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Zur Theorie des Durchgangs von Ultraschallwellen durch eine
feste Platte
von Fritz Levi nnd N. S. Nagendra Nath!).
(31. V. 38.)

§ 1. Problemstellung.

Bir und Wart1?) sowie WaALT13) haben experimentell unter-
sucht, wie eine in einem fliissigen Medium erzeugte Ultraschallwelle
eine in den Weg gestellte planparallele Glasplatte durchsetzt.
H. Rerssxer4) hat das Problem bei beliebigem Einfallswinkel
theoretisch behandelt und eine vollstdndige Losung unter der Vor-
aussetzung gegeben, dass keinerlei Déampfung der Schallwellen
eintritt. Der von WALt durchgefiihrte Vergleich der theoretischen
Ergebnisse mit den experimentellen scheint zu zeigen, dass diese
Voraussetzung in weitem Masse berechtigt ist.

In der folgenden Arbeit werden wir die gleiche Voraussetzung
machen und so auch zu genau den gleichen Ergebnissen gelangen,
die schon RerssNer gefunden hat. Die erneute Behandlung auf
einem etwas verschiedenen Wege ist aber vielleicht darum nicht
ohne Nutzen, weil wir etwas genauer auf die Einzelheiten des
physikalischen Vorgangs eingehen konnen. Auf diese Weise ist es
einmal moglich, einige kiirzlich von BAr®) diskutierte Sonderfille
ungezwungen herzuleiten, und ferner wird der hier eingeschlagene
Weg die Moglichkeit geben, abzuschétzen, in welchen Fillen die
Déampfung der Schallwellen von besonders grossem Einfluss sein
kann.

Das gestellte Problem 1st weitgehend dem optischen Problem
des Durchgangs von Licht durch eine diinne Platte @hnlich; unser
Problem ist nur insofern wesentlich komplizierter, als es zweil ver-
schiedene Arten von elastischen Wellen gibt, longitudinale und
transversale, und nicht nur eine Art, wie in der Optik. Genau
wie 1m optischen Fall stehen zwei Methoden der Losung zur Ver-
figung. Entweder werden die Wellengleichungen innerhalb und
ausserhalb der Platte zusammen mit den Grenzbedingungen direkt

1) 1851 Exhibition Scholar, Trinity College, Cambridge.

)

) R. BAR und A. WavrTti, Helv. Phys. Acta 7, 658 (1934).
) A. Warti, Helv. Phys. Acta I, 113 (1938).
)
)

&

4

H. REissNir, Helv. Phys. Acta 11, 140 (1938).
%) R. BAR, Helv. Phys. Acta 11, 397 (1938).
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gelost. Diesen Weg ist Ruissver gegangen. Oder man leitet sich
zunéchst die verschiedenen Koeffizienten ab, die die Reflexion und
Brechung an einer Grenzfliche zwischen den beiden Medien be-
herrschen, und behandelt dann das Problem als Summierung einer
vielfachen Reflexion und Brechung. Dieser zweite Weg soll im
folgenden gegangen werden; nach der in § 5 befolgten Methode
gelingt die Summation iiberraschend einfach.

§ 2. Die Grenzbedingungen.

Die Grenzbedingungen an der Trennungsﬂache zwischen
Flissigkeit und fester Platte sind die folgenden:

1. Die Schubspannungen an der Grenzfliche versehwmden

2. An der Grenzflache sind die Normalspannungen die gleichen
fiir den festen Korper und die Fliissigkeit.

3. Die Normalkomponenten der Verschiebung sind an der
Grenze in beiden Medien die gleichen.

Hétten wir an Stelle der Fliissigkeit einen zweiten festen
Korper, der mit der Platte starr verbunden ist, so wire die erste
Bedingung zu ersetzen durch die Forderung, dass die Schub-
spannungen an der Grenzfliache stetig sind, und es wiirde ausser-
dem eine weitere Grenzbedingung auftreten, die die Gleichheit
der tangentiellen Verschiebungen in beiden Medien fordert.

Die oben formulierten Grenzbedingungen sind die gleichen,
die auch RE1ssnERr seiner Arbeit zugrunde legt. Sie sind ausserdem
vielfach?!), zuerst wohl von Kwort?), zur Lésung von Problemen
der Erdbebenwellen herangezogen worden.

§ 3. Reine Longitudinalwellen und reine Transversalwellen in der Platte.

Im allgemeinen werden in der Platte sowohl transversale als
auch longitudinale elastische Wellen erregt. s existiert jedoch
Je ein Einfallswinkel, bei dem nur eine der beiden Wellenarten
entsteht. Diese beiden Fille konnen wir nun ohne jede mathe-
matische Formulierung schon einigermassen behandeln, wenn wir
uns nur an einige Eigenschaften der Longitudinal- und Transversal-
wellen erinnern.

Im Fall einer Longitudinalwelle liegt eine der drei Haupt-
gpannungsrichtungen in der Fortpflanzungsrichtung der Wellen,
die beiden anderen Richtungen sind entartet und stehen senkrecht
auf der Richtung der Schallfortpflanzung. Infolge dessen treten
keine Schubspannungen auf in Ebenen senkrecht zur Fortpflan-
zungsrichtung und in Ebenen, die diese Richtung enthalten.

1) Handb. d. Exp. Phys. XXV12, 450 oder Handb. d. Geophys. IV 42
2) C. G. Kworr, Phil. Mag. V. 48, 64 (1899).
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Im Fall der Transversalwellen liegen zwel der drei Haupt-
spannungsrichtungen in einer Ebene, die die Fortpflanzungs-
richtung und die Schwingungsrichtung enthilt, so dass sie mit
diesen Richtungen Winkel von 45° bilden. Die Schubspannungen
verschwinden also in zwei Ebenen, welche zu diesen Hauptrich-
tungen senkrecht stehen, also mit der Schallfortpflanzung ebenfalls
einen Winkel von 45° einschliessen und ausserdem senkrecht zur
Schwingungsrichtung stehen.

Wir haben nun im ganzen sechs Grenzbedingungen zu erfiillen,
namlich drei fir jede Seite der Platte. Es werden also im all-
gemeinen ausser der einfallenden Welle noch sechs verschiedene
Wellen existieren. Es sind dies: in der Fliissigkelt eine von der
ersten Grenzflache reflektierte sowie die durchgelassene Welle;
in der Platte je eine von der ersten zur zweiten Grenzfliche laufende
Longitudinal- und Transversalwelle, und je eine Welle, die von
der zweiten Grenzfliche zur ersten lauft. Da nun in der Flissigkeit
alle Schubspannungen verschwinden, miissen die ersten Grenz-
bedingungen, die das Verschwinden der Schubspannungen an der
Grenze verlangen, durch die vier im festen Korper laufenden Wellen
erfillt werden.

a) Die einfallende Welle trifft senkrecht auf die Grenzfliche.
Infolge des Snellius’schen Gesetzes, das in bekannter Weise aus
den Grenzbedingungen und der Wellengleichungen folgt, miissen
in diesem Fall alle Wellen in der gleichen Richtung laufen. Die
Longitudinalwellen geben keinen Beitrag zu Schubspannungen in
der Grenzfliche, da diese senkrecht auf der Wellennormalen steht.
Transversalwellen in der gleichen Richtung geben Beitrage zu
Schubspannungen in der Grenzfliche; damit diese verschwinden,
miissen die Amplituden der Transversalwellen selber verschwinden.
Bei senkrechter Inzidenz der Schallwellen laufen also nur Longitudi-
nalwellen in der Platte. In diesem Fall folgt aus genau den gleichen
Uberlegungen wie in der Optik, dass die Platte ein Maximum der
Schalldurchlassigkeit besitzt, wenn ihre Dicke ! mit der Wellen-
A, der Longitudinalwellen in der Platte in der Beziehung

| =n A2 1)

steht, wo n eine beliebige positive ganze Zahl ist.

b)) Die einfallende Welle trifft unter einem solchen Winkel
auf die Grenzfliche, dass die in die Platte gebrochene Transversal-

1) Den Fall des Einfalls einer Transversalwelle unter 45° im festen Korper
auf eine Grenzfliche fester Korper-Vakuum, der mit unserm allgemeinen Fall
verwandt ist, hat H. PoINCARE, Lecons sur la théorie de 1'élasticité, 134, (1892)
ausfiithrlich behandelt. :



Theorie des Durchganges von Ultraschallwellen. 411

welle mit der Normalen einen Winkel von 45° einschliesst. In
diesem Fall geben die Transversalwellen keinen Beitrag zu den
Schubspannungen an der Grenzfliche. Die Longitudinalwellen
bilden mit der Grenzflache einen von 90° verschiedenen Winkel
und geben also Beitrdge zu den Schubspannungen; genau wie in
Fall a) folgt daraus das Verschwinden der Longitudinalwellen
in der Platte. Bedeutet also
U den Einfallswinkel der Schallwellen in der Flissigkeit,
#, den Brechungswinkel der Transversalwellen in der Platte,
wy die Geschwindigkeit der Longitudinalwellen in der Fliissigkeit,
w, die Geschwindigkeit der Longitudinalwellen in der Platte,
w, die Geschwindigkeit der Transversalwellen in der Platte,
A, die Wellenldange der Transversalwellen,
so treten fiir

. w
! sin®, =—21_
Wy Wy /2
in der Platte nur Transversalwellen auf. Wir konnen nun wieder,
genau wie in Fall a) schliessen, dass die Durchlédssigkeit ein Maxi-
mum hat, wenn

(2)

sin & =

I — ‘;2 nd, | (3)

1st. Dieser Spezialfall bildet die Grundlage der ersten Methode, die
WavrTr L. c. zur Bestimmung der Geschwindigkeit der Transversal-
wellen benutzt hat?).

Aus (2) folgt nun aber

w w
in#g=sind, —& = g _ 4
sin %4 = sin w, = w3 (4)
oder, da ja
g == A+2p

’ 0
— | (5)
w, = V*’L’
e
wenn A und g die Laméschen Elastizitidtskonstanten sind, und g die
Dichte des festen Korpers bedeutet.

gt b = ]/”2”>1 falls 4 > 0. (6)

Es fallt also dieser Spezialfall immer in das Gebiet der Total-
reflexion der Longitudinalwellen.

1) Vgl. auch R. BAir, L. c.
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§ 4. Reflexion und Brechung an einer Grenziliche.

(In diesem Paragraphen werden wir uns eng an die zitierte
Arbeit von H. Rerssnver halten, jedoch teilweise eine andere Be-
zeichnung verwenden. Wir wollen vor allem darin ReissNer
~ folgen, dass wir die Wellengleichungen der Deformation der Be-
trachtung zu Grunde legen, und nicht zu den Gleichungen der Ver-
schiebungen iibergehen. Auf diese Weise 1st von RErssNer ndmlich
eine wesentliche Vereinfachung gegeniiber den fritheren (§ 2 Fuss-
note zitierten) Lisungen erzielt worden.) '

Im Folgenden wollen wir nun zunichst die Vorgdnge be-
trachten, die sich an einer Grenzfliche abspielen, um so die akusti-
schen Analoga der Fresnelschen Formeln zu gewinnen. Es sel
y = 0 die Grenzfliche. Der Halbraum y > 0 sei von der Fliissig-
keit mit der Dichte p; und der Laméschen elastischen Konstan-
~ten A; erfillt, der Halbraum y < 0 vom festen Ké6rper mit den
Laméschen Konstanten 4 und ux und der Dichte p.

Sind u, v, w, die Verriickungen in der z, y und z Richtung, so
ist bekanntlich die Dilatation gegeben als
0u 0v 0w
= ol

= 7
e O{D i 0y+025 ()

~die Rotation hat die Komponenten

" 0w ov
Yoy 0z
ouw  Ow
A PR (8)
0w 0u |

P oy’

fir e und o gelten bekanntlich die Wellengleichungen

2
PR d®e
A+2u dt?
) d?w )
Ao =2
wo di?
1m festen Korper und
0, d* e
Ae, = =L 10
“ A, dit? 10)

in der Flissigkeit.
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Wir betrachten ausschliesslich ebene Wellen, deren Normale
in der zy-Ebene liegt. Dabei wollen wir alle Schallwellen als
Wellen der Dilatation und der Rotation selber darstellen. Um
den Umstand hervorzuheben, dass also alle unsere Amplituden
nicht Amplituden der Verriickung sondern entweder Amplituden
der Dilatation oder der Rotation sind, wollen wir im Folgenden von
Dilatationswellen und Rotationswellen sprechen und nicht von
Longitudinal- und Transversalwellen.

Die Geschwindigkeit der Dilatationswellen im festen Korper

15t also )
wd:]/'Hz‘“, (11)
0

die der Rotationswellen im festen Korper

m, & ]/g | ‘ | (12)

und die der Dilatationswellen in der Fliissigkeit

o 'L (13)
01 |

Eine ebene Dilatationswelle in der Flissigkeit mit dem Ein-
fallswinkel ¢ ist dann dargestellt als

9 i (vt—- msmﬁ—l—ycosﬁ)

144
o =K o 1, ’ (14a)

dabel ist » die Frequenz der Wellen und A; = w, /v ihre Wellenlange.
Eine an der Grenzfliche reflektierte Welle ist dann

z sin & — y cos & )

Zﬂ:i(vt-— 7,

g = Eje (14b)

Eine Dilatationswelle im festen Korper, die aus (14a) durch
Brechung entsteht, ist dann

x sin &5+ ¥y cos 1‘}d)

2w (vt— 1
d

e=Aye (14c)

und eine entsprechende Rotationswelle

27”_(”_ zsin 9, + ycosﬂ,.)

w,= B,e ,u ; ' (14(1)
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dabei gilt fiir die Winkel &, und &, das Snellius’sche Gesetz

sin 3,: sin ¥, _ sin P (15)
Ag = wgafv ist die Wellenldnge der Dilatationswellen,
A, = w,[v die der Rotationswellen.

Wir miissen ferner noch Wellen betrachten, die im festen Kor-
per auf die Grenzfliche zulaufen, und aus denen (14c) und (14d)
durch Reflexion entstehen. Diese sind dargestellt als

9mi (M_msinﬂd‘; ycosﬁd)
e=A4,e d (14e)
. (vt— xsinﬁ,; ycos&,,)
oy =—1, 8 " (14f)

Das negative Vorzeichen in dieser Darstellung ist notwendig,
um die im nichsten Paragraphen verlangte Symmetrie des gesamten
Systems herzustellen.

Fig. 1.

Fig. 1 gibt eine Ubersicht iiber die verschiedenen Wellen.
Allgemein sind alle Dilatationswellen im festen Kérper mit einer
Amplitude 4 bezeichnet, alle Rotationswellen mit einer Amplitude B
und alle Wellen in der Flissigkeit mit einer Amplitude K.

Wir haben nun folgende Iélle zu betrachten:

1. In der Fliissigkeit fillt eine Welle K, der Form (14a) ein.
Es existieren dann noch: in der Fliissigkeit die reflektierte Welle
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K3 der Form (14b); im festen Korper eine gebrochene Dilatations-
welle B} der Form (14c) und eine gebrochene Rotationswelle B}
der Form (14d). Die in § 2 formulierten Grenzbedingungen lassen
sich dann schreiben als

Alsin28%; —BYcos2d, =0
At wiocos 28, + By wiosin2 &, = (K;+ K)) wio, (15)
A% wy cos ¢y + By w,sin &, = (K; — KJ) w; cos ¢.

Fithren wir nun als Abkiirzung ein

ow? sin2 & cos22 &, )

= 16
F = aut gm2’, ko)
g=-2"r sin28sin29,, (16b)
& W,
so konnen die Losungen von (15) geschrieben werden als
f+9—1
Ki=—2*% " K 17a
f+g+1 1 (17a)
2 cos 2 &, s1n 2 &
Al = . K 17b
Y f+g+1 sin 2 9, L {7
Bl —— 2 G n28K (17¢)
N EYES v
Es 1st also z. B.
K; f+g9—1
K, f+g+1

der Reflexionskoeffizient der ersten Grenzfliche fiir Wellen in der
Flussigkeit.

2. Tm festen Korper fillt eine Dilatationswelle 47 der Form (14e)
ein, es existleren dann ausserdem: im festen Korper eine reflektierte
Dilatationswelle A% der Form (14¢) und eine reflektierte Rotations-

welle B der Form (14d); in der Flissigkeit eine durchgelassene
Welle K® der Form (14b). In diesem Fall lauten die Grenzbedin-

gungen
(AT —AB)sin 2 ¢, + BERcos 28, =0
(AL + A®) wipcos 2 &, + BRw; psin 2 &, =KEw, 0,  (18)
(A — A%) w4 cos $3— BEw, sin &, = w, cos & K&
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Die Losungen sind dann

f+g+1

—2f sin2 ¥,
BE — z ' 19
f+g+1 00326‘TA (19)
2f sin 2 &, oar

f+g+1 cos23,sin2d

3. Im festen Korper fillt eine Rotationswelle B der Form (14f)
ein, es existieren dann ausserdem im festen Korper eine reflek-
tierte Rotationswelle B® der Form (14d) und eine reflektierte
Dilatationswelle 4% der Form (14c¢); in der Fliissigkeit eine ge-
brochene Welle K% der Form (14b). Die Grenzbedingungen lauten

ARsin 2 4,4+ (BI—Bf) cos 2%, =0
AR w; ocos 2 &, + (BT + BE) w psin 2 &, = K®wj o, (20)
— AR wgcos &4 + (B'— BE) w,sin ¢, = K® w, cos &.

KR =

Die Losungen sind
pr_ 1—9+t1 o

f++1 '
- —2g cos2d
AR = — : - B! 21
f+g+1 sin2d, 1)
Kr— 29 LI

~ f+g+1 sin29

Um nun im weiteren Verlauf der Rechnung von den in (17),
(19), (21) explizit auftretenden goniometrischen Faktoren frei zu
sein, wollen wir ausser den im natirlichen Masstab gemessenen
- Amplituden K, 4, B noch in einem neuen Mass gemessene Ampli-
tuden einfiihren, die wir mit den entsprechenden kleinen Buch-
staben k, a, b bezeichnen und die wir jeweils mit den gleichen
Indices versehen wie K, 4 und B. Der neue Masstab ist gegeben
durch

K=FkK,

sin 2 & cos 2 9, i
e ity 22)
B=»bsin2d K,.

(Wir bemerken, dass wir im nichsten § diese Definition noch
etwas verdndern werden.)
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In diesem Masstab kénnen wir also schreiben:

2
ay = bg = s
' f+g+1
an Stelle von (17b, c)
aR:aI_f+g+1— ! oal
f+g+1 ad
—of )
bR — oI - T
f+g+1 e &
I LY SRS
f+g+1 ar
an Stelle von (19) und endlich
GB=b_ 29 _ gy
f+g+1 FR
pr—pr =9+
f+g+1
KE—_ 29 o
f+g+1

an Stelle von (21).

§ 5. Der allgemeine Ansatz der multiplen Reflexion.

417

(23a)

(23b)

(23c)

Wenn wir nun die Vorgénge in einer Platte beschreiben wollen,
ist es zweckmassig, ausser dem bisher benutzten Koordinaten-
system z, y, 2 ein neues , 7, 2, einzufithren, das relativ zur zweiten

x
<~
2
T]T
<~

Fig. 2.
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Grenzflache genau so festgelegt ist, wie z, y, 2 relativ zur ersten —
vgl. Fig. 2. —. Die beiden Systeme entstehen also auseinander
durch Spiegelung an einer Ebene y = [/2. Bei dieser Spiegelung
geht eine Welle der Form (14c) gerade in eine Welle der Form (14e)
iber und eine Welle der Form (14d) in eine solche der Form (14f).
Die i die Flussigkeit gebrochene Welle nimmt, wenn wir sie im
System der brechenden Fliache darstellen, beide Male die Form
(14b) an.

Beim Ubergang von der Beschreibung der Wellen im einen
System zur Beschreibung im anderen sind ausserdem die Ampli-
tuden der Dilatationswellen mit dem Phasenfaktor e~¢ die der
Rotationswellen mit dem Phasenfaktor e#¥ zu multiplizieren,
daber haben wir zur Abkiirzung gesetzt

p=2n cos ¥y - (24a)

4,

py=2n jl cos &, . (24b)

Betrachten wir nun nach diesen Bemerkungen die Vorginge
in der Platte im einzelnen. Eine auf die erste Grenzfliche auf-
treffende Welle wird an der Fliche nach (17a) reflektiert und nach
(17b, c) oder (23a) gebrochen, d.h. also die Welle wird in eine
Dilatationswelle mit der Amplitude a? und eine Rotationswelle mit
der Amplitude b; aufgespalten. Beide Wellen laufen zur zweiten
Grenzflache und werden dort wiederum jede in eine reflektierte
Dilatationswelle und in eine reflektierte Rotationswelle aufgespal-
ten, und ausserdem wird jede in die Flissigkeit hineingebrochen.
Wollen wir auf diese Vorgiinge an der zweiten Grenze die Glei-
chungen des § 4 anwenden, so miissen wir zur Beschreibung im
System x, %, z tibergehen. In diesem System entsteht also aus der
einfallenden Dilatationswelle und der einfallenden Rotationswelle
zusammen eine neue Dilatationswelle mit der Amplitude

ar= oy e al + o, e by, (25a)
eine neue Rotationswelle mit der Amplitude
by = oy, e al + o, e~¥ b (25b)

und eine in die Flissigkeit gebrochene Welle mit der Amplitude
ki =—oa,,e9al —a, e by. (25¢)

Die beiden Wellen mit den Amplituden @] und b) laufen
nun wieder zur ersten Grenzfliche. Zur Beschreibung der Re-
flexion und Brechung miissen wir jetzt wieder zur Darstellung im
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System z, y, # tibergehen; wir erhalten dann ganz analog neue
Wellen, die gegeben sind durch

1 _ ’ —1 1 ’ T 1
a; = . ¢ a; + a,; e b;

1 _ ’ —1 1 ’ —1 1
b, = az, e7?a; + o, e"¥ b, (25d)

1 _ —% 1 ’ —i 1
ky= —o;, et a; —o, ;e ¥ b;.

Die Wellen a}, b} laufen zur zweiten Grenzflache zuriick und
das gleiche Spiel wiederholt sich. Wir wollen nun alle von der
ersten zur zweiten Grenze laufenden Wellen mit dem unteren
Index 1, alle von der zweiten Grenzfliche fortlaufenden Wellen
mit dem unteren Index 2 versehen. Alle Amplituden a,, by, ks
sollen zur Darstellung der Wellen im z, #, z-System gehoren,
alle Amplituden a,, by, k;, %k, ausserdem aber auch die Amplituden
Ay, Ay, By, B,, K,, K, zur Beschreibung im System z, y, 2. Wir
wollen jetzt also genauer an Stelle von (22) schreiben

, 8in 2 & cos 2 9 '

Ar = .
1= % sin 2 &, B
w o Sin2dcos2d, .
A} = ag- Sn 2 9, e'? K, (22a)

B = b? sin 29 K,
By =b'sin2d eV K,.

Um weiter noch die Schreibweise der Formeln (25) zu ver-
einfachen, wollen wir die Phasenfaktoren e—%? und e~ mit den
verschiedenen Reflexions- und Transmissionskoeffizienten zusam-
menziehen. Wir wollen also die folgenden Ubergangskoetfizienten
definieren:

- _f+g+1 —ip - —2 —iy
add f—{—g—i—l Lpa f+g+1 (26)
Ky = —-27: i = _’.tﬁ—;gm_’_l —ty
N A | T f4g+1

Es beschreibt also z. B. der Ubergangskoeffizient «,, den
Ubergang von einer Dilatationswelle zu der aus ihr durch Reflexion
entstehenden Rotationswelle, dabei ist jede Welle in demjenigen
Koordinatensystem dargestellt, das zu der Grenzfliche gehort,
an der die betreffende Welle entstanden 1st. Durch —ea;, und —o, 4
wird gleichzeitig der Ubergang von einer Dilatationswelle bzw. einer
Rotationswelle im festen Korper zur zugehorigen gebrochenen
Welle in der Flissigkeit beschrieben.
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Mit den Ubergangskoeffizienten (26) kénnen wir nunmehr die
allgemeinen Gleichungen der multiplen Reflexion schreiben als
A= ogq OF + o, bY (27a)
b = oy, 4% + o, , b
a,f; = mdjd a?_l - XLpa b";_l (27b)
bt = oy, a"1 + a,, BT,
Die insgesamt von der ersten Grenzfliche reflektierte Welle
15t dann

ky=ky— Ylagd,,— D b3 d,,. (28a)
1 1
Die insgesamt durchgelassene Welle
ky=—>Yatd,, — >\ btd,,. (28b)
0 0

Der Index n lauft dabei in (27a) und (27b) von 1 an.
Bezeichnen wir noch die

) M ]

mit a,

mit b,

[yl
=3

mit a,

S
o3

mit b,

-8 =1 <Ps
=
[

so konnen wir, indem wir alle Gleichungen (27a) und (27b) von
1 bis oo summieren, schreiben

Uy = ®gq @y + %pg by

by = Oy Gy + %se by (28¢)

ay — a(l): %gq Oy + %yg by

by — b) = otgp Ay + 04y by; (28d)
dabei ist a] und b} nach (23a) gegeben durch

e 2 . (23a)

! 1 f+g+1

Wir kénnen nunmehr die Gleichungen (28c) und (28d) auf-
l6sen, die erhaltenen Werte in (28a) und (b) einsetzen und so die
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allgemeine Losung unseres Problems anschreiben. Bevor wir diese
allgemeine Losung durchfiihren, wollen wir im § 6 zunichst einige
Spezialfille betrachten.

An dieser Stelle sei noch folgende Bemerkung iiber die Grossen
[ und g nachgetragen, die in den Definitionsgleichungen unserer
Ubergangskoeffizienten vorkommen. Wie man aus (16a, 16b) ohne
weiteres sieht, ist fiir kleine Winkel & sowohl f als auch g zunichst
positiv reell, fiir solche &, das sin &; > 1 wird — d. h. im
Gebiet der Totalreflexion der Dilatationswellen — wird zuerst f
rein imaginir, und fiir solche ¢, dass ausserdem auchnochsin #,>1,
— d. h. im Gebiet der Totalreflexion beider Wellenarten — wird
dann auch g rein imaginér.

Fiir den spéteren Gebrauch merken wir noch an, dass nach
unseren Definitionen die insgesamt in der Platte herrschende Dila-
tation gegeben ist durch

29“;(”“ xsmﬂd+ycosﬁd) 27”.(th a:smf&d—ycosﬁd)
' (29a)
die insgesamt herrschende Rotation durch
. z sin ¢ +ycosv9'.) ( z sin &, + y cos :9,,)
2nt{vi— r . 2milvt—
w,=B, e ( 4, _Bye \ 4, (29D)

§ 6. ,,Wechselwellen*‘, sowie ein weiterer Spezialfall.

Wir wollen hier zuniichst die folgenden drei Spezialfélle
behandeln

1. a2 == bl = 0
2. b2 = arl = 0
3. Ctg ] b2 = 0

Fall 1 und 2 sind also identisch mit den kiirzlich von Bir (1. c.)
auf Grund der Reissnerschen Theorie diskutierten ,,Wechselwellen‘.
Rein formal wire noch ein Spezialfall a; = b; = 0 denkbar. Man
sieht aber leicht ein, dass dieser Fall erfordern wiirde f + g = 0,
was nach der Bemerkung am Schluss des letzten Paragraphen un-
moglich 1st, man sieht auch leicht, dass dieser Fall zu volhg ab-
surden physikalischen Resultaten fithren wiirde.

Fall 1. In diesem Fall heissen die Gleichungen (28c) und (28d).

Lgg — 0 : ‘ a/l - av(;' = Olrg bz (30)

(1] 0
bZ:O(.d,,al _bl :40/1:“7-7-1)2.
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Daraus folgen aber fiir die Ubergangskoeffizienten die Be-
dingungen

Lgag = 0 (30&)
Ogr (0tpg —0tpp) = 1. (30b)

Unter Benutzung der Definitionsgleichungen (26) kénnen wir
diese Bedingungen aber schreiben

f—g=1 _ (30c)
e"tet¥) =1 oder ¢ +yp=2nm, (30d)
wobel n eine beliebige ganze Zahl ist.

Bei gegebenen elastischen Konstanten, d. h. bei gegebenen
Materialien, ist nun (80c) offenbar eine Bedingung fiir den Ein-
fallswinkel, und zwar besagt nach (80a) diese Bedingung, dass der
innere KEinfallswinkel &#,; der Dilatationswellen so gew#hlt sein
muss, dass die Dilatationswellen als reine Rotationswellen reflek-
tiert werden. Wird nun dank der Phasenbedingung (30d), die wir
ausfiithrlicher als

lcos 9, l cos &
A 30
i, T4 n (30e)

schreiben konnen, gerade die von der ersten zur zweiten Platte
laufende Rotationswelle ‘durch Interferenz vernichtet, so laufen
von der ersten zur zweiten Fliche nur Dilatationswellen von der
zwelten zur ersten nur Rotationswellen. (30e) zeigt, dass dies nur
bei einer diskreten Menge von Plattendicken moglich ist. In diesem
Fall 1st dann die Amplitude der durchgelassenen Welle nach (28b)
gegeben zu '

gy iy
kg =—og, 0, = — T o) ad = e, (30f)
Die Amplitude der durchgelassenen Welle hat also den gleichen
Betrag wie die der einfallenden Welle, d. h. aber die Durchldssigkeit
18t gleich 1. Wir erhalten also fiir diesen Fall exakt die von BAr
und Wartr (L. c.) allgemein vermuteten Bedingungen, genau wie
es kirzlich BiAr (l. c. § 4) zeigen konnte.

Fall 2. Dieser Fall erledigt sich vollig analog wie Fall 1.
Wir schreiben darum ohne nahere Erlduterung die den Beziehungen
(80—30f) entsprechenden Gleichungen an.

Uy = Uy q by, —a‘l’ = Ugq Qo

(31)

0
O:fxﬁ.bl, —a1+b1:adra2

B =2 (31a)
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C('Td (Occ”— add) = 1 (81b)
[—g9=1 (31c)
o +ypy=2nn (31d)
lcos &, lcos &
T = 31
A T4 n (31e)
By = €%, (31f)

Wie eine Diskussion des Wertes von f und ¢ zeigt, gibt es im
allgemeinen fiir jeden der Fille 1 und 2 genau je zwei Winkel?).

Fall 8. In diesem Fall findet iiberhaupt keine Reflexion in
der Platte statt. Einsetzen von a, = by = 0 in (28c), (28d) ergibt

O('dd-!ra'r'r:(]

Kgr + %pg = 0; (52)

daraus folgen die Bedingungen
| frg=1 (82)
p—yp=2nm. (32b)

Auch in diesem Fall ist die Durchlissigkeit gleich Eins. Die
numerische Diskussion zeigt allerdings, dass fiir die meisten Kom-
binationen Flissigkeit — fester Korper die Beziehung (32a) fiir
keinen Einfallswinkel erfilllbar ist.

§ 7. Die allgemeine Durchlissigkeitsiormel.

Wir kehren nunmehr zu der Aufgabe der allgemeinen Lésung
der Gleichungen (28¢) (28d) zuriick. Bei der Auflosung sind die
folgenden Beziehungen niitzlich, die unmittelbar aus den Defini-
tionsgleichungen (26) der Ubergangskoeffizienten folgen:

Lgg — Hgyp = e_”’ (83&)
Hpg — pyp = e_i"” (33b)
Fg—1
Ay Opg — Opp Ogg = ——2—— eg—tlety), 33c
ir O L S (33c)

1) Eine ausfiihrliche numerische Diskussion unserer FErgebnisse wird in
einer demnéchst erscheinenden Arbeit gegeben werden.
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Die Losungen von (28c), (28d) lassen sich dann schreiben in
der Form
1+o,,e% —a,, et

a? - {(1 — 0y — gy %y q) (1 — g, — Oy %pg) — (Xgattr)? o g “dr} (32)
by = a? L*“de{” ;_“ aa®”*? (84b)

o GEETRAE R Bl M)

by — a° Loy T By Wty — e W) ] (34d)

1 1)

Dabe1 haben wir den im Nenner auf der rechten Seite stehenden
Ausdruck in (34b—d) als { } wiederholt. Indem wir nun die Defi-
nitionen (26) einfiithren, erhalten wie die Ausdriicke

0 — g (cos @ cos y—1)— (f+1) sin @ sin zp+?i{(f+1)cos @ sin p+ g cos p sin (p} '(35a)
! [{2jg(cosq»cosw—l)—(f2+g2+l)sin<psin ¢}+2@'{fcos @sin y+ g cos ysin cp}]

b, — f(eosqocosw—l)—(g+1)sin<psintp+i{fcos«psinw+(g+1)coszpsinqo} (35b)

[ ]
e o= — g(cosrpcosw—l)—(fhl)sinqosini,twi{(f—1)003<P5in‘l’+gcoswsmw} (35¢)
B= [ ]
by e-iv— 1(005908y=1)~(g=Dsingsiny—i{jconpsiny+ (g~ cosysing} g
[ ’

wo wiederum [ ] als leicht verstdndliche Abkiirzung steht. Die
Amplitude der reflektierten und der durchgelassenen Welle in
der Flussigkeit 1st dann nach (28a), (28hb)

2 __ 2 = 1 -
By = (1. f2— g% sin @ sm[zpq}LZ /g (cos @ cos yp —1) (362)

ky — 24 (f S_in[w J]r gsing) (36)

Gehen wir nun wieder zu den natiirlichen Masstdben zuriick, so er-
halten wir Ausdriicke, die sich als mit den von REissSNER gegebenen
1dentisch erweisen. (REissNers B, entspricht unserem —B,). Die
Durchlassigkeit, die definiert 1st als |K3j%/|K,|2, erhalten wir zu

- 4 (f sin yp + g sin )2
D= [(+¢*—1) sin psin yp—2 f g (cos @ cos y— 1)]*+4 (f sin y + g sin )2 (87)
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Fiir kleine Einfallswinkel, d. h. f und ¢ reell, folgt die Richtig-
keit von (37) ohne weiteres, die Formel bleibt aber auch in den
Gebieten der Totalreflexion giiltig, da sin ¢ zusammen mit 7 und
sin ¢ zusammen mit ¢ rein imagindr wird. Mit den Gebieten der
Totalreflexion werden wir uns in § 9 niher beschiftigen.

Die Formel (87) unterscheidet sich nur #usserlich von RErss-
NERS Formel (27), unsere Schreibweise, die im wesentlichen mit
derjenigen identisch ist, die WarnTr und auch BARr ihren Diskus-
sionen zu Grunde legen, erweist sich fiir das Weitere als etwas

bequemer.
Aus (37) erhilt man als Bedingung fiir vollkommene Durch-

lassigkeit D =1
0= (f*+g2—1) sin @ sin v —2 f g (cos ¢ cos p —1) (38)
unter der Voraussetzung, dass fsin y + ¢ sin ¢ endlich bleibt oder

schwicher als die rechte Seite von (88) verschwindet. er wollen
(88) noch in etwas anderer Form schreiben

singsiny  2fg 38
cospecospy—1  f2i+g2—1 (o5
oder auch
. -
S 5 ! g) =1 _ (38b)
sin 2% ~ (f+g2+1

Entsprechend ist die Bedingung fir vollige Undurchlassigkeit
D = 0 zu schreiben als
fsiny + gsin ¢ =0, (39)

dies unter der Bedingung, dass die rechte Seite von (88) endlich
bleibt oder gentigend schwach verschwindet.

§ 8. Spezialfiille der Durchlissigkeitsformel.

Alle bisher behandelten Sonderfille geben auch besonders ein-
fache Ausdriicke in unserer Formel (38b).

Fall 1 und 2 des § 6, d. h. die Fille der ,,Wechselwellen®.
In diesen Féllen gilt entweder

(f—g9 =1 —oder (f—g) =—1,
also allgemein (f —g)2 =1; dann folgt aber aus (38b)
p+y=2nm; D=1.
Fall 3 des § 6 ergibt wegen f+¢g=1: ¢ —y =2nn; D = 1.
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Aus (16b) folgt ferner, dass fiir senkrechte Inzidenz, d. h.
fir ¢ =0, g =0 wird. Aus (38b) folgt dann als Bedingung voll-
kommener Durchlassigkeit zunéchst

sin "”Zi = L igfi’-, (40)

das heisst aber entweder ¢ =n 7 oder w=mn=xn. Im letzteren Fall
1st aber auch (39) erfiillt. Geht man nun zur allgemeinen Durch-
lassigkeitsformel (37) zurtick, so sieht man, dass sich diese fir
senkrechte Inzidenz schreiben lasst als

42

A T
S0 (fP—1)2sin? @+ 4 72

(41)

also unabhéngig von o, wie es ja auch physikalisch ohne weiteres
klar 1st, da ja bei senkrechter Inzidenz, wie wir in § 8 sahen, gar
keine Rotationswellen in der Platte erregt werden.

Es wird f = 0 fiir den ebenfalls in § 3 behandelten Fall, dass
die Rotationswellen mit der Plattennormalen einen Winkel von
459 bilden. Ahnlich wie im vorigen Fall ergeben sich hier wieder
ftir vollkommene Durchléassigkeit die Bedingungen y = nz oder -
@ =n=n. Ganz analog wie oben ist die letztere Bedingung aus-
zuschliessen. Die Durchlassigkeit lautet hier némlich

4 g2

49
(g2 —1) sin2 p +4 g2 (42)

Da,=n/4 =

also unabhéingig von ¢ wie es sein muss.

Man sieht aus (41) und (42), dass in den beiden zuletzt be-
handelten Féllen die Durchlissigkeit niemals Null werden kann;
(41) gibt fir

=M+ n; 1 =1 2n+1)4, (41a)
ein Minimum vom Betrag
2
_?f_f__ (41b)
e
Analog gibt (42) ein Minimum fiir
1
=(n+1 t I = — 2n+1) 4, 424
b m L= @) (420)
vom Betrag
2
i (42b)
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Die Formel fiir die Durchlassigkeit Null nimmt eine besonders
einfache Gestalt an fiir den Fall

| f=g. (43)
Dann wird D = 0 fiir

p+y=2nn oder g —p=0LCn—1)=n. (43a)
Unsere Formel (37) versagt, wenn

sin g =sin p =0

| (44)
cos ¢ = cos p = + 1.

In unseren bisherigen Rechnungen hatten wir diesen Fall,
der eintritt wenn ¢ und y beides gerade oder beides ungerade
Vielfache von =z sind, ausdriicklich ausgeschlossen. Seine Behand-
lung erfordert ein Zurtickgehen auf die allgemeinen Gleichungen
der multiplen Reflexion (28¢ und 28d). Wir wollen hier den Fall
p=2nmn, y=2mmn; m, n ganze Zahlen, behandeln. Der andere Fall
1st vollig gleich zu behandeln, und fithrt auch zum gleichen Resultat.

In unserem Fall 1st e~ = e~ =1, also wird

wgy = —1T9FL . |
f+g+1 f+g+1 (45)
ggs—BE =t —8FL
' [+g+1 T fg+1”
Es 1st also
(%ga — dar) = (#rg — ) =1, (46)
dann folgt aber aus (28d)
a, = by (47)
und darauf aus (28c)
@y = b, . (47a)

Die Gleichungen (28¢, d) kénnen dann geschrieben werden

wa(l’ -+ a, = (add = mrd) Ay _ (4:7b)
Ay = (otgq + o,q) g,
es 1st dann also

1
a, = by, = a® -
! ! 11— (Olrd+°(dd)2

(47c¢)

s e s il %pg + %gq
Ap = 0p = A, - 3
1 —(opg+aga)
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oder die durchgelassene Amplitude ist dann

ky = —ag,ap — 0,50y (47d)
oder
__ (d"rd + mdr)

- °=1, d
2T T (gt ag)? ! -

o 2
L f+g+1
Die Durchléssigkeit ist also ebenfalls gleich Eins. '

(47e)

§ 9. Die Gebiete der Totalreflexion.

Wir fiigen diesen Paragraphen der Vollstindigkeit halber bei.
Die meisten hier aufgefithrten Formeln finden sich, im wesentlichen
1dentisch, bei REissNER (1. c. siehe auch Helv. Phys. Acta 11, 268.)

Steigert man den Einfallswinkel, von Null beginnend, allmih-
lich, so bleiben zunéchst f, ¢ und alle auftretenden Winkel reell.
Wird dann sin ¢ > w;/wg, so wird &; und damit ¢ und f imaginir,
wir sprechen von Totalreflexion der Dilatationswellen. Wiichst
dann ¥ weiter, so dass auch sin ¢ > w, /w, wird, so wird auch &, und
damit v und ¢ imagindr. Wir sprechen von Totalreflexion beider
Wellenarten. Es ist daran zu erinnern, dass genau wie im Fall der
Optik, auch im Gebiet der Totalreflexion die Deformation im
zwelten Medium durchaus nicht verschwindet. Wir kénnen also
das Gebiet der moglichen Einfallswinkel in drei Teilgebiete ein-
teilen, die durch zwei Grenzwinkel voneinander getrennt werden.
Es sind dies

Gebiet 1, 0 < sin & < w,/w,.

Erster Grenzwinkel sin & = w,/w,.

Gebiet 2, wyjwy < sin & < w,/w,. Totalreflexion der Dilata-
tionswellen.

Zweiter Grenzwinkel sin & = w,/w,.
Gebiet 3, w;/w, <sin & < 1 Totalreflexion beider Wellenarten.

Im Gebiet 1 sind alle nicht explizit mit der imaginidren Einheit
multiplizierten Grossen reell. Dies Gebiet verlangt keine weitere
Diskussion. Im ersten Grenzwinkel ¢, wird sin ¢, =w,/w, daher

cos #4 =0, sin ¥, =1. f wird unendlich wie 1/cos ¢, sin ¢ wird
Null wie 23;1” cos ;. Wir konnen daher die Durchlassigkeit in

diesem Fall gchreiben

I)ﬁf:(gcosﬁl)2[2nvl
Q1 Wy 2

1
cos?2 3, +2w,sin d, sin 2 &, tg %’rJrl

(48)
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Rechnen wir nach (35a) bis (35d) die Deformation in der Platte fiir
den Grenzwinkel aus, so ergibt sich, dass A; und A, beide un-
endlich werden wie 1/cos #,. Diein der Platte herrschende Dilatation
wird aber nach (29a) zu

. in 9
2m(vt— xsjl d) cos gy . cosDgy
, : {(A1+A2) cos 278V (4, A))sin S TeY
‘ " (48a)

nun bleibt aber 4, + A, endlich, wihrend 4, — 4, wie 1/cos &,
unendlich wird, fiir cos #;= 0 bleibt also die Dilatation selber
durchaus endlich.

Aus (48) folgt, dass im ersten Grenzwinkel die Durchlédssigkeit
Null wird fir /2 = (n + %) #, d. h. fir | = (n + 1) 4,/cos &,.
Die Durchléssigkeit wird 1 fiir

tgp/2 @ cos? 2 9,
!l 24, sind, sin29,

(48b)

F % e 5 e i : i
Um auch im Gebiet 2 alle imagindren Teile in Evidenz zu
setzen, fihren wir eine neue reelle Veriinderliche 9! ein, so dass

i Gin 9 = — ]/1 ——24in29, (49a)

w
w1

dann wird |
Gin ¢ = 1 Gin ¢! (49D)
£ Qme

sy in 91,
@ Ad Sin .

mit der neuen Abkiirzung f =i

](Igﬁ w; sin 2 & cos?2 &,
oy Wi GSin 2 &,

erhalten wir dann fiir die Durchléssigkeit den Ausdruck

De 4 (fsin yp+ g Sin g1)?
T [(g*-2-1) Singlsiny+ 21 ¢(€os ¢7 cosy—1)]2+ 4 (fisin p+ g Sin g1)?

. (50)

ES
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Im zweiten Grenzwinkel wird sin &, = w,/w, und daher cos &#,=0;
sin p = 0; g = 0. Dagegen nimmt g/sin y den Wert

4 o w,

I s cos ¥, : (51a)

01 W4 2 ay l
an. Die Durchlassigkeit wird dann

4 (I’ Gin ¢! + 1) (51)
[(f124+1) Sin ¢ +2 f T (€vs ¢l —1)]2-+4 (I'Sin gl+f1)2

Dy, =

Ahnlich wie im ersten Grenzwinkel wird im zweiten B; und B,
unendlich. Analog wie im ersten Grenzwinkel ldsst sich aber auch
hier zeigen, dass die Rotation in der Platte endlich bleibt.

Im Gebiet 3 fithren wir in analoger Weise wie in Gebiet 2
eine neue reelle Variable &I ein, so dass

S~ ' w?
1 Gin ¥ = — ]/ w; sin? &
r

Cos #L = sin &,
2l

sin =1 Sin ! pl=— Sin 9!

r

cos y = Cos L.
An Stelle von f! schreiben wir hier fI

i _ e wy sin2$Cos?2 Y,
0p W Gin2 4,

und fithren ferner durch g = 14!

2
g =2 " §in2 9 Gin2
01 W

ein. Mit diesen Bezeichnungen wird die Durchlassigkeit zu

I1 M 1 1 M I
D 4 (L1 Ginyl4g @“‘P)m ‘ (52)

*
* % [(fl24 gI21]) Gin (Pi Gin pI—2 11 g1 (Cos ¢! Cos p!I—1)]2
+4 [ Gin yl + g Sin 12

Einfache Spezialfille des vorliegenden Problems sind in der
Literatur haufig behandelt, wir erwihnen vor allem RayLEIGH,
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Theory of sound II § 271, wo der Durchgang von Schall durch eine
aus einer Fliissigkeit gebildete planparallele Schicht behandelt ist.

Die vorliegende Arbeit entstand — (wihrend eines Ferien-
aufenthalts des einen von uns [N. S. N-N.] in Ziirich) — angeregt
durch eingehende Besprechungen mit Herrn Prof. Dr. R. Bir
tiber die Resultate der Arbeiten von Bir, WALt und REISsNER
und tber das Auftreten der l.c. behandelten Sonderfille. Es
18t uns ein Bediirfnis, Herrn Prof. BAr auch an dieser Stelle unseren
Dank fur viele fordernde Diskussionen auszusprechen.

Zirich, Physikalisches Institut der Universitit. |
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