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Uber die relativistische Theorie kriftefreier Teilechen
mit beliebigem Spin*)
von Markus Fierz.
(3. TX. 383

Zusammenfassung. Im kriftefreien Falle ist es moglich, quantisierte Wellen-
felder anzugeben, welche Teilchen mit ganzem oder halb-ganzem Spin grosser
als eins beschreiben. KEs zeigt sich, dass Teilchen mit ganzem Spin stets Bose-
Statistik, Teilchen mit halbganzem Spin stets Fermi-Dirac-Statistik haben miissen.
Die Wellenfelder mit Spin kleiner oder gleich eins sind aber schon im kriftefreien
Falle dadurch ausgezeichnet, dass fiir sie allein die Ladungsdichte und Energie-
dichte eindeutig bestimmte und eichinvariante Grossen sind, wahrend dies fiir
hoheren Spin nur fiir Gesamtladung und Gesamtenergie der Fall ist.

Einleitung.

In vorliegender Arbeit wird die relativistische Theorie von
Wellenfeldern untersucht, denen sich durch Quantisierung nach
JorpAN und Pauri!) Teilchen mit beliebigem, aber konstantem
ganz- oder halbzahligem Spin zuordnen lassen. Wir haben uns
dabel vorerst auf den kriftefreien Fall beschréankt. Es zeigt sich,
dass durch Angabe von Spinwert und Masse der Teilchen das zu-
gehorige Wellenfeld schon eindeutig bestimmt ist, iiberdies ist
durch den Spin die Statistik der Teilchen festgelegt. Aus den
sehr allgemeinen Forderungen, dass die Vertauschungsrelationen
der Feldgrossen relativistisch invariant und infinitesimal sein sollen,
und dass die Energie positiv sein soll, folgt ndmlich, dass Teilchen
mit ganzzahligem Spin stets Bose-Statistik, Teilchen mit halb-
zahligem Spin Fermi-Statistik haben miissen.

Wihrend es moglich ist, die Felder, die zu ganzzahligem Spin
gehoren, durch Tensoren zu beschreiben, wodurch man den VAN DER
WaerpEN’schen Spinorkalkiil?) umgehen kann, war es uns im
Falle halbzahligen Spins leider nicht méglich, diesen recht schwer-
falligen Kalkiil durch etwas Ubersichtlicheres zu ersetzen. Diese
darstellungstechnische Schwierigkeit hingt aber wohl mit dem
physikalischen Umstande zusammen, dass die zu halbzahligem
Spin gehorigen Felder wegen des Ausschliessungsprinzips niemals
klassischen Feldern korrespondieren konnen, also auch nie in
klassischem Sinne beobachtbar sind, im Gegensatz zu den der
Bose-Statistik gentigenden Tensorfeldern.

i *) An der Abteilung fiir Mathematik und Physik an der E.T.H., Ziirich,
eingereichte Habilitationsschrift.
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Die hier betrachteten Wellengleichungen wurden im wesent-
lichen schon von Dirac®) angegeben. Die physikalische Bedeutung
dieser Gleichungen wird jedoch aus Dirac’s Arbeit nicht klar,
vielmehr finden sich darin Angaben, die teils zu Missversténd-
nissen Anlass geben kionnen, teils unzutreffend sind. Insbhesondere
15t der Operator H von Dirac, den er mit ,,Hamiltonian* oder
,,Energy operator’ bezeichnet, ganz verschieden von der Feld-
energie im gewohnlichen Sinn. Weiter kann eine Wechselwirkung
mit elektrischen Feldern nicht einfach dadurch beschrieben werden,

dass man pdurch p—e/c @ ersetzt, wie Dirac behauptet, da dadurch
die Vertraglichkeit der Feldgleichungen zerstért wird. Auch die
Bemerkung, dass der Spin im allgemeinen durch zwei Zahlen k
und ! charakterisiert werde, scheint den physikalischen Sachver-
halt nicht zu treffen, da es nur auf die Summe k -+ [ ankommt,
und die Aufteilung in die Summanden k und ! nur rein formal zu
sein scheint.

SAKATA und Yurawa?4) haben ebenfalls eine Note iiber diese
Dirac’schen Gleichungen erscheinen lassen, die uns aber ganz
missgliickt scheint. Die dort als Stromdichte bezeichnete Grosse
ist ndmlich im allgemeinen gar kein Vektor, sondern ein Teil
eines Tensors hoher Stufe. Im Falle des Spin 1 (k= 1, I = 15)
sind insbesondere diese Grissen die Energie- und Impulsdichte,
d. h. die (k4)-Komponenten des Energie-Impulstensors, wie man
durch Vergleich mit der MaxweLL’schen Theorie sofort erkennt.
Weiter untersuchen diese Autoren auch die Spinwerte, die zu
den von Dirac angegebenen Gleichungen gehoren. Sie gehen aber,
wie uns scheint, hierbei viel zu formal vor, indem einfach die Dar-
stellungen der Drehgruppe, nach denen sich die Feldgrossen
transformieren kénnen, betrachtet werden. Dies 1st aber nur dann
ausreichend, falls man sicher weiss, dass der Bahndrehimpuls
null ist, z. B. im Ruhsystem einer ebenen Welle. In diesem Falle
zeigt sich, dass wegen der Wellengleichungen die Feldgrossen nicht
nur irreduzibel gegen Lorentztransformationen, sondern auch irre-
duzibel bei Drehungen sind. Im Ruhsystem eines Wellenzahl-
vektors gibt es gerade 2k + 21 linear unabhéngige zugehorige
ebene Wellen, die sich bei Drehungen nach der Darstellung ¢4, ;_1
untereinander transformieren. Da im ibrigen alle Gleichungen
mit festem k + ! mathematisch gleichwertig sind, so geht daraus
hervor, dass der Spin den Wert k 4 | — 14 hat.

Herr Jaucm hat in einer Diplomarbeit zum ersten Male
richtige Ausdriicke fiir Energie-Impulstensoren und Stromvektoren,
welche den Dirac’schen Feldern zugeordnet werden kénnen, an-
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gegeben. Der Spezialfall des Spins 1 wurde von verschiedenen
Autoren, insbesondere im Hinblick auf Kernkrafte, ausfihrlich
behandelt. Die ¢-Zahl-Theorie betrachtete zuerst Proca®), vier-
dimensionale Vertauschungsrelationen fiir diesen Fall hat SttickeL-
BERGS) aufgestellt, in etwas anderer Form auch KEMMER7).

Obwohl die vorliegende Untersuchung zeigt, dass wenigstens
im kréftefreien Fall Felder mit beliebigem halb- oder ganzzahligem
Spin moglich sind, so sind doch die kleinen Spinwerte 0, 15, 1
in mancher Beziehung ausgezeichnet. In diesen drei Fallen ist
namlich sowohl Energie wie Ladungsdichte schon im kréftefreien
Falle eindeutig bestimmt, und es ist im Falle 0 und 1 die Energie-
dichte, im Falle 14 die Ladungsdichte der c-Zahl-Theorie positiv
definit. Beides ist, falls der Spin grosser wird als 1, nicht mehr
der Fall, nur die Gesamtenergie bzw. die Gesamtladung sind
dann noch eindeutig und definit. Weiter sind in quantisierten
Theorien fiir Spin grosser als 1 die Ladungsdichten an verschiedenen
Orten aber zur selben Zeit nicht mehr vertauschbar, vielmehr
bleiben Ableitungen der D(x)-Funktion stehen. Es treten weiter
beim Versuch, Wechselwirkungen mit andern Feldern einzufiithren
schon in der ¢-Zahl-Theorie Komplikationen auf, falls der Spin
grosser 1st als 1. Dieser letzte Punkt bedarf deshalb noch einer
eingehenden Untersuchung.

I. Ganzzahliger Spin.

1. Feldtensoren und Wellengleichungen.

Wir wollen hier kraftefreie, klassische Wellenfelder be-
trachten, denen man mittelst der relativistischen Feldquantisierung
nach JorpaN und Pavuri?) Teilchen mit der Masse m und dem
Spin %+ f zuordnen kann. f soll eine ganze, positive Zahl sein.
Ein solches Wellenfeld kann im kriaftefreien Fall durch einen,
im allgemeinen komplexen, symmetrischen Welttensor A4;; , der
ften Stufe (f Indices) beschrieben werden, welcher der Wellen-
gleichung geniigt:

4. = #* 4. (1.1)
dabei ist

4 02 :
[]="% FprE (x;) = (x, ¥, 2, 0ci)
i=1 U &y

| |

% 1st elne Konstante von der Dimension einer reziproken Lénge,
welche eine fiir das Feld charakteristische Frequenz definiert.
Die dem Felde zugeordneten Feldquanten erhalten die Masse

h#le =m.
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Weiter erfillt 4, ; noch die beiden Nebenbedingungen

Ay a="0 (1.2)

0 Aig.. .

L MR aek s ) 1.8
da. (1.3)

Die physikalische Bedeutung dieser Gleichungen ist folgende:
Die Wellengleichung (1.1), welche vom Typus der Schrédinger-
Gordon’schen Gleichung ist, hat zur Folge, dass in der quanti-
sierten Feldtheorie die relativistische Theorie klassischer Massen-
punkte der Masse m als Grenzfall enthalten ist.

Die Nebenbedingungen (1.2) und (1.3) sorgen in erster Linie
dafiir, dass dem Tensorfeld nur Teilchen mit dem Spin f und
nicht noch solche kleineren Spins zugeordnet werden konnen. Aus
(1.2) folgt, wegen der Symmetrie von 4, ;, dass simtliche Spuren
des Feldtensors verschwinden.

Wie im Anhang gezeigt wird, besitzt deshalb 4, ;(f+1)2
linear unabhéngige Komponenten, welche sich bei Lorentztrans-
formationen gemiss der irreduziblen Darstellung &, . der
Lorentzgruppe untereinander transformieren. Soll das 4;; Feld
zum Spin f gehdren, so muss es zu jeder vorgegebenen Wellenzahl
und Frequenz k;, welche die Gleichung k,;k; = — %2 erfilllen 2 f + 1
linear unabhéngige ebene Wellen geben, die sich durch die Orien-
tierung des Spins unterscheiden. Dass dies der Fall ist, sieht man
wie folgt ein: Man betrachte die betreffenden ebenen Wellen in
deren Ruhsystem, welches immer existiert falls » £ 0 und wo
ky = + 4. Dort sagt die Nebenbedingung (1.8), dass sédmtliche
Komponenten von 4,  ;, bei denen einer der Indices gleich 4 ist,
verschwinden; es laufen daher 1m Ruhsystem die Indices tat-
sdchlich nur von 1 bis 3 und 4;; ; hat die Gestalt

_ 1] % T
g =A™

Af ., 1st ein symmetrischer, réumlich konstanter Tensor der
ften Stufe in R;, dessen Spuren verschwinden. Ein solcher Tensor
hat 2 f+1 linear unabhingige Komponenten, die sich bei Drehungen
des Koordinatensystems nach der irreduziblen Darstellung &, der
Drehgruppe untereinander transformieren. Daraus folgt, dass sich
die zugehorigen Teilchenzustédnde durch die 2 f + 1 verschiedenen
Orientierungen des Spins unterscheiden. Weiter ermoglicht die
Nebenbedingung (1.3) die Aufstellung eines Energie-Impulstensor’s
fir das A-Feld und sorgt dafiir, dass die Gesamtenergie positiv
bleibt, womit erst eine physikalische Deutung der Theorie moglich
wird.
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'Bei der Diskussion der Nebenbedingungen (1.8) machten wir
von der Existenz eines Ruhsystems fiir jede ebene Welle Gebrauch.
Die Existenz des Ruhsystems ist dabei fiir die ganze Schlussweise
wesentlich und der Fall m = 0 muss deshalb als ausgearteter
Grenzfall betrachtet werden. Wir werden daher den Fall der
Ruhmasse null gesondert betrachten. Hier mdéchten wir nur er-
wihnen, dass in diesem Fall nur zwei physikalisch wirklich ver-
schiedene ebene Wellen gleicher Wellenzahl und Frequenz exi-
stieren, wie dies von den Elektromagnetischen Wellen her bekannt
1st, welche f= 1 entsprechen.

Man kann nun die Differentialgleichungen des 4-Feldes durch
ein Gleichungssystem erster Ordnung ersetzen, was fir die fol-
genden Betrachtungen bequem sein wird. Die Gleichungen lauten:

OAIH' N OAir...l

2 - 1.4

B[H»]T 03} | omk ( )
0

o, [?:k]_r...lz"zAkr...z- . (1.5)

Diese Gleichungen sind analog den Maxwell’schen Gleichungen.
Als Folge von (1.2), (1.4) und (1.5) geniigt B®W ebenfalls der
Wellengleichung zweiter Ordnung, sowie den weiteren Gleichungen

Bg)k]k - O’ B%)k]r...l—!_B[(i)i} k...l+B{kr]i...l: 0 (1'6)
0 0 0 0
o, B[(il)k]r...l: 0; mdsc B&)k] z‘*’?“ B[mﬂ JV_OZ Bfllc)m]...z: 0('1' 7)

In den uneingeklammerten Indizes ist By ,.. ; symmetrisch, in
dem eingeklammerten Paar schief. Aus den Gleichungen (1.6)
folgt unabhingig von der Definition der B}, . ;, dass B{}y,. . ,=0.
Wenn man dies beachtet, so kann man die Komponentenzahl von
B® abzihlen und findet, dass B® 2 f2 4+ 4f linear unab-
hangige Komponenten hat. Aus den -Gleichungen (1.6), (1.7)
kénnen alle iibrigen Gleichungen gefolgert werden, so dass wir
unser Wellenfeld ebensogut durch die Grossen Bfj),.. ; wie durch
die A;; ; beschreiben konnen. Wir kénnen nun aus B® eine
weitere Grisse
B[(f‘;s] [#1]..-t
bilden:
0 0

()] 1) . _ R -
Bien...:= oz, B{P:.... oz, Biir...o
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B® ist symmetrisch bei Vertauschung der Indexpaare [i k]
und [rl] sowie in den uneingeklammerten Indizes und geniigt
analogen Gleichungen wie B®W. Es gilt weiter

BRywn...=#" 4,

..8°

Indem wir nun fortgesetzt die Rotation nach einem der uneinge-
klammerten Indizes bilden, erhalten wir eine Folge von f+ 1
Feldgrossen :

1
v - Bfi)lc]...r"‘ B&}k] [r21...[s1]

B9, . .rus.... enthilt demgemiss (g) Klammern, die untereinander
symmetrisch sind und f— ¢ untereinander symmetrische Einzel-
Indices. In jedem eingeklammerten Indexpaar ist B®@ schief.
Weiter gentigt B@ den folgenden Gleichungen:

0 B@ — .2 B (D
B(.g.).['ilc]k.“ =0 (11a)
B(.q.).['ik]r... + B(.q.).[ri]]c... + Bgi.).[kr]i... =0 (1Ib)
Btrs... T B papa... T Bag.. =0
0 0 0 0
{ _ e — . _ - Rl _
oz, B®,:....=0; e, B? ..t 0z BY ot 0z, B.q..(m)...(*I*ID-

Diese Gleichungen beschreiben das betrachtete Wellenfeld
genau so wie die Gleichungen (1.1) bis (1.3).

Es gilt als Folge von I bis III:
0

0 0
_OQE- B;cq...)“ 0z, B(.({.i.)..‘“B(.qf).[ik]
(2 [
D -—2)
By wa...= B9 .

2. Emnergie- Impulstensor, Stromvektor.

Um das durch die B@ beschriebene Tensorfeld physikalisch
deuten zu konnen, muss es moglich sein, mittelst der B®@ und
ihren konjugierten einen symmetrischen, ,,reellen‘* Tensor 2. Stufe
zu bilden, der der Kontinuitétsgleichung gentigt. Einen solchen
Tensor kann man dann als Energie-Impulstensor des Feldes auf-
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fassen. Zuerst miissen wir genauer prizisieren, was wir unter dem
konjugierten Tensor C* eines Tensors C verstehen, woraus sich
auch ergeben wird, was ein ,,reeller’* Tensor ist.

Sei die Anzahl der Indizes von C, welche gleich 4 sind # und C
das konjugiert-komplexe von C, so ist

*=(—1)"C 2.1)

der zu C konjugierte Tensor. Ein Tensor ist ,,reell, falls C* = C.
In diesem Sinne sind unsere Koordinaten (X, Y, Z, t1¢t) = (X ;)
»reelle’ Vektoren. Ebenso ist das elektromagnetische Feld (9, ¢ €)
ein ,reelles” Feld. Mittelst der B@ und der B%—1 sowie ihrer

konjugierten bilden wir nun die Tensoren T@:

ir TTreeel

TI(» (A kA‘ ...l"*'A*‘e Air...;{,) +4 (B(l) k] B(l .-t

* ) ¢ * '
4*Bm[m1%94mﬁ-*%5m(AZm Ay 22 +1 B B )

DY

T}g}——(B*‘q—” BUZ) ,+ BrU-D Bu-D Y

[rs] [rs]. [re]l...t1 ~[rs]...tk

(B[rs] Ttk .om” Bfg}s}...[tl} -m

£ )* m1* —1
B[rs] [tl]...mBEg)s]...[tk]...m) 261,1(? B( ) B(II )

[rs].. [r8]--
4 1 ) * {
B[N‘] [tm]---nB[g)s]---[tm]...n)'

Diese Tensoren gentigen auf Grund der Differentialgleichungen
fir die B@ der Kontinuititsgleichung:

0Ty
033;5

:Q,

Es ist nun zu fordern, dass die Gesamtenergie des Feldes
positiv 1st, was bedeutet, dass das Integral f T@ dv iber den
ganzen Raum definit sein muss, da dieses, bis auf das Vorzeichen,
die Gesamtenergie des Feldes darstellt. Das ist nun in der Tat
der Fall, was wir zuerst fiir den Tensor T¢), der aus A und B®
aufgebaut ist, zeigen werden. Zu diesem Zwecke zerlegen wir
A;, . in ebene Wellen geméss

Ay . . (E, t) = _1—_244:%7(@ ) eikx+iw(k)t+Ai~kmr(k) gikz—iw k)t
VT 4 as
Dabei ist
o (k)= +icky, K k,=—x2.
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Weiter erfiillen die 4+ und 4~ als Folge der Gleichung (1.3) die
Gleichung

1
i=1

Dk AL Ak AL =Xk A5 —k A7 =0. (2.4)
i=1

-

Falls wir dies beachten, die B® durch die 4+ und 4— ausdriicken
und dies in das Integral f TM dV einsetzen, erhalten wir

= [TRAV=3 1A}, (0 A5, () +ATT () 45, ()=, @)

Die Energie ist hier als Summe der Energien der einzelnen Fourier-
komponenten dargestellt. Es gentigt daher zu zeigen, dass -der
Beitrag jeder einzelnen Komponente positiv definit ist. Es ist
also zu zeigen, dass A%* (k) 45 (k) positiv definit. Betrachten wir
diesen Ausdruck im Ruhsystem von k;, wo also (k;) = (0,0,0, ¢ x).
Wegen der Gleichung (2.4) sind hier alle Komponenten von 43
bei denen ein Index gleich 4 ist null. Fiir die anderen gilt
gemiss (2.1) .
‘4;'kk... = Az, ..

so dass im Ruhsystem die Energie einer ebenen Welle die positiv
definite Form
Aix... A
annimmt.

Da in einem anderen Bezugssystem sich die Energie mit dem
positiven Faktor

1

Vli ;342
multipliziert, folgt daraus, dass die Gesamtenergie unseres Feldes
positiv definit ist. Auch fiir die hier diskutierte Frage ist die
Existenz eines Ruhsystems fiir jede ebene Welle wesentlich.
Falls » null gesetzt wird, 1st zwar, wie wir weiter unten sehen werden,

die Energie niemals negativ, kann jedoch verschwinden, ohne
dass die Feldtensoren 4, null sind.

Auf die gleiche Art, wie beim Tensor T®, kann man den
allgemeineren Tensor 7@ behandeln. Mann findet dann

— [ TQAT =k (B BT, BRI Bt )

(. . .m-

oder, falls wir die B« durch die A ausdriicken:

— [TQdV=(—2 A2 |k P4 A AT 4. )
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Alle Energie-Impulstensoren ergeben also bis auf den Faktor
(— 2 %?)21 zur gleichen Gesamtenergie Anlass. Die Lokalisierung
der Energie im Feld ist jedoch weitgehend unbestimmt, indem
sie vom gewdhlten (g) abhingt. Zudem ist T nicht positiv
definit, falls f > 1 ist. Diese Eigenschaften der hier betrachteten
Felder scheinen uns jedoch keine hinreichenden Griinde zu sein,
um Teilchen mit Spin > 1 auszuschliessen. Im kriftefreien Falle
1st also der Energie-Tensor nicht eindeutig bestimmt, es gibt
vielmehr f linear unabhingige Moglichkeiten, die Energie zu
lokalisieren, wobei aber der Wert der Gesamtenergie ungeéindert
bleibt. Inwieweit diese Mehrdeutigkeit durch Einfiithrung von
Wechselwirkungen mit anderen Feldern eingeschréinkt werden
kann, oder ob sie in diesem Falle zu ernsteren physikalischen

Schwierigkeiten fiithrt, muss einer gesonderten Untersuchung vor-
behalten bleiben.

Neben dem Energie-Impulstensor T kann aus B@ und
B@=1) auch ein Vektor gebildet werden, welcher ebenfalls der
Kontinuitatsgleichung geniigt, und der als Stromvektor des Feldes
aufgefasst werden kann:

1 » =
ngn = E; {B;gcq]l)ml B%g)k]...[mv}l. W Bfgk]}f)..mz. i BEg)Icf[m v]l...} 8
Dieser Vektor ist ebenfalls ,reell“. Falls die Feldtensoren B®@
,,reelle® Grossen sind, verschwindet er identisch. Bei vorgegebenem
Feld konnen Strom und Ladungsdichte wieder auf f verschiedene
Arten definiert werden, welche im kriftefreien Falle gleichwertig

sind. Die Gesamtladung [s@ dV wird wieder in allen Fillen,
bis auf einen Faktor, dieselbe:

e= Z |k {Afr (k)AL (k) —A7* (k) A7(R)}-

Ob man allerdings die so definierte Strom- und Ladungsdichte
als elektrische Strom- und Ladungsdichte interpretieren kann,
das kann hier nicht entschieden werden, da dies von der Art,
wie das elektrische Feld eingefithrt wird, abhéangt. Dadurch, dass

man in allen Gleichungen p durch p — efc @ ersetzt, ist dies im
allgemeinen Falle nicht méglich, da man dann mit den algebraischen
Relationen, welche die 4;;  erfilllen miissen, falls f >1 1st, in
Schwierigkeiten geridt. Nur fir f = 1, wo die Spurbedingung (1.2)
wegfillt, gelangt man so zu einer widerspruchsfreien Theorie,
welche mit der von Proca diskutierten identisch ist.
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3. Verhdltnis der hier entwickelten Theorie zu Dirac’s relativistischen
Wellengleichungen3).

Dirac hat Differentialgleichungen angegeben, die in Spinoren-
Schreibweise folgende Gestalt haben:

pgxaxl;u.. %bgrv (31)
Pio Uiyl = =aghy (3.2)

Dabei hat a 2 k unpunktierte Indizes und 21— 1 punktierte
b 21 punktierte Indizes und 2k — 1 unpunktierte
k und ! sind ganze oder halbganze Zahlen.

a und b sind in punktierten und unpunktierten Indizes symmetrisch,
daher irreduzibel bei Lorentztransformationen, wo sie sich gemaéss
der Darstellung &, , 3 bzw. 9#;_3,; untereinander transformieren.
Fallsk +1—1=f ganz ist, so sind diese Gleichungen den Tensor-
gleichungen, dle wir betrachtet haben, gleichwertig. Alle Glei-
chungen mit vorgegebenem f besehreiben das gleiche Wellenfeld,
wobel die Aufteilung von f+ 1 in zweli Summanden den ver-
schiedenen, durch den Index (q) charakterisierten Méglichkeiten
im Tensorfalle entspricht.

Nimmt man insbesondere fiir a}# einen Spinor, der gleich-
viel punktierte wie unpunktierte Indlzes hat, d.h. k=1—1%, so
erkennt man, dass diese Grosse a mit dem Tensor 4,,  1identisch
ist. Man kann nédmlich mittelst der Paulischen Matrizen o%  je
einen unpunktierten und einen punktierten Index g,¢ in einen
Vektorindex k verwandeln. Der so entstehende Tensor ist dann
symmetrisch in allen Indizes und seine Spuren verschwinden,
da némlich die Spur &“*a,,= a* , eines symmetrischen Spinors
a,,= a,, verschwindet. Weiter geniigt er auch den Differential-
gleichungen (1.1) und (1.8). (1.8) folgt dabei aus der Spinor-
gleichung

Gx gt ... =0 (3.3)

OxA ...

welche durch Verjingung aus (8.1) entsteht; dabei muss wieder
beachtet werden, dass die Spur des symmetrischen Spinors b}#: -
verschwindet.

Aus a¢#--- bilde man nun neue Spinoren b@ geméss

(V) G#feer  pn0% (Efhen-
%b) #_p a’xﬁ...
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allgemein
b D i — poxp@i...
wbl D —p paet... (3.4)

(q) ist jeweils gleich der halben Differenz der punktierten und
unpunktierten Indizes und lduft daher von —f bis +f. ai

hat f punktierte und f unpunktierte Indizes und transformlert
sich nach der irreduziblen Darstellung der Lorentzgruppe 9, , ;. .
b@ 4% hat f+ q punktierte und f—g unpunktierte Indizes und
transformiert sich bei eigentlichen Lorentztransformationen nach
der irreduziblen Darstellung T9'fu Hq Bei Spiegelungen ver-

tauseht sich 5@ mit b9, Dle b(q) sind also, im Gegensatz
zu den B®@ irreduzible Grossen. Sie entsprechen Tensoren mit
(99 Indexpaaren, in denen der Tensor schief und selbstdual
1st gemaiss

geimpa o =Fl _ falls g0

—gikimpla - —F@ . falls ¢<0.

Bei Spiegelung vertauscht sich entsprechend F@ n:ut F9, Mittelst
der b@ kénnen wir ebenso wie mit den B@ f Energie-Impuls-
tensoren bilden, welche symmetrisch sind und der Kontinuitéts-

gleichung geniigen:
t(q-1) - b(q)* b( Q) 4 b*( 9 pldl 1 pla)* b(“Q) + b59* b(@)

| - 4 —g—1)* o & i * o .
4 ngé 1* b% N b(é L b,(sqa e b,(g'q;l) bg SeED) b% Akl b(éqg—l) .

Dabei soll iiber die nicht-angeschriebenen Indizes verjiingt werden
gemass:

* ) *Q"t’"' “d---
U= 5 8 B s -

Auf Grund der Gleichungen (3.4) folgt fiir #—1:
pé d t(éq‘;%)y: 0.

Da die Tensorformulierung und die Spinorschreibweise in
diesem Fall mathematisch #quivalent sind, folgt daraus, dass alle
Tensoren, die wir oben betrachteten, Lmearkombmatlonen ent-
sprechender Spinoren sind. Wir kinnen deshalb auf eine weitere
Diskussion der Gleichungen (8.4) verzichten und auf die Tensor-
theorie verweisen.
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4. Quantisierung der Feldtheorie.

Um den oben besprochenen Feldtheorien Teilchen zuordnen
zu konnen, miissen wir Lorentzinvariante Vertauschungsrelationen
zwischen den Feldgriossen aufstellen. Es geniigt, dies fiir die 4,4, .
zu tun, da dann diejenigen fiir die anderen Grossen durch Differen-
zieren daraus folgen. Da es sich hier um Theorien des kriiftefreien
Falles handelt, so ist es zweckmissig, die Vertauschungsrelationen
in vierdimensionaler Form aufzustellen, analog zu der von JorpaN
und Paurr beim ladungsfreien elektromagnetischen Felde ange-
gebenen Formulierung. Man hat dann den Vorteil, dass die
Lorentzinvarianz von vornherein gesichert ist. Die Vertauschungs-
relationen sollen zur Folge haben, dass die Energie einer ebenen
Welle ein ganzzahliges Vielfaches von |k,| = v/ k2+m? wird und
es soll iberdies die Gleichung

f= 1/i[H, f] | (4.1)

gelten fir alle Grossen, die die Zeit nicht explizite enthalten.

Im Falle f = 1 kann die so gestellte Aufgabe dadurch gelost
werden, dass man durch Einfithren longitudinaler und trans-
versaler Wellen zu jedem Wellenzahl-Vektor k; 2 f + 1 = 8 unab-
hangige "Amplituden einfiihrt und nur zwischen diesen Ver-
tauschungsrelationen fordert. Bei hoheren Spins scheint uns ein
entsprechendes Verfahren jedoch nicht mehr anwendbar, ohne
die Symmetrie des Problems vollig zu zerstéren, was einerseits
wieder die Beurteilung der Invarianz so gewonnener Vertauschungs-
relationen verunmoglicht. Man kann jedoch an Stelle solchen
Vorgehens Vertauschungsrelationen zwischen den 4;, = und den
A}, aufstellen, von welchen sdmtliche Gleichungen, denen die
A;. . geniigen, identisch erfiillt werden. Dadurch wird den Neben-
bedingungen (1.2) und (1.8) von selber Rechnung getragen, und
man erhéalt so die richtige Zahl unabhingiger Vertauschungs-
relationen.

Wir setzen daher als Vertauschungsrelationen fir den sym-
metrischen Tensor 4 (3;....%) an:

1i[A(4y. . i), A*(iy . ..i/)] = K {Z P(ir)) R(iyiy). .. R (i if)

1 : S ., : oy P T
——F7=D D R4 tm) ZP(4) B(1p4). .. Rt im') . oo B(ig147)} -
24+ —=5—1t>m - D(x). (4.2)

Hier ist 4 (v;) an der Stelle &+x/2, 4* (3;') an der Stelle é—=z/2 zu
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nehmen. Es bedeutet: 2 P(1;") die Summe iiber alle Permutationen
der Indices 4. R(iz%,) ist der Operator
| | 1 02

%? 0 &, Ty

R (iyiy) = 6 (4.8)

ipiy
welcher stets auf die invariante D-Funktion von Jorpan und
Paurr anzuwenden ist, welche wie folgt definiert ist:

1 |eikx+im(k)t eikx—iw(k)t

VI o i | *P

D(@)=Dr =13

D(x) genﬁgt der Wellengleichung

| 1D = %*D
-weilter gilt
0D
D(x,0)=0, (57) =6
0t /img

Da R(af) stets auf D(x) angewendet wird, welches der
Wellengleichung geniigt, so gelten folgende Relationen:

0 R («p) 0
e R(xp) e, =0, R(xp) E(By)=Elxy)

B (xo) = 3. (4.4)

- Den konstanten Faktor K in (4.2) hat man so zu wahlen, dass
die Eigenwerte der Ladung ganze Zahlen werden.

Die Vertauschungsrelationen (4.2) erfiillen nun in der Tat die
Gleichungen (1.1) bis (1.8) identisch und sie sind symmetrisch
in den gestrichenen und den ungestrichenen Indices, da tiiber
samtliche Permutationen der 4," summiert wird. Ihre Divergenz
1st null wegen (4.4). Um einzusehen, dass auch die Spuren ver-
schwinden, betrachte man zwei Terme aus der Summelgn in (4.2):

«) B(i,1) 2 P(i,) B(t3%)... R(3, 1), . . B(ig%f")
B) R(ixty) 2 P(i,) R(419). . . R(8 %). .. B(ist,")
Nun bilde man die Spur iiber (4;%,) und beachte die Gleichungen
(4.4). Man erhilt so aus
«) 32 P{,) R(4y9). .. R(4" 4,"). .. RB(1,9,)
B) 2 P(i,) R(4y4)...R(i,5,).. . R(¥1%,). .. R(t;;)

In beiden Ausdriicken kommen alle i,’ vor; hingegen fehlen 1,
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und ¢,. Man kann nun die R(3,%;) beziiglich der ibrigen ¢, in
beiden Ausdriicken in die gleiche Reihenfolge bringen. Da beide-
male sdmtliche Permutationen der ¢,” vorkommen, ergibt o bis
auf den Faktor 3 dasselbe wie B. Bildet man nun in

7) > P('i’k’) B(13%). .. R(‘if":f,)

die Spur iiber (2;%,) so erhélt man, wie man sofort sieht, das gleiche
(f=1)

2
Summanden, von denen beim Bilden der Spur einer das Dreifache
der anderen ergibt. Deshalb muss zur Erfillung der Gleichung (1.2)
der Faktor ;

Resultat wie aus ). In der Summelgmhaben wir nun f

vor der Summelf stehen.
>m

Wir miissen nun zeigen, dass die Gleichung %—f= [H, f] gilt,

sowle dass die Energie die richtigen Eigenwerte hat. Zu diesem
Zweck zerlegen wir die 4;;  wieder in ebene Wellen geméss (2.8).
Aus den Vertauschungsrelationen folgt, dass 4 (k) mit 4 (k) ver-
tauschbar ist, falls k, + k,. Es ist ebenso auch 4+ mit 4~ ver-
tauschbar. Fir vorgegebenes k; gibt es nun 2 f + 1 linear unab-
hangige Linearkombinationen der 4;} ;(k), die wir 4, heissen.
Die Vertauschungsrelationen der 4, mogen lauten:

[A,, 45 1="Fuu - (4.5)

Wir betrachten jetzt die 4, wieder in dem zu k, gehorigen Ruh-
system. Dort transformieren sich die 4, sowohl wie die A%,
nach der irreduciblen Darstellung ©#; der Drehgruppe, spannen
also einen Raum Ry, aus. Da die rechte Seite der Vertauschungs-
relationen (4.2) dieselben Relationen wie die A4, erfiillt, so hat
die Matrix f,., die Eigenschaft, dass sie die Vektoren X, in
R,,., abbildet auf Vektoren Y, = X f,.’, welche wieder einen
irreduziblen Raum aufspannen, welcher, da nicht alle Y,  null
sind, wieder 2f + 1 Dimensionen hat. Deshalb hat f, )/ 2f+ 1
von null verschiedene Eigenwerte. Jetzt wihlen wir die 4,
AY so, dass die durch sie vermittelte Darstellung unitéar wird.

Da die Vertauschungsrelationen bei Drehungen invariant
sind, so haben sie, bei geeigneter Normierung der 4, die Gestalt

[‘460 ’ A::’:I = 6(,0(0’ * (4'6)
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Die Energie ist ebenfalls drehinvariant und wird deshalb in diesen
A, geschrieben die invariante Einheitsform
2f+1

E (k) = Z|k\ C-A* A, (4.7)

Die in den Vertauschungsrelationen (4.2) auftretende Konstante K
15t nun so zu bestimmen, dass C =1 wird.

Nun ist nach (4.7)
“‘74[ A AL = EA* A

w w
w

falls C=1. Es muss deshalb auch gelten
Daraus folgt durch Vergleich mit (4.2)

1
—7T) R (1, %y)
Nl
2f+1

2 6‘-’:}9, 1; IZ P('i]c,) -R(Q:]_?:]_’) . e R ('i_f ?:f,)
t, k

- X P(4) R(43%). ..} D(2) =

D (z)

wodurch die Konstante K bestimmt ist.

Die Vertauschungsrelation haben jetzt in der Tat die Eigen-
schaft, dass aus ihnen folgt, dass die Eigenwerte der Energie einer
ebenen Welle ganzzahlige Vielfache von k, sind; denn fir die 4~
folgt auf genau die gleiche Weise das entsprechende. Diese lassen
sich durch 2 f + 1 Grossen B, darstellen, die die Vertauschungs-
relationen

(B,, B%] = (4.8)

erfiillen, wobei das Minuszeichen vom Minuszeichen in der Defi-
nition der D-Funktion herriihrt. Da nun jede, die Zeit nicht
explizite enthaltende Grosse f aus 4,-ei*t und B,-e-t®? linear
aufgebaut werden kann, so folgt die Gleichung

i.f.: [Es ﬂ
1

fir jedes f, da sie fiir 4, und B, zutrifft.

Damit ist gezeigt, dass die Vertauschungsrelationen (4.2) die
Losung der zu Anfang gestellten Aufgabe bilden.

Die Vertauschungsrelationen in Spinorform finden sich im
zwelten Teile, der den Fall halbzahliger Spins behandelt, wo wir
sie mit denjenigen fiir diesen Fall vergleichen.

2
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II. Halbzahliger Spin.
5. Feldgrissen und Wellengleichungen.

Die Felder, welchen sich Teilchen mit halbzahligem Spin
f(f=14,%,3%...) zuordnen lassen, kénnen natiirlich nicht durch
Tensoren dargestellt werden, wohl aber durch Spinoren (,,Halb-
tensoren’‘). In Spinor-formulierung sind dann die Theorien von
ganz- und halbzahligem Spin in vielem sehr #hnlich, wenn auch
charakteristische Unterschiede auftreten, welche insbesondere den
Bau der Energietensoren und der Vertauschungsrelationen be-
treffen. Sonst aber lassen sich die meisten Schliisse, welche wir
beim ganzzahligen Fall machten, auch auf die folgende Theorie
tibertragen, so dass wir uns hier kiirzer fassen konnen.

Damit die durch ein Spinorfeld beschriebenen Teilchen zu
einem halbzahligen Spin gehoéren, miissen die Spinoren eine un-
gerade Anzahl von Indices besitzen, wihrend im ganzzahligen
Falle die Indexzahl gerade ist.

Wir gehen daher von einem Spinor a4#:-- aus, der 2k unpunk-
tierte und 2 | — 1 punktierte Indices besitzt, wobei 2 k+21 —1=2 f
eine ungerade Zahl ist. k und [ sind dabei ganz oder halbganz.

aji--- soll der Wellengleichung 2. Ordnung geniigen:

Oajé:: =w"abs: (5.1)
wo # wieder eine charakteristische Wellenzahl bedeutet, welche

die Masse der Teilchen gemiss x» = —mﬁ—c—bestimmt. Weiter soll

a%%:-- in punktierten und unpunktierten Indices symmetrisch sein,
was auch so formuliert werden kann: es sollen simtliche Spuren
von a4 - verschwinden:

e;3050 =0, e&ali- =0 (5:2)
wobel ¢;, die schiefe Matrix (_{!) bedeutet. Weiter soll a}---
den Nebenbedingungen

g, 0ahs =0 (5.3)

geniigen. Diese bedeuten, dass die Spinoren p*¢at4--- und p; . a}% -
in punktierten und unpunktierten Indices symmetrisch sind.

Da ai%--- gegeben ist, wenn man weiss, wieviele punktierte
und wieviele unpunktierte Indizes gleich eins sind, so hat es
(2 k + 1) 2 I linear unabhiéngige Komponenten, die sich bel Lorentz-
transformationen nach der irreduziblen Darstellung & , 3 unter-
einander transformieren. Es ist nun wieder zu zeigen, dass auf
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Grund der Nebenbedingung (5.8) zu jedem Wellenzahlvektor
2f+ 1 linear unabhéngige ebene Wellen existieren. Zu diesem
Ziwecke begeben wir uns wieder ins Ruhsystem von k;. Dort
hat p’¢ die Form Fk, - 6’¢ was sich bei rdumlichen Drehungen wie
liy 6¢ transformiert. Ebenso transformiert sich a4#: - bei Drehungen
wie der Spinor a,s ., ;.. . *). Die Gleichung (5.8) lautet dann

=0 (5.32)

v

Eﬂa;a...ﬁ.ﬂ.
und sagt aus, dass der Spinor a’ symmetrisch ist in den Indices 4
und p, also in allen Indices. Im Ruhsystem ist daher a’4--- dqui-
valent einem in allen Indices symmetrischen Spinor a,,. ,s  vom
Rang 2k +21—1=2f und hat daher 2k +21=2f + 1 linear
unabhéngige Komponenten, die sich bei Drehungen nach der
irreduziblen Darstellung &; der Drehgruppe untereinander trans-
formieren. Damit ist gezeigt, dass der Spin, der dem Wellenfeld
zuzuordnen ist, f betrdgt. Falls » = 0 ist, existiert kein Ruh-
system, und diese Schliisse werden wiederum ungiiltig.

Die Differentialgleichungen (5.1) und (5.8) kénnen nun wieder
durch ein Gleichungssystem 1. Ordnung ersetzt werden:
ﬁ@a;'“,‘c... - xbﬁj_,d...
P 5.0
Psg b5l = as
wobei aus (5.8) folgt, dass bi#--- wieder ein symmetrischer Spinor
ist, der der Wellengleichung 2. Ordnung und der Nebenbedingung
(5.3) gentigt. Man kann daher alle Gleichungen mit festem k + [
durch Differentiation aufeinander zuriickfiithren, sie beschreiben alle
das gleiche Wellenfeld. Sei al%)4#--- derjenige Spinor a, fiir den k=1
ist, der also 2 k unpunktierte und 2 k — 1 punktierte Indices hat.
Er gentige den Gleichungen
pPeaO)is o =y p© i
¢ ’ (5.5)

0)$i... 0 id...
Py A =

b® hat 2 k punktierte und 2 k — 1 unpunktierte Indices. Aus a©
bilden wir nun den Spinor a® gemiss
p; 0O = g gD

ed... TE0...

und in gleicher Weise aus a® den Spinor a®. Diese Spinoren sind

-*) Siehe hiezu VAN DER WAERDENZ), Die gruppentheoret. Methode, S. 81.
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wegen der Gleichung (5.3) wiederum symmetrisch. Allgemein soll
gelten

Yid. .o _ 14 ..
pitagqa__’f —%a‘fga?,’f (5.6)
i TR SN 7 & ’
pj,‘l—' as:qg 6.)}‘.‘ =% aqu. ‘u

Wir erhalten so die Folge von symmetrischen Spinoren a©®, a®. ..
a¥—%), welche alle der Wellengleichung gentigen und bis auf a—%)
auch der Nebenbedingung (5.3) a@ hat f + ¢ + ¥ unpunktierte
und f—q—73 punktierte Indices. Ebenso bilden wir die Spinoren
b, .. bV =" gemiiss

irp@ad... (q+1) ig»...

14 brg... _%bg (57)
VAgs. .. _ 1. '

p;‘,tb(gg.-i.-.)z'u - %bng)ﬂ

wobel b f+ q + £ punktierte und f — q — % unpunktierte Indices
hat. Bei Spiegelungen wird b9 mit a@ vertauscht, so dass (5.6)
und (5.7) zusammen spiegelungsinvariant sind. Das Gleichungs-
system (5.5) d.1i. der Fall k=1, ist daher insofern ausgezeichnet,
als dieses Gleichungssystem schon fiir sich allein spiegelungsin-
variant ist. Im Gegensatz zum Falle ganzzahligen Spins existiert
kein Spinor a, der fiir sich allein spiegelungsinvariant wire.

6. Energie-Impulstensor und Stromvektor.

Wir kénnen wieder mittelst der @ und b@ Tensoren 2. Stufe
und Vektoren bilden, die als Energie-Impulstensoren und Strom-
vektoren gedeutet werden konnen. IHierbei zeigt sich jedoch, dass,
wie aus dem Falle f = } bekannt, die Energie nicht positiv definit
ist, dagegen ist dies fiir die Gesamtladung der Fall, und zwar
wegen der Nebenbedingung (5.8). Wir bilden zuerst den Vektor s

0) __ 0)*%pd... 0)»t... 0O*¥pd... LO)9 %...
i = afli % a5t 4 b0 e B

(6.1)

@ — 1 (0% pla—1) (@) pla—1)* (g—1) p(p* (g—D* p(@

80 = 1 (a@* =D 1 @ bir=D* L gfe=D pO* 1 g~1* p0)
a0 & AMET) = ¥ 0 .
(iiber weggelassene Indices verjiinge man wie in s{%). {2 geniigt

der Kontinuitidtsgleichung
pi 8 Sfiqf); =

wie man leicht nachrechnet, falls man beachtet, dass a,b* = — a?b,.
Es gibt daher f -+ % verschiedene, im kréftefreien Falle gleich-
wertige Weisen den Strom zu definieren. Wir wollen nun wieder
zelgen, dass alle diese Moglichkeiten zum selben Wert der Gesamt-
ladung f (si?l)-{—s;?;) dV fithren, welche in diesem Falle definit ist.
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Wir betrachten zuerst o{%: Da g;, der Kontinuititsgleichung
gentiigt, so 1st die Gesamtladung zeitlich konstant und das Integral
zerfillt mn die Summe tiber die Ladungsbeitrige der einzelnen
ebenen Wellen mit vorgegebener Wellenzahl und Frequenz. Wir
betrachten daher die Ladungsdichte einer ebenen Welle. Ist diese
positiv, so folgt, dass auch die Gesamtladung positiv ist. Die
ebene Welle betrachten wir in deren Ruhsystem. Dort sagt die
Nebenbedingung (5.8) aus, dass

oyl P _a2v P e s T
2a.. Ta...? 28 18... .
Es gilt deshalb im Ruhsystem die folgende Gleichung:

a® e g0 i — a(m*q... a(O)é--- ! (6.2)

a®*e-- ist aber das kon]uglert komplexe von a{®¢--- also hat

die rechte Seite von (6.2) die positiv definite Gestalt Za*a. Die

Ladungsdichte einer ebenen Welle besteht aber aus Summanden

vom Typus (6.2), also ist die Gesamtladung positiv definit.
Um den allgemeineren Fall

f (s + s@) avV

zu diskutieren, gentigt es wieder, eine bestimmte ebene Welle
vorgegebener Wellenzahl und Frequenz in deren Ruhsystem zu
betrachten. Wir wollen annehmen, die zeitliche Abhéngigkeit der
Amplituden a@, b@ sei e?*t; dann ist diejenige von a@* p@*
gleich e—*»f @ und b@D gehen nun aus a® durch g¢-malige An-
wendung des Operators 1/x% pi# hervor. Dieser wird aber im
Ruhsystem fiir ¢ und b© gleich 1 §4#, fiir a@* und b®* gleich
— 4 6*#, Daraus geht sofort hervor, dass die Gleichung gilt:

[ @+ s@)yav = [ (sQ+s2)av.

Damit ist gezeigt, dass sémtliche Vektoren s©, zur gleichen
Gesamtladung fithren. Die Lokalisierung der Ladung héngt jedoch
wieder von (q) ab. _

Wir kénnen weiter Spinoren bilden, welche Tensoren der
2. Stufe entsprechen, und die der Kontinuitétsgleichung gentiigen.
Diese kénnen wieder als Energie-Impulstensoren unseres Feldes
aufgefasst werden. Wir betrachten den Spinor

tg% o =2 1 (a(ﬂ)*pv a(O) a(f))pyt a(O)* € b(O)*pyi bf_lﬂ)___ bfiﬂ)pyi bg))*)
t(qg = 1 (a(q)* D, b(q—l) b(q——l) D, a%q)* i3 b‘(iq—l)* Diy agl)
— a(q) y pla—D* b(q)* j a%q—d) — aﬁ"'” s b%q)*
bl YO, )

L (6.8)
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(q)
ti B,y

geniigt den Gleichungen

iB 4a)
PG iy

=0, 97 . =0.

AB,ty
Man kann deshalb aus #@ den Spinor @@ bilden, gemiiss
(9 ey )] ’
@iqﬁ, iy % (tiqﬁ, f'y+ tiv, iﬁ) :
zugeordnete Tensor Ty,

_ ) iB i
Ty, = @gqﬁ,iygkﬁ o;”

Der @Z

Bty

1st symmetrisch in %! und gentigt der Kontinuitdtsgleichung
0T

().T,k

=0.

Ty, kann daher als Energie-Impulstensor des Feldes aufgefasst
werden. Man erkennt leicht, unter Zuhilfenahme der Fourier-
Zerlegung der Feldgrossen und indem man wieder die Existenz
eines Ruhsystems bentitzt, dass sdmtliche @@ zum gleichen
Wert der Gesamtenergie fiihren, sowie dass der Beitrag zur Energie
von ebenen Wellen, die sich mit et®#! indern, das entgegengesetzte
Vorzeichen hat wie der Beitrag der Wellen, die sich mit e-t«?
dndern. Es gibt also Zustéinde positiver und negativer Energie,
wie das aus der Dirac’schen Theorie des Elektrons bekannt ist.
Wir werden deshalb postulieren miissen, dass die dem Wellenfeld
zugeordneten Teilchen das Paulische Ausschliessungsprinzip er-
fiillen, damit mittels einer der Diracschen analogen Lochertheorie
die Energie positiv gemacht werden kann.

7. Die Matrizen u, (k), v, (k).

Die bis jetzt betrachteten Spinoren waren alle symmetrisch.
Sie sind deshalb gegeben, wenn die Anzahl der unpunktierten
und der punktierten Indices, die gleich eins sind, bekannt ist.
Man kann infolgedessen einen Spinor @}#::- mit 2 k unpunktierten
und 2! punktierten Indices, der in diesen symmetrisch ist, durch
eine Grosse A’ ersetzen, deren Indices 7, s angeben, wieviele der
punktierten und unpunktierten Indices eins sind. Es hat dann s
2k +1 Werte, r 21 +1 Werte. Wir haben, um eine Zuordnung
zwischen der Grésse 47 und dem symmetrischen Spinor at4--- zu
gewinnen, eine Matrix aufzusuchen, die von den Spinorindices
auf die Indices 7, s tiberfithrt. Man kann natiirlich auch einem
Spinor ohne besondere Symmetrieeigenschaften eine solche

Grosse Ai‘ zuordnen, die so erzeugte Abbildung ist jedoch nicht
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ein-eindeutig, da 47 nur den symmetrischen Teil des zugeordneten
Spinors bestimmt. Da nun ein Spinor ohne Symmetrieeigenschaften
sich nach einer Produktdarstellung der Lorentzgruppe trans-
formiert, welche 2 k mal den Faktor #, ,und 21 mal den Faktor

o, , enthalt, A’ aber irreduzibel ist, so bedeutet die Zuordnung
einer solchen Grosse Zu einem nlcht-symmetnschen Spinor das
Herausgreifen eines irreduziblen Teilraumes, und zwar desjenigen
mit der grossten Dimensionszahl aus der zum Spinor gehorigen
Darstellung. Man kann deshalb eine Abbildung, die von Spinor-
indices auf einen Index s fiihrt, mittels der Reduktlonstheorle
von Darstellungen auffinden.

Wir betrachten deshalb die Produktdarstellung der Dreh-
gruppe @y X% &, und &, werden durch ibre infinitesimalen
Transformationen ¢! und o!(k) charakterisiert. Die Produkt-
darstellung kann durch die schon von Dirac betrachtete Matrix

A (k) =3Zo">< ol (k)
i=1

gekennzeichnet werden. Die Matrix A4 (k) ist ndmlich mit sdmt-
lichen Matrices der Produktdarstellung vertauschbar. Bringt
man sie auf Hauptachsen, so zerfillt zugleich die Darstellung
?3, X 9y in irreduzible Bestandteile. Die Reduktion von &, X
ist damit auf die Hauptachsentransformation von A (k) zuriick-
gefithrt*). Eine Matrix, welche 4 (k) auf Hauptachsen bringt,
wurde schon von Dirac angegeben. Wir schreiben sie in der Form

_ g (tak+d) uy(k+ %))
U=@k+1) (vl(k) s

)

e (e d) ot (B)
U= @k %(«ﬂ (+3) u? (k))
)

Dabeil haben wir das Dirac’sche b, = %, (k+%) und a* = v* (k+3)
gesetzt; denn diese Matrizen erfiillen genau die gleichen Rela-
tionen, die fir u, (k), v* (k) gelten, falls man k durch k + % er-
setzt. Durchlauft k& alle halbganzen Zahlen, so erhilt man eine
Folge von Matrizen mit den folgenden Eigenschaften:

uy (k), uy (k) sind rechteckige Matrices mit 2k + 1 Zeilen
und 2k Spalten.

vy (), vy (k) sind rechteckige Matrices mit 2 k Zeilen und
2 k+1 Spalten. ' '

*) Siehe hiezu: H. CasiMig und B. L. vAN DER WAERDEN, Math. Ann. 111
(1935), S.1.
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Im Sinne des Matrixkalkiils lassen sich daher die folgenden
Produkte bilden:

v, (k) u" (k) Quadratische Matrix vom Rang 2k
1, () v (F) . o 2k 1
v,(k —3) v#(k) Rechteckige Ma,tux mit 2k + 1 Spalten
und 2k —1 Zeilen
ut(k) u’(k — %) Rechteckige Matrix mit 2k — 1 Spalten
‘ und 2k + 1 Zeilen.

Aus der Tatsache, dass die aus den #” und v# aufgebaute Matrix U
die Matrix 4 (k) auf Diagonalform bringt, folgen die Gleichungen:

wk() 0, (6) = (6 6% — 5%, () (— 1)2+2 |
vk (k) u, (k) = (s, (B — 3) + (B + ) o) (—1)2*
Dabei ist s#,(k) der den infinitesimalen Drehungen «* (k) zuge-

ordnete Spinor.
Weiter folgt

(7.1)

v, (%) w(3) = 4.,
v (k) u, (k )+’w”(k—%) v,(k—3$)=2k 8- (—1)2* } (7.2)
ub (k) v, (k) = 2k (— 1)28+1; v, (k) ut (k) = @k+1) (—1)2#+1

i (k) w, (b —3) = v+ (k—3%) v, (k)=0. (7.8)

Alle diese Gleichungen wurden im wesentlichen schon von Dirac
abgeleitet. Es werden aber dort die u,, v, nicht als Funktion von k
betrachtet (Dirac betrachtet speziell w* (k), v,(k) und w*(k+3) =
b’,v* (k + %) = a” fir festes k).

Fir unsere Zwecke sind nun die Gleichungen (6. 3) besonders
wichtig. Diese sagen ndamlich aus, dass die rechteckigen Matrices
uwh (k) w (k—%) und v*(k—3%) v*(k) in » und  symmetrische Spino-
ren sind. Man bilde nun die Operatoren

Btttz () = v (L) o (1) .. .v"25 (k) l

und

(7.4)
Prive--vag (k) = " (k) u* (k—%‘) .o URE (%) l

(R#e---* ist wegen (6.3) in allen Spinorindices symmetrisch.
Der Index ! kann 2k + 1 Werte annehmen und beziiglich dieses
Indexes dann R#e---% als Matrix mit einer einzigen Zeile aufgefasst
werden.

(P%e---*) ist ebenfalls in allen Spinorindices symmetrisch. Der
Index » kann 2 k+1 Werte annehmen und P?%---* kann beziiglich
n als Matrix mit einer einzigen Spalte aufgefasst werden.
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Nach (6.2) und (6.4) gilt

Pt k)R, 5, (k) =(2k)16,, l
Mit der Umkehrformel

R, o5, 1K) Pr#>(k)=>\Perm (y u...v) 6 84 5}{[

Mittelst des Operators P(k)”#-* kann man nun jedem symmetrischen
Spinor a,,, . vom Rang 2k eine Grosse 4, zuordnen, die nur
einen Index hat, der 2% + 1 Werte durchliuft. Umgekehrt kann
man mittelst B, (k),;  , jedem A, einen symmetrischen Spinor
zuordnen.

(7.5)

P19y, = YERI4, |
Rs, y,u...v(k) As= V(_znmay,u...v ] -

Wendet man die Operation P?#---* auf einen nicht symmetrischen
Spinor an, so ist diese Operation gemiiss (6.5) nicht mehr eindeutig
umkehrbar; man erhélt vielmehr den symmetrisierten Spinor
zuriick. Man kann deshalb P?#---» als Symmetrisierungsoperation
beniitzen.

Analoge Operatoren lassen sich auch fiir die punktierten
Indices definieren. Wir heissen sie

(7.6)

Pi, (), B, (7.7

Sie sind aus den u’, v# aufgebaut und geniigen denselben Glei-
chungen wie die Operatoren mit unpunktierten Indices, falls man
in den Formeln (7.1) bis (7.6) jeden Spinor C, durch C#, b* durch b;
ersetzt.

Man kann nun weiter mittelst der Produkte

vt (k) v (k+§)...v* ()
und

w* (k) uw (k—3%)...ue (l)

nur einen Teil der Indices eines Spinors in einen Index S ver-
wandeln, wodurch man eine Grosse erhalt, die Indices beider
Art besitzt. Umgekehrt kann dann eine solche Grosse wieder
In eine Grosse 45 verwandelt werden. Insbesondere kann man
Grossen bilden, die einen Spinorindex enthalten. Auf diese Weise
gelangt man zu den von Dirac angegebenen Gleichungen

pi'g,tpél_ —_ %wi'B

iB __ A
pi’g'l:u —"%"PQ

(7.8)
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Dabei ist ‘ '
WAT =TT, , (k) A1
yo i ]/2 l’v”’ () B‘

1/);1, w8 erfilllen die Nebenbedingungen

(l _ L) o A =0 .
P : (7.9)
T)Q(k—‘g)pi.g'l/) =0
Die 4 und B geniigen deshalb den Gleichungen
pie v, (k) A = gi v () B
ps, (1) B = %‘i wv, (k) A (7.9)

sowle den Nebenbedingungen:

0:(l—3) po o, (k) A = ve(k —3) p,,v'() B=0.  (7.10)

8. Quantisierung der Feldtheorie zu halbzahligem Spin f.

Wir wollen wieder, wie im Falle ganzzahligen Spins, Ver-
tauschungsrelationen zwischen den Feldgrossen aufstellen, welche
simtliche Gleichungen, denen die Feldgrossen gentigen, identisch
erfillen.

Um solche Relationen aufzustellen, gehe man von denen aus,
denen der oben definierte Spinor a{?  geniigt (m=f—%), der
nur unpunktierte Indices hat. Die Anzahl der Indices 1st die un-
gerade Zahl 2m + 1. al®  ist symmetrisch in allen Indices, die
Nebenbedingung (5.3) fallt Jedoch weg, was eine gewisse Verein-
fachung mit sich bringt.

Als Vertauschungsrelation zwischen a®™und a*™ setzen wir an:
* 1+
— (%, 7]
1

Es bedeutet [a, b]t = [a,b + ba]. D(x) ist wieder die nach (4.8b)
definierte, invariante Funktion. Auf der rechten Seite von (7.1)
steht eme ungerade Anzahl, niimlich 2 m+1 Differentiationen p,.

ZPerm (%eeaP) Pus... Py D). (8.1)



Relativ. Theorie kraftefreier Teilchen. 27

Die Relationen (8.1) haben, falls sie iiberhaupt erfiillbar sind,
zur Folge, dass die so beschriebenen Teilchen das Pauli’sche Aus-
schliessungsprinzip erfiillen; ein Umstand, der es ermoglicht,
durch eine ,,Lochertheorie’ die Energie positiv zu machen. Dass
die Relationen erfiillbar sind,.zeigen wir wie folgt:

Sei k;; der dem Wellenzahlvektor k, gemiss k;,= k;o},
zugeordnete Spinor. Dann lauten die Vertauschungsrelationen im
Impulsraum, falls man die Definition von D(x) beachtet

1 % s
T[aaﬁ...(k)ﬁaﬁé(k)]-l- |
= Ot/ SPerm (xf... )k, kg, ‘*1— (8.2)
8- m @ mt 1)l SRACILTEE

Daraus sieht man, dass Wellen, die zu verschiedenen k; gehoren,
die plus-Vertauschung null ergeben. Betrachten wir nun zwei zum
gleichen k; gehérige Wellen und zwar in deren Ruhsystem. Dort
st k,; =k, 8,;. Die rechte Seite von (8.2) ist deshalb nur dann
ungleich null, wenn a, ., das konjugiert-komplexe von aj, _; ist.
Die linke Seite ist deshalb niemals negativ, also muss es auch die
rechte sein. Die rechte Seite ist nun aber entweder null oder gleich

1 (2 m+1)“1(ki)21l (2 m—!—l)—l (8.3)

s g mh 8 ) 2 8

was positiv ist. (Es bedeutet S die Anzahl der Indices von a,; . (k)
welche gleich 1 sind.) Die Vertauschungsrelation haben daher die
gewiinschte Gestalt

[a;, oz]= 6, - konst.

Dass die Ladung auf Grund der Vertauschungsrelationen (8.2) die
richtigen Eigenwerte hat, folgt sofort, falls man die Ladung einer
ebenen Welle im Ruhsystem betrachtet. Sie hat dort die positiv
definite Form X'aa* (nach (6.2), wobei ein jeder Term gerade
2. (2m+1) mal vorkommt, welcher Faktor gemiss (8.8) durch
unsere Vertauschungsrelationen gerade kompensiert wird.

Falls der Spin ganzzahlig ist, kénnen wir die Vertauschungs-
relationen zwischen den im Abschnitt 8 definierten Gréssen a®

im Impulsraum ebenfalls in der Gestalt
1 3 .. 1
(ol (®), al} (0= C- b8 D Perm (g Y by g (84)

P 'k4

schreiben. Hier treten aber eine gerade Anzahl von Faktoren k;,
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auf, namlich 2f. Deshalb hat im Ruhsystem die rechte Seite
von (8.4) die Form
Lo\27—1
C - _i)
3

Dies ist positiv oder negativ, je nachdem k,/t =+ » ist. Man kann
deshalb die linke Seite von (8.4) nicht als Vertauschungsrelationen
mit Plus-Zeichen schreiben, da dann die linke Seite die positiv-
definite Gestalt
[a* a+ aa*]

annehmen wiirde, wihrend die rechte Seite positiv oder negativ
sein kénnte. Man kann demnach Teilchen mit ganzzahligem Spin
nicht nach Ausschliessungsprinzip quantisieren, ohne auf den
infinitesimalen Charakter der Vertauschungsrelationen zu ver-
zichten, sondern nur nach Bose-Statistik.*) Teilchen mit halb-
zahligem Spin kann und muss man dagegen nach Ausschliessungs-
prinzip quantisieren, damit die Energie positiv wird. Durch obige
Betrachtung schemnt der schon lange vermutete Zusammenhang
zwischen Spin und Statistik auf einfache Weise mathematisch
bewiesen. Dabel ist es iibrigens unwesentlich, dass die Spinoren
irreduzibel sind. Es wird lediglich die Existenz eines Ruhsystems
fiir jede ebene Welle, die Eigenschaften der D-Funktion und die
Tatsache, dass die Anzahl der Indices gerade oder ungerade ist,
je nach dem der Spin ganz oder halbzahlig ist, beniitzt. Das Auf-
treten der D-Funktion bedeutet dabei, dass die Vertauschungs-
relationen relativistisch invariant und infinitesimal sein sollen.

Aus den Vertauschungsrelationen (8.1) fiir die af kann
man solche fiir beliebige a@ und ¢@* welche punktierte und
unpunktierte Indices haben, gewinnen, indem man auf (7.1) die
Operation p*#/x anwendet gemiss

1 . 1 |
—1 —1)%* p & *
5 18 g 0T B ) [0 G 0 ]

oy 1
—p'ip ﬁ.n2m+2 (2m+1)!ZPerm(ocﬁ...)pa,.pai...pyﬂD(m).
Man erhédlt aul diese Weise Vertauschungsrelationen fir den
Spinor a™—m?.--, der 2m + 1 —n = p unpunktierte und n punk-
tierte Indices enthilt, mit seinem konjugierten folgendes '

l_[a(m—'n)il-..j.n a(m_n)*il"'iﬂ]z_—f——zﬂi—i %2ZZTE

R SO S R A 2m+1)! &= !
—_— A i it prd1 il plad
M—Mp—laﬂp—zﬂ O oy +r il prtiiL. it D(x) (8.5)

*) Siehe hiezu: W. PauLi, Annales Poincaré VI (1936) S. 147 ff.
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27, bedeutet dabei denjenigen Permutationsoperator der Indices
des darauffolgenden Summenterms, der mit méglichst wenig Ver-
tauschungen den Term symmetrisiert. Die Anzahl sémtlicher
Summanden ist dann gerade (2m + 1)!, wie es sein muss, da
durch die Differentiation diese Anzahl nicht verindert wird. Wir
kénnen mittelst der nach (7.4) bis (7.6) definierten Operatoren P?
unsere Relationen auch i der folgenden Gestalt schreiben:

nipl o -m
& —) (m—m)*eq)__ "~ * .
3 (Atm & SJ A,rm " q]_ (2 m+ 1)! Pﬁ.l...ﬂ.,n P;hqﬁ,n

1

a1 1

-Np .
;Ou =) Wm—p! "

o ol §il .. .phH1iit1, | p'nin D (z). (8.6)

Pup-+- p-up —lAp—1 My 1 Pp—i41 Hp

21,

Pi‘l'- By P:HL .

Auf dhnlich einfache Weise kinnen auch die Vertauschungs-
relationen zwischen den Gréssen a@ und b@* angegeben werden.
(Bei Spiegelung vertauschen sich a® und b@*) Man findet

1 o 1 r i .
S [g@hi---dp p@F v ) T (A—25) pd1 1 pde P2
. a . . S ﬂ b .00
) [ R ] (r+9)!i= g o
Ay $¥+1 s §hk+1 ir . .
pHe kle...pﬂk%oekﬂ...agg 6Mk+1...6MrD(m) (8.7)

Dabei bedeutet Xz; den gleichen Permutationsoperator wie
27, in (8.5).

Anhang. ﬂ
Bestimmung der Koeffizienten der Formel (8.5).
Wir betrachten einen Ausdruck der folgenden Gestalt

. 4 Aa o §in patiinti Mtn A+
pm#l...pumfdﬂrﬂéﬂrﬂ...6”””6%%}9n .o PR AEtn (1)
dabel ist r+n=7p

E+n=q sowie p+q=0L.
(1) 1st nun in den u;, g, Az, ix zu symmetrisieren. Wir haben
also eine Summe von Termen der Form (1) zu bilden, wobei die
Wi, Ai. .. geeignet permutiert werden. Wieviele Terme muss die
Summe mindestens enthalten, damit sie in den Indizes u;, 4;....
symmetrisch ist?

Wir gehen um dies zu entscheiden so vor: Wir symmetrisieren
zuerst in den w; bis u,. Was entsteht, ist dann in den u; bis p,
von selbst symmetrisch. Ebenso symmetrisieren wir die 4,
bis 1,. So erhalten wir k! r! Terme. Nun symmetrisieren wir die
Ay bis 1, sowie die }; bis j,, wodureh die y, , bis u,,, sowie die
Priqs bis gi, auch symmetrisiert werden. Dies gibt |

()2 - k!'r! Terme.
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Nun kann man die 4, bis 1, auf (¢) Arten in zwei Gruppen mit k

und 7 Indices einteilen. Dasselbe gilt fiir die punktierten j, sowie
fir die g beztiglich » und n. Wir erhalten infolgedessen

(mh2rl k! ()2 (9)2=p! q! (?) (?) Terme. (2)

Dann ist die so entstehende Summe voéllig symmetrisiert. Wir
heissen diese Summe S,. Die Symmetrisierungsoperation, die aus
(1) S, erzeugt, heissen wir z,. Geht man aus von der Summe:

2 Perm (6,) P, g, Puy s (3)

welche L! Terme enthalt und wendet darauf die Operation

1 -

—?{ P’k Hi Pl P4 (4)

g mal an, so gelangt man zu einer in den u;, g; und A, i Sym-
metrischen Summe, von der Gestalt

; S, - C,. (5)

Man tiiberlegt sich leicht, dass wegen der Entstehung von (5)
alle C, von null verschiedene, natiirliche Zahlen sein miissen. Wir
zeigen nun, dass sie alle gleich eins sind. Die Summe (3) enthélt
namlich L! Terme, die alle mit dem Faktor eins multipliziert sind.
Die Operation (4) #ndert diese Anzahl nicht, und kann auch zu
keinen Zahlfaktoren Anlass geben. Infolgedessen muss die Summe (5)
auch L! Summeanden enthalten. Da S, p!q! () (¢) Summanden
enthilt, so muss

%‘.Cnp!q! & (@ =L!

sein. Nun ist 2" (p,) (¢,) der konstante Term von

(14 z)*= .

(L+2)? (14+1/z)1= =

Dieser 1st aber (}), woraus folgt 2p!q! (8) () =L! also sind alle

C, = 1. Symmetrisiert man einen Ausdruck der Form (1) mittelst
der u,, u;, so bedeutet dies, dass man iiber alle Permutationen
der w;, ;... und der i,, j; summiert. Dann erhilt man (p!)2(q!)?
Summanden und das Resultat ist

(w)*(g—mn)!* (p—m)!* S,

weshalb bei Symmetrisieren mittelst der w,, u; der Faktor
1

(n1)?(g—n)! (p—n)!

vor jeden Summanden der Form (1) zu setzen ist.
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Zahl der unabhingigen Komponenten von Tensoren.

Ein in allen Indices symmetrischer Tensor der Stufe f im
k-dimensionalen Raume hat

(f+k—1

o 1) Komponenten.

Unser Tensor A4;;  ; der Stufe f ist symmetrisch in allen Indices
und gentigt den Gleichungen

Ai’i. kT 0 .
Diese sagen aus, dass ein symmetrischer Tensor der Stufe f— 2

verschwinden soll, d. h. es sind soviele Gleichungen als ein solcher
Tensor Komponenten hat. In unserem Falle hat der Raum 4 Di-

mensionen. A,; ;hat daher (i _g?’) Komponenten zwischen denen

noch (f "'53) Gleichungen bestehen.
Daher hat 4,

(-3 oo

linear unabhingige Komponenten.

Wegen der Differentialgleichung

0 d;x. . 4
0z,
sind fiir ebene Wellen in deren Ruhsystem die Amplituden null,

falls ¢, k... = 4. Die Dimensionszahl k reduziert sich deshalb in
diesem Falle auf 8. Daher existieren zu vorgegebenen Wellen-

zahlvektor k,
f+2 f

linear unabhéngige ebene Wellen.

Wir wollen nun noch die Komponentenzahl des Tensors BY,
bestimmen (a bedeutet die Gesamtheit von f— 2 Indices. In den
Indices (a k) ist B® symmetrisch, in [ml] schief. B® gentigt
den Gleichungen

=0

B un=0. 1)
B.(llii gm] T Bt(lla)n wy+ Bgz) Imk] = 0. 2)

Es sind nun die unabhingigen von diesen Gleichungen zu be-
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stimmen. Dazu schreiben wir die Gleichungen in abgekiirzter Form
aus, indem wir nur die Indices anschreiben. Weiter setzen wir

(23] =[1]  [14] = [4]
[81]=[2] [24]=[5]
[(12] = [3]  [34] = [6].

Damit erhalten wir

0 23] —a 82 —ad[4]=0
a1[8]—a8[1]—ad[5]=0 .
a2fl]—al[2]—adf6]=0 | 1)
a1[4]+a2[5]+a8[6=0()

a8 [5]—a26—ad[1]=0
a1[6]—a3[4—ad[2=0 ;
a2[4]—a1[5]—ad3]=0 2)
a1[]+a2[2+a8[8]—0(+)

Die beiden letzten Gleichungen in (1) und (2) die mit (+) bezeichnet
sind, konnen, falls ein Index unter den Indices a gleich 4 ist,
aus den drei anderen durch Addition gefolgert werden. Weiter
folgen aus (1) und (2), indem man in jeder Gleichung fiir a geeignete
Werte einsetzt durch Addition die Gleichungen

B 0

iia[ml] —

welche daher nichts Neues bedeuten. Sonst sind (1) und (2) unab-
hiéngige Gleichungen.
BW

ik...Im1]
zwelen schief, hat daher 6 - (i "22) Komponenten. Weiter gentigt
es (1) und (2). In sechs dieser Gleichungen laufen die (f — 2)

Indices @ von 1 bis 4. Diese Gleichungen bedeuten daher, dass
ein symmetrischer Tensor der Stufe f — 2 in 4 Dimensionen null

ist nun in f—1 Indices .symmetrisch und in

sein soll. Die Gleichungen ergeben deshalb 6 - (f 43_1) Neben-

bedingungen. In den beiden letzten Gleichungen die mit (+)
bezeichnet sind, laufen die Indices @ jedoch nur von 1 bis 8, falls
man nur unabhéngige Gleichungen betrachtet. Wir erhalten daher

2 (é) weitere Bedingungen. Darnach hat B®

(ool

linear unabhingige Komponenten.
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Felder mit Ruhmasse null.

Um den Fall der Ruhmasse null zu betrachten, gehen wir von
den folgenden Gleichungen aus:

Im Falle ganzen Spins:

O04;%...=0
vie. .. :0
0 x,

Daraus folgt:

0 Ay, 04y 4
oz,  ox  Dowak.
2
0 By is...1 —0 "
0z, '
Im Falle halben Spins:
p’tagt: =0 } o)
Pl =0
Aus diesen Gleichungen folgt
Qe o) "
Db(QO)A?:... iy O

Diese Gleichungen entstehen aus denen, die wir oben an-
gegeben haben durch Nullsetzen von x. Die 4,4, 4 al)%: -, b0 44

sollen sonst die gleichen algebraischen Eigenschaften haben, wie
im Falle » 0. Mittelst dieser so definierten Feldgrossen konnen
wir nun wieder einen Energie-Impulstensor und einen Strom-
vektor aufbauen. Der Energie-Tensor im ganzzahligen Falle ist

ﬁ"i'éleggmBg?a]m )
Die Energie
— [Ty dN =D k{45 () 450 + 457 R A7 ().} (6)
%
Im halbzahligen Falle ist der Stromvektor

%0 05 | WO*o... RO 4. ..
Sip= 3, O gy by b (7)

Mit der Gesamtladung

»

0= / (571 + 8508 7V. (8)
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Die Ausdriicke (6) und (8) konnen fiir gewisse Zustéinde ver-
schwinden, ohne dass die Feldgréssen null sind. Im Falle des
ganzzahligen Spins ist die Energie immer dann null, wenn der
Tensor 4;, ;= Ni;.  ; wie folgt dargestellt werden kann:

_Ock...lm+ OOzlm OCik...l

N. = o
tk...lm Omz omk Omm

(9)

wobei C, ;, die folgenden Gleichungen erfiillt:

dC;.. .

u k...l OJ 035';‘.

= 0’ Okk...l= 0

und in allen Indices symmetrisch ist. Dass die Energie dann null
ist, zeigt man am einfachsten dadurch, dass man C, ;in ebene
" Wellen zerlegt und in den Ausdruck fiir die Energie einsetzt.

Ebenso kann man, ohne die Energie zu #ndern, zu jedem
Felde A;, ; noch ein Feld N;, ; von der durch (9) definierten
Gestalt hinzuaddieren. In Analogie zur Elektrodynamik heissen
wir die Transformation

7
Aig. = Ai 1+ Niz

,, Kichtransformation. N;, ;ist dabei durch (9) definiert.

Hat A4;, , fIndices, so gibt es zu jedem Wellenzahlvektor
2 f + 1 linear unabhéngige ebene Wellen A4;; ;. Der Tensor C;;.
hat f —1 Indices, demgemass gibt es zu jedem Wellenzahlvektor
2 f — 1 linear unabhéingige ebene Wellen N;; ;. Betrachtet man
Zustiande als gleichwertig, die durch ,,Eichtransformation® aus-
einander hervorgehen, so gibt es demnach bei Ruhmasse null und
f>1 nur zwel linear unabhingige, wirklich verschiedene ebene
Wellen vorgegebener Wellenzahl und Frequenz.

In der gleichen Weise kann man zu den Feldern g{) -, p{7---
Spinorfelder n#:-:, mj -~ hinzuaddieren, ohne die Energie und die
Ladung zu &ndern. Dabei sind nf::-, m} - von der Gestalt

GOt S B 5 v s

M= Pady AP Ayt phdy e
C? hat dabel je einen punktierten und einen unpunktierten Index
weniger als a®, o« je einen punktierten und einen unpunktierten

Index weniger als b©®. Beide sind symmetrisch und geniigen den
gleichen Gleichungen wie a® bzw. b©®. Daraus folgt, in gleicher
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Weise wie im Falle ganzzahligen Spins, dass, falls man zwischen
Zustianden, welche durch die ,,Eichtransformation®’

05—
)i... Aoew (0
b:v... _E_m_by

auseinander hervorgehen, welche also zur gleichen Energie und
Ladung gehoren, nicht unterscheidet, nur zwel wirklich ver-
schiedene ebene Wellen vorgegebener Wellenzahl und Frequenz
existieren. (Im Falle des Spin 14 fallt natiirlich die Eichtrans-
formation weg.)

Aus den BY und den a©@, b© kann man nun wiederum neue
Grossen B9, @, b@ bilden. Mit diesen konnen jedoch keine
physikalisch brauchbaren Energie-Tensoren aufgebaut werden,
well die zugehorige Energie zufolge der Wellengleichungen identisch
verschwindet. Interessant sind hingegen diejenigen Spinoren,
welche nur eine einzige Indexsorte besitzen und durch Differen-
tiation aus dem 4;; ;zugeordneten Spinor bzw. aus a©@, b©@ durch
Differentiation gewonnen werden geméss

a’aﬁ.. py,u pgv a(());uv . ; (10)

Diese Grossen sind ,,elchmvarlant und verschwinden, wenn
Ladung und Energie verschwinden. Man kann deshalb die Theorie
mit Ruhmasse null dadurch quantisieren, dass man nur zwischen
diesen eichinvarianten Feldgrossen die folgenden Vertauschungs-
relationen fordert

1. .
1% B al k,ZPerm ;) Doy z,... Pagi D () (11)

dabei 1st das + oder — Zeichen zu nehmen, je nachdem k ungerade
oder gerade ist. Da die Theorie drehinvariant ist, und alle Fourier-
komponenten vertauschbar bzw. antivertauschbar sind, so kann
die Widerspruchslosigkeit der Vertauschungsrelationen leicht ein-
gesehen werden, indem man eine ebene Welle in der #-Richtung
betrachtet. Wir wollen hier aber auf die sehr einfachen Beweise
verzichten. Aus den ,,eichinvarianten‘ Feldgrossen konnen nun
gemiss (10) wieder alle anderen Feldgrissen, bis auf eine Eich-
transformation, durch Integration zuriickgewonnen werden, ins-
besondere die den Energie-Tensor bildenden Grossen a©®, b©
und der dem Tensor 4,  ; entsprechende Spinor. Da die Gesamt-
energie und die Gesamtladung eichinvariant sind, so geniigen
deshalb die Vertauschungsrelationen (10) um die Eigenwerte dieser
Grossen zu bestimmen.
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Da die Energie- und Ladungsdichte aus den a©@, b©) bzw.
aus Bff};, . aufgebaut sind, so folgt daraus, dass diese Grossen
ausser im Falle des Spins 0, 1 und 1 nicht eichinvariant sein kénnen,
wodurch also die kleinen Spinwerte ausgezeichnet sind.

Spezialfille als Beispiele.

Es sollen hier kurz einige Formeln der hier entwickelten

Theorie zusammengestellt werden, welche sich auf die Spezialfille

= 3/, und f = 2 beziehen. Fiir den Fall f = 1 verweisen wir auf
die angefithrte Literatur.

= 3/,. Hier lauten die Gleichungen in Spinorform

it it. 0 i
prral,=nbi"; g,p %al;=0
it __ T . ui it __
Die Vertauschungsrelationen nehmen die Gestalt an

1 . 1 ; : ; :
— (038 @)= g [Pia OF O+ Pag O 4 Pig O 05+ 13504

1 . .
e {PiaPea D" ® + Di 5 Pie P**} D(@).

Betrachtet man ebene Wellen, die sich in Raum und Zeit wie
etkzriot gndern, so bedeuten die Feldgleichungen das Bestehen
der Relationen

k?2—w?4 %x2=0
w—k
w+k

al = a? i : a?, =al
21 11 (D"—‘k 12 22

Q305 Q1;, U39, @, kKOnnen dann al.s dl.e vier u.nab.hanglgen .Amph
tuden betrachtet werden, welche die vier Polarisationen bezeichnen.

f=2. Hier méchten wir nur die Vertauschungsrelationen
zwischen den 4,; angeben:

i[A“c, ;k’]: ¥ (Rm‘s Byw+ B;wByy—% B,y Ri’k’) D(m)

Der Faktor } der rechten Seite ist so gewihlt, dass die Spur iiber
v, k k" auf der rechten Seite gleich (2f+1)D=5-D wird.
(Man beachte, dass R, Ei;= R;; B = 3).
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Spezielle Darstellung der u* und v”.

Sei « ein Index, der angibt, wieviele Indices eines Spinors
eins sind und der von null bis 2k — 1 lduft, f ein ebensolcher
Index, der von null bis 2 k lguft. Falls nun k eine ganze Zahl ist,
setze man

Uy (k)ﬁoc= ]/B 051 g 'U;ﬁ(k) = l/ﬁl_ Opt1, 4
Uy (K) g = Y2 k— B 65, 02 (k) =712k —ad,,

falls k halbganz, setze man

’u’}lﬂoc (k) = ]/E 5,8—1,0; V1,08 (k) = ]/0C +1 aoc-l-l, B
ugm(k) =VY2hk—B0;, Uy, = ]/2 k—ad,,
Die mit Hilfe dieser Darstellung sich gemiss
p* (k) v, (k) = (k 64— s¥ (k)) (— 1)2++?

ergebende Darstellung der Lorentzgruppe ist mit derjenigen bei
VAN DER WAERDEN identisch.
Dabei ist in der Bezeichnung von vAN DER WAERDEN

A, =81, A,= s, A, = s'?
J="k J+M=8.

und

Diese Arbeit wurde unter der Leitung von Prof. W. PauLi
ausgefiihrt; ich méchte thm fiir viele wertvolle Anregungen meinen
besten Dank aussprechen.

Zirich, Physikalisches Institut der E.T.H.
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