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Theoretische Behandlung- einiger Probleme aus der
heterochromen Photometrie

von H. König (Bern).
(Mitteilung aus dem Eidg. Amt für Mass und Gewicht.)

(18. V. 38.)

Zusammenfassung : Es werden die Anleitungen zur systematischen Behandlung

folgender Fragen gegeben:
I. Ableitung der Hellempfindlichkeitsfunktion V (/) des menschlichen Auges

aus einer beschränkten Anzahl Ergebnissen von Messungen mit Farbgläsern unter
Heranziehung einer Näherungsfunktion F(0) (^) als Ausgangsfunktion;

II. Bestimmung der Koeffizienten eines Kombinations-Blaufilters für
spektralrichtige Umfärbung schwarzer Strahlung in ebensolche anderer
Farbtemperatur ; ^

III. Angleichung der Durchlässigkeitsfunktion E xt t,- (X) eines
Kombinationsfilters an die internationale Hellempfindlichkeitsfunktion.

Eine Reihe weiterer Probleme kann auf obige Typen zurückgeführt
werden.

Die Lösung erfolgt vollständig durch beste Angleichung im Sinne von Gauss
(Minimum'des Fehlerquadrates) oder näherungsweise durch sukzessive Approximation.

Anstoss zu vorliegender Notiz gab das Bedürfnis, die Ergebnisse

der experimentellen Neubestimmung der Hellempfindlichkeitsfunktion

V (X) systematisch auszuwerten. Wenn wir bei
diesem Anlass die Frage der Behandlung einiger weiterer Probleme
anschneiden, so geschieht dies sowohl wegen der weitgehenden
Ähnlichkeit, als auch weil gerade die Unterschiede in Fragestellung
und Behandlung die Eigenart der einzelnen Probleme gut in
Erscheinung treten lassen.

In allen Fällen ist versucht worden, der Fragestellung eine
solche Form zu geben, dass sie auf ein lineares Gleichungensystem

führt, welches oft dank der Möglichkeiten der an formalen
Schönheiten so reichen Theorie der orthogonalen Funktionen leicht
in eine für praktische Berechnungen brauchbare Form gebracht
werden kann.

Da sich unter Umständen dasselbe Ziel näherungsweise auf
einem ganz anderen und, vom praktisch rechnerischen Standpunkt
aus, nicht uninteressanten Weg erreichen lässt, scheint es

angebracht, die verschiedenen Behandlungsweisen einmal vergleichend
zu betrachten.
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Eine ganze Reihe von Fragestellungen, die die Kombination
von Filtern bzw. der Ergebnisse von Messungen mit solchen
betreffen, können auf einen der drei nachgenannten Problemtypen I,
II oder III zurückgeführt werden.

Vollständige Lösung.

Aufgabe I: Gegeben sind die in Fig. 1 dargestellten
Durchlässigkeitsfunktionen rk (X), k 1... w von w Farbfiltern, sowie die
m + 1-Ergebnisse Mk der flimmerphotometrischen Ausmessung
dieser Filter durch einen farbtüchtigen Beobachter, welche dadurch
gewonnen werden, dass vor eine Glühlampe mit der Energieverteilung

E (X, T) (X Wellenlänge, T Farbtemperatur,
Energieverteilung als schwarz vorausgesetzt) zuerst das Filter r0 (X) 1

(also kein Filter) und hierauf die Gläser rk (X) eingeschoben und
die durchgelassenen Lichtströme mit einem konstanten Vergleichs-
Lichtstrom verglichen werden. Gesucht ist die Hellempfindlichkeitsfunktion

V (X) des Beobachters.
Da über die Normierung von V (X) nichts vorausgesetzt wird,

kann man unmittelbar die relativen Messergebnisse

Mk jE(XT)V(X)rk(X)dX (1)

setzen. Von Interesse sind nur die Durchlässigkeiten

fE(X)V(X)rk(X)dX Mk

/E(X)V(X)dX M0
(2)

Sicher ist, dass man V (X) als Funktion nicht aus einer
endlichen Anzahl von Bestimmungsstücken ableiten kann. Ohne Willkür

in der Wahl der Form der bestenfalls an Stelle von V (X)

bestimmbaren Näherung V (X) kommt man nicht vorwärts. Wir
wählen für V (X) die Form

V'(X)=V^(X)yjxkxk(X), k 0...m (3)

aus folgenden Gründen:
1. V (X) unter Weglassung des Faktors F(0) (X) durch die

Linearkombination der rk (X) darstellen zu wollen wäre
unbefriedigend, weil die Anpassungsfähigkeit der Linearkombination
bei der gemäss Fig. 1 getroffenen Wahl der rk namentlich im Blau
zu gering ist, um die weiche Krümmung, wie sie bei V zu erwarten
ist, auch nur halbwegs wiederzugeben. Wählt man aber V (X)
als Produkt mit einer Näherungsfunktion U(0) (X), als welche sich
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Fig. 1.

Zerlegung des Spektrums für die Hellempfindlichkeits-Bestimmung.
Oben: Schott-Filter rk (in Klammer die Schmelznummer):

ti: 2 mm 0G4 (15064), t2: 2 mm OG 1 (27188), t3: 2 mm OG 2 (27878),
t4: 2 mm OG 3 (25016), t5: 1 mm RG 2 (24321), t6: 2 mm RG 2 (22460).

Mitte: Hieraus abgeleitete Differenzfilter rk, k+1.
Unten: Aus rk, k+1 abgeleitetes Orthogonalsystem cpit zur Belegungsfunktion ip gehörig.



Theoret. Behandlung der heterochromen Photometrie. 435

die bisherige internationale Hellempfindlichkeitsfunktion Vlnt ganz
natürlich darbietet, so hat man den kombinierten Vorteil, dass
einerseits der im Verlauf von P"(0) Vlnt niedergelegte Reichtum
an Erfahrungen interpolatorisch herangezogen werden kann und
andererseits der Linearausdruck nur die Unterschiede zwischen V
und Uint zum Ausdruck bringen muss, was an dessen Anpassungsfähigkeit

nur geringe Anforderungen stellt.
2. Der Umstand, dass es gemäss 1) gelingt, den Linearausdruck

zu entlasten, ist allein kein Grund, gerade die xk als
Funktionensystem zur Darstellung von V zu wählen. Es besteht aber
auch kein Grund, ein anderes System zu wählen, und ausserdem
ginge der Hauptvorteil, den die Linearität in rk (X) in sich birgt
nämlich die praktisch rechnerische Möglichkeit der Orthogonali-
sierung und Trennung der Unbekannten xk, bei jeder anderen Wahl
verloren.

3. t0 muss mit Rücksicht auf das blaue Ende des Spektrums
zur Darstellung herangezogen werden.

Die Bedingungsgleichungen zur Bestimmung der xk fliessen
aus der ganz natürlichen Forderung, dass V die Beobachtungsergebnisse

richtig darstellen lasse:

jE(XT)V'(X)rk(X)dX JE (XT) V (X) rk (X) dX
Xk ~

Je (xt) v (X) dx ~Tk~ Je (xt) v(X)dx '

k 0..-.O).

Im vorliegenden speziellen Beispiel kann man, ohne das
Problem der Lösbarkeit von (4) zu berühren, den Umstand, dass

V noch nicht normiert ist, benutzen, um die lästigen Nenner
wegzuschaffen durch die später stets „Nennergleichung" genannte
Setzung :

JE (XT) V (X) dX=jE (XT) V (X) dX, (5a)

was nach (4) die „Zählergleichungen"

JE (XT) V (X) rk (X) dl =JE (XT) V (X) rk (X) dX, k 0... co (5b)

bedingt. In der Tat ist im vorliegenden Fall r0 (X) 1, also (5a)
in (5b) enthalten, so dass die für die m + 1 Zahlen xk zulässige
Zahl von Gleichungen durch die Massnahme (5a) nicht
überschritten wird.

Es ist interessant, festzustellen, dass die Forderung der richtig
wiedergegebenen Durchlässigkeiten (4) sich wegen der Zulässigkeit
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von (5b) deuten lässt als beste Angleichung im Sinne des Minimums
des Gauss'sehen Fehlerquadrates1). Im Variationsproblem

òJ-ip(X)[F' (X) -F(X)]2dX 0

bedeutet tp (X) eine Belegungsfunktion und

F'(X)=j\xkrk(X),

(6)

(7)

die durch Variation der xk einer festen Funktion F (X) bei festem
Funktionensytem rk X) möglichst anzunähernde gesuchte Funktion.
Es folgt

Jy,(X)[F'(X)-F(X)]dJpM dX=ftp(X)[F' (X)-F(X)]Tk(X)dX~0, (8)
uxk

was in der Tat mit (5b) identifiziert werden kann, wenn man

F' V
y> ET<0), F

y(o) '

setzt. Aus (1), (7) und (8) wird

i
y i Xi tik j\ik,

T/(0>

wobei

Die Lösung ist

Xi —

loo-

tik =JtpxixkdX.

.tj_10 M0 tj+io • bu>0

lÌ—lo Al,., t i+lw • ¦ t„

hk I

(9)

(10)

(H)

(12)

Wenn die Ordnung m + 1 der Determinanten (12) hoch wird
(z. B. 7), so ist die praktische Berechnung auf diesem Wege mühsam,
und man versucht zweckmässig, durch lineare Transformation des

Tj,-Systems in ein orthogonales System die Matrix der Gleichungen

(10) in eine Diagonalmatrix umzuformen2). Um ein gewöhnliches

normiertes Orthogonalsystem ohne Belegungsfunktion zu
erhalten, für welches

ist, setzt man

Jcpi cpk dX (epi cpk) =0 für i t fc,

J(cpi)2dX (ficpt) 1

<Pi (X) yV (X) 2 aik r* (X).

(13)

(14)
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Die notwendige lineare Unabhängigkeit der cpt ist durch
diejenige der rk gewährleistet. Nennt man die Koeffizienten der
Zerlegung von s/xp F' im çvSystem yt, so wird

i i k k

yV F' 2 y* ft= Vy 2 2 y«a«T* Vy 2 ^T* > (15)
also

i
xk ^]yiaik, (16)

wobei nach (13)

yi^JVyF'cpidX; (17)

aus dem Gleichungensystem (8) wird
k k

2 aikJtpF' xkdX Yi aik Mk / Vv *" 9>* dX yt (18)

und mit (16)

im im m

xk 2_iZ-ìüim m aik 2 2 a'ci öim m 2 *™ -^™- (19)

Hierin wurde mit äki aik die zu (aik) transponierte Matrix
gekennzeichnet. Die Bestimmung der Zerlegung (3) erfordert
also nichts anderes als die Ermittlung der Transformation (aik).
Die Matrixelemente

i
Amk Y±km 2_j aki aim (20)

sind von der speziellen Wahl des Hilfssystems <ph deren es ja
unendlich viel gibt, unabhängig.

Der schrittweise Aufbau eines Orthogonalsystems aus einem
vorgegebenen System vt erfolgt in bekannter Weise3), wobei man
sich unter den v0, vx, v2... aus der Reihe t0, rx, r2... beliebig
herausgegriffene oder aus dem rk linear kombinierte Funktionen
zu denken hat:

<Po Vf ^o
<Po VVAo (<Po <Po')A. (cp0 cp0) 1 ;

<Pi Vf vi + cio 9>o

(cpx 9?0) 0... c10 - (Vv »i» 9?o)

cpx cpx' (cpx' cpx)-i. (cpx cpx) 1;
?2 VW V2 + C21 <Pl + C20 <Po

(Vi <Po) 0. C20 - (V> «2. 9?o)

(îV 9?i) 0. c21 - (Vv ®2i 9>i)

9?2 9?2' (9>a' <Pz)A... (cp2 cp2) 1;
usw.

Einheitliche Filter, die in einem nicht zu breiten Spektralbereich

eine hohe Durchlässigkeit aufweisen, existieren nicht. Am
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nächsten kommen ihnen die Differenzfilter, die man aus der
OG-EG-Reihe der Schott'schen Farbgläser aufbauen kann, weil
dieselben steile r-Kurven aufweisen. Fig. 1 zeigt Beispiele solcher
Kurven, wobei die spektralphotometrisch gemessenen
Durchlässigkeitswerte durch die maximale Durchlässigkeit im Durchlassbereich

dividiert worden sind. Dementsprechend seien auch unter
Mk (siehe (1)) nicht die unmittelbar gemessenen, sondern die durch
die maximale Durchlässigkeit dividierten Messwerte verstanden.
Die ebenfalls in Fig. 1 dargestellten Differenzen

rk, k+x (X) rk (X) - rk+x (X) (t7 0), (21)

geben eine recht gute Roh-Einteilung des Spektrums in m + 1 7

Bezirke. Sich streng ausschliessend, also orthogonal sind nur
t23 und t67, fast orthogonal ist die Gruppe (t01, rX2, t23) in
bezug auf die Gruppe (t56, t6i7 t6)). Dies bedingt rechnerische
Erleichterungen. Wir wählen daher:

^0 T0,l ^3 T5,6

v. l2,3

v*. — "-1,2

Entsprechend dem Umstand, dass die experimentelle
Untersuchung4) mit einer Lampe der Farbtemperatur 2720° durchgeführt
worden ist, wird im Beispiel tp E (X, 2720°) • Vlnt (X) gewählt.

Die Integrale werden als Summen von 10 zu 10 nm berechnet.
Das numerische Ergebnis der Orthogonalisierung und

Normierung, nach (14) charakterisiert durch eine Transformation
(afk) (der Index oben erinnert daran, dass die Differenzfunktionen
(21) Gegenstand der Transformation sind) lautet:

«,)

+ 3,6227 0 0 0 0 0 0
/-0,0013+5,5132 0 0 0 0 0 \
' -1,2415 0 +4,3336 0 0 0 0

-0,0076-1,7121-0,0005+5,1217 0 0 0

+ 0,1002 + 0,0001 - 1,3021 - 0,0003 + 2,4863 0 0
V - 0,0178 + 0,4823 - 0.0073 -1.9136 - 0.0249 + 3,1560 0 /
\ n Ciqhq (111K/I i n Ofi^c [ n-in-n n tat n noi/io i on^'

(22)

-0,0878 -0,1154 +0,2658+0,4711 -0,7017 -0,9142 +2,943'

Die Berechnung der hier nicht wiedergegebenen Matrix Akm
bzw. Akm nach (20) bzw. (20a) (s. unten) vereinfacht sich wegen
der Symmetrie der letzteren:

Ylkm Amk. (26)

Die zur Belegungsfunktion E (2720°) Vìnt gehörigen cpi sind
in Fig. 1 gezeichnet. Für die Auswertung der Ergebnisse Mk zur
Aufstellung von V werden sie nicht weiter benutzt.
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Die Transformation afk bezieht sich auf das System (21) bzw.
an Stelle von (1) auf die Messergebnisse

Mk, k+i Mk - Mk+X (M7 0) (24)

und die Unbekannten qk k+1, definiert durch

V' W Vint (X) 2 q,c. k+i rk. k+x (X). (3a)

Es gelten also die zu früheren analogen Beziehungen:

Ì>.«+1& Ms>i+1 (10a)

k

fi W Vy W 2 aikT*. *+i W (14a)

m

Qu, k+l 2 km Mm, m+X (19a)

i
Y^-km 2 a'ki üim mk- (2\)&)

Ein Konflikt zwischen Zählergleichungen und Nennergleichung

entsteht nicht, da die notwendige Abhängigkeit der
Nennergleichung wegen

y\rkik^x(X) l (25)

gewährleistet ist.
Wir stellen der Übersichtlichkeit halber die vom cp,-System

unabhängigen Beziehungen zwischen dem tk und dem rki k+x- System
zusammen :

Tk, k+l Tk T-k+1

MKk+x Mk~Mk+x
A _ Ad i Ad —À* —A¦n-km — ^-km < ^k—l.m—l ^k—lm ^-km-l

Xk [ik, k+l Qk-1, k

y k k

~y¥ =2 2*. k+l ^k. k+l 2 ** T>< ¦ (26)

Aufgabe II: Gegeben sind die in Fig. 2 dargestellten
Durchlässigkeitsfunktionen rk(X), k 1...4. Es handelt sich um die
von uns an anderer Stelle5) beschriebenen Komponenten des

Kombinations-Blaufilters, leicht abgeändert und ergänzt durch t4,
welches die Verbesserung der Anpassung bis 420 nm hinunter
gewährleisten soll6). Die Ergebnisse ek von Messungen mit einem
Empfänger, dessen Empfindlichkeitskurve zwischen 420 und 700 nm
weitgehend beliebig verlaufen darf, mit Faktoren xk linear kom-
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Fig. 2.

Kombinations-Blaufilter.
Oben: Komponenten desselben:

Tn: kein Filter, r, : 1 mm BG 14,

t2: 1 mm BG 6 + 2 mm BG 14 + 1 mm BG 7

t3: 2 mm VG 2 + 1mm BG 7,

t4: 2 mm BG 2 + 2 mm BG 18.

Unten: Aus den rk abgeleitetes orthogonales ç)-System.
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' xk ek,
tions-Blaufilter

kbiniert : jj xk ek, entsprechen einer Messung mit einem Kombina-

F'(X)=yjxkrk(X), fc 0...4. (7)

Gesucht sind die xk derart, dass F' (X) sich im sichtbaren
Gebiet wegen der Gültigkeit des Wien'sehen Strahlungsgesetzes mit

_
c2 /1 1_\

F(X; Tx, T2) konst. -e
k

'
T* ^' ^

möglichst deckt, was mit einer spektralrichtigen Umfärbung
schwarzer Strahlung der Temperatur Tx in eine ebensolche der
Temperatur T2 gleichwertig ist.

Wir haben bisher die Koeffizienten xt dieses Mehrfilterverfahrens

durch Probieren bestimmt6), was bei einiger Übung wohl
ebenso rasch geht wie mit nachstehend beschriebenen systematischen

Verfahren, doch scheint uns hier der geeignete Ort zu sein,
auf die Möglichkeit der Behandlung der Aufgabe als exakt definiertes
Problem hinzuweisen, um so mehr als der Prozess der Koeffizientenbestimmung

durch Probieren für j eden Farbensprung A t?t — zr-

vollständig neu durchgeführt werden muss, während die Bestimmung

der Transformation (20), die auch hier die Hauptrolle
spielen wird, für alle A 1/T bei gegebenem Tx gemeinsam ist.

Im Gegensatz zu Aufgabe I besteht zunächst kein Anlass,
über irgendwelche Durchlässigkeiten Forderungen zu stellen, und
man wird daher versuchen, die Fragestellung als Minimalproblem

(6) bzw. als Lösung von

Jtp(X)[F'(X)-F(X)]rk(X)dX 0 (8)

aufzufassen, worin F' durch (7) und F durch (27) definiert sind.
Die Linearkombination der rk erscheint hier nicht nur als
Korrekturfunktion, sondern sie ist mit F' direkt identisch. Die
experimentelle Hauptaufgabe besteht also in der geschickten Auswahl
der rk (X), weil die Anforderungen an das Anpassungsvermögen
ausschliesslich auf der Linearkombination ruhen.

Eine gewisse Willkür in der Wahl von tp ist unvermeidlich,
aber es liegt nahe, auch hier tp, als Getüic/ifsfunktion der Bewertung
der Abweichungen, proportional Vlnt zu wählen. Ferner kann man
nicht umhin, (8) als Bedingung für die Intensitätsverteilung des
das Kombinationsfilter verlassenden Lichtes anzusehen, so dass
in tp noch ein Faktor E (X, Tx) enthalten sein muss. Es ist
bedauerlich, liegt aber in der Natur der Sache, dass die optimalen
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xk folglich von Tx abhängen, weil der Schwerpunkt in der
Angleichung sich mit wachsendem Tx nach Blau verschiebt. Die
Anpassungsfähigkeit von F' an F ist aber bekanntlich5) so hoch,
dass es praktisch bedeutungslos ist, ob man den Orthogonalisie-
rungsprozess für die Belegungsfunktion ip E (2600°) Fint oder
für E (2720°) Vint durchführt (im Gegensatz zu Aufgabe I, wo
der Anschluss an die Messungen M,c die Wahl von T bestimmte!).

Da Ti 1 in der Filterserie enthalten ist, ist mit (8) auch
die Nennergleichung

Jtp (X) [F' (X) - F (X)] dX 0 (28)

erfüllt, so dass

Jtp (X) F' (X) rk (X) dX Jtp (X) F (X) rk (X) dX

Jtp (X) F' (X) dX Jtp (X) F (X) dX
(4a)

geschrieben werden darf. Dies kann man anschaulich so deuten :

Wenn man für eine zweite, der ersten Serie rk identische Filterserie

die Durchlässigkeiten rk und rk bezogen auf die Strahlungen
F (Ti) VintF' und E (Tx) VmF E (T2) Fint messen würde, so
würden laut (4a) für die gefundene Annäherung F' (X) die
Durchlässigkeiten aller Teilfilter richtig heraus kommen, d. h. gleich
wie für F (X).

Die weitere Behandlung erfolgt wie bei Aufgabe I. Mit

folgt für T1=2720, also für xp E (X, 2720°) Fint, die
Transformationsmatrix

/ 1 0 0 0 0 \/ -4,888 + 7,177 0 0 ° \
(0,*)= +2'414 - 4.219 + 33,650 0 ° (32)

\ +6,378 - 11,960 + 1,812 + 25,55 ° /\ + 0,695 - 1,356 -13,504 + 5,209 +176,39/

welche gemäss k

<Pi W Vy 2 a^; Tk (X) (14)

die tk in die ebenfalls in Fig. 3 darg'estellten <ft überführt. Für
(20) folgt

/+ 71,882 -122,489 + 83,403 +166,578 + 122,590 \
/ -122,489 + 214,190 - 146,330 - 312,641 - 239,185 \

(Akm) - + 83,403 -145,330 + 1317,96 - 24,045 - 2381,97 |(33)
\ +166,578 - 312,641 - 24,045 + 679,93 + 918,815 J\ +122,590 - 239,185 -2381,97 + 918,815 + 31113,43 /
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In
xk — 2j Akm Mm (19)

sind nun noch die Mk zu berechnen:

Mk (T2) =JE (X, 2720») Vm (X) • F (X; 2720°, T2) rk (X), (la)
fc 0...4.

Wir geben in Fig. 3 als Kreise die Angleichung F' Sxk Tk in
Form von F'/F für den Fall T2 5000°, welcher dem Umfärbungs-
grad A 1/T=1676 mired (mikroreziproke (Grade 10~6T^1) in der

1,0

0,9

1,0

0,9

0,8

0,7

0,6

*.-.
400 ' 500

E (ä) konst.

600

o: F'fF
700

700 nm

500400 Ä_

E (», 5000")

— : E (A, 5000°) E ß, 2720°) • F (A; 2720°, 5000°)

o: E (X, 5000°) ¦ F'/F+ E (A, 2720°) ï xkrk (A)

X : Davis-Gibson-Flüssigkeitsfilter für den Sprung
2848° —r- 5000°.

Fig. 3.
k

Optimale Angleichungen mittelst Kombinations-Blaufilter F' (A) Zxkrk (A).
Oben : Annäherung des energiegleichen Spektrums, -

unten: Annäherung der schwarzen Strahlung von 5000° durch schwarze
Strahlung von 2720° und Kombinationsfilter.

Bezeichnungsweise von Priest) entspricht. Die zugehörige .F-Kurve
ist mit E (X, 5000°) bezeichnet7). Die Annäherung von F' an F
ist besser als bei dem nahezu entsprechenden (Tx 2848°, T2
5000°) Davis-Gibson-Filter8), welches in Fig. 3 durch Kreuze
angedeutet ist.

Das Problem kann auch so gestellt sein, dass die Herstellung
eines energiegleichen Spektrums verlangt wird. F' (X) muss in
diesem Fall die Strahlung

<h L
E (X, Tx) konst. • A-5 • e

K Tl in E (X) konst.
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überführen. Wir führen dieses Beispiel etwas näher aus, da die
theoretische Herstellung der Strahlung E (X) konst. in dieser
Vollkommenheit in der Literatur bisher noch nicht beschrieben
worden ist.

Es wird gemäss (1) für die in Frage stehende Filterserie

Mk JVm(X)xk(X)dX

und für Tx 2720°:

f M0 1

M, 0,72306
M2 0,02419
M3 0,08817

M, 0,001218

Xq 0,169

»1 0,986

%2 5,18
Xr, 1,006

X, 10.93.

^h 7 -Alle.wi -lAAm.

In Fig. 3, oben, ist das Ergebnis durch Kreise dargestellt.
Die Angleichung darf füglich als ausgezeichnet betrachtet werden
und zeigt angesichts der Grösse des Farbensprungs erneut die
Leistungsfähigkeit des Kombinationsgedankens.

Kontrollen. Allfällige Rechenfehler in (aik) findet man mittelst
folgender allgemeiner Kontrolle: Für F F' 1, also Mjc (T2)
Mk (Tx), m. a. W. wenn die Strahlung E (Tx) überhaupt nicht
umgefärbt zu werden braucht, muss

xx 2 Am Mr:1 (27)

m
%s _^j A$m IVI m \1 i) ¦ 0, s l

sein. Man erkennt, dass die Rechengenauigkeit ziemlich gross
sein muss, da die Zahlen AimMm von der Grössenordnung 100 sind!
Im vorliegenden Fall, wo t0 1 und cp0 Vv To Vv ist, ist
folgende spezielle Kontrolle möglich : Für F F' 1 lautet hier
die Lösung von (16) :

y0 i ; ys o, s i... 4,

also muss nach (18)

yìaokMk l

2 «sk Mk 0, 1

sein.
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Aufgabe III: Gegeben sind die in Fig. 4 dargestellten
Durchlässigkeitsfunktionen dk (X), k 1 8, aus denen sich, wie wir
zeigen konnten9), durch lineare Kombination

v (X) 2 ck dk (x)

ein V (X) aufbauen lässt, welches Fint sehr nahe kommt, so dass

dieses Kombinationsfilter zusammen mit einem nicht-selektiven
Empfänger, z. B. einer Thermosäule, ein sehr leistungsfähiges
künstliches Präzisionsauge darstellt. Gesucht sind die ck, die
wir im Anschluss an die Aufgaben I und II mit xk bezeichnen
wollen, derart, dass V im Sinne von Gauss eine beste Angleichung
an Fint darstellt.

-OJ

-0.4 d,(l)

1

t'int(;') 0.9-

-0,3
1

-0.2 0.8-

-0,1

0 ^ •^^dld)
0.2

-0.1
0 _^-*d>
0.3

-0,2

-0.1

0 v^W
0.2

-0,1

0 ^T^jfcW
0,2
¦0.1

0 V<4W
0,2

-0.1

0 \^de(V
0.1
0 ¦\^£jM
O.l
0 y~^\^ds(xj
U.l
o „ V

400 SOO 600 —» l (nm) 700

Fig. 4.

Zu nicht-selektivem Empfänger gehöriges Kombinationsfilter

d1(X)Zckdk.(X), <V(A) 1.

de'(X): 1mm OG 2

d/(X): 2 mm OG 4

+ 2 mm RG6
d8'(A): 2 mm RG 1

Die Werte für V (A) sind durch Kreise gekennzeichnet, die Werte für Fint (A)

durch Striche.

V'(X)
<V (A)

d3' (X)

dl (X)

dt' (X)

2ckdk (X)

2 mm VG 4

1 mm OG 4

2 mm OG 1

2 mm OG 1
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Der Umstand, dass zufälligerweise, wie die Angaben unter
Fig. 4 erkennen lassen, bei diesem Kombinationsfilter alle Komponenten

dk als Bestandteil dx enthalten, hat zur Folge, dass man
auch die Zusatzfilter dkfdx dk mit den rk der unter I entwickelten
Theorie identifizieren kann. Wir machen aber zunächst hiervon
keinen Gebrauch, sondern betrachten die dk (X) unmittelbar als
Funktionenreihe

tk (X) dk (X),

auf die sich die aus der Minimumsforderung (6) fliessenden
Gleichungen

Jtp (X) [F' (X) -F(X)]dk(X)dX 0, k l m (8a)

beziehen soll. Im Gegensatz zu (9) ist hierin

F' V' yixidi,F Vint.

In bezug auf die Wahl von tp ist man weitgehend frei. Wohl
liegt es nahe, (8) wie unter II als Bedingungen für die das
Kombinationsfilter verlassenden Lichtströme anzusehen, also tp (X) als

Energieverteilung E (X) anzusehen; eine besondere Beziehung zur
schwarzen Strahlung wie bei II oder noch mehr bei I besteht aber
nicht, und man kann daher die Minimumsforderung auf die neutrale
Strahlung tp (X) E (X) konst. beziehen. Wir behalten aber tp

in den Formeln bei.
Wesentlich neu an Problem III gegenüber I und II ist der

Umstand, dass die Veranschaulichung von (8) durch die Forderung
(4) richtig wiedergegebener Durchlässigkeitskoeffizienten im
allgemeinen nicht mehr möglich ist. In der Tat: (4) führt statt zu (10)
zum homogenen System

(27)

(28)

wobei
2 xi (lik— T>.- li) °> i,k l m,

tt ftp ti dX.

Die Bedingung für die Lösbarkeit ist das Verschwinden der
Determinante

\tik-~Tktt\=0. (29)

Nun lässt sich (29) durch Entwickeln auf die Form bringen:

tlx tx i_x M0- rx tx i+x... tlc

2v
Kl ¦ ¦ ¦ tmi'l M0 T0 tmi+1 ¦ ¦ ¦ K

:|i«|=M0(|^|+0). (30)
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(30) ist aber gleichwertig der Nennergleichung
to

Jtp F' (ü 2 Xi k Jtp F dX M0, (5a)
i l

wenn in derselben die xi durch die Lösungen (12) der Zähler-
gleichungen ersetzt werden. Die Lösbarkeitsbedingung (30) besagt
also, dass die Lösung der Zählergleichungen die Nennergleichung
befriedigen muss, was im allgemeinen nicht der Fall sein wird. Die
Lösbarkeit ist äquivalent der Möglichkeit, die Zählergleichungen
linear zur Nennergleichung zu kombinieren. Sie ist insbesondere
erfüllt, wenn die Funktionen rk selbst sich linear zu 1 kombinieren
lassen, wie es bei I und II der Fall war.

Wir betrachten weiter den Fall, wo die Nennergleichung keine
Folge der Zählergleichungen ist.

Es gäbe einen mittleren Weg, die widersprechende
Nennergleichung zu berücksichtigen und zwar durch Lösung des Variationsproblems

SJf[F'-F]2dX 0

mit
Jtp[F' -F]dX 0

als Nebenbedingung. Physikalische Erwägungen, welche zu
dieser Behandlungsweise Anlass geben könnten, sind uns aber
nicht bekannt; das Ergebnis ist theoretisch komplizierter als die
Lösung der Zählergleichungen und für die praktische Durchrechnung

auch in der orthogonalisierten Form unvorteilhaft.
Das einfachste ist, die überbestimmende Nennergleichung

fallen zu lassen. Anschaulich formuliert bedeutet dies, dass die
Teilfilter in bezug auf V und V nicht gleiche, sondern proportionale
Durchlässigkeiten aufweisen, wobei der Proportionalitätsfaktor bei
der hohen Güte der Anpassung sehr nahe an 1 ist. Immerhin wird
es stets zur Allgemeinbeurteilung der Angleichung von Interesse
sein, diesen Faktor als

JE (X) V (X) dX

Je (X) v (X) dx

zu berechnen.
Auf die oben gemachte Bemerkung, wonach zufälligerweise

dx in allen dk enthalten sei, zurückkommend, möchten wir darauf
hinweisen, dass die Betrachtung mit der Gleichheit der
Durchlässigkeiten (4) sich aufrecht erhalten lässt, wenn man die rk mit
den veränderlichen Zusatzanteilen identifiziert:
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di (A)

und als Strahlung y (X) nicht in die ^ eintretende (E (X)), sondern
die dx verlassende Strahlung, also E (X) dx (X) und als F' nach wie vor

i
F' 2 «*d» dx 2x*%i

setzt. Dann sind die Zählergleichungen

ftpF'xkdX= [Edx¦ dxy xi — -d^dX= [Edx-F-^dX (8b)
¦> J *-* dx dx ¦> dx

identisch mit (8a); die Nennergleichung jedoch lautet:

JE dx F' dX jEdxFdX,

ist also mit einer der Zählergleichungen (8a) identisch und somit
erfüllt.

In bezug auf die rechnerische Durchführung ist gegenüber
I und II kein Unterschied zu vermerken, ausser etwa dem, dass
sie recht langwierig ist, weil keine zwei der Ausgangsfunktionen
dk (X) auch nur annähernd orthogonal zueinander stehen, wie
es bei I der Fall war.

Überblicken wir die drei behandelten Aufgaben, so erkennen
wir, dass von den Forderungen, die gestellt wurden, um eine
exakte Problemstellung zu erhalten, nur der Interpretation als

Variationsproblem, d. h. der Forderung bester Angleichung im
Gauss'schen Sinn, eine allgemeine Bedeutung zukommt, so dass
es sich empfiehlt, Aufgaben solcher Art als Variationsprobleme
anzupacken, sofern das Bedürfnis nach exakter Behandlungsweise
vorliegt.

Was die rechnerische Durchführung anbelangt, so möchten
wir den Sinn dieser Ausführungen nicht dahin verstanden wissen,
dass die Reduzierung der Matrizen (tik) durch Orthogonalisierung
des zugehörigen Funktionensystems stets der empfehlenswerteste,
weil methodisch eleganteste Weg ist. Einzig bei Beispiel II ist
die für Blaufilter aller Umfärbungsgrade nur einmal auszuführende
Orthogonalisierung vorbehaltlos als der praktisch zweckmässige
Weg zu bezeichnen. Bei andern Beispielen ist von Fall zu Fall
neu zu überlegen, ob das gesteckte Ziel den hier aufgezeigten
systematischen Weg zu beschreiten als lohnend erscheinen lässt.

Noch in einer andern Hinsicht möchten wir einem allfällig
möglichen Missverständnis vorbeugen. Es sei daher der Voll-
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ständigkeit halber das Problem der Präzisionsmessung von Hg-
Mischlicht erwähnt, über welches später im Zusammenhang mit
den experimentellen Ergebnissen berichtet werden soll. Theoretisch
besteht dieses Problem einfach in der Bestimmung von fünf
Koeffizienten qkr k + x im Ausdruck

V'(X)=Z(X)j\qKk + x-rKk+x

derart, dass trotz Abweichung der Empfindlichkeitsfunktion
Z (X) des Empfängers von Flnt durch Beiziehung von fünf
Messungen mit den fünf Filtern t0 1, rx, r2, t3 und r. erreicht wird, dass

1) das Verhältnis zweier Glühlampenstrahlungen der
Farbtemperaturen Tx und T2,

2) die (zwei) Verhältnisse zwischen Hg-Strahlungen
verschiedener Zusammensetzung (wobei nur die drei Linien 435,
546 und 577/79 berücksichtigt werden), und

3) das Verhältnis zwischen Glühlampenlicht der Farbtemperatur
Tx (oder T2) und im Sinne von 2) beliebiger Hg-Strahlung

richtig wiedergegeben werden.
Diese vier Forderungen einschliesslich der Normierungsbedingung

finden ihren mathematischen Ausdruck in fünf linearen
Gleichungen, aus denen sich die fünf qk k + x berechnen lassen.

Dieses Problem hat in keiner Weise den Charakter eines

Variationsproblems. Für die Auflösung der Gleichungen ist als
wesentlicher Unterschied gegenüber I III hervorzuheben, dass
nicht nur ein auf sich selbst bezogenes Funktionssystem (welches
zu symmetrischen Matrixelementen

tik =/v Ti rk dX tki (11)

führt, bei denen das Produkt zweier demselben System angehörenden
Funktionen unter dem Integral steht), sondern zwei getrennte
Funktionensysteme vorkommen, die zu Ausdrücken

fik =Jy> Ti Qk dX +- rki (IIb)
führen. Die Reduktion der Hauptmatrix auf eine Diagonalmatrix
würde gleichbedeutend sein mit der Aufgabe, das p-System orthogonal

zum T-System zu machen, was wiederum auf fünf Gleichungen
führt, deren Matrix nicht halb-reduziert ist wie (aik) in (14) bzw.
(22) oder (32). Die Lösung dieser neuen Gleichungen wäre um
nichts einfacher als diejenige der Primärgleichungen, so dass eine
Orthogonalisierung keine Erleichterung bedeuten würde.

Dies nur als Beispiel eines Problems, das nicht in die oben
beschriebene Problemgruppe fällt. Probleme solcher Art, bei

29
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denen das primär Gegebene ein Gleichungensystem (mit
symmetrischer oder unsymmetrischer Matrix) ist, wird nach der
Determinantentheorie gemäss (12) oder z. B. nach einem der im
folgenden Teil erwähnten Approximationsverfahren behandelt.

Zwei weitere Probleme, die sich auf Typus I zurückführen
lassen:

Aufgabe Ia: Problem V—>~Z. Gegeben sei eine
Differenzfilterreihe gemäss Fig. 1, gegebenenfalls erweitert durch ein
Schott'sches GG-Filter, welches das Gebiet zwischen 400 und
520 nm passend unterteilt. Gesucht die Empfindlichkoitsfunk-
tion Z (X) eines an Fint roh angepassten Empfängers (Beispiele:
Zwei-Filter-Kombination, Photron-Element, Viscor-Zelle). Es handelt

sich also um die Ableitung einer Näherung Z' aus F(= Fint).

Natürlicher Ausgangspunkt Z(0) ist V, Ziel ist Z bzw.

k
Z V y zHk, k + l Tk, k + l;

worin die zQk<k + x die Koeffizienten der Zerlegung von Z'/V nach
Tk, k + i bedeuten. Lösung wie bei Aufgabe I: Das zugehörige
Gleichungensystem lautet :

k

y, zQk k + iJ E V tk. k + i Tt i +1 dX -/*"4t«.i+idX (5c)

woraus

die

m

zQk,k + l 2"^*»»i+]' zxV± w ^ m +1 (19c)

z-xrA. -m. m + 1 jEZr dìm, m + 1 U"L (24c)

werden durch Vorschalten der t m, m + ]L vor die Zelle mit derselben

gemessen. Mit der eckigen Klammer hinter A ist angedeutet,
dass sich diese Grössen auf tp EV beziehen.

Zu dieser Aufgabe gibt es eine inverse

Aufgabe lb: Problem Z -* V: gegeben wie oben die Tkk + X (X)

und ein Empfänger mit bekannter Empfindlichkeitsfunktion
Z (X). Gesucht eine Kombination von Messungen, ausgeführt
mit Z und Tj.j7c + 1 derart, dass die Linearkombination äquivalent
einer Messung mit F (X) ist. Es handelt sich also um den Aufbau
eines V aus Z: k

v z 2 VQ fc, k +1 lk, k -
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Die Gleichungen lauten:
k y2 "**fc. k+iJEZ xk_ k + x xit i + 1dX I EZ — Xf i + xdX, (5d)

woraus

die
vQk.k+i ^\Adkm[Z]- „Mm, m+1; (19d)

Mm,m+i=jEV xm,m + xdX (24d)

werden aus E, V und tmm + 1 berechnet. [Z] deutet auf die
Beziehung auf

tp EZ

als Gewichtsfunktion hin! Dies ist nun unangenehm, da es die
Neuvornahme des ganzen Orthogonalisierungsprozesses bedingt,
was sich für die spezielle Funktion Z nicht lohnt. Nun wird aber
Z von V nicht sehr verschieden sein, so dass eine andere Wahl der
Gewichtsfunktion das Ergebnis nur in höherer Ordnung
beeinflusst. Man darf statt (5d) setzen:

k y2 vQk.k + ijFVxkik+x xii + xdX =JEV — xiti + xdX (5e)

und demgemäss
k

vHk, k+l 2 ^ta L ' J ' vMm m+\ (19e

y
VM. m> m+x f Ei V —— Xm m+x Oik (24e;

(5e) hat dieselbe Matrix wie (5c); die individuellen
Eigenschaften von Z finden in (24e) ihren Ausdruck.

Besonderes Interesse verdient die Problemstellung, die wir mit

Aufgabe IV bezeichnen möchten und die sich von lb nur
dadurch unterscheidet, dass Z (X) nicht bekannt vorausgesetzt
sei. In diesem Falle kann man derart vorgehen, dass man zunächst
Ia löst und das Ergebnis Z' mangels Kenntnis von Z in lb bzw.
(24e) einführt. Befriedigend ist diese Lösung aber nicht, denn 1)
ist die Lösung nicht eigentlich die gesuchte, da das Ersetzen von Z
durch Z' das Endergebnis beeinflussen muss, und 2) ist die
Behandlungsart etwas schwerfällig.

Eine offensichtlich zweckmässigere Behandlungsweise, nämlich
als Problem mit unsymmetrischer Matrix (IIb), wird im Anschluss
an die Besprechung der Approximationsverfahren angegeben.
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Lösung durch sukzessive Approximation.

Die nicht zu unterschätzende Rechenarbeit, die mit der
Orthogonalisierung verbunden ist, und der man sich ohne weiteres
nur dann unterziehen wird, wenn die xk bzw. xk> k + x eine grössere
Bedeutung besitzen, d. h. mehrfach (sei es im selbigen Problem
oder in verschiedenen Problemstellungen) verwendet werden
können, legt den Versuch nahe, sich durch sukzessive Approximation

wenigstens Näherungsresultate zu verschaffen. Es sei gleich
bemerkt, dass allen nachgenannten Näherungsverfahren der
gemeinsame Nachteil anhaftet, dass für jede Wertreihe Mk,k + X in
(10a) die ganze Rechnung neu durchgeführt werden muss.

Die Zahl der Rezepte aus den s-ten Näherungswerten Qf\+1
verbesserte Werte QfY}\ abzuleiten, ist recht gross. Die
nachstehende Besprechung beschränkt sich auf drei Ansätze, die unter
sich charakteristische Unterschiede aufweisen. Um die vielen
Formeln nicht zweimal, nämlich für die einfachen Filter xk und
für die Differenzfilter tj% k + x hinschreiben zu müssen und zugleich
um zu betonen, dass eine gute Konvergenz der Verfahren nur im
Falle von sich wenigstens einigermassen gegenseitig abschliessenden

(fast-orthogonalen) Funktionen zu erwarten ist, beziehen wir
die Darstellung auf den Fall der Differenzfilter. Im besonderen
bezieht sich das nachgenannte Verfahren A) nur auf die
Differenzfilter-Serie.

Die angestrebte Funktion sei mit TJ (X) bezeichnet. Von ihr
kennen wir nur die Integralwerte

M,,, + JE(X) U (X) xit t + x (X) dX. (24)

Ausgangsfunktion und zugleich nullte Näherung sei die als
bekannt anzusehende Funktion LT(0) (X).

Wir suchen den Grenzwert

TJ(oo lim JJls)
S >- 00

der Folge von Näherungen <J<0), <7(1), U(2)....

Verfahren A) : Der Ausgangsfunktion U(0) seien die Werte

Mi\i+1=*fEU<®T{,t+1dX

zugeordnet. Die Quotienten

0(0) _ Mi:i+1
Vi, t+i jur(0)

±v±i.i+l
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messen die relativen Abweichungen vom Sollwert. Sicher ist nun

ü(1)(;)=ü(°>(l)2Qfi+1ru+1(A)

eine bessere Annäherung an TJ als U(0), weil in der Wellenlängenzone

(i, i + 1) die Kurve gehoben wird, wenn Mf/\+1 < Mtii+X
ausfällt, oder umgekehrt. Man bestimmt:

M<«+1=/£C(«t,j+i(ü,
setzt zur Abkürzung

Mt,nd) __ -"*«•,< +
V», i+i "

i+i

und wählt nun als Definition A) für die nächste Näherung

allgemein

ü«'+»-U«S<#>+x*m+1. A)
worin

Diese Definitionen sind vernünftig, denn wenn 77(s) gegen
(7(co) konvergiert, konvergiert -M«+1 gegen M^"+1 Mii+1, bzw.

6i°i+i •"•' was m^t -^Ti, i + i 1 in Übereinstimmung steht.
Interessant und als Kontrollbeziehung im praktischen Rechnen

angenehm ist bei diesem Verfahren die Erhaltung der Normierung :

jEW*+»dX=jETJdX. (35)
In der Tat ist

Jeu <*+ddx 2v1fi+1 /su« tm+1 di 2m«, ,+1 =/eü<ü
wegen -£tm+1 1.

Von Interesse ist ferner die Tatsache, dass das Ergebnis U(oo)

nicht von der Form: U(0) mal eine lineare Kombination der xii+1
ist. Im Fall einer Aufgabestellung wie sub I stört dies nicht, wohl
aber, wenn es sich um das Problem lb handelt, wo man an den
linearen Aufbau von Z7(c0) aus physikalischen Gründen
gebunden ist.

Betreffs der Güte der Annäherung haben wir an einem extrem
gewählten Beispiel, von dem nur soviel erwähnt sei, als dass es
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sich um die Überführung eines gleichseitigen Dreiecks als 7J(0)

(77«» 0 bei X 400 und 720 nm, Spitze bei X 560 nm) in die
internationale Augenkurve Fint als TJ handelte, festgestellt, dass
die beste Annäherung im Sinne von Gauss, also gegeben durch
die Lösungen qk,k + 1 von (10a), auch gefühlsmässig etwas besser
aussieht als die Lösung im Sinne von A). Die Unterschiede sind
aber niemals von praktischer Bedeutung, denn wenn eine Funktion
eine andere nicht über ein gewisses Mass hinaus darzustellen
vermag, so ist es in den Grenzen dieser Annäherung gleichgültig,
ob die Näherungsfunktion so oder ein bisschen anders verläuft.

Verfahren B: Auch hier werde

ü(1)=ü<°>2QfmrM+1
als erste Verbesserung gewählt, mit der gleichen Definition für
Qf\+x- Wesentlich ist nun aber die Forderung B) :

U(s+1)=U^2Q«+1rM+1, B)

wonach 77(s+1> das U(0) und eine Linearkombination der xii + x als
Faktoren enthalte. Damit nun 7J(S+1) überhaupt gegen ein (7(co)

konvergieren kann, muss für die Q\'\+x eine einfache Form gesucht
werden derart, dass Qf\+X gegen Qffi,-, (+" 1) konvergiert, wenn
M\'\+1 gegen MYA^ Mi i+1 konvergiert. Dieser Forderung
genügt die Definition

QU) /Mi <±i n<s-i> TT I
Mi- 'A±\ (36)Vi, i+s yr(s) Vi, i+1 11 \ TUflv) )> ^"'

lv±i, i+1 p=0\lv±i,i + l/
worin wiederum

Mfl+1=jEU^riii+xdX. (24)

Die Normierung bleibt, im Gegensatz zu A), nicht erhalten;
es ist

jETJ^dX ±M<?f?i*jETJdX SMU+1.
Jedoch ist natürlich

y M{œ) Y mZjl±i,i+i Za i,i+i'
Wenn die i7(s)-Folge konvergiert, so ist aus Eindeutigkeits-

gründen das Resultat, d.h. die Zahlenfolge Qk,k + X, identisch
mit den qk< k + 1 eines Problems vom Typus (10a) bzw. I, sofern die
Transformationsmatrix

(&) (4) {Jy H i+i *k,k+i m (Ha)
für die Belegungsfunktion tp ETA® berechnet wird.
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Für die praktische Ausrechnung steht (tik) mehr im Vordergrund

als beim Orthogonalisierungsverfahren. In der Tat folgt:

M<«
+1 =/El7« rM+x dX 2Q^+jEU® xKk+x H i+xdX

Zj Vi, i+i <*»>

(37)

(38)

analog :

und
1Kii, i+i Zj Vi, i+i ''ü

Q(») _ 1V1Ü + lVi,i+l

ZyYk, k+l \

Mit MM + 1, M(Y\+l und fft ist also schrittweise jede weitere
Grösse berechenbar.

Zur Suche nach Fehlern in der Berechnung von tfk dient die
Folge von Kontrollformeln:

i
^yri,i+irk,k+i yTi,i+i

im+i-ìshtk-fydx.
Verfahren C): Sog. Iterationsverfahren10). Wenn in einem

Gleichungensystem

/i Qi, i+1 hk — Mk, k+l (10a)

jeweils das Glied i k dadurch eine ausgezeichnete Rolle spielt,
dass tfk wesentlich grösser als tfk (i +- k) ist, liegt es nahe, nach
der betreffenden Unbekannten aufzulösen:

M
ok, k+l

fc, k+l i fd

2i bik /")

-pr v», i+i
hkk

und eine Folge von Lösungen Q^. zu definieren durch

Q.wi,i+l
M i, i+1 if

kk
2't/--^+- s °---œ>

(ii
wobei

Qk, k+l
M fc, i + 1

fdlkk

C)

(40)
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Annäherung der gemessenen Funktion V durch V U<«>>, ausgehend von
f/(0) _ T/int; mittelst sukzessiver Approximation.
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Konvergenz der verschiedenen Näherungsverfahren.
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Der Strich beim Summenzeichen kennzeichnet eine Summe
ohne das Glied i k. Natürlich ist, wenn das Verfahren konvergiert,

lim Vi, i+i Vfc, fc+i-
5 —>- CO

Zum vergleichenden Studium der Konvergenzverhältnisse
wurde folgende Aufgabe vom Typus I nach den Verfahren A),
B) und C) gelöst: Gesucht U*00* V ausgehend von der
Ausgangsfunktion <7<0) Fint, wobei die durch V approximierte
Funktion als V in Fig. 5 wiedergegeben ist. Wie hier nebenbei
bemerkt sei, entspricht F dem Mittelwert dreier Beobachter bei
hohen Leuchtdichten, experimentell von 10 zu 10 nm bestimmt,
woraus die Werte Miji + 1 berechnet wurden. V wäre also die
Funktion die bestenfalls errechnet werden kann aus Fint und
den 7 Ergebnissen Mii+X von Messungen bei denen F wirksam
wäre. Die Resultate der Rechnungen sind am besten vergleichbar
wenn die gegen 1 konvergierenden Faktoren zusammengestellt
werden, also Q^ bei A),

M QW

M« ~ y^-D
bei B), und

bei C); diese Grössen sind, soweit sie B) und C) betreffen, in
Fig. 6 dargestellt. Die Faktoren Qf\+X des Verfahrens A)
unterscheiden sich im vorliegenden Beispiel von den

m+1
des Verfahrens B) um weniger als 0,001, so dass wir sie in Fig. 6

nicht aufgenommen haben. Die Konvergenzverhältnisse sind
dementsprechend für A) und B) praktisch dieselben.

Die Lösung der Aufgabe lautet:

V' ^int (0,772 T0il + 1,003 t1)2 + 0,998 r2i3 + 1,104 x3A

+ 1,057 r4,5 + 0,919 r5i6 + 0,976 tm) (41)

Verfahren A) bietet wegen seinen Kontrollmöglichkeiten am
meisten Sicherheit vor Rechenfehlern, ist aber von den dreien das

zeitraubendste, weil stets wiederum Integrale (34) berechnet werden
müssen, während bei B) und C) diese Arbeit mit der Berechnung
von tfk ein für alle Mal erledigt ist.
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Verfahren B) bietet trotz (39) nicht diesen hohen Grad
fortschreitender Kontrolle, doch gilt die Gleichung (35) bei massiger
Differenz zwischen V und V und bei leidlicher Konvergenz beinahe;
so lauten die Zahlen im vorliegenden Beispiel für

2 MTi+i i 2 Mf.« i*00032 2 Ml4Wi 1,00015

2M5+i 1 2Mfm 1>00022

Verfahren C) hat überhaupt keine Beziehungen, die den Gang
der Rechnung zu kontrollieren gestatten, hat aber die Eigenschaft,
dass sich die Wirkung allfälliger Rechenfehler nach einigen weiteren
Näherungsstufen wieder ausgeglichen hat.

Der zeitliche Aufwand je Näherungsstufe ist bei B) und C)
derselbe.

B) erfordert eine einmalige Vorarbeit in Form der Berechnung
der Matrix (IIa).

Wenn man sich strikte an die übliche die Gleichung 0)
ergänzende Vorschrift (40) hält, so ist B) dem Verfahren C) weit
überlegen, indem sich die sukzessiven Lösungen zuerst vom Ziel
entfernen; die 6. Näherung von C) ist immer noch schlechter als
die 1. von B). Wir haben in Fig. 6 daher nicht diese Zahlenfolgen
wiedergegeben, sondern solche, bei denen in der Gleichung für
Vi, i+i-

M i fd
na) —JYYk-k±Y y ik n(o)
Vi, i+1 fd At fd Vi, i+l''ii '¦kk

auf der rechten Seite als nullte Näherung

vti+i 1 * 0...6
gesetzt wurde. Diese Werte kommen den Lösungen Qox 0,772,
Qi,2 1,003 (siehe (41)) erheblich näher als die Werte

—°+ 1,2110, —>2- 1,8528,
fd ' ' fd '
lll 11S

wodurch das Näherungsverfahren erheblich abgekürzt wird.
Bei Verfahren B) ist kein solcher Kunstgriff nötig ; die sukzessiven

Lösungen steuern direkt, also im wesentlichen aperiodisch
auf die Endlösung zu. Bei C) dagegen ist die Annäherung im wesentlichen

oszillierend und zwar pro Stufe besser als bei B). Beide der
Verfahren B) und C) haben also unstreitbare Vorteile.

B) dürfte eindeutig den Vorzug verdienen, wenn man mit der
zweiten Näherung schon ein rohes Bild über die Verhältnisse haben



Theoret. Behandlung der heterochromen Photometrie. 459

will. C) hingegen dürfte vorzuziehen sein, wenn der Diagonal-
charakter von (tfk) nicht sehr ausgeprägt ist und eine Näherungslösung

Qi\\+i irgendwie direkt aufgefunden werden kann. Mehr
als diese Vermutungen möchten wir hier nicht zum Ausdruck
bringen, bevor weitere Beispiele nach den verschiedenen Verfahren
behandelt worden sind.

Zur Beurteilung der absoluten Konvergenz ist es noch
notwendig, die für die benutzte Filterserie gültige und die Konvergenz
wesentlich bestimmende Matrix (ijfj.) anzugeben:

7618 2183 845
/2183 5949 3030
/ 845 3030 17732

,A
\ 63 51 153

15 4 3
2 0 0

210 63 15 2

258 51 4 0 \
4077 153 3 0 \ lik
3839 3260 111 5 •10""5l2^3260 11454 2407 164 /

111 2407 4241 1101/
5 164 1101 32867

Die Glieder nahe der Diagonale sind im Vergleich zu den
Diagonalgliedern noch recht gross, und man darf daher mit der
Güte der Konvergenz zufrieden sein.

Zum Schluss kehren wir nochmals zu Aufgabe IV zurück,
indem wir sie von vornherein gemäss (IIb) auf zwei Funktionensysteme

beziehen, nämlich auf die Abgleichungsfilter xk< k + x und
die Eichfilter Qkik+X. Den praktischen Vorteil, welchen dies
bietet, sieht man sofort ein, wenn man die (5d) analogen
Bestimmungsgleichungen hinschreibt :

j^QKk+xjE(T) ZQiti+xxK k + idX =JE(T) gi>i+1VdX. (5f)

Die Integrale auf der linken Seite :

rik =JE (T) Qit i+xZxktk+1 dX (11c)

sind bis auf einen Proportionalitätsfaktor mit der Zelle selbst
messbar und bedeuten die Ausschläge, die man erhält, wenn man
die Eichstrahlungen E (T) o{ i+l auf die der Reihe nach mit
den Abgleichungsfiltern xk k+1 bedeckte Zelle fallen lässt. Zahlen-
massig zu kennen braucht man also nur die Farbtemperatur T der
Glühlampe und den Eichfiltersatz xhi.+x zwecks Berechnung der
Integrale auf der rechten Seite von (5f). Damit ist die für die
praktische Photometrie wichtige Möglichkeit gegeben, mit einem
Minimum von Kenntnissen (E(T) Q^i+1(X) für einen unbekannten,
roh an Fint angeglichenen Empfänger die Vorschrift aufzustellen,
wie durch Zusatzmessungen die Angaben des Empfängers
verbessert werden können, so dass die Messungen der Eichstrahlungen
richtig wiedergegeben werden. Die Zahl der Filter im einzelnen
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Satz richtet sich nach den Anforderungen. Bei Glühlampenlicht
genügt bekanntlich ein Filter; zur Umfärbung des Glühlampenlichtes

dient als Filter q zweckmässigerweise das Kombinationsfilter
des Mehrfilter-Verfahrens5). Bei Hg-Mischlicht sind, wie

oben bemerkt, vier Filter notwendig.
Damit bei grösserer Filterzahl die Konvergenz des Näherungsverfahrens

(B) oder C)) gut ist, ist darauf zu achten, dass auch
die Qi i+1 hart abschneiden und dass ihre Durchlässigkeitsmaxima
tunlichst mit denjenigen der xk< k+1 zusammenfallen.
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