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Theoretische Behandlung einiger Probleme aus der
heterochromen Photometrie

von H. Konig (Bern).
(Mitteilung aus dem Eidg. Amt fiir Mass und Gewicht.)

(18. V. 38.)

Zusammenfassurg: Es werden die Anleitungen zur systematischen Behand-
lung folgender Fragen gegeben:

I. Ableitung der Hellempfindlichkeitsfunktion V (1) des menschlichen Auges
aus einer beschrankten Anzahl Ergebnissen von Messungen mit Farbgldsern unter
Heranziehung einer Naherungsfunktion V(9 (1) als Ausgangsfunktion;

II. Bestimmung der Koeffizienten eines Kombinations-Blaufilters fiir
spektralrichtige Umfarbung schwarzer Strahlung in ebensolche anderer Farb-
temperatur; i

III. Angleichung der Durchlissigkeitsfunktion X z,7; (1) eines Kombina-
tionsfilters an die internationale Hellempfindlichkeitsfunktion.

Eine Reihe weiterer Probleme kann auf obige Typen zuriickgefiihrt
werden.

Die Losung erfolgt vollstandig durch beste Angleichung im Sinne von Gauss
(Minimum ‘des Fehlerquadrates) oder niherungsweise durch sukzessive Approxi-
mation.

Anstoss zu vorliegender Notiz gab das Bediirfnis, die Ergeb-
nisse der experimentellen Neubestimmung der Hellempfindlich-
keitsfunktion V (1) systematisch auszuwerten. Wenn wir bel
diesem Anlass die Frage der Behandlung einiger weiterer Probleme
anschneiden, so geschieht dies sowohl wegen der weitgehenden
Ahnlichkeit, als auch weil gerade di¢ Unterschiede in Fragestellung
und Behandlung die Eigenart der einzelnen Probleme gut in Er-
scheinung treten lassen.

In allen TFéllen ist versucht worden, der Fragestellung eine
solche Form zu geben, dass sie auf ein lineares Gleichungen-
system fiihrt, welches oft dank der Miaglichkeiten der an formalen
Schinheiten so reichen Theorie der orthogonalen Funktionen leicht
in eine fiir praktische Berechnungen brauchbare Form gebracht
werden kann.

Da sich unter Umstédnden dasselbe Ziel naherungsweise auf
einem ganz anderen und, vom praktisch rechnerischen Standpunkt
aus, nicht uninteressanten Weg erreichen ladsst, scheint es ange-
bracht, die verschiedenen Behandlungsweisen einmal vergleichend
zu betrachten.
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Eine ganze Reihe von Fragestellungen, die die Kombination
von Filtern bzw. der Ergebnisse von Messungen mit solchen be-
treffen, kénnen auf einen der drei nachgenannten Problemtypen I,
IT oder III zurickgefiihrt werden.

Vollstiindige Lisung.

Aufgabe I: Gegeben sind die in Fig. 1 dargestellten Durch-
lissigkeitsfunktionen 7, (A1), k = 1.. .o von w Farbfiltern, sowie die
o + 1-Ergebnisse M, der flimmerphotometrischen Ausmessung
dieser Filter durch einen farbtiichtigen Beobachter, welche dadurch
gewonnen werden, dass vor eine Glithlampe mit der Energiever-
teilung K (4, T) (A Wellenlange, 17" Farbtemperatur, Energie-
verteilung als schwarz vorausgesetzt) zuerst das Filter 7, (1) =1
(also kein Filter) und hierauf die Glaser 7, (1) eingeschoben und
die durchgelassenen Lichtstrome mit emnem konstanten Vergleichs-
Lichtstrom verglichen werden. Gesucht ist die Hellempfindlich-
keitsfunktion ¥V (1) des Beobachters.

' Da iiber die Normierung von V (1) nichts vorausgesetzt wird,
kann man unmittelbar die relativen Messergebnisse

My= [ EQT) V() 7y (2) dA (1)
setzen. Von Interesse sind nur die Durchliassigkeiten

_ [EDVDr@ar My .
T TEW VWA M, )

Sicher 1st, dass man V (1) als Funktion nicht aus einer end-
lichen Anzahl von Bestimmungsstiicken ableiten kann. Ohne Will-
kiir in der Wahl der Form der bestenfalls an Stelle von V (1) be-
stimmbaren Naherung V' (1) kommt man nicht vorwérts. Wir
wahlen fir V' (1) die Form

V’(A):V(O)(A)imkrk(z), E=0...0 3)

aus folgenden Griinden:

1. V' (2) unter Weglassung des Faktors V@ (1) durch die
Linearkombination der 7, (1) darstellen zu wollen wére unbe-
friedigend, weil die Anpassungsfihigkeit der Linearkombination
bei der geméss Fig. 1 getroffenen Wahl der 7, namentlich im Blau
zu gering ist, um die weiche Kriimmung, wie sie bei V zu erwarten
1st, auch nur halbwegs wiederzugeben. Wihlt man aber V' (1)
als Produkt mit einer Ndherungsfunktion V@ (1), als welche sich

28



Fig. 1.
Zerlegung des Spektrums fiir die Hellempfindlichkeits-Bestimmung.

Oben: Schott-Filter 7, (in Klammer die Schmelznummer):
7;: 2 mm OG 4 (15064), 7,: 2 mm OG 1 (27188), 75: 2 mm OG 2 (27878),
7,: 2 mm OG 3 (25016), 7;: 1 mm RG 2 (24321), 74: 2 mm RG 2 (22460).

Mitte: Hieraus abgeleitete Differenzfilter 7,, ;. ;.
Unten: Aus 7y, 5, , abgeleitetes Orthogonalsystem ¢, zur Belegungsfunktion y gehorig.
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die bisherige internationale Hellempfindlichkeitsfunktion V,,; ganz
natiirlich darbietet, so hat man den kombinierten Vorteil, dass
einerseits der im Verlauf von V@ = ¥V, , niedergelegte Reichtum
an Erfahrungen interpolatorisch herangezogen werden kann und
andererseits der Linearausdruck nur die Unterschiede zwischen V
und ¥V, zum Ausdruck bringen muss, was an dessen Anpassungs-
fahigkeit nur geringe Anforderungen stellt.

2. Der Umstand, dass es gemiss 1) gelingt, den Linearaus-
druck zu entlasten, ist allein kein Grund, gerade die 7, als Funktio-
nensystem zur Darstellung von V7’ zu wihlen. Es besteht aber
auch kein Grund, ein anderes System zu wihlen, und ausserdem
ginge der Hauptvorteil, den die Linearitit in 7, (1) in sich birgt
namlich die praktisch rechnerische Méglichkeit der Orthogonali-
sierung und Trennung der Unbekannten z, bei jeder anderen Wahl
verloren.

3. 7, muss mit Riicksicht auf das blaue Ende des Spektrums
zur Darstellung herangezogen werden.

Die Bedingungsgleichungen zur Bestimmung der x; fliessen
aus der ganz natiirlichen Forderung, dass V' die Beobachtungs-
ergebnisse richtig darstellen lasse:

- [EGT)V (3) 7 (3) dA

L, JEGQDV DB dr
- T T TEGT V() da

o [EQT) V' (3)dx

3

k=0...mw.

Im vorliegenden speziellen Beispiel kann man, ohne das
Problem der Lisharkeit von (4) zu berithren, den Umstand, dass
V' noch nicht normiert ist, benutzen, um die léastigen Nenner weg-
zuschaffen durch die spiter stets ,,Nennergleichung® genannte
Setzung:

[EQT) V' (3 da=[EQT)V (3) d2, (5a)
was nach (4) die ,,Zahlergleichungen
JEGT)V' () 7 () di=[E (AT)V (A) 7, (4) d2, k=0...0  (5b)

~ bedingt. In der Tat ist im wvorliegenden Fall 7, (1) =1, also (5a)
in (5b) enthalten, so dass die fiir die w + 1 Zahlen z; zuléssige
Zahl von Gleichungen durch die Massnahme (5a) nicht iiber-
schritten wird.

Es ist interessant, festzustellen, dass die Forderung der richtig
wiedergegebenen Durchlissigkeiten (4) sich wegen der Zuléassigkeit
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von (5b) deuten lésst als beste Angleichung im Sinne des Minimums
des Gauss’schen Fehlerquadrates!). Im Variationsproblem

3fy WF () —F () dr=0 (6)

bedeutet u (A) eine Belegungsfunktion und

P () = a7 (3, m

die durch Variation der z; einer festen Funktion F (1) bei festem

Funktionensytem 7, 1) moglichst anzunihernde gesuchte Funktion.
Es folgt

[vAF'(2)-F (2)] oF" (%)

0(1:]5

was 1n der Tat mit (5b) identifiziert werden kann, wenn man

di=[v () [F" (2)--F (A)]7:(2) dA=0, (8)

s v
F = —1?@ ’ 'q) = EV(O), F = —]:/—((E (9)
setzt. Aus (1), (7) und (8) wird
2 Zilip = Mk: (10)
wobel
toe = [ 7: i dA. (11)

Die Losung ist
tOO- . -tl_lo Mo t/i+10 " .. -two

oy e | ] : : : :

tOw‘ . 't’i—lw ‘Z\/‘[w ti-l—lw' . 'tww

Wenn die Ordnung w + 1 der Determinanten (12) hoch wird
(z. B.7), s01st die praktische Berechnung auf diesem Wege mithsam,
und man versucht zweckmaéssig, durch lineare Transformation des
Tp-Systems 1n ein orthogonales System die Matrix der Gleichun-
gen (10) in eine Diagonalmatrix umzuformen?. Um ein gewthn-
liches normiertes Orthogonalsystem ohne Belegungstunktion zu
erhalten, fiir welches

[@ipdd = (gi0) =0 fiir ik,
J(@)?dh = (pips) = 1

1st, setzt man

(13)

@i (4) = ]/'.T()L) Zaik 7 (4)- (14)
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Die notwendige lineare Unabhangigkeit der ¢; ist durch die-
jenige der 7, gewahrleistet. Nennt man die Koeffizienten der Zer-
legung von /9 I’ im ¢,-System z,; so wird

_ i ik Ok
]/'/’F,zzyifpz’:]/TPEZ%“MTA::]/V’EQ%W; (15)

also

Ly = zyiaz‘k’ (16)
wobel nach (13) ~

yi=[VpF ¢;d2; (17)

aus dem Gleichungensystem (8) wird

k k _
Sta [y F rdi=NapMy= [y F g di=y.  (18)
und mit (16)

Te = D\ >\ Cim M G =D > s Gy My = > Agm M. (19)

Hierin wurde mit dy; = a,;, die zu (a) transponierte Matrix
gekennzeichnet. Die Bestimmung der Zerlegung (3) erfordert
also nichts anderes als die Ermittlung der Transformation (a;;).
Die Matrixelemente

Ape = Agm = zam Aim (20)

sind von der speziellen Wahl des Hilfssystems ¢, deren es ja
unendlich viel gibt, unabhingig.

Der schrittweise Aufbau eines Orthogonalsystems aus einem
vorgegebenen System v, erfolgt in bekannter Weise?), wobel man
sich unter den vy, vy, ©,... aus der Reihe 7, 7y, 75... beliebig
herausgegriffene oder aus dem 7, linear kombinierte Funktionen
zu denken hat:

Po = V¥ vy

Po = V'Y Vg (@0’ ®0))72. .. (@0 ®o) = 1;
P1 = VPV + C P B

(¢1" ®0) = 0... 10 =— (V9 V1, @)
P1= ¢ (g @)t (1) =15
Py = VYV + Cy @y + Ca0 Po

(92" o) =0... cp=— (V'p v, Po)
(@a" 1) =0... ey = — (V9 0o @)
Q2= @ (9 @)L (P2 o) = 15
usw.

Einheitliche Filter, die in einem nicht zu breiten Spektral-
bereich eine hohe Durchlissigkeit aufweisen, existieren nicht. Am
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nichsten kommen ihnen die Differenzfilter, die man aus der
OG-RG-Reihe der Schott’schen Farbglaser aufbauen kann, weil
dieselben steile 7-Kurven aufweisen. Fig. 1 zeigt Beispiele solcher
Kurven, wobeil die spektralphotometrisch gemessenen Durch-
lassigkeitswerte durch die maximale Durchldssigkeit im Durchlass-
bereich dividiert worden sind. Dementsprechend seien auch unter
M, (siehe (1)) nicht die unmittelbar gemessenen, sondern die durch
die maximale Durchldssigkeit dividierten Messwerte - verstanden.
Die ebenfalls in Fig. 1 dargestellten Differenzen

T, 41 (4) = T (d) — Taia (2) (77=0), (21)

geben eine recht gute Roh-Einteilung des Spektrums in w +1 =7
Bezirke. Sich streng ausschliessend, also orthogonal sind nur
T3 und 74,, fast orthogonal ist die Gruppe (791, T1.25 Tag) ID
bezug auf die Gruppe (754, 767 (= 7g)). Dies bedingt rechnerische
Frleichterungen. Wir wihlen daher:

Vo = Tpa Vg = Ts 6
Uy = Tgr Vg = Tag
7}2 —- TI,Z ’U5 = T4’5 UG = 1:3’4.

Entsprechend dem Umstand, dass die experimentelle Unter-
suchung?) mit einer Lampe der Farbtemperatur 2720° durchgefiihrt
worden ist, wird im Beispiel v = E (4, 2720 - V., (1) gewihlt.

Die Integrale werden als Summen von 10 zu 10 nm berechnet.

Das numerische Ergebnis der Orthogonalisierung und Nor-
mierung, nach (14) charakterisiert durch eine Transformation
(ad.) (der Index oben erinnert daran, dass die Differenzfunktionen
(21) Gegenstand der Transformation sind) lautet:

+3,6227 0 0 0 0 0 0
—0,0013 +5,5132 0 0 0 0 0
~1,2415 0 +43336 0 0 0 0
(al)=| —0,0076 —1,7121 —0,0005 +5.1217 0 0 0 |(22)
+0,1002 +0,0001 —1,3021 —0,0003 +2,4863 0 0

—0,0178 +0,4823 —0,0073 —1,9136 — 0,0249 + 3,1560 0
—0,0878 —0,1154 + 0,2658 +0,4711 —0,7017 —0,9142 + 2,943

Die Berechnung der hier nicht wiedergegebenen Matrix 4,
bzw. Ay, nach (20) bzw. (20a) (s. unten) vereinfacht sich wegen
der Symmetrie der letzteren:

Die zur Belegungsfunktion F (2720° V,, gehorigen ¢; sind
in Fig. 1 gezeichnet. Fir die Auswertung der Ergebnisse M, zur
Aufstellung von 17’ werden sie nicht weiter benutzt.
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Die Transformation af, bezieht sich auf das System (21) bzw.
an Stelle von (1) auf die Messergebnisse

My = My — Myyy (M, =0) o (24)

und die Unbekannten g .., definiert durch

ViA) = Vigg ( EQIe k41 T, a1 (4)- | (3a)
Es gelten also die zu fritheren analogen Beziehungen:
?:Qi, i1 B = Ma wia | (10&)
) = P A Nl na® ()
 Grn = DA Mo (194)
it af, = AL, (202)

Ein Konflikt zwischen Zahlergleichungen und Nennerglei-
chung entsteht nicht, da die notwendige Abhéngigkeit der Nenner-
gleichung wegen

2 T, 11 (4) =1 (25)
gewahrleistet 1ist.
Wir stellen der Ubersichtlichkeit halber dle vom @-System

unabhingigen Beziehungen zwischen dem 7, und dem 7, 5,1-System
zusamien :

Tr, k41 — Tk — Tha1
My 1oy = My — My
d a
Akm - Akm T Ak—l, m—1" ‘les—-lmmw Akm—l

T = Qe k+1 — qr—1, %
v’ k
7o *2 Qr, k+1 Tk, k1 = Z Tr Tg . (26)

Aufgabe I1I: Gegeben sind die in Fig. 2 dargestellten Durch-
lassigkeitsfunktionen 7; (1), k =1...4. Es handelt sich um die
von uns an anderer Stelle?) beschriebenen Komponenten des
Kombinations-Blaufilters, leicht abgeiindert und ergéinzt durch 7,,
welches die Verbesserung der Anpassung bis 420 nm hinunter
gewihrleisten soll®). Die Ergebnisse e, von Messungen mit einem
Empfianger, dessen Empfindlichkeitskurve zwischen 420 und 700nm
weitgehend beliebig verlaufen darf, mit Faktoren x; linear kom-
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TO L 1

400 500 600 A—> 700 nm

— 1 1

A—> 700 nm

Fig. 2.
Kombinations-Blaufilter.

Oben: Komponenten desselben: :
7o: kein Filter, 7,: 1 mm BG 14,
T,: Ilmm BG6 + 2mm BG14 + 1 mm BG7
73: 2mm VG2 + 1 mm BGT,
7,: 2mm BG2 + 2mm BG 18.

Unten: Aus den 7, abgeleitetes orthogonales ¢-System.
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biniert: 3 z; ey, entsprechen einer Messung mit einem Kombina-
tions-Blaufilter

F’(l)ximkrk(l), k=0...4. (7)

Gesucht sind die x, derart, dass F’ (A1) sich im sichtbaren
Gebiet wegen der Giiltigkeit des Wien’schen Strahlungsgesetzes mit

T
F(l; Led 5 Tg) = konst.- e A\Ty 1y

moglichst deckt, was mit einer spektralrichtigen Umféarbung
schwarzer Strahlung der Temperatur T, in eine ebensolche der
Temperatur T, gleichwertig ist.

Wir haben bisher die Koeffizienten z; dieses Mehrfilterver-
fahrens durch Probieren bestimmt$), was bei einiger Ubung wohl
ebenso rasch geht wie mit nachstehend beschriebenen systema-
tischen Verfahren, doch scheint uns hier der geeignete Ort zu sein,
auf die Moglichkeit der Behandlung der Aufgabe als exakt definiertes

Problem hinzuweisen, um so mehr als der Prozess der Koeffizienten-
bestimmung durch Probieren fiir jeden Farbensprung 4 ]1- = Tl,u %
2 1
vollstindig neu durchgefithrt werden muss, wiahrend die Bestim-
mung der Transformation (20), die auch hier die Hauptrolle
spielen wird, fiir alle 41/T bei gegebenem 7T'; gemeinsam ist.
Im Gegensatz zu Aufgabe I besteht zunichst kein Anlass,
tiber irgendwelche Durchlissigkeiten Forderungen zu stellen, und
man wird daher versuchen, die Fragestellung als Minimalpro-

blem (6) bzw. als Losung von

| Je @ [F @) —F ()]7e(d) d2 =0 (8)

aufzufassen, worin F” durch (7) und F durch (27) definiert sind.
Die Linearkombination der 7; erscheint hier nicht nur als Korrek-
turfunktion, sondern sie ist mit F’ direkt identisch. Die experi-
mentelle Hauptaufgabe besteht also in der geschickten Auswahl
der 7 (4), weil die Anforderungen an das Anpassungsvermogen
ausschliesslich auf der Linearkombination ruhen.

Eine gewisse Willkiir in der Wahl von # ist unvermeidlich,
aber es liegt nahe, auch hier vy, als Gewichtsfunktion der Bewertung
der Abweichungen, proportional V7, zu wéhlen. Ferner kann man
nicht umhin, (8) als Bedingung fiir die Intensitétsverteilung des
das Kombinationsfilter verlassenden Lichtes anzusehen, so dass
in  noch ein Faktor E (4, T,) enthalten sein muss. Es ist be-
dauerlich, liegt aber in der Natur der Sache, dass die optimalen
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x;, folglich von T; abhéngen, weil der Schwerpunkt in der An-
gleichung sich mit wachsendem T; nach Blau verschiebt. Die
Anpassungstahigkeit von F' an F ist aber bekanntlich%) so hoch,
dass es praktisch bedeutungslos ist, ob man den Orthogonalisie-
rungsprozess fiir die Belegungsfunktion » = E (2600°) V,, oder
tir B (2720% V., durchfihrt (im Gegensatz zu Aufgabe I, wo
der Anschluss an die Messungen M, die Wahl von T bestimmte!).

Da 7, =1 in der Filterserie enthalten ist, ist mit (8) auch
die Nennergleichung

Jv W [F () —F@#)]di=0 (28)

erfl_'illt, so dass
[v(2) F’ A)rk()dl [y F(A ) 75 ( )d;t

Jv@F @ [y

geschrieben werden darf. Dies kann man anschaulich so deuten:
Wenn man fiir eine zweite, der ersten Serie 7, identische Filter-
serie die Durchlédssigkeiten 7,” und 7, tezogen auf die Strahlungen
E(T) V" wnd E(T)) Vi F = E (T,) V,, messen wiirde, so
wiirden laut (4a) fiir die gefundene Ann&herung F” (1) die Durch-
ldSSlgkelten aller Teilfilter richtig heraus kommen, d. h. gleich
wie fir F (4).

Die weitere Behandlung erfolgt wie bei Aufgabe I. Mit

(42)

@1:1’0,?}2:1‘1,...?}5:’[4‘

folgt fir T, = 2720, also fir v = (4, 2720% V,,, die Trans-

formationsmatrix

1 0 0 0 0
—-4,888 + 7,177 0 0 0
(@) =| +2414 — 4219  +33,650 0 0 (32)
+6,378  —11,960 + 1,812 +2555 0
+0,695 - 1,356 —-13,504 + 5,209 +176,39
welche gemiss "
=y Z W Tro (4) (14)

die 7, 1n die ebenfalls in Fig. 3 dargestellten ¢, iberfithrt. Fir
(20) folgt
+ 71,882 -—122489 + 83,403 +166,578 + 122,590

~122,489 +214,190 - 146,330 -312,641 — 239,185
(A,,) = | + 83403 -145330 +1317.96 — 24,045 — 238197 | (33)
+166,578 —312,641 — 24,045 +679,93 + 918815

+122,590 -239,185 -—2381,97 +0918,815 +31113,43
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In -
,g;k=ZAkm M w o (19)

sind nun noch die M, zu berechnen:

My (Ty) = [ (2, 2720% Vi, (3)- F (2 2720°, ) 70 (), - (1)
E=0...4.

Wir geben in Fig. 8 als Kreise die Angleichung F’' = 2'z; 75 1n
Form von F'/F fir den Fall T, = 50009, welcher dem Umférbungs-
grad A1/T=1676 mired (mikroreziproke (Grade 10-67-1) in der

°
[

G A A —_—

]0 s i 5 n o P o ? bid Qo = '.3 1 e =3 . - T'r i 2 | I 1
' 400 . 500 600 e %’0" °
E (a) = konst. o: F'[F

091} »

400 ) , . '500 x ; :’;x x % x % R—o P
n0 ) X:T(\‘b\"n)onm

o o x

09 | E (2 50000 ~ ° %

0.8 |

—: E (4, 50000 = E (4, 2720°) - F (A; 2720°, 5000°)

071« o: B (4 5000°) - F/F+E (3, 2720% £ a7, (3)
X 1 Davis-Gibson-Flussigkeitsfilter fur den Sprung
06 1 28480 —» 50000,

Fig. 3.
k
Optimale Angleichungen mittelst Kombinations-Blaufilter F’ (1) = Xz, 7, (4).
Oben: Anndherung des energiegleichen Spektrums, -

unten: Annéherung der schwarzen Strahlung von 5000° durch schwarze
Strahlung von 2720° und Kombinationsfilter.

Bezeichnungsweise von Priest) entspricht. Die zugehérige F-Kurve
1st mit I (4, 50000 bezeichnet?). Die Annidherung von F' an F
ist besser als bei dem nahezu entsprechenden (7T, = 28489, T, =
5000°) Davis-Gibson-Filter®), welches in Fig. 8 durch Kreuze
angedeutet ist.

Das Problem kann auch so gestellt sein, dass die Herstellung
eines energiegleichen Spektrums verlangt wird. F’ (1) muss in
diesem Fall die Strahlung

eg 1

E (4 T,) = konst.- 4~5-¢* T in E (1) = konst.
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tiberfiihren. Wir fihren dieses Beispiel etwas n#aher aus, da die
theoretische Herstellung der Strahlung E (1) = konst. in dieser
Vollkommenheit in der Literatur bisher noch nicht beschrieben
worden 1st.

Es wird geméss (1) fiir die in Frage stehende Filterserie

M, =1

M, = 0,72306

M, = f Ving (A) 7x(4) dA | M, = 0,02419
M3 — 0,08817

l M, = 0,001218

und fur T, = 27200

2y = 0,169
m 2y 0,986
Ly = Z Akm Mm l g 518

[

zy, = 1,006
7y = 10,93,

In Fig. 3, oben, ist das Ergebnis durch Kreise dargestellt.
Die Angleichung darf figlich als ausgezeichnet betrachtet werden
und zeigt angesichts der Grisse des Farbensprungs erneut die
Leistungstahigkeit des Kombinationsgedankens.

Kontrollen. Allfdllige Rechenfehler in (a,;) findet man mittelst
folgender allgemeiner Kontrolle: Fir F = F' =1, also M, (T,) =
M, (T;), m.a. W. wenn die Strahlung E (7,) tberhaupt nicht
umgefarbt zu werden braucht, muss

I = Z Alm M.m (T]) - 1

2= Ay M, (Ty) =0, s=1...4

sein. Man erkennt, dass die Rechengenauigkeit ziemlich gross
sein muss, da die Zahlen 4,,,M ,, von der Grossenordnung 100 sind!
Im Vorhegenden Fall, wo 7o =1 und @, = v/p 1y = 1/p 1ist, ist
folgende spezielle Kontrolle moglich: Fir F =F =1 lautet hier
dle Losung von (16):

Yo=1; y;, =0, s=1...4,

also muss nach (18)
k
2 ao ke Mk = 1

k
Za-skﬂfk=0, 821 ...4:

seln.
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Aufgabe I11: Gegeben sind die in Fig. 4 dargestellten Durch-
lassigkeitsfunktionen d, (1), k=1 ... 8, aus denen sich, wie wir
zeigen konnten?), durch lineare Kombination

V' () = i cr dyy (2)

ein V' (4) aufbauen lidsst, welches Vi, sehr nahe kommt, so dass
dieses Kombinationsfilter zusammen mit einem nicht-selektiven
Empfinger, z. B. einer Thermosdule, ein sehr leistungsféhiges
kiinstliches Prizisionsauge darstellt. Gesucht sind die ¢, die
wir im Anschluss an die Aufgaben I und II mit x;, bezeichnen
wollen, derart, dass 7’ im Sinne von GAuss eine beste Angleichung
an V. darstellt.

5 ’ I
-0,
— Vi 4

041 dia) Vin(%) 09
03
0,2 0,84
-0,1

0 ~ dl (1)

0.2
ro.7
0 ///\\\i\/ da(3)

0.3

0,2

0.7

: /‘\ i

0 d-z(l)

0,2

o f / N )

02

o / / \\ _ ds(1)
i

d7(3)

o L /\\de( 1)
\“'15(

400 500 600 —1(nm) 700
Fig. 4.

Zu nicht-selektivem Empfanger gehoriges Kombinationsfilter

Vo) = Ko dy (3) — dy (1) E ey dy (), dy(3) = 1.

dy (A): 2mm VG4 dg' (£): 1mm OG 2
dy’ (A): 1mm 0G4 dy (A): 2mm 0G4
dy (A): 2mm OG 1 +2mm RG6
d (A): 2mm OG 1 dg’ (A): 2mm RG1

Die Werte fiir V' (1) sind durch Kreise gekennzeichnet, die Werte fiar Vine (1)

durch Striche.
F 3
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Der Umstand, dass zufilligerweise, wie die Angaben unter
Fig. 4 erkennen lassen, bei diesem Kombinationsfilter alle Kompo-
nenten d; als Bestandteil d; enthalten, hat zur Folge, dass man
auch die Zusatzfilter d,/d; = d,’ mit den 7, der unter I entwickelten
Theorie identifizieren kann. Wir machen aber zun#chst hiervon
keinen Gebrauch, sondern betrachten die d; (1) unmittelbar als

Funktionenreihe
7 (A) = d;. (4),

auf die sich die aus der Minimumsforderung (6) fliessenden Glei-
chungen

Sy W F ) —F W)]de () dr=0, k=1... o (8a)

beziechen soll. Im Gegensatz zu (9) ist hierin

F' =V =S ads, F=Vy.

In bezug auf die Wahl von ¢ 1st man weitgehend fre1. Wohl
liegt es nahe, (8) wie unter 1I als Bedingungen fir die das Kom-
binationsfilter verlassenden Lichtstrome anzusehen, also v (1) als
Energieverteilung K (1) anzusehen; eine besondere Beziehung zur
schwarzen Strahlung wie bei IT oder noch mehr bei I besteht aber
nicht, und man kann daher die Minimumsforderung auf die neutrale
Strahlung v (4) = E (A) = konst. beziehen. Wir behalten aber
in den Formeln bei. N

Wesentlich neu an Problem IIT gegentiber I und II 1st der
Umstand, dass die Veranschaulichung von (8) durch die Forderung
(4) richtig wiedergegebener Durchlissigkeitskoeffizienten im allge-
meinen nicht mehr moglich ist. In der Tat: (4) fithrt statt zu (10)
zum homogenen System

N (e — i t) =0, i k—1...0, (27)
wobel

t, = [y 7. dA. (28)

Die Bedingung fiir die Losbarkeit ist das Verschwinden der

Determinante
’tik*%ktz!:()- (29)

Nun ldsst sich (29) durch Entwickeln auf die Form bringen:
. tyeootiier Mot Ty fagg- b i
Xt et ] =My ([t ]£0). - (30)

bwirn MoT, thipy--- Laal

wl---



Theoret. Behandlung der heterochromen Photometrie. 447

(30) 1st aber gleichwertig der Nennergleichung

wa’dlzimiti:frdeleo, (55)

wenn In derselben die z; durch die Losungen (12) der Zdihler-
gleichungen ersetzt werden. Die Losbarkeitsbedingung (80) besagt
also, dass die Losung der Zihlergleichungen die Nennergleichung
befriedigen muss, was im allgemeinen nicht der Fall sein wird. Die
Losbarkeit ist aquivalent der Moglichkeit, die Zahlergleichungen
linear zur Nennergleichung zu kombinieren. Sie ist insbesondere
erfiillt, wenn die Funktionen 7, selbst sich hnear a1 kombmleren
lassen, wie es bei I und II der Fall war.

: Wir betrachten weiter den Fall, wo die Nennergleichung keine
- Folge der Zahlergleichungen ist.

Es gibe einen mittleren Weg, die widersprechende Nenner-
gleichung zu berticksichtigen und zwar durch Losung des Variations-
problems

ofyp[F' —FPdi=0
mit
[w[F —F1dr =0

als Nebenbedingung. Physikalische FErwigungen, welche zu
dieser Behandlungsweise Anlass geben kénnten, sind uns aber
nicht bekannt; das Ergebnis ist theoretisch komplizierter als die
Losung der Zahlergleichungen und fir die praktische Durchrech-
nung auch in der orthogonalisierten Form unvorteilhaft.

Das einfachste ist, die tberbestimmende Nennergleichung
fallen zu lassen. Anschaulich formuliert bedeutet dies, dass die
Teilfilter in bezug auf V' und V nicht gleiche, sondern proportionale
Durchléssigkeiten aufweisen, wobei der Proportionalititsfaktor bei
der hohen Giite der Anpassung sehr nahe an 1 ist. Immerhin wird
es stets zur Allgemeinbeurteilung der Angleichung von Interesse
sein, diesen Faktor als

[E @) V' (2) da
| [E@) V (4) da
zu berechnen.

Auf die oben gemachte Bemerkung, wonach zufélligerweise
d, 1n allen d, enthalten sei, zuriickkommend, mochten wir darauf
hinweisen, dass die Betrachtung mit der Gleichheit der Durch-
lassigkeiten (4) sich aufrecht erhalten ldsst, wenn man die 7, mit
den verdnderlichen Zusatzanteilen identifiziert:
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d (2)
ANAN=—"22, k=1...
| 7 (4) dl(l)" ¢ w
und als Strahlung y (1) nicht in die d, eintretende (E (1)), sondern
die d, verlassende Strahlung, also F (1) d, (1) und als F" nach wie vor

:iwidi:dlzmiti

setzt. Dann sind die Zahlergleichungen

[vF wdi=[Ed,- dﬂ* g d’“dl — [Ed,-F- gkda (8b)

1 1

identisch mit (8a); die Nennergleichung jedoch lautet:
[Ed,F di= [Ed,Fda,

1st also mit einer der Zahlergleichungen (8a) identisch und somit
erfiillt.

In bezug auf die rechnerische Durchfihrung ist gegeniiber
I und II kein Unterschied zu vermerken, ausser etwa dem, dass
sie recht langwierig ist, weil keine zwel der Ausgangsfunktionen
dx (A) auch nur anndhernd orthogonal zueinander stehen, wie
es bel I der Fall war.

Uberblicken wir die drei behandelten Aufgaben, so erkennen
wir, dass von den Forderungen, die gestellt wurden, um eine
exakte Problemstellung zu erhalten, nur der Interpretation als
Variationsproblem, d. h. der Forderung bester Angleichung im
Gauss’schen Sinn, eine allgemeine Bedeutung zukommt, so dass
es sich empfiehlt, Aufgaben solcher Art als Variationsprobleme
anzupacken, sofern das Bediirfnis nach exakter Behandlungsweise
vorliegt.

Was die rechnerische Durchfithrung anbelangt, so méchten
wir den Sinn dieser Ausfithrungen nicht dahin verstanden wissen,
dass die Reduzierung der Matrizen (t;;) durch Orthogonalisierung
des zugehorigen Funktionensystems stets der empfehlenswerteste,
well methodisch eleganteste Weg ist. Einzig bei Beispiel II ist
die fiir Blaufilter aller Umfarbungsgrade nur einmal auszufiihrende
Orthogonalisierung vorbehaltlos als der praktisch zweckméssige
Weg zu bezeichnen. Bei andern Beispielen 1st von Fall zu Fall
neu zu tuberlegen, ob das gesteckte Ziel den hier aufgezeigten
systematischen Weg zu beschreiten als lohnend erscheinen lasst.

Noch in einer andern Hinsicht mochten wir einem allfallig
moglichen Missverstindnis vorbeugen. Es sei daher der Voll-
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standigkeit halber das Problem der Prézisionsmessung von Hg-
Mischlicht erwahnt, iiber welches spéter im Zusammenhang mit
den experimentellen Ergebnissen berichtet werden soll. Theoretisch
besteht dieses Problem einfach in der Bestimmung von fiinf
Koeffizienten g ., 1m Ausdruck

k
V' () = Z (4) Z e, x+1" Tk, k+1

derart, dass trotz Abweichung der Empfindlichkeitsfunktion
' Z (A) des Empfangers von V;, durch Beiziehung von fiinf Mes-
sungen mit den fiinf Filtern 7, =1, 7,, 75, 73 und 7, erreicht wird, dass

1) das Verhéltnis zweler Gliihlampenstrahlungen der Farb-
temperaturen 7 und T,,

- 2) die (zwei) Verhiltnisse zwischen Hg-Strahlungen ver-
schiedener Zusammensetzung (wobei nur die drei Linien 485,
546 und 577/79 beriicksichtigt werden), und

3) das Verhaltnis zwischen Glithlampenlicht der Farbtempera-
tur T; (oder T,) und im Sinne von 2) beliebiger Hg-Strahlung
richtig wiedergegeben werden.

Diese vier Forderungen einschliesslich der Normierungsbe-
dingung finden ihren mathematischen Ausdruck in fiinf linearen
Gleichungen, aus denen sich die fiinf ¢ ;., berechnen lassen.

Dieses Problem hat in keiner Weise den Charakter eines
Variationsproblems. Fir die Auflosung der Gleichungen ist als
wesentlicher Unterschied gegeniiber I ... III hervorzuheben, dass
nicht nur ein auf sich selbst bezogenes Funktionssystem (welches
zu symmetrischen Matrixelementen

fiihrt, beil denen das Produkt zweier demselben System angehorenden
Funktionen unter dem Integral steht), sondern zwel getrennte
Funktionensysteme vorkommen, die zu Ausdriicken

Tix =f'l) Ty O AAF Ty (11b)

filhren. Die Reduktion der Hauptmatrix auf eine Diagonalmatrix
wirde gleichbedeutend sein mit der Aufgabe, das ¢-System ortho-
gonal zum 7-System zu machen, was wiederum auf fiinf Gleichungen
tiithrt, deren Matrix nicht halb-reduziert ist wie (a;) in (14) bzw.
(22) oder (32). Die Losung dieser neuen Gleichungen wére um
- nichts einfacher als diejenige der Priméargleichungen, so dass eine
Orthogonalisierung keine Erleichterung bedeuten wiirde.

Dies nur als Beispiel eines Problems, das nicht in die oben
beschriebene Problemgruppe fiillt. Probleme solcher Art, bei

29



450 Hans Konig.

denen das primir  Gegebene ein Gleichungensystem (mit sym-
metrischer oder unsymmetrischer Matrix) ist, wird nach der De-
terminantentheorie gemiss (12) oder z. B. nach einem der im
folgenden Teil erwdhnten Approximationsverfahren behandelt.

Zwel weitere Probleme, die sich auf Typus I zuriickfiithren
lassen:

Aufgabe Ia: Problem V—Z. Gegeben ser eine Differenz-
filterreihe geméss Fig. 1, gegebenenfalls erweitert durch ein
Schott’sches GG-Filter, welches das Gebiet zwischen 400 und
520 nm passend unterteilt. Gesucht die Empfindlichkeitsfunk-
tion Z (4) eines an V,, roh angepassten Empfingers (Beispiele:
Zwei-Filter-Kombination, Photron-Element, Viscor-Zelle). Es han-
delt sich also um die Ableitung einer Naherung Z" aus V (= V).

Nattrlicher Ausgangspunkt Z© ist V, Ziel ist Z bzw.

3
7z = VEsz,kJrl Tk, k+1>

worin die 0 ., die Koeffizienten der Zerlegung von Z’/V nach
Ty, x+1 bedeuten. Losung wie bei Aufgabe I: Das zugehorige
Gleichungensystem lautet:

k, Z
> sz,k+1fEV Te, k1 Tiop1 44 :fE V- 71'7;, ir104, (5¢)
woraus
Oker = S AL V] My s (19¢)
die .
sz,m+1:fEZTm,m+1d}" (246)

werden durch Vorschalten der 7, , ., vor die Zelle mit derselben
gemessen. Mit der eckigen Klammer hinter 4 ist angedeutet,
dass sich diese Grossen auf y = EV beziehen.

Zu dieser Aufgabe gibt es eine inverse

Aufgabe Ib: Problem Z — V: gegeben wie oben die 7, 1.4 (4)
und ein Empfinger mit bekannter Empfindlichkeitsfunktion
Z (1). Gesucht eine Kombination von Messungen, ausgefiihrt
‘mit Z und 7, 5., derart, dass die Linearkombination &quivalent
evner Messung mit V' (1) 1st. KEs handelt sich also um den Aufbau
eines V' aus Z:

k
=z }1 ”Q-’C, k+1 Tk, k+1-
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Die Gleichungen lauten:

S Qe kot [BZ T s 7y i1 dh = (B2 vy dh,  (50)
woraus
o e1= DAL (2] My mer; (19d)
die |
M, iz =BV g a0 (24d)

werden aus K, V und 7, , ., berechnet. [Z] deutet auf die Be-
ziehung auf

p=H0Z

als Gewichtsfunktion hin! Dies ist nun unangenehm, da es die
Neuvornahme des ganzen Orthogonalisierungsprozesses bedingt,.
was sich fiir die spezielle Funktion Z nicht lohnt. Nun wird aber
Z von V nicht sehr verschieden sein, so dass eine andere Wahl der
Gewichtsfunktion das Ergebnis nur in hoherer Ordnung beein-
flusst. Man darf statt (5d) setzen:

k - V
E va, k+1fEV Te, k+1 Ti,i+1 da Z'/Evfri,i-i—l aa (59)

und demgemaiss

k
@Qk, kE+1 — ZAZM[I/] ?Jﬂ'Im, m+1 (196)
14 -
va'm+1':~fEV“ZMTm’m+l d}b. (24:8)

(6e) hat dieselbe Matrix wie (5¢); die individuellen Eigen-
schaften von Z finden in (24e) ihren Ausdruck.

Besonderes Interesse verdient die Problemstellung, die wir mit

Aufgabe IV bezeichnen mochten und die sich von Ib nur
dadurch unterscheidet, dass Z (1) nicht bekannt vorausgesetzt
sel. In diesem Falle kann man derart vorgehen, dass man zuniichst
Ia 16st und das Ergebnis Z' mangels Kenntnis von Z in Ib bzw.
(24e) einfiithrt. Befriedigend ist diese Losung aber nicht, denn 1)
1st die Losung nicht eigentlich die gesuchte, da das Ersetzen von Z
durch Z" das Endergebnis beeinflussen muss, und 2) ist die Be-
handlungsart etwas schwerfallig.

Eine offensichtlich zweckméssigere Behandlungsweiée, namlich
als Problem mit unsymmetrischer Matrix (11b), wird im Anschluss
an die Besprechung der Approximationsverfahren angegeben.
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Losung dureh sukzessive Approximation.

Die nicht zu unterschitzende Rechenarbeit, die mit der
Orthogonalisierung verbunden ist, und der man sich ohne weiteres
nur dann unterziehen wird, wenn die t; bzw. 7, ., eine grossere
Bedeutung besitzen, d.h. mehrfach (sei es im selbigen Problem
oder 1n verschiedenen Problemstellungen) verwendet werden
kénnen, legt den Versuch nahe, sich durch sukzessive Approxima-
tion wenigstens Naherungsresultate zu verschaffen. Es sei gleich
bemerkt, dass allen nachgenannten Naherungsverfahren der ge-
meinsame Nachteil anhaftet, dass fir jede Wertrethe M, 4, In
(10a) die ganze Rechnung neu durchgefiihrt werden muss.

Die Zahl der Rezepte aus den s-ten Ndherungswerten @,
verbesserte Werte Qgsm abzuleiten, ist recht gross. Die nach-
stehende Besprechung beschrinkt sich auf drei Ansétze, die unter
sich charakteristische Unterschiede aufweisen. Um die vielen
Formeln nicht zweimal, ndmlich fiir die einfachen Filter 7, und
fiir die Differenzfilter 74, ., hinschreiben zu miissen und zugleich
um zu betonen, dass eine gute Konvergenz der Verfahren nur im
Falle von sich wenigstens einigermassen gegenseitig ausschliessen-
den (fast-orthogonalen) Funktionen zu erwarten ist, beziehen wir
die Darstellung auf den Fall der Differenzfilter. Im besonderen
bezieht sich das nachgenannte Verfahren A) nur auf die Differenz-
filter-Serie.

Die angestrebte Funktion se1 mit U (4) bezeichnet. Von ihr
kennen wir nur die Integralwerte

Miioa=[E® U@ 71 (3 dA. (24)

Ausgangsfunktion und zugleich nullte Néherung sei die als
bekannt anzusehende Funktion U® (4).

Wir suchen den Grenzwert

U = lim U®
§ —»

der Folge von Naherungen U©, U®, U®, . .
Verfahren A): Der Ausgangsfunktion U® gseien die Werte
M(O)z‘,z’+1 = fEU(G) Tii+1 da

zugeordnet. Die Quotienten

Q(()) _ M’i, i+1
%, 1+1 M@O)

%141
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messen die relativen Abweichungen vom Sollwert. Sicher ist nun

U(l) (2) U(O) (2') Z Q'L, i+1 z it+1 (2')

eine bessere Anniherung an U als U®), weil in der Wellenlingen-
zone (i, i + 1) die Kurve gehoben wird, wenn MO, <M.
ausfallt, oder umgekehrt. Man bestimmt:

Mg,l)i+1:fEU(l) Ti,i41 G4,
setzt zur Abkirzung

) e Mz t+1
Q@ i+1 M(l)

%, +1

und wihlt nun als Definition A) fiir die nidchste Néherung

2 1 1
U® = U()ZQ'E )z+1 Ty i+10

allgemein
U(s+1) — U(S)ZQ% o % . : A)
worin
o M; iy . fEUTz',Hl di . (34)
VMY, [BUO ., dA

Diese Definitionen sind verniinftig, denn wenn U® gegen
U konvergiert, konvergiert M{";,, gegen Mﬁ"jﬁrl = M, ;.q, bzw.
(@ =1, was mit X7, ; ., =1 in Ubereinstimmung steht.

%, 1+1
Interessant und als Kontrollbeziehung im praktischen Rechnen
angenehm 1st bei diesem Verfahren die Erhaltung der Normierung:

[EUG di = (KU da. (85)
In der Tat ist

fE'U G+1) J] = 2@7(;’8)%.“ fEU(S) T; iz1 04 = zMi,i+1 :./EUd)“ ’

wegen 27; ;.. = 1.

Von Interesse ist ferner die Tatsache, dass das Ergebnis U(*®
nicht von der Form: U® mal eine lineare Kombination der 7; ;4
1st. Im Fall einer Aufgabestellung wie sub I stort dies nicht, wohl
aber, wenn es sich um das Problem Ib handelt, wo man an den
linearen Aufbau von U®) aus physikalischen Griinden ge-
bunden 1st.

Betreffs der Giite der Annaherung haben wir an einem extrem
gewahlten Beispiel, von dem nur soviel erwihnt sei, als dass es
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sich um die Uberfithrung eines gleichseitigen Dreiecks als U®
(U =0 ber 4 =400 und 720 nm, Spitze bei 2 = 560 nm) in die
internationale Augenkurve V., als U handelte, festgestellt, dass
die beste Ann#herung im Sinne von Gauss, also gegeben durch
die Losungen g r,; von (10a), auch gefithlsmissig etwas besser
aussieht als die Losung im Sinne von A). Die Unterschiede sind
aber niemals von praktischer Bedeutung, denn wenn eine Funktion
eine andere nicht iber ein gewisses Mass hinaus darzustellen
vermag, so 1st es in den Grenzen dieser Annéherung gleichgiiltig,
ob die Naherungsfunktion so oder ein bisschen anders verlduft.

Verfahren B: Auch hier Werde

1 0
U =1t )Z Q»(f)zﬂ Ti it

als erste Verbesserung gewihlt, mit der gleichen Definition fiir -
1 Wesentlich ist nun aber die Forderung B):
i

UesD = U(O)EQF)?,H i, 1412 B)
wonach U¢tD das U® und eine Linearkombination der 7; ;. als
Faktoren enthalte. Damit nun U®*TD dberhaupt gegen ein U™
konvergieren kann, muss fiir die Q{”; ; eine einfache Form gesucht
werden derart, dass Q) ; gegen Q%) , (+1) konvergiert, wenn

& 1+ 1
M, ., gegen M%) =M konvergiert. Dieser Forderung ge-

t,i+1 %, t+1
niigt die Defiition
0= T2 0= 11 ( G 3”‘): - (86)
L its ¢ i+1 = (» |
. . (A M%S B ’l, 1 po M@ i1
worin wiederum _
M@, = [EU® T, 1y, dA. (24)

Die Normierung bleibt, im Gegensatz zu A), nicht erhalten;
es 1st

[BEUG+Yg ) — ZM;;*;ﬁfEU di — S‘ M, .-
Jedoch 1st natiirlich

ZMﬂu i+1 ZM’L a1

Wenn die U®-Folge konvergiert, so ist aus Eindeutigkeits-
griinden das Resultat, d.h. die Zahlenfolge ) 1, 1dentisch
mit den ¢ ., eines Problems vom Typus (10a) bzw. I, sofern die
Transformationsmatrix

(1) = (t) = (_[%” Ti,i41 Tk, k41 dl) (11a)
fir die Belegungstunktion v = EU© berechnet wird.
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Fir die praktische Ausrechnung steht (f,;) mehr im Vorder-
- grund als beim Orthogonalisierungsverfahren. In der Tat folgt:

I
M'E,l)i"i-l :fEU(D 7y, it10A = 2@;:?)k+leU(0) Te,k+1 Te,i+1 dA

= ngc?)kJrl tis
analog:
MY =S Qe e (67
und
T 9
Eng—l{—lt;@ .

Mit M; ;.,, M ,5 ), und #f, ist also schrittweise jede weitere
Grosse berechenbar.

Zur Suche nach Fehlern in der Berechnung von ¢, dient die
Folge von Kontrollformeln:
Z, Y0 i1 Tk o1 = Y701

k
[wsondd = th = MO, (39)

A-.—i

ZMzO)z—H o EZ t’ilk r[’q)dl )

Verfahren C): Sog. Tterationsverfahren!®). Wenn in einem
Gleichungensystem

2 @i ovn e = Ma ks (10a)

jeweils das Glied ¢ = k dadurch eine ausgezeichnete Rolle spielt,
dass t?, wesentlich grisser als ¢4, (14 k) ist, liegt es nahe, nach
der betreffenden Unbekannten _aufzulosen

Mk ;H‘l 17 t’ii]c
Qr, kr1 = ’ Qz‘,z‘+1
i %
kk 13
und eme Folge von Lésungen Q(.S).H zu definieren durch
( W, Ej:,l QD -
kS)kle _Z t :z-ﬂf 5 0 wes By C)
wobel
M _
1) 4 k, k41
B =g | #0)

d
tkk
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Konvergenz der verschiedenen Naherungsverfahren.



Theoret. Behandlung der heterochromen Photometrie. 457

Der Strich beim Summenzeichen kennzeichnet eine Summe
ohne das Glied ¢+ = k. Natiirlich ist, wenn das Verfahren konvergiert,

lim Qﬁ)kﬂ = Qk k+1 -
§—>w

Zum vergleichenden Studium der Konvergenzverhéltnisse
wurde folgende Aufgabe vom Typus I nach den Verfahren A),
B) und O) gelost: Gesucht U(®) = T’ ausgehend von der Aus-
gangsfunktion U© =V, . wobei die durch 7’ approximierte
Funktion als V in Fig. 5 wiedergegeben ist. Wie hier nebenbei
bemerkt sei, entspricht 7 dem Mittelwert dreier Beobachter bei
hohen Leuchtdichten, experimentell von 10 zu 10 nm bestimmt,
woraus die Werte M; ;,, berechnet wurden. V' wire also die
Funktion die bestenfalls errechnet werden kann aus V), und
den 7 Ergebnissen M, ;,, von Messungen bei denen V wirksam
wére. Die Resultate der Rechnungen sind am besten vergleichbar.

wenn die gegen 1 konvergierenden Faktoren zusammengestellt
werden, also Q® bei A),

M Q@
MO = QoD

Q(s)
Q(s—l)

bei C); diese Grossen sind, soweit sie B) und C) betreffen, in
Fig. 6 dargestellt. Die Faktoren Q. , des Verfahrens A) unter-

scheiden sich im vorliegenden Beispiel von den

bei B), und

M iq

MY

% i+l

des Verfahrens B) um weniger als 0,001, so dass wir sie in Fig. 6
nicht aufgenommen haben. Die Konvergenzverhiltnisse sind
dementsprechend fiir A) und B) praktisch dieselben.

Die Losung der Aufgabe lautet:

V' = Vi (0,772 75, + 1,008 7, , + 0,998 7,5 + 1,104 75,
+ 1,057 7,5 + 0,919 7, ¢ + 0,976 74,) - (41)

Verfahren A) bietet wegen seinen Kontrollmoglichkeiten am
meisten Sicherheit vor Rechenfehlern, ist aber von den dreien das
zeitraubendste, weil stets wiederum Integrale (34) berechnet werden
miissen, wiahrend bei B) und C) diese Arbeit mit der Berechnung
von t7, ein fur alle Mal erledigt ist.
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Verfahren B) bietet trotz (39) nicht diesen hohen Grad fort-
schreitender Kontrolle, doch gilt die Gleichung (35) bei méssiger
Ditfferenz zwischen V' und 7 und bei leidlicher Konvergenz beinahe;
so lauten die Zahlen 1m vorliegenden Beispiel fiir

S MY, =1 ST MY, = 1,00032 S MY, | =1,00015
STMY, =1 ST M, = 1,00022

Verfahren C) hat iiberhaupt keine Beziehungen, die den Gang
der Rechnung zu kontrollieren gestatten, hat aber die Eigenschaft,
dass sich die Wirkung allfilliger Rechenfehler nach einigen weiteren
Naherungsstufen wieder ausgeglichen hat.

Der zeitliche Aufwand je Naherungsstufe ist ber B) und C)
derselbe.

B) erfordert eine einmalige Vorarbeit in Form der Berechnung
der Matrix (11a). |

Wenn man sich strikte an die ibliche die Gleichung ) er-
ginzende Vorschrift (40) halt, so ist B) dem Verfahren C) weit
iberlegen, indem sich die sukzessiven Losungen zuerst vom Ziel
entfernen; die 6. Naherung von C) ist immer noch schlechter als
die 1. von B). Wir haben in Fig. 6 daher nicht diese Zahlenfolgen

wiedergegeben, sondern solche, bei denen in der Gleichung fir

(1) .
E,k+1-
i d
(1) M’“ k1 v ti’ﬂ (0)
E okl T ,r/ . 4, 1+ 1
kk

auf der rechten Seite als nullte Naherung
Q% b =1 1=0...6

gesetzt wurde. Diese Werte kommen den Losungen )y, = 0,772,
(15 = 1,003 ... (siehe (41)) erheblich naher als die Werte
M;’l = 1,2110, J‘%g =1,8528, ...

11 12
wodurch das N#éherungsverfahren erheblich abgekiirzt wird.

Be1 Verfahren B) 1st kein solcher Kunstgriff nétig; die sukzessi-
ven Losungen steuern direkt, also im wesentlichen aperiodisch
auf die Endlésung zu. Bei C) dagegen ist die Anndherung im wesent-
lichen oszillierend und zwar pro Stufe besser als bei B). Beide der
Verfahren B) und C) haben also unstreitbare Vorteile.

B) diirfte eindeutig den Vorzug verdienen, wenn man mit der
zwelten Niaherung schon ein rohes Bild tiber die Verhéltnisse haben
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will. C) hingegen diirfte vorzuziehen sein, wenn der Diagonal-
charakter von (%) nicht sehr ausgeprigt ist und eine N&herungs-
losung Q) irgendwie direkt aufgefunden werden kann. Mehr
als diese Vermutungen méchten wir hier nicht zum Ausdruck
bringen, bevor weitere Beispiele nach den verschiedenen Verfahren
behandelt worden sind. »

Zur Beurteilung der absoluten Konvergenz ist es noch not-
wendig, die fiir die benutzte Filterserie giiltige und die Konvergenz
wesentlich bestimmende Matrix (t,) anzugeben:

7618 2183 845 210 63 15 2

2183 5949 3030 258 51 4 0
845 3030 17732 4077 153 3 0

tk
(tgk): 210 258 4077 13839 3260 111 5 1. ]0—5( \? t.. = )
ik E
63 51 153 3260 11454 2407 164
15 4 3 111 2407 4241 1101
. 2 0 0 5 164 1101 3286

Die Glieder nahe der Diagonale sind im Vergleich zu den
Diagonalgliedern noch recht gross, und man darf daher mit der
Giite der Konvergenz zufrieden sein.

Zum Schluss kehren wir nochmals zu Aufgabe IV zurtck,
indem wir sie von vornherein gemiss (11b) auf zwei Funktionen-
systeme beziehen, namlich auf die Abgleichungsfilter 7, .., und
die IKichfilter ¢ ;.,. Den praktischen Vorteil, welchen dies
bietet, sieht man sofort ein, wenn man die (5d) analogen Bestim-
mungsgleichungen hinschreibt:

k
ZQk,k+1fE(T) 2 0ii41 T, ke1 A4 :fE(T) Qi,i+1 Vda. (51)
Die Integrale auf der linken Seite:
Tk ZfE (T) 01, i+1 2 Tr, 112 (11c)

sind bis auf einen Proportionalititsfaktor mit der Zelle selbst
messbar und bedeuten die Ausschlidge, die man erhilt, wenn man
die Eichstrahlungen K (T)g; ;,, auf die der Reihe nach mit
den Abgleichungsfiltern 7, ; ,, bedeckte Zelle fallen ldsst. Zahlen-
méssig zu kennen braucht man also nur die Farbtemperatur T der
Glithlampe und den Eichfiltersatz 7, ,,, zwecks Berechnung der
Integrale auf der rechten Seite von (5f). Damit ist die fir die
praktische Photometrie wichtige Mioglichkeit gegeben, mit einem
Minimum von Kenntnissen (K (7) o; ;1,(4) fiir einen unbekannten,
roh an V,, angeglichenen Empfianger die Vorschrift aufzustellen,
wie durch Zusatzmessungen die Angaben des Empfingers ver-
bessert werden konnen, so dass die Messungen der Eichstrahlungen
richtig wiedergegeben werden. Die Zahl der Filter im einzelnen
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Satz richtet sich nach den Anforderungen. Bei Glihlampenlicht
geniigt bekanntlich ein Filter; zur Umfarbung des Gliihlampen-
lichtes dient als Filter ¢ zweckmissigerweise das Kombinations-
filter des Mehrfilter-Verfahrens®). Bei Hg-Mischlicht sind, wie
oben bemerkt, vier Filter notwendig.

Damit bei grosserer Filterzahl die Konvergenz des Néherungs-
verfahrens (B) oder C)) gut ist, ist darauf zu achten, dass auch
die g; ;;; hart abschneiden und dass ihre Durchlissigkeitsmaxima
tunlichst mit denjenigen der 7, ;,; zusammenfallen.
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