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Studie über die Abbildung" der Zusammenstösse zwischen Gruppen
elastischer Kugeln im Gesehwindig-keitsraum

(Ableitung des Maxwell'schen Geschwindig-keitsverteilungssatzes)
von J. R. Peter (Basel)

(22. VIII. 38.)

Inhalt. Ausgehend von einer Untersuchung über die Abbildung einer Gesamtheit

von Zusammenstössen zwischen elastischen Kugeln, die zwei verschiedenen
Geschwindigkeitsbereichen zugehören, im Geschwindigkeitsraum, wird eine
geometrische Ableitung des MAXWELL'schen Geschwindigkeitsverteilungssatzes
für ein Gemisch von zwei idealen Gasen entwickelt. Im Anschluss daran wird eine
neue Berechnung der Funktionaldeterminante der Stossgleichungen gegeben und
festgestellt, dass die von der Literatur übernommene, auf Boltzmanns
„Vorlesungen über Gastheorie" zurückgehende geometrische Ableitung dieser
Determinante unrichtig ist.

I. Einleitung.

Für die theoretische Behandlung der aus einer grossen, aber
endlichen Zahl in ungeordneter Bewegung befindlicher, diskreter
Teilchen bestehenden mechanischen Systeme, mit denen sich die
kinetische Gastheorie zu befassen hat, reicht die rein mechanische
Betrachtungsweise nicht aus und muss durch statistische Elemente
ergänzt werden. Die in der „elementaren" Gastheorie befolgte
Methode ist in ihren Grundzügen die folgende. Die Teilchen eines
betrachteten Systems werden in eine sehr grosse Zahl von Gruppen
aufgeteilt, welche bestimmten kleinen, aber endlichen Raum-, Ge-

schwindigkeits-, Impuls- oder Energie-Bereichen entsprechen,
und in jeder dieser Gruppen wird Gleichverteilung der Teilchen
auf den gegebenen Bereich angenommen. Diese Annahme der
Gleichverteilung stützt sich auf die Ungeordnetheit der Bewegung
und wird deshalb um so besser zutreffen, je grösser die Zahl der
auf einen Bereich entfallenden Teilchen ist. Durch die weitere
Annahme, dass die Teilchenzahl von Gruppe zu Gruppe sich stetig
ändere, wird das Diskontinuum der Teilchen in ein Kontinuum
der statistischen Bereiche umgewandelt, in welchem an Stelle
der Lage-, Geschwindigkeits-, Impuls- oder Energie-Koordinaten
der einzelnen Teilchen die aus der angenommenen Gleichverteilung
ableitbaren Koordinatenmittelwerte der Bereiche treten. Auf
dieses Kontinuum ist nun die Infinitesimalrechnung anwendbar:
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Die sehr kleinen Bereiche der grosse Partikelzahlen aufweisenden
Gruppen, wie auch diese Zahlen selbst, werden in der Form von
Differentialen geschrieben und dienen einerseits der Summen- und
Mittelwertbildung, d. h. der Berechnung der makroskopischen,
thermodynamischen Zustandsgrössen aus den mikroskopischen,
mechanischen Bestimmungsgrössen, und sind anderseits —¦ das

gilt wenigstens für die Geschwindigkeitsbereiche — auch selbst
Untersuchungsobjekt dort, wo die gegenseitigen Zusammenstösse
der Moleküle in die Untersuchung einbezogen werden (Bestimmung
der Geschwindigkeitsverteilung, der Stosszahl). Trotz den
Erfolgen der Theorie ist indessen nicht zu übersehen, dass die auf
der angegebenen Basis gehandhabte Infinitesimalrechnung nur
ein Näherungsverfahren darstellt, da die vorausgesetzte Stetigkeit
in der Änderung der Teilchenzahl von Gruppe zu Gruppe bei
endlichen Teilchenzahlen nicht streng erfüllt sein kann. Zusammenfassend

lässt sich sagen, dass bei der Anwendung der geschilderten
Methodik in der kinetischen Gastheorie von den folgenden drei
Voraussetzungen ausgegangen wird: 1. Die Zahl der auf einen
statistischen Bereich entfallenden Moleküle ist gross. 2. Sie ändert
sich von Bereich zu Bereich nur wenig. 3. Die Bereiche selbst
sind klein gegenüber dem gesamten Variabilitätsgebiet der
betrachteten Variabein.

Die vorliegende Arbeit hat zum Ziel eine von infinitesimalen
Bestandteilen freie, geometrische Ableitung des Maxwell' sehen

Geschwindigkeitsverteilungs-Satzes für ein Gemisch von zwei
idealen Gasen auf der Grundlage des Stosszahlansatzes. Ein, wie
in Abschnitt V gezeigt werden wird, allerdings unzulänglicher
Versuch einer geometrischen Ableitung dieses Satzes ist bisher einzig
von L. Boltzmann unternommen worden. Die spätem Bearbeiter
des Themas haben ihre Betrachtungen auf einheitliche Systeme
beschränkt und sich mit der Ableitung für ein binäres Gemisch
nicht mehr befasst. In allen diesen Arbeiten ist die oben dargestellte

infinitesimale Betrachtungsweise massgebend. Indessen
ist nicht einzusehen, warum die infinitesimale Auffassung der
Geschwindigkeitsbereiche, die wohl für Summation und Berechnung
von Mittelwerten Vorteile bietet, weil sie die Anwendung der
Integralrechnung erlaubt, sich auch für Untersuchungen über die
Zusammenstösse zwischen Molekülgruppen „hervorgehobener Art"
eignen soll, wo Transformationen einzelner Geschwindigkeitsbereiche
zur Behandlung kommen. Hier wird vielmehr der endliche Charakter
der Geschwindigkeitsbereiche zur Geltung gebracht werden müssen.
Diese Überlegung bildet den Ausgangspunkt der Studie. Die
Moleküle des binären Gasgemisches werden zur Vereinfachung
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der Darstellung als vollkommen elastische Kugeln betrachtet.
Den Ausführungen wird dadurch eine geometrische Form gegeben,
dass die Komponenten der Geschwindigkeiten als cartesische
Koordinaten von „Geschwindigkeitspunkten" aufgefasst werden,
deren Abstände vom Koordinatennullpunkt nach Grösse und
Richtung den Geschwindigkeiten gleich sind. In dem durch das

Koordinatensystem definierten „Geschwindigkeitsraum" stellen
sich die Geschwindigkeitsbereiche nun als Raumteile dar.

II. Die in vorgegebener Zentrilinienriehtung erfolgenden Zusammenstösse

zwischen zwei Gruppen elastischer Kugeln werden im Geschwindig¬
keitsraum abgebildet.

1. Geometrische Formulierung des Stosses von Kugeln gegeneinander

Die vollkommen elastischen, glatten und quasi-starren, in
geradliniger Bewegung befindlichen Kugeln der einen Gruppe (I)
mögen die Masse mx, die der andern Gruppe (II) die Masse m2
besitzen. Das Verhältnis der Massen sei mx:m2= a : b, wobei
a > b. Ausser durch die Masse sollen sich die Kugeln der beiden
Gruppen auch dadurch unterscheiden, dass sie verschiedenen
Geschwindigkeitsbereichen angehören. Um diese festzulegen,
orientieren wir ein rechtwinkliges E, H, Z-Koordinatensystem, das

zur Definition des Geschwindigkeitsraumes dient, derart, dass die
Z-Achse die vorgegebene Zentrilinienriehtung besitzt, teilen durch
senkrecht zu den Koordinatenachsen gelegte Ebenen zwei mit I
und II bezeichnete quaderförmige Räume ab und weisen die
Geschwindigkeitspunkte der Kugeln aus Gruppe I dem ersten, die
der Kugeln aus Gruppe II dem zweiten Quader zu. Die beiden
Rechtkante mögen mindestens eine zur iï-Achse senkrechte
Ebene als Schnittebene gemeinsam haben, so dass die Zeichnung
der nachstehenden Figur möglich wird, in der die Rechtecke I
und II den Schnitt einer dieser Ebenen durch die Rechtkante I
und II darstellen. Bezüglich der Lage der Kugeln im Raum
(X, Y, Z-Koordinatensystem) sei angenommen, die Kugeln seien
derart vergesellschaftet, dass Zusammenstösse in der vorgegebenen
Zentrilinie dauernd möglich sind.

Bei jedem derartigen Zusammenstoss einer Kugel aus Gruppe I
mit einer Kugel aus Gruppe II wird gleichzeitig je ein
Geschwindigkeitspunkt aus Quader I und II disloziert. Sind
£i> Vi> fi die Koordinaten des Geschwindigkeitspunktes in
Quader I, |2, rj2, £2 die des Punktes in Quader II, so werden
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die Orte der beiden Punkte nach dem Stosse bestimmt durch die
Stossgleichungen

t t j. a — b 26
A h, m ili, A Ci+ ,2,a + b

2a
a + b

a — b
*2 — ?2> % — %; C2 — r ti ;t tîia + b a + b

(1)

in denen die gestrichenen Variabein die Koordinaten der
Geschwindigkeitspunkte nach dem Stosse darstellen. Auf geometrischem
Wege findet man die Orte der beiden Punkte nach dem Stosse,
indem man die Verbindungsstrecke der Punkte vor dem Stosse
im umgekehrten Verhältnis der Massen der zugehörigen Kugeln
teilt, durch den Teilungspunkt eine Ebene senkrecht zur Zentrilinie
des Stosses legt und die Geschwindigkeitspunkte an dieser Ebene

SBka S

As/ Bs AR B\\A b

l,

spiegelt. Die Punkte A und 8 der Figur z. B. gehen so über in die
Punkte As und SA, welche als Abbildungen der erstem bezeichnet
werden mögen, ihre Konstruktion als Abbildungsverfahren. Der
erste Teil dieses Abbildungsverfahrens, die Konstruktion der
Spiegelebene, ist als geometrische Hilfsoperation aufzufassen;
die Spiegelung selbst ist eine Abbildung des Stossvorganges.
Die Geschwindigkeitspunkte bewegen sich nämlich bei einem
Zusammenstoss der zugehörigen Kugeln während der sehr kurzen
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Dauer des Stosses in Richtung der Zentrilinie, die erste Hälfte
des Weges in beschleunigter, die zweite in verzögerter Bewegung
zurücklegend, bis sie als Bildpunkte ihre neue Ruhelage erreicht
haben. Da in den folgenden Untersuchungen die Zentrilinienriehtung

bzw. das S,H, Z-Koordinatensystem unverändert
beibehalten wird, ist das Verfahren zur Abbildung zweier Punkte A
und S ausreichend bestimmt durch den Doppelausdruck
„Spiegelung des Punktes A bezüglich des Punktes S" und „Spiegelung
des Punktes S bezüglich des Punktes A", sofern das
Teilungsverhältnis der Strecke AS bekannt ist. Um dieses ebenfalls in die
Formulierung einbeziehen zu können, übertragen wir die
Gruppenbezeichnung der Kugeln auf ihre Geschwindigkeitspunkte und
sprechen von der „Spiegelung eines Punktes der ersten Gruppe,
A, in bezug auf einen Punkt der zweiten Gruppe, S, und
umgekehrt". Oder aber wir sprechen von einer „Spiegelung des
Punktes A bezüglich des Punktes S, gemäss dem (Teilungs-)
Verhältnis b : a (der Strecke ÄS)" und von einer „Spiegelung des
Punktes S bezüglich des Punktes A, gemäss dem Verhältnis a : b'\
Die gegebene Formulierung, durch die der einheitliche
physikalische Vorgang des Stosses in zwei gesonderte geometrische
Operationen aufgeteilt wird, ermöglicht die folgenden Weiterungen.
Statt nur den Punkt S bezüglich des Punktes A zu spiegeln, kann
man z. B. alle Punkte der Strecke RS in bezug auf den Punkt A
spiegeln. Diese Operation wird als „Spiegelung der Strecke RS
in bezug auf den Punkt A" bezeichnet. Man kann auch umgekehrt
den Punkt S in bezug auf alle Punkte der Strecke AB spiegeln:
„Spiegelung des Punktes S in bezug auf die Strecke AB". Von
der Strecke kann man zum Flächenstück, vom Flächenstück zum
Körper übergehen und kommt so dazu, von der Spiegelung eines
Punktes, einer Strecke, einer Figur, eines Körpers in bezug auf
einen Punkt, eine Strecke, eine Figur oder einen Körper zu sprechen.
Die Spiegelung ganzer geometrischer Gebilde in bezug aufeinander
hat folgende Bedeutung. Da bei diesen Spiegelungen jeder Punkt
des einen in bezug auf jeden Punkt des andern Gebildes gespiegelt
wird, entsprechen die als Resultat der Spiegelungen entstehenden
Abbildungen der maximal möglichen Raumbeanspruchung der
Geschwindigkeitspunkte, die aus diesen Gebilden beim Zusammen-
stoss der zugehörigen Kugeln in Richtung Z disloziert werden.

2. Grössenbeziehung zwischen Original und Abbildung im Geschwin¬

digkeitsraum.
Aus den Gleichungen (1), welche das vorstehend geometrisch

formulierte Verfahren der Punktabbildung analytisch definieren,
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lassen sich die nachstehenden Angaben über Lage und Grösse
der Abbildungen von in bezug aufeinander gespiegelten
geometrischen Gebilden gewinnen (siehe Figur).

Zur Z-Achse senkrechte Strecken und ebene Figuren werden
bei der Spiegelung bezüglich eines Punktes durch blosse
Parallelverschiebung, d. h. unverändert, abgebildet. Infolgedessen genügt
es, nachstehend die Spiegelung von Punkten und von zu Z parallelen
Strecken zu untersuchen. Jede Spiegelung bezüglich eines Punktes
ist aequivalent einer Spiegelung, die in bezug auf die senkrecht
zu Z durch den Punkt gelegte unendliche Ebene oder irgendeine
in dieser Ebene liegende Figur erfolgt. Jede Spiegelung in bezug
auf ein geometrisches Gebilde, das nicht in einer zu Z senkrechten
Ebene liegt, kann ersetzt werden durch eine Spiegelung, die sich
auf den unendlichen Teil des Raumes bezieht, der zwischen den
zwei zu Z senkrechten Ebenen liegt, die das Gebilde einschliessen
und es berühren, oder auf irgendein anderes geometrisches Gebilde,
das zwischen diesen Ebenen liegt und sie berührt. Daher kann
die Betrachtung auf Spiegelungen beschränkt werden, die in bezug
auf Punkte und auf zu Z parallele Strecken erfolgen.

Die Spiegelung einer zu Z parallelen Strecke l2 in bezug auf
einen Punkt A, bzw. eines Punktes S in bezug auf eine zu Z parallele
Strecke lx, gemäss dem Verhältnis a : b, liefert als Abbildung eine

zu Z parallele Strecke von der Länge l2 bzw. lx. Die

gemäss dem Verhältnis b : a erfolgende Spiegelung der Strecke lx

in bezug auf den Punkt S, bzw. des Punktes A in bezug auf die
Strecke l2, liefert als Abbildung eine zu Z parallele Strecke von

der Länge r-l, bzw. L. Wird L in bezug auf h gemäss& a+i l a+b * * & j. e>

Verhältnis a:b gespiegelt, so entsteht als Abbildung von l2 eine
in dessen Verlängerung liegende Strecke von der Länge (2)

l2 + ——jr- lx ; wird lx in bezug auf l2 gemäss dem Verhältnis
ò : a gespiegelt, so ergibt sich als Abbildung von lx eine in dessen

Verlängerung gelegene Strecke von der Länge (3) lx + l2.

Die Abbildungen der in bezug aufeinander gespiegelten Rechtecke,
bzw. Rechtkante II und I sind Rechtecke bzw. Rechtkante von den
Längen (2) und (3) und den Höhen h2 und hx bzw. den
Querschnitten F2 und Fx der abgebildeten Rechtkante.

Für die Abbildungen beliebiger Körper lassen sich allgemeine
Volumformeln nur aufstellen, wenn die Oberfläche der Körper
von Parallelen zu Z höchstens zweimal geschnitten werden kann.
In diesem Falle erhält man für die gemäss dem Verhältnis a : b
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erfolgende Abbildung eines Körpers II vom Volumen F2, dessen
Projektion auf eine zu Z senkrechte Ebene den Flächeninhalt F2

besitzt, das Bildkörpervolumen —,- F2 H——r- F2lx, sofern die

Spiegelung sich auf den unendlichen Teil des Raumes bezieht,
der zwischen zwei zu Z senkrechten Ebenen vom Abstand lx
eingeschlossen ist. Erfolgt die Spiegelung gemäss dem Verhältnis
b : a, so ist das Volumen der Abbildung des gleichen Körpers

~^+T ^2 + "TTT F2 lx. Wird ein anderer Körper, I, vom Volumen

Vx, der zwischen den genannten Ebenen eingeschlossen sei und
dessen Projektion auf eine dieser Ebenen den Flächeninhalt Fx
habe, gemäss dem Verhältnis b : a gespiegelt, in bezug auf den
Körper II, bzw. in bezug auf den unendlichen Teil des Raumes,
der von zwei zu Z senkrechten, den Körper II einschliessenden
Ebenen vom Abstand l2 begrenzt wird, so ergibt sich das Volumen

des Bildkörpers von I, der vorigen Formel entsprechend, zu
a~b v L JJL v i i\

Aus den eben gegebenen allgemeinen Ausdrücken lässt sich
eine bemerkenswerte Folgerung ziehen : Das Produkt der Volumina
von zwei in bezug aufeinander gespiegelten Körpern ist im allgemeinen
kleiner als das Volumprodukt ihrer Bildkörper, nie grösser. Es ist

/ a-b T7 2a T, ,\ / a-b T, 2b t-, \

' v,v2- "

(ffl-ft)2 + 4ob^L^L 2(o_ft) (F±± Fx

(a + by + (a + b)* \v2 + vx

Daraus ergibt sich, dass die Spiegelung zweier Körper in bezug
aufeinander im allgemeinen nicht umkehrbar ist, d. h. es ist nicht
möglich, durch Spiegelung der Bildkörper in bezug aufeinander
zu den ursprünglichen Körpern zurück zu gelangen. Nur in einem
speziellen Falle wird obige Ungleichung zur Gleichung und die
Spiegelung reversibel, dann nämlich, wennF,^ =F1undF2 l2 =F2,
d. h., wenn die abgebildeten Körper gerade Prismen darstellen,
deren Grundflächen zu Z senkrecht stehen, und wenn überdies
a b ist.

k b\Al.

x) Die Abbildungen von Körpern, die von Parallelen zu Z in mehr als zwei
Punkten geschnitten werden, haben ein grösseres Volumen als diese Ausdrücke
angeben, da die konkaven Stellen bei der Abbildung ganz oder teilweise ausgefüllt
werden.

38
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Der Fall a — b zeigt folgende Besonderheit. Die Abbildung
eines geometrischen Gebildes in bezug auf einen Punkt ist gleich
der Projektion des Gebildes auf die senkrecht zu Z durch den

Bezugspunkt gelegte Ebene. Daraus folgt: Die Abbildung einer
zu Z parallelen Strecke, einer zu Z parallelen ebenen Figur, eines

Körpers in bezug auf einen Punkt ist ein Punkt bzw. eine Strecke
bzw. eine ebene Figur. Die Abbildung eines Punktes in bezug auf
eine zu Z parallele Strecke ist gleich dieser Strecke. Die Spiegelung
eines Körpers in bezug auf einen andern Körper ergibt, unabhängig
von der Form des einen wie des andern Körpers, stets ein gerades
Prisma, dessen Grundflächen zur Spiegelungsrichtung senkrecht
stehen. Im besonderen liefert die gemäss dem Verhältnis 1 : 1

durchgeführte Spiegelung unseres Rechtkants II vom Volumen l2F2
in bezug auf das Rechtkant I vom Volumen lxFx als Abbildung
ein Rechtkant lxF2, und die Abbildung von Rechtkant I in bezug
auf das Rechtkant II ist ein Rechtkant l2Fx.

3. Finfluss einer Lageveränderung abgebildeter Rechtkante auf ihre
Abbildungen.

Bei einer Verschiebung des einen oder andern der beiden
Rechtkante I und II, oder beider zusammen, in Richtung E, H
oder Z, erfahren auch ihre Bildkörper Verschiebungen in der
gleichen Richtung, deren Betrag und Richtungssinn den
Gleichungen (1) zu entnehmen ist: Verschiebungen der Rechtkante in
Richtung E oder H bedingen nach Richtungssinn und Betrag
gleiche Verschiebungen ihrer Bildquader. Die in Richtung Z
erfolgenden Verschiebungen Xx und X2 der Rechtkante I und II
ergeben, an Stelle von t,x und 'Q2 in die Gleichungen eingesetzt, die
Verschiebungen Xx und X2 der zugehörigen Bildquader. — In
Hinsicht auf die nachfolgenden Ausführungen interessiert vor allem,
unter welchen Bedingungen, bei gleichzeitiger Verschiebung beider
Rechtkante in Richtung Z, das Bildquader des einen seine Lage
beibehalten kann. Für die Fixierung der Abbildung des gemäss
dem Verhältnis a : b gespiegelten Rechtkants II ergibt sich die
Bedingung, dass die Verschiebungen von Rechtkant II und I
gleichsinnig und im StreckenVerhältnis 2 a : (a — b) erfolgen. Es

gelten die Gleichungen -^- —-^- ~j- ; X2 0. Die Fixierung
der Abbildung des gemäss dem Verhältnis b : a gespiegelten Rechtkants

I ist an die Bedingung geknüpft, dass die Verschiebungen
der Rechtkante I und II gegensinnig und im Streckenverhältnis

2b: (a—b) erfolgen. Es gelten die Gleichungen -Ar — -^r — ^— ;
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lx 0. Sollen die abzubildenden Rechtkante I und II eben

um ihre eigene Länge verschoben werden (\XX\ lx, \X2\ l2),
so müssen demnach diese Längen im Verhältnis (a — b) : 2 a bzw.
2b: (a — ò) zueinander stehen. Während das eine Bildquader seinen
Ort beibehält, verschiebt sich in diesem Falle das andere Bild-
quader genau um seine eigene Länge!

Die bis dahin abgeleiteten Beziehungen sind von den Beträgen
und den Richtungen der Geschwindigkeiten unabhängig.
Insbesondere macht es keinen Unterschied aus, ob die betrachteten,
abgegrenzten Geschwindigkeitsbereiche endlich seien oder
unendlich klein.

4. Abbildung als Funktion der Zeit.

Zahl sowie örtliche und zeitliche Anordnung der in einem
Zeitintervall t — t0 in vorgegebener Zentrilinienriehtung erfolgenden
Zusammenstösse zwischen den Kugeln zweier Gruppen, deren
Geschwindigkeitspunkte zur Zeit try zwei bestimmte Abschnitte des

Geschwindigkeitsraumes erfüllen, sind mitbedingt durch die
Radien der Kugeln und ihre Lagekoordinaten zur Zeit tQ. Von
diesen Grössen hängt daher auch ab, ob die Bildkörper der beiden
Raumabschnitte von den während t — tQ dislozierten Geschwindigkeitspunkten

ganz oder nur zu einem Teile beansprucht werden.
Da die vorliegenden Untersuchungen sich auf den Geschwindigkeitsraum

beschränken sollen, wird darauf verzichtet, die
verschiedenen Möglichkeiten der räumlichen Anordnung der Kugeln
zu diskutieren. An die Stelle von Festsetzungen bezüglich der
Lage der Kugeln treten Annahmen über das „Gruppen-Abbildungsverfahren"

im Geschwindigkeitsraum, d. h. über das Auswahlprinzip

der in bezug aufeinander gespiegelten Geschwindigkeitspunkte

der beiden Gruppen.
Zu den Kugelgruppen I und II zurückkehrend, deren

Geschwindigkeitspunkte zur Zeit t0 in den Quadern I und II liegen,
nehmen wir an, während einer Zeitspanne Ai trete jeder beliebig
abgegrenzte, nicht zu kleine Bezirk des einen Rechtskants mit
jedem beliebig abgegrenzten, nicht zu kleinen Bezirk des andern
Rechtkants in Beziehung, und die Zahl der Gesch.windigkeits-
punkte, die aus zwei solchen Quaderabschnitten durch Spiegelung
in bezug aufeinander disloziert werden, sei proportional dem
Zeitintervall Ai — sofern dieses sehr klein ist —, proportional der
Zahl der Geschwindigkeitspunkte in jedem der beiden Abschnitte —
sofern die Punkte darin gleichmässig verteilt sind — und drittens
abhängig von der Lage der Abschnitte im Geschwindigkeitsraum.
Bei diesem „ungeordneten" Verfahren der Gruppenabbildung, das
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in Abschnitt IV durch den Stosszahlansatz seine spezielle Fassung
erhalten wird, nehmen die dislozierten Geschwindigkeitspunkte
offensichtlich das ganze Volumen der Bildquader in Anspruch.
Sind die Rechtkante I und II gleichmässig von Geschwindigkeitspunkten

erfüllt, und sind ihre Abmessungen klein gegenüber ihrem
Abstand voneinander und vom Nullpunkt, so dass bei den
Abschnitten eines Rechtkants der Einfluss ihres Lageunterschiedes
vernachlässigt werden kann, so lässt sich die Verteilung der während
Ai dislozierten Geschwindigkeitspunkte in den Bildquadern
bestimmen. Werden nämlich die beiden Rechtkante durch parallel
zu den Koordinatenebenen gelegte Ebenen derart in gleichviele
und unter sich gleiche Abteilungen unterteilt, dass deren Form
der Würfelform möglichst nahe kommt, und dass deren Anzahl,
ins Quadrat erhoben, gleich der Zahl der während Ai aus einem
Rechtkant dislozierten Punkte ist (bei geeigneter Wahl von Ai
realisierbar), so tritt bei den während Ai erfolgenden Spiegelungen
der Geschwindigkeitspunkte jede Abteilung des einen mit jeder
Abteilung des andern Rechtkants einmal in Beziehung, und es

ergibt sich: Die Dichte der Punkte nimmt im Bildquader von
Rechtkant II bzw. I vom Werte 0 an den beiden Endflächen
nach der Mitte hin gleichmässig zu, bis sie — in einem Abstand
von den Endflächen gleich dem kleinern Summanden des
Ausdrucks (2) bzw. (3) — einen Maximalwert erreicht, der dann im
mittleren Teil des Quaders unverändert beibehalten wird. Sind
die Summanden gleich, d. h. ist l2: lx= 2 a : (a — b) bzw. (a — b) :

2 b, so wird der Maximalwert der Dichte erst in der Mittelebene
des Bildquaders erreicht. Im Falle a =- b besteht kein
Dichteanstieg; das ganze Bildquader ist gleichmässig von Bildpunkten
erfüllt, und die Punkte einer Abteilung verteilen sich nach der
Spiegelung über die ganze Längenausdehnung des Bildquaders. —
Die Angaben über die Punktverteilung in den Bildquadern treffen
um so genauer zu, je grösser die Zahl der während A i aus den
Rechtkanten dislozierten Geschwindigkeitspunkte ist.

III. Zeitliche Änderung der Zahl der Geschwindigkeitspunkte in einem
Element des Gesehwindigkeitsraumes durch Stösse vorgegebener Zentri¬

linienriehtung.

Der durch das E, H, Z-Koordinatensystem, dessen Z-Achse
die vorgegebene Zentrilinienriehtung besitzt, definierte
Geschwindigkeitsraum sei in orts- und zeitvariabler Dichte a (f, rj, f) und
t (|, ij, 'Q) von Geschwindigkeitspunkten erfüllt, die zu einer
endlichen Zahl von Kugeln der Masse mx und m2 gehören. Die beiden
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Kugelarten mögen als Kugeln erster und zweiter Art unterschieden
werden. Durch Ebenen, die in gleichen Abständen voneinander
parallel zu den Koordinatenebenen gelegt seien, werde der Raum
in kongruente Quader A cox von der in Richtung Z gemessenen
Länge lx und dem Querschnitt Fx aufgeteilt. Überdies werde
durch vier Ebenen, die paarweise der HZ- und der ZiT-Ebene
parallel laufen, eine in Richtung Z orientierte unendliche Vierkantröhre

vom Querschnitt F2 abgegrenzt, die durch senkrecht dazu
gelegte Ebenen in Quader A co2 von der Länge l2 unterteilt sei.
Schliesslich möge in dieser Vierkantröhre durch zwei weitere,
senkrecht dazu gelegte Ebenen ein besonderes Quader A ca2 von
der Länge A2 abgegrenzt werden. Darin soll während der sehr
kleinen Zeit A i der in Richtung Z vor sich gehende Zu- und Abgang
von Geschwindigkeitspunkten zweiter Art bestimmt werden. Um
nun die bereits eingeführten Punktdichten a und r als Quotient

Quadervolumen definieren UQd als Funktionen der £, rj, 'Q darstellen

zu können, nehmen wir an, die Geschwindigkeitspunkte seien
in dem Teil des Raumes, der die überwiegende Anzahl davon
enthält, derart verteilt, dass die Quader A cox und A co2 bei geeigneter
Wahl ihrer Abmessungen den in der Einleitung angeführten drei
Bedingungen genügen1).

1. Die Zahl der im Zeitelement At aus Richtung Z in ein Element
des Geschwindigkeitsraumes einfallenden Geschwindigkeitspunkte.

Die in das Element A a>2 einfallenden Punkte stammen aus
den Elementen A co2 der gemeinsamen Vierkantröhre. Sie lassen
sich in zwei Gruppen ordnen, die nachstehend gesondert behandelt
werden.

A. Zusammenstösse von Kugeln zweiter Art mit
Kugeln erster Art. (mx: m2= a: b; a > b.)

In den Elementen A cox werden nur die Geschwindigkeitspunkte

erster Art, in den Elementen A co2 nur die zweiter Art
berücksichtigt. Ein Element A co2 und ein Element A cox, die
so gelagert seien, dass bei der Spiegelung von A ca2 in bezug auf
A cox der Mittelpunkt des Bildquaders von A co2 mit dem Mittelpunkt

von A co2 zusammenfällt, seien hervorgehoben. Das
erwähnte Bildquader, „hervorgehobenes" Bildquader genannt, hat

*) Diesen Elementen fehlt der infinitesimale Charakter der Differentiale.
Deshalb wird an Stelle des Differentialzeichens d das Differenzenzeichen A
verwendet. An die Stelle des Integralzeichens musste das Summenzeichen treten;
der Raumersparnis wegen wird jedoch das erstere benützt.
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die Länge (2) ; das Bildquader des bezüglich A ca2 gespiegelten
Elementes A cox besitzt die Länge (3) ; es werde mit A co-,, seine
Länge mit Lx bezeichnet. Wir setzen nun

a—b ,2a,.k —~rh A2. (4)
a+b a+b

Dieser auf den Ergebnissen von Abschnitt II, 3) basierende Ansatz
führt allein zu den gewünschten Integralgleichungen. A ca2 liegt
innerhalb des „hervorgehobenen" Bildquaders und nimmt die
Hälfte von dessen Volumen ein. l2, lx, Lx sind durch A2 bestimmt.
Es ist

L1=
(a + Ò>2

A2.1 2a(a — b)
2

Aus den drei angegebenen Bestimmungsgleichungen lässt sich die
nur für den gewählten Ansatz gültige Beziehung

A cox • A co2 A cox ¦ A co2 (5)

entnehmen. Die Mittelpunktkoordinaten der Raumelemente seien

von Acox Çx,rjx,Çx, von A a>2 |2, rj2, £2, von Acox f/, rjx Çx ;

von A co2 Ç2 rj2 Ç2

Die Mittelpunktkoordinaten der hervorgehobenen Elemente
und ihrer Abbildungen genügen den Beziehungen (1).

Für die Zahl der während A i, durch Spiegelung in bezug auf
Punkte erster Art des hervorgehobenen Elementes A (ox aus dem
hervorgehobenen Element A co2 in Richtung Z entfernten
Geschwindigkeitspunkte zweiter Art ergibt sich auf Grund der in
Abschnitt II, 4) gemachten Annahmen, die hier übernommen und
auf den ganzen Geschwindigkeitsraum angewendet werden, der
Ausdruck

Ai • <Pn(f,Wi', m'-vi, ti-Ci)
• r(i2, rj2 C2') ¦ A co2- a (f/, r\x t,x) ¦ A cox. (6)

(Die Lageabhängigkeit ist berücksichtigt in Faktor $21, der als
Funktion der Koordinatendifferenzen von A co2 und A cox

aufgefasst wird.) Die gemäss (6) dislozierten Geschwindigkeitspunkte
gelangen in das „hervorgehobene" Bildquader, welches das
Element A co2 enthält. Bildet man nun durch Verlängerung der
Längsflächen des hervorgehobenen Elementes A cox eine in Richtung Z
orientierte Vierkantröhre vom Querschnitt Fx und bestimmt die
Gesamtzahl der Punkte, die während A i aus dem hervorgehobenen
Element A co2 in bezug auf Punkte erster Art dieser Vierkantröhre
in das „hervorgehobene "Bildquader gespiegelt werden, so erkennt
man: 1. Ausser dem hervorgehobenen Element Acox sind noch



Zusammenstösse zwischen Gruppen elastischer Kugeln. 599

die dazu beidseits benachbarten Elemente A cox als Bezugselemente
an der Lieferung von Geschwindigkeitspunkten beteiligt, da die
durch Spiegelung in bezug auf diese beiden Elemente gewonnenen
Bildquader von A ca2 in der Mitte von A co2 zusammenstössen
und je zur Hälfte in das „hervorgehobene" Bildquader hineinragen.
2. Da &2X und a für die drei benachbarten Elemente A tox
angenähert den gleichen Wert besitzen, liefern diese Elemente zusammen,
gemäss den in Abschnitt II, 4) enthaltenen Angaben über die
Verteilung der Bildpunkte, angenähert doppelt soviele Punkte
in das „hervorgehobene" Bildquader als das hervorgehobene
Element A cox allein, und da diese Bildpunkte annähernd
gleichmässig verteilt sind, entfällt die Hälfte davon auf A co2. Das
bedeutet, dass die Zahl der Geschwindigkeitspunkte, die während
A i aus dem hervorgehobenen Element A co2 durch Spiegelung in
bezug auf die Punkte erster Art der zu A cox gehörenden Vierkantröhre,

in das Element A w2 befördert werden, gleich der Zahl der
Geschwindigkeitspunkte ist, die in derselben Zeit aus dem
hervorgehobenen Element A co2' durch Spiegelung in bezug auf Punkte
des hervorgehobenen Elementes A cox disloziert werden, also

gleich dem Ausdruck (6). Durch Summierung des Ausdrucks
über alle Werte von £x und ijx erhält man die Gesamtzahl der
Punkte, die während A i aus dem hervorgehobenen Element A co2

in das Element A co2 gelangen. Bei weiterer Summation, bezüglich
Ci', resultiert die Gesamtzahl der aus Richtung Z in das Element
A co2 einfallenden Punkte zweiter Art :

AV21^Ai-Aco2'///r(|2',,2',^C1'-^4cs
il Vi' S/ \

¦02X- cr(£x, rlx Ci') • Awx,

wobei 02X 02X (i2' - £x', ri2' - rlx', a^_l (Ci' - C

Statt bezüglich £x, r\x, d' kann der Ausdruck (6) bezüglich
£X! rjx, Ci summiert werden; mit Hilfe der Beziehungen (1) und (5)
erhält man:

A^i=Ai-Aco2///r(|2)%,^Ci-^C2
Ci % $i \

•^i-(fi.%,-:^-C1 + ^C2)-Acoi. (7)

02X steht für 021 (f2 — Çx, % — rjx, Çx — Ca).
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B. Zusammenstösse der Kugeln zweiter Art
untereinander, (a b.)

Während das Element A co2 unverändert aus A. übernommen
wird, samt der zugehörigen Vierkantröhre, erfahren die Längen
der Elemente A cox und A co2 eine Veränderung, da der Ansatz (4)
nicht anwendbar ist. Setzt man Acox" lx'Fx, Aco2"=l2'F2,
und bezeichnet die Länge des Bildquaders von A cox" mit Lx, so
ist nach dem Schlussatz von Abschnitt II, 2) lx A2, l2 Lx.
l2 ist durch A% nicht bestimmt; es wird der Einfachheit halber
gleich der Länge L1 des unter A. eingeführten Elementes A cox

gesetzt: l2 Lx Lx; LX'FX LXFX Acox. In den Elementen
A co/' und A co2" werden nur die Geschwindigkeitspunkte zweiter
Art berücksichtigt.

Die Zahl der Geschwindigkeitspunkte zweiter Art, die während
Ai aus einem hervorgehobenen Element A co2" durch Spiegelung
in bezug auf Punkte eines in passender Lage befindlichen
hervorgehobenen Elementes A cox" in Richtung Z disloziert werden, ist
gegeben durch den Ausdruck

Ai" 022 (£2" — £1" > Vi" — Vi" > s2" — Ci") • r (f2", il2", Ca") ' A ft>2"

_ / > // ff 'r f f\ a "" rAi Vi > Ci ¦ A ft>!

Diese Punkte gelangen tatsächlich, nicht nur rechnungsmässig, in
das Quader A co2, das anderseits keine Nebeneinkünfte zu
verzeichnen hat ; denn nur die in Richtung Z sich erstreckende
Vierkantröhre vom Querschnitt F2 und die dazu senkrechte, unendlich
ausgedehnte Scheibe von der Dicke IY — A2, welche beide das
Element A w2 enthalten, sind an der Lieferung der Geschwindigkeitspunkte

beteiligt. Summation des Ausdrucks bezüglich £x"
und 7]x" führt zur Gesamtzahl der aus dem hervorgehobenen
Element Aco2" in das Element A co2 gelangenden Punkte; weitere
Summation bezüglich C2" liefert die Gesamtzahl der aus Richtung Z
in das Element A co2 einfallenden Punkte. Unter Benützung der
Gleichungen (1) und der Beziehung

A cox" ¦ A co2" A co-, ¦ A co2 (8)

erhält man so

AN22= At-Aco2JJj T(fa> %, k)-#„(£,-£!,. %-»h.d-O
-"¦ 1, e,

' t(Ii, rlx, Cg) • Acox. (9)

Gleichung (7) geht für a b in (9) über.
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In ganz entsprechender Weise lässt sich die Zahl der
Geschwindigkeitspunkte erster Art berechnen, die während Ai in
Richtung Z in ein gegebenes Raumelement A &x hineingelangen.
Die beiden Integralgleichungen, die man dabei erhält, können auch
rein formal aus den Gleichungen (7) und (9) hergeleitet werden,
indem man in diesen co durch Q, a durch r, r durch er, a durch b,
b durch a, und bei den Indices 1 durch 2 und 2 durch 1 ersetzt.

2. Die Zahl der im Zeitintervall At aus einem Element des

Geschwindigkeitsraumes in Richtung Z dislozierten

Geschwindigkeitspunkte.

Die Zahlen A.M21 und AM22 der Geschwindigkeitspunkte
zweiter Art, die in der Zeit Ai durch Spiegelung in bezug auf
Geschwindigkeitspunkte erster bzw. zweiter Art aus dem
Raumelemente A co2 in Richtung Z entfernt werden, sind nach
Abschnitt II, 4) gegeben durch die Gleichungen

AM21 AÌ-A«2-t(<?2, rì2, C2) -f f f&*{£* —h> V* —*li, C2-Ci)
Ci 'Ji ii

' ^di. Vi, Ci) • Ag>i,

AM22= Ai ¦ Ato2 • r(£2, r/2, C2) • ff f 02Z(£2 — £x, V2 — nx, Ca — Ci)

d ni «¦

' T(£i> Vi, Ci) • Acox.

Die Zahl der Geschwindigkeitspunkte erster Art, die während
A t aus dem Raumelement A Qx in Richtung Z disloziert werden,
ist durch zwei entsprechende Integralgleichungen bestimmt. Sie
lassen sich nach dem in 1) angegebenen formalen Verfahren aus
dem eben angeschriebenen Gleichungspaar ableiten.

IV. Ableitung des Gesehwindigkeitsverteilungs-Satzes.

1. Bestimmung des Faktors 0 durch den Stosszahlansatz.

Die im Geschwindigkeitsraum verteilten Punkte mögen sich
auf die als elastische Kugeln aufgefassten Moleküle beziehen,
die in einem Kubikzentimeter eines im stationären Zustand
befindlichen, ruhenden Gemisches von zwei idealen Gasen enthalten
seien. Die Moleküle des einen Gases — Moleküle erster Art
genannt — mögen die Masse mx und den Kugelradius Rx, die des
andern Gases — Moleküle zweiter Art geheissen — die Masse m2
und den Kugelradius R2 besitzen: Es sei mxAm2. Bei Abwesen-
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heit äusserer Kräfte ist nach dem Stosszahlansatz1) die Zahl der
Geschwindigkeitspunkte zweiter Art, die während Ai aus einem
Element A co2 in Richtung Z disloziert werden infolge von
Zusammenstössen der zugehörigen Kugeln mit Kugeln der ersten
Art, deren Geschwindigkeitspunkte sich in einem Element A cox

befinden,

Ai-Ao ¦ (Rx+R2)2 ¦ g cos e ¦ t(|2, rj2, C2) • A co2 ¦ a(£x, r\x, t,x) • Acox.

Entsprechende Ausdrücke ergeben sich für die andern Stoss-
kombinationen der beiden Molekülarten. Daraus geht hervor,
dass die im vorstehenden Abschnitt abgeleiteten Integralgleichungen

sich ohne weiteres auf das vorliegende Molekülsystem
anwenden lassen, wenn man für 0 die durch die nachstehenden
Gleichungen gegebenen Ausdrücke einsetzt :

021 012 A o • (Rx + R2)2- g cos e, 022 A o • (2 R2)2 ¦ g cos e,

0X1 A o ¦ (2 Rx)2 • g cos e.

A o ist der absolute Betrag des sehr kleinen Raumwinkels, in dem
sich die vorgegebene Zentrilinie befindet, g der absolute Betrag
des Mittelpunktabstandes der Elemente A cox und A co2, bzw. A üx
und A ü2 ; e ist der spitze Winkel zwischen dem genannten Abstand
und der Zentrilinie (der Z-Achse). Es ist g cos e \Ç2—Ci|-

Der Faktor A o im Ausdruck für 0 bedeutet, dass der Zentrilinie

nicht eine genau bestimmte Richtung zukommt, sondern
dass ihr alle im Raumwinkelelement vorkommenden Richtungen
zuerteilt werden müssen. Dieser Umstand bedingt eine
Modifikation der bisherigen geometrischen Betrachtungsweise. Die
Geschwindigkeitspunkte, die in das Element A co2 gespiegelt
werden, befinden sich nicht mehr in einer Vierkantröhre vom
Querschnitt F2, sondern in einem Raumwinkel von der Öffnung A o
und der Form einer an der Spitze leicht abgestumpften,
vierseitigen, körperlichen Ecke. Die Abbildung eines Punktes, der
in bezug auf einen andern Punkt gespiegelt wird, ist nicht mehr
ein Punkt, sondern ein Kugelflächenstück, das bei grossen Werten
von g beträchtliche Ausmasse erreichen kann. Trotzdem bleiben
die für eine Zentrilinie genau bestimmter Richtung abgeleiteten
Integralgleichungen richtig, sofern eine aus den veränderten
Verhältnissen sich ergebende Bedingung erfüllt ist. Wir nehmen eine
der durch Ao gegebenen Richtungen zur Hauptrichtung und

1) Vgl. P. und T. Ehrenfest, Begriffliche Grundlagen der statistischen
Auffassung in der Mechanik. Enzykl. mathem. Wissenschaft. Bd. IV, D, Heft 32

(1911), S. 13.
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rechnen so, als ob die aus einem hervorgehobenen Element A co2

in den Raumwinkel A o gestreuten Bildpunkte alle genau in die
Hauptrichtung gespiegelt würden. Die Rechnung ist zulässig,
wenn der Streuungsverlust durch einen Streuungsgewinn
kompensiert wird. Der letztere stammt entweder aus benachbarten
Elementen A co2, die bei der Spiegelung in Richtung A o und
in bezug auf das hervorgehobene Element A cox Bildpunkte in
das Element A co2 streuen ; oder er wird dargestellt durch Punkte
aus demselben hervorgehobenen Element A a>2, die nicht in bezug
auf das hervorgehobene Element A cox selbst, sondern auf dazu
benachbarte Elemente gespiegelt werden an Ebenen, die zu den
Nebenrichtungen im Raumwinkel A o senkrecht stehen.
(Nebenrichtungen sind in A o alle Richtungen ausser der Hauptrichtung
der Zentrilinie.) Damit der Verlust durch den Gewinn vollständig
ausgeglichen werde, muss die Dichte der Geschwindigkeitspunkte
in der in Betracht fallenden Umgebung des hervorgehobenen
Elementes A co2 bzw. A cax die gleiche sein wie im Element selbst,
wenigstens in grosser Näherung. Das ist die oben genannte
Bedingung. Sind nun, wie man annimmt, im ruhenden Gasgemisch,
das sich im stationären Zustand befindet, alle Geschwindigkeitsrichtungen

gleichwertig, so sind die Dichten a und t Funktionen
der Summe |2 + r/2 + C2, und jedes Element des Geschwindigkeitsraumes

gehört einer Kugelschale konstanter Dichte an. Damit
ist der gegebenen Bedingung Genüge geleistet.

2. Zusammenstösse in vorgegebener Zentrilinienriehtung.

Die in Richtung Z erfolgenden Zusammenstösse zwischen
den Molekülen bewirken in der Zeit A t im Element A co2 des

Geschwindigkeitsraumes eine Zunahme der Zahl der Geschwindigkeitspunkte

zweiter Art um

A V21 — A Mai + A N22 - A M22

At-Aco2-Ao-fff\C2~Ci\ ¦ {(Ri + R2V lr2 <*i — T2^i]
Ci »!i êi

+ (2B2)2[t2"t1"-t2t1]}-Aw1 (10)

und im Element A üx eine Zunahme der Zahl der Geschwindigkeitspunkte

erster Art um

A NX2 - A M12 + ANXX~A Mxx

Ai • A üx • Ao • ff f\ Cx-C2\ -{(Rx+R2)2 [a\x2-ax r2]
Cs 12 C2

+ (2Rxy [ax"a2" - axa2]} ¦ A Qt. (11)
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In diesen Gleichungen ist gesetzt

o (<Ti2+ %2 + Ci2)^, «7 (f22 + n?+ i;A) o2, a(^+ %2 + C22) cri",

*fe2 + Vi + Ci2) =<, a (fi2 + ^ + [g=JJ Cim,-ra, t 2 »w3

2mj+mä
ffl

*(<?i2 + >?i2 + Ci2) Ti, T(f22+ r,i+ C22) T2, t(^2+ rj* + C22) Ti

t(|22+%2+Ci2) t2", t |22+%:2
2 »Jij mx~ m2

mx+m2 * m1+m2 2

Alle bis dahin angeschriebenen Integrale erstrecken sich von — oo

bis + co.

3. Zusammenstösse in allen Zentrilinienrichtungen.
Die Verteilungsfunktion.

Das E, H, Z-Koordinatensystem habe mit einem festen TJ, V,W-
Koordinatensystem den Nullpunkt gemeinsam und rotiere derart
in bezug auf dieses System, dass die Z-Achse stets die Richtung
der Zentrilinie aufweise, während die //-Achse dauernd in der
UV-Ebene liege. Für diese beiden Koordinatensysteme gelten die
Transformationsgleichungen

f u cos # cos cp + v cos & sin cp — w sin &,

rj —u sin cp + v cos cp,

C u sin & cos cp + v sin & sin cp + w cos &,

in denen 9- den Winkel zwischen Z- und TF-Achse bedeutet und cp

den Winkel, den die ZS-Ebene mit der TJ-Achse, bzw. die H-
mit der F-Achse, einschliesst. A o lässt sich nun durch sin & A & A cp

ausdrücken. In den Funktionen cundr werden die Variabein f, rj, Ç

mittels der Transformationsgleichungen durch u, v, w, #, cp

substituiert, und für die entstehenden Funktionen von ux, vx, wx, u2,
v2, w2, &, cp werden neue Bezeichnungen eingeführt, indem an
Stelle der Buchstaben a und r die Buchstaben / und F gesetzt
werden. Für g cos e ergibt sich

| (u2 — ux) sin & cos cp + (v2 — vx) sin & sin cp + (w2 — wx) cos & \.

Aus den solchermassen umgewandelten Gleichungen (10) und (11)
erhält man nunmehr durch Summation bezüglich A o und Division
mit A i • A co2 bzw. A i • A Ox die neuen Gleichungen

A '8 ff sin 0A &Acpfff{(Rx + Rè2 [F2' fx' -F2 fx\
0 —co

(2 B2)2 [Fa" Fi" -*\ Fil} -gcoSe-Acox,

At
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7l/2 2 71 +00

~^ ffsin&A$A<pfff{(Rx + R2y[F2fi'-F2fx]
0 0 -co

+ (2 Rx)2 [/2" /x" - /2 /J} • g cos £ • A ü2.

Von ihnen aus gelangt man in bekannter Weise1) zu den gesuchten
Geschwindigkeitsverteilungsfunktionen:

/(c2) Ae-km^c'; F(c2) Be-km*c'.

Die im Vorstehenden durchgeführte, mit endlichen Grössen
operierende Ableitung dieser Funktionen lässt erkennen, dass die
Beziehungen (5) und (8), welche bei infinitesimaler Betrachtungsweise

als mathematische Konsequenzen der Stossgleichungen (1)
erscheinen, eine besondere Annahme zur Voraussetzung haben,
die Annahme der „ungeordneten Gruppenabbildung". Diese
Beziehungen besitzen demnach, wie der Stosszahlansatz,
hypothetischen Charakter; wie dieser beruhen sie auf der Hypothese
der molekularen Unordnung.

V. Bemerkungen.

Der in den Abschnitten II und III gegebenen geometrischen
Ableitung der Beziehungen (5) und (8) ist eine analytische
Ableitung an die Seite zu stellen. WTir substituieren in einem Inte-
granden W(£x, iqx, Çx, £2, »?2, Ca) d£xdrjxdÇxd£2d ,]2 dÇ2, in
welchem W eine beliebige, stetige Funktion der 6 Variabein ist, mittels
der Gleichungen (1) eine nach der andern dieser ungestrichenen
Variabein durch gestrichene. Lassen wir zunächst £2, tj2, t,2

unverändert, so bekommen wir

déx=d£x ,drjx=drjx, dÇx= dÇx — dC2';e?C2'= r^Ci'-
a — b A a a — o

Demnach gilt für konstantes f2, rt2, 'Q2:

dÇxdr]xdÇx=
'

-d£x drjx dÇx ; d£xdrjxdCx= -— d£x dr\x'dt,2.
/12) a — o 2a

Die letztere Gleichung ist sowohl für a > b wie für a b brauchbar;
sie liefert für a=b d£xdrjxdt,x d£x drjx d'Q2 Bei der Substitution

von £2, rj2, C2 erhalten wir dann weiter

d£2 dri2d'Q2 7-ä£2 di]2 d'Q2 d£2 drj2 d'Qx,
a+b a+b

x) Vgl. L. Boltzmann, a. a. O. S. 30 ff.; L. Boltzmann und J. Nabl, Enzykl.
math. Wissenschaften, Bd. V (1903—1921), S. 493 ff. (1905).
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und d£x d)]x d'Qx d£2 drj2 dt,2 geht über in dÇx dijx dÇx d£2 drj2 dt,2.
Statt |2, rj2, C2 kann man zunächst £x, rjx, Çx unverändert lassen
und erhält dabei die Beziehungen

<ZCi' --^-äC2';
a — b

d£2dij2dC2= — r d£2 dri2 d^2 ——- d£2 drj2 d£x;
a — b 2 b

dÇx drix dCi r d£x dm'dÇx —r d£x dm' d'Q2
a+b a+b

Die Ableitung tritt also in zwei Varianten auf, je nachdem dco2
oder düx festgehalten wird.

Zwei weitere Ableitungen dieser Art sind bereits beschrieben.
In der einen, von L. Boltzmann gegebenen1), werden zunächst die
Differenzen £2 — fx, r\2 — rjx, C2 — Ci konstant gehalten, was
einfach eine Parallelverschiebung der konstant gehaltenen
Verbindungsstrecke g bedeutet; in der andern, von H. A. Lorentz
angedeuteten2), und von L. Boltzmann und J. Nabl ausgeführten3)
Ableitung werden die Summen £x + £2, Vi + V21 Ci + C2 konstant
gehalten, was einer Drehung von g um den festgehaltenen Punkt 0
(siehe Figur) gleichkommt. Der zu lösenden Aufgabe : Berechnung
der Zahl der in einem fixen Raumelement ein- und austretenden
Geschwindigkeitspunkte, ist nur die hier in ihren zwei Varianten
gegebene Ableitung adaequat, bei der dieses Element tatsächlich
festgehalten wird. Die andern beiden Ableitungen liefern für die
erste Transformationsstufe statt der Beziehung (12)
übereinstimmend die Gleichung d£xdi]1dÇx= d£x drjx d£x Diese, im
Rahmen der Ableitung richtige Beziehung mag Boltzmann4) zur
Aufstellung seiner irrigen Behauptung veranlasst haben, die später
von A. Byk5) und G. Jäger6) übernommen worden ist, es sei
bei Festhaltung des einen Raumelements d cox d cox und dco2

dco2.

Wiener Sitzungsberichte 94 (1886), 2. Abt., S. 640.
2) Ebenda 95 (1887), 2. Abt., S. 127.
3) Enzykl. mathem. Wissenschaften Bd. V, S. 512 (1905).
4) „Vorlesungen über Gastheorie." I. Teil (1896), S. 27 und 111.
5) „Einführung in die kinet. Theorie der Gase." I. (1910), S. 40.
6) Hdb. d. Physik, Bd. IX (1926), S. 365 (mit Figur).
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