦¦¦>« C^---K

1 ' éi«(p-l)! ï!(n-ï)!

Auf ähnlich einfache Weise können auch die Vertauschungsrelationen

zwischen den Grössen a(ä) und ¥&* angegeben werden.
(Bei Spiegelung vertauschen sich a(î) und 6(a)*.) Man findet

1 1 r
\„k) Xi-..Xr hk)* v, ¦. -vi t V it Ax~2 W r>^ *¦' nk"-v*

i [aei...gs > °Ai...fir s\- ir+sy^nkii P P •••

pkkvkV....p d'fc+i...Ó'« M*+i...ô,fD(a;). (8.7)f r^e, ^ej. Qk+l es ^+l fr y / x >

Dabei bedeutet Enk den gleichen Permutationsoperator wie
Eni in (8.5).

Anhang.

Bestimmung der Koeffizienten der Formel (8.5).

Wir betrachten einen Ausdruck der folgenden Gestalt

V ¦ ...10 ¦
ÔXt ft.1 ÒXn ÓAm 'An+lhi+l. ,r)h+nh+n (1)ri'ii'xriirixr%Jixr+x"ixr+x---'Jlir+n"ixr+nf ...f \x.j

dabei ist r + n p
k + n= q sowie p + q L.

(1) ist nun in den /t{, ßit fa, fa zu symmetrisieren. Wir haben
also eine Summe von Termen der Form (1) zu bilden, wobei die
/Xi, fa... geeignet permutiert werden. Wieviele Terme muss die
Summe mindestens enthalten, damit sie in den Indizes /tt, fa....
symmetrisch ist?

Wir gehen um dies zu entscheiden so vor : Wir symmetrisieren
zuerst in den /jtx bis ju,r. Was entsteht, ist dann in den jix bis jjLr

von selbst symmetrisch. Ebenso symmetrisieren wir die fa+x
bis XQ. So erhalten wir fc! r! Terme. Nun symmetrisieren wir die
fa bis fa sowie die fa bis fa, wodurch die /ir+x bis /xr+n sowie die
ßr+i, bis ßy auch symmetrisiert werden. Dies gibt

(n!)2 • fc! r! Terme.
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Nun kann man die fa bis 2ä auf («) Arten in zwei Gruppen mit fc

und n Indices einteilen. Dasselbe gilt für die punktierten fa sowie
für die /j, bezüglich r und n. Wir erhalten infolgedessen

(n!)2 r! fc! (*)» (•)«- pi ql © («) Terme. (2)

Dann ist die so entstehende Summe völlig symmetrisiert. Wir
heissen diese Summe Sn. Die Symmetrisierungsoperation, die aus
(1) Sn erzeugt, heissen wir nn. Geht man aus von der Summe:

ZPerm^p^.-.p^, (8)

welche L! Terme enthält und wendet darauf die Operation

p'k i*i pA fi (4)
p2

q mal an, so gelangt man zu einer in den /Ui, ßi und fa, fa
symmetrischen Summe, von der Gestalt

2X-cn. (5)
n

Man überlegt sich leicht, dass wegen der Entstehung von (5)
alle Cn von null verschiedene, natürliche Zahlen sein müssen. Wir
zeigen nun, dass sie alle gleich eins sind. Die Summe (3) enthält
nämlich L! Terme, die alle mit dem Faktor eins multipliziert sind.
Die Operation (4) ändert diese Anzahl nicht, und kann auch zu
keinen Zahlfaktoren Anlass geben. Infolgedessen muss die Summe (5)
auch L! Summanden enthalten. Da Sn p\ q\ (*) («) Summanden
enthält, so muss

y>cnp\q\o(i)=v-
n

sein. Nun ist E (pn) (qn) der konstante Term von

(i+x)»(i+i/xy=
(1 + x)£.

; ; xq

Dieser ist aber (B), woraus folgt Ep\ q\ (p) («) L also sind alle

Cn 1. Symmetrisiert man einen Ausdruck der Form (1) mittelst
der u„, ut, so bedeutet dies, dass man über alle Permutationen
der ni, ßt... und der fa, fa summiert. Dann erhält man (p}-)2(q*-)2
Summanden und das Resultat ist

(u\)2(q-n)l2 (p-n)\2 8n

weshalb bei Symmetrisieren mittelst der uv, uf der Faktor

„„ ; —-, — vor jeden Summanden der Form (1) zu setzen ist.
(n\f(q-n)\(p-n)\ J v '
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Zahl der unabhängigen Komponenten von Tensoren.

Ein in allen Indices symmetrischer Tensor der Stufe / im
fc-dimensionalen Räume hat

| Komponenten,
fc — ly

Unser Tensor Aik j der Stufe / ist symmetrisch in allen Indices
und genügt den Gleichungen

Aii...k 0.

Diese sagen aus, dass ein symmetrischer Tensor der Stufe / — 2
verschwinden soll, d. h. es sind soviele Gleichungen als ein solcher
Tensor Komponenten hat. In unserem Falle hat der Raum 4

Dimensionen. Aik t hat daher (' 3 Komponenten zwischen denen

noch ('g Gleichungen bestehen.

Daher hat Aik t

linear unabhängige Komponenten.

Wegen der Differentialgleichung

dAit

(/ + 1)5

dx.
0

sind für ebene Wellen in deren Ruhsystem die Amplituden null,
falls i, fc. =4. Die Dimensionszahl fc reduziert sich deshalb in
diesem Falle auf 3. Daher existieren zu vorgegebenen Wellen-
zahlvektor kt

/7+2\ ir 2/ + 1
2 ; v2/

linear unabhängige ebene Wellen.
Wir wollen nun noch die Komponentenzahl des Tensors BP-\,mJ)

bestimmen (a bedeutet die Gesamtheit von / — 2 Indices. In den
Indices (ak) ist B(1) symmetrisch, in [ml] schief. B(1) genügt
den Gleichungen

B(£l[k« 0. (1)

B$Um] + B$l[kl] + B$[mk] 0. (2)

Es sind nun die unabhängigen von diesen Gleichungen zu be-
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stimmen. Dazu schreiben wir die Gleichungen in abgekürzter Form
aus, indem wir nur die Indices anschreiben. Weiter setzen wir

[23] [1] [14] [4]
[31] [2] [24] [5]
[12] [3] [34] [6].

Damit erhalten wir

a 2 [3] - a 3 [2] ¦

a 1 [3] - a 3 [1]
a 2 [1] —al [2]
al [4] + a 2 [5]

a 3 [5] - a 2 [6]
a 1 [6] - a 3 [4] •

a 2 [4] - a 1 [5]
a 1 [1] + a 2 [2]

a_
4 [4] 0

a 4 [5] 0

a 4 [6]
a 3 [6]

0
0

_
4 [1] 0

a 4 [2] 0

_
4 [3] 0

a 3 [3] 0

a

a

(1)

(2)

Die beiden letzten Gleichungen in (1) und (2) die mit (+) bezeichnet
sind, können, falls ein Index unter den Indices a gleich 4 ist,
aus den drei anderen durch Addition gefolgert werden. Weiter
folgen aus (1) und (2), indem man in jeder Gleichung für a geeignete
Werte einsetzt durch Addition die Gleichungen

Büa[ml]= 0

welche daher nichts Neues bedeuten. Sonst sind (1) und (2)
unabhängige Gleichungen.

BW ist nun in /—1 Indices symmetrisch und in

zweien schief, hat daher 6 •
3 Komponenten. Weiter genügt

es (1) und (2). In sechs dieser Gleichungen laufen die (/ — 2)
Indices a von 1 bis 4. Diese Gleichungen bedeuten daher, dass
ein symmetrischer Tensor der Stufe / — 2 in 4 Dimensionen null
sein soll. Die Gleichungen ergeben deshalb 6 •

3
Nebenbedingungen. In den beiden letzten Gleichungen die mit (+)
bezeichnet sind, laufen die Indices a jedoch nur von 1 bis 3, falls
man nur unabhängige Gleichungen betrachtet. Wir erhalten daher

2(1) weitere Bedingungen. Darnach hat B(1>

r)-°m-»(t 2f2 + 4f

linear unabhängige Komponenten.
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Felder mit Ruhmasse null.

Um den Fall der Ruhmasse null zu betrachten, gehen wir von
den folgenden Gleichungen aus:

Im Falle ganzen Spins:

DAik..j=0

Daraus folgt:

t'¦a-ik...l _ a
dXf

àAik__j " Amk_j
dxm dx(

"B[mi]k.. ¦l -0.

(1)

73(1)
^[milk.

0xm

Im Falle halben Spins:
rtvg n(0) X--
P agô... 0

v-- b*-ß---rx'ug... 0

Aus diesen Gleichungen folgt

«$*.¦;• 0

ami*.. • =0

(2)

(3)

(4)

Diese Gleichungen entstehen aus denen, die wir oben
angegeben haben durch Nullsetzen von x. Die Aik lt a(0^---, W)**---
sollen sonst die gleichen algebraischen Eigenschaften haben, wie
im Falle x + 0. Mittelst dieser so definierten Feldgrössen können
wir nun wieder einen Energie-Impulstensor und einen Stromvektor

aufbauen. Der Energie-Tensor im ganzzahligen Falle ist

•* kl~ ~Z\B[ik]m... B[il]m... + P[il]m... B[ik]m...j
ï"klB[ri]m...B[ri]m... (")

Die Energie

- fTu d N 2 |fc4|2R>+.. (fc) At (fc) + Arr* (fc) Ar (fc).} (6)
J k

Im halbzahligen Falle ist der Stromvektor

hß=^re---afl:::- + bf*---bflt--. (7)

Mit der Gesamtladung

Q j\slx + s^)dV. (8)



34 Markus Fierz.

Die Ausdrücke (6) und (8) können für gewisse Zustände
verschwinden, ohne dass die Feldgrössen null sind. Im Falle des

ganzzahligen Spins ist die Energie immer dann null, wenn der
Tensor Aik,..i Nik A wie folgt dargestellt werden kann:

wobei Cx.

AT _"^k...lm
|

"Gi...lm
1 "ik.. .Im i i Ao xf o xk ua;OT

lm die folgenden Gleichungen erfüllt:

dxk
Ckk...i= o

(9)

und in allen Indices symmetrisch ist. Dass die Energie dann null
ist, zeigt man am einfachsten dadurch, dass man Ck j in ebene
Wellen zerlegt und in den Ausdruck für die Energie einsetzt.

Ebenso kann man, ohne die Energie zu ändern, zu jedem
Felde Aik___, noch ein Feld Nik A von der durch (9) definierten
Gestalt hinzuaddieren. In Analogie zur Elektrodynamik heissen
wir die Transformation

Aik..j— Aik_j + Nik j
„Eichtransformation". Nik t ist dabei durch (9) definiert.

Hat Aik [ /Indices, so gibt es zu jedem Wellenzahlvektor
2/ + 1 linear unabhängige ebene Wellen Aik t. Der Tensor Cik A
hat / — 1 Indices, demgemäss gibt es zu jedem Wellenzahlvektor
2/ —1 linear unabhängige ebene Wellen Nik Betrachtet man
Zustände als gleichwertig, die durch „Eichtransformation"
auseinander hervorgehen, so gibt es demnach bei Ruhmasse null und
/ > 1 nur zwei linear unabhängige, wirklich verschiedene ebene
Wellen vorgegebener Wellenzahl und Frequenz.

In der gleichen Weise kann man zu den Feldern af**---, bf^*-'
Spinorfelder ink---, m^" hinzuaddieren, ohne die Energie und die

Ladung zu ändern. Dabei sind n4'", m\--- von der Gestalt

KsYY. Py 4yy y-pÌ 4+--- +p\ c*+- - •

w$:::=pK:::+Py^+---+pK+---
C\ hat dabei je einen punktierten und einen unpunktierten Index
weniger als a<0), a.*a je einen punktierten und einen unpunktierten
Index weniger als ò*0). Beide sind symmetrisch und genügen den
gleichen Gleichungen wie a(0) bzw. ò(0). Daraus folgt, in gleicher
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Weise wie im Falle ganzzahligen Spins, dass, falls man zwischen
Zuständen, welche durch die „Eichtransformation"

<*- + <.:: <y.'"-¦
b(o)X-.. + mX...=b(0Yk...

auseinander hervorgehen, welche also zur gleichen Energie und
Ladung gehören, nicht unterscheidet, nur zwei wirklich
verschiedene ebene Wellen vorgegebener Wellenzahl und Frequenz
existieren. (Im Falle des Spin % fällt natürlich die Eichtransformation

weg.)
Aus den B(1' und den a(0>, ò(0) kann man nun wiederum neue

Grössen B'q\ a(s), ¥q) bilden. Mit diesen können jedoch keine
physikalisch brauchbaren Energie-Tensoren aufgebaut werden,
weil die zugehörige Energie zufolge der Wellengleichungen identisch
verschwindet. Interessant sind hingegen diejenigen Spinoren,
welche nur eine einzige Indexsorte besitzen und durch Differentiation

aus dem Aik t zugeordneten Spinor bzw. aus a<0), U0) durch
Differentiation gewonnen werden gemäss

^...yg^PytPgv...^:.-- (W)

Diese Grössen sind „eichinvariant" und verschwinden, wenn
Ladung und Energie verschwinden. Man kann deshalb die Theorie
mit Ruhmasse null dadurch quantisieren, dass man nur zwischen
diesen eichinvarianten Feldgrössen die folgenden Vertauschungsrelationen

fordert

-J-K...V ^•••*J± ^yEPerm^)p-.*.---P«^*-D^) (u)

dabei ist das + oder — Zeichen zu nehmen, je nachdem fc ungerade
oder gerade ist. Da die Theorie drehinvariant ist, und alle Fourier-
komponenten vertauschbar bzw. antivertauschbar sind, so kann
die Widerspruchslosigkeit der Vertauschungsrelationen leicht
eingesehen werden, indem man eine ebene Welle in der ^-Richtung
betrachtet. Wir wollen hier aber auf die sehr einfachen Beweise
verzichten. Aus den „eichinvarianten" Feldgrössen können nun
gemäss (10) wieder alle anderen Feldgrössen, bis auf eine
Eichtransformation, durch Integration zurückgewonnen werden,
insbesondere die den Energie-Tensor bildenden Grössen a(0), fe(0)

und der dem Tensor Aik z entsprechende Spinor. Da die Gesamtenergie

und die Gesamtladung eichinvariant sind, so genügen
deshalb die Vertauschungsrelationen (10) um die Eigenwerte dieser
Grössen zu bestimmen.
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Da die Energie- und Ladungsdichte aus den a(0), fe'°) bzw.
aus B[ii]j... aufgebaut sind, so folgt daraus, dass diese Grössen
ausser im Falle des Spins 0, ^ und 1 nicht eichinvariant sein können,
wodurch also die kleinen Spinwerte ausgezeichnet sind.

Spezialfälle als Beispiele.

Es sollen hier kurz einige Formeln der hier entwickelten
Theorie zusammengestellt werden, welche sich auf die Spezialfälle
/ 3/2 und / 2 beziehen. Für den Fall / 1 verweisen wir auf
die angeführte Literatur.

/ 3/2. Hier lauten die Gleichungen in Spinorform

pa"<a =*«**; HiPiSaU °

p^&i* *<;..; e""p«bif 0-

Die Vertauschungsrelationen nehmen die Gestalt an

\ Kr,<ß]+= y [Px*H o"ß + Via òf ¦% + Vißof ò£ + Pxßof «5

+ -^{pkaPxßP"'x + PkßPiaP/i''}]F>(x).

Betrachtet man ebene Wellen, die sich in Raum und Zeit wie
eikz+imt ändern, so bedeuten die Feldgleichungen das Bestehen
der Relationen

fc2 — co2 + *2= 0

*21 ""11 i, > "12 "22 T.

a22> aìi> a22' an können dann als die vier unabhängigen Amplituden

betrachtet werden, welche die vier Polarisationen bezeichnen.

/ 2. Hier möchten wir nur die Vertauschungsrelationen
zwischen den Aik angeben:

i[Aik, Alr] \ (Ri{, Rkk' + Rik'Rki'-îRikRrk') D(x).

Der Faktor \ der rechten Seite ist so gewählt, dass die Spur über
i i', fc fc' auf der rechten Seite gleich (2 / + 1) D 5 • D wird.
(Man beachte, dass RikRkl= Rn; Rkk=3).
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Spezielle Darstellung der uv und v".

Sei a ein Index, der angibt, wieviele Indices eines Spinors
eins sind und der von null bis 2 fc — 1 läuft, ß ein ebensolcher
Index, der von null bis 2 fc läuft. Falls nun fc eine ganze Zahl ist,
setze man

ui (k)ß* lß Vi, a > *>lß (fc) j/aTr <5a+li ß

^Wß^y^-ßoß«, vlß(k) 1/2k-«.aaiß

falls fc halbganz, setze man

«J. (fc) l/ß Oß-i, « % « ß (fc) j/<* +1 ó«+i, /»

«fc) -|/£fc=/î<î„a «2>a/3(fc) 1/2T^cóa/3.

Die mit Hilfe dieser Darstellung sich gemäss

,i» (fc) v, (fc) (fc Ô? - «? (fc)) (-1)2 *+1

ergebende Darstellung der Lorentzgruppe ist mit derjenigen bei
van der Wabrdbn identisch.

Dabei ist in der Bezeichnung von van der Waerden
;12

xxp u xxQ o xx2 — «

und
A _ „11 A __ ,,22 /( _ ol

J=fc, J + M= ß.

Diese Arbeit wurde unter der Leitung von Prof. W. Pauli
ausgeführt; ich möchte ihm für viele wertvolle Anregungen meinen
besten Dank aussprechen.

Zürich, Physikalisches Institut der E.T.H.
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