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Zur Theorie des Durchg-ang's von Ultraschallwellen durch eine
feste Platte

von Fritz Levi nnd N. S. Nagendra Nath1).
(31. V. 38.)

§ 1. Problemstellung.

Bär und Walti2) sowie Walti3) haben experimentell untersucht,

wie eine in einem flüssigen Medium erzeugte Ultraschallwelle
eine in den Weg gestellte planparallele Glasplatte durchsetzt.
H. Reissner4) hat das Problem bei beliebigem Einfallswinkel
theoretisch behandelt und eine vollständige Lösung unter der
Voraussetzung gegeben, dass keinerlei Dämpfung der Schallwellen
eintritt. Der von Walti durchgeführte Vergleich der theoretischen
Ergebnisse mit den experimentellen scheint zu zeigen, dass diese
Voraussetzung in weitem Masse berechtigt ist.

In der folgenden Arbeit werden wir die gleiche Voraussetzung
machen und so auch zu genau den gleichen Ergebnissen gelangen,
die schon Reissner gefunden hat. Die erneute Behandlung auf
einem etwas verschiedenen Wege ist aber vielleicht darum nicht
ohne Nutzen, weil wir etwas genauer auf die Einzelheiten des

physikalischen Vorgangs eingehen können. Auf diese Weise ist es
einmal möglich, einige kürzlich von Bär5) diskutierte Sonderfälle
ungezwungen herzuleiten, und ferner wird der hier eingeschlagene
Weg die Möglichkeit geben, abzuschätzen, in welchen Fällen die
Dämpfung der Schallwellen von besonders grossem Einfluss sein
kann.

Das gestellte Problem ist weitgehend dem optischen Problem
des Durchgangs von Licht durch eine dünne Platte ähnlich; unser
Problem ist nur insofern wesentlich komplizierter, als es zwei
verschiedene Arten von elastischen Wellen gibt, longitudinale und
transversale, und nicht nur eine Art, wie in der Optik. Genau
wie im optischen Fall stehen zwei Methoden der Lösung zur
Verfügung. Entweder werden die Wellengleichungen innerhalb und
ausserhalb der Platte zusammen mit den Grenzbedingungen direkt

1) 1851 Exhibition Scholar, Trinity College, Cambridge.
2) R. Bär und A. Walti, Helv. Phys. Acta 7, 658 (1934).
3) A. Walti, Helv. Phys. Acta II, 113 (1938).
4) H. Reissner, Helv. Phys. Acta II, 140 (1938).
s) R. Bär, Helv. Phys. Acta II, 397 (1938).



Theorie des Durchganges von Ultraschallwellen. ' 409

gelöst. Diesen Weg ist Reissner gegangen. Oder man leitet sich
zunächst die verschiedenen Koeffizienten ab, die die Reflexion und
Brechung an einer Grenzfläche zwischen den beiden Medien
beherrschen, und behandelt dann das Problem als Summierung einer
vielfachen Reflexion und Brechung. Dieser zweite Weg soll im
folgenden gegangen werden; nach der in § 5 befolgten Methode
gelingt die Summation überraschend einfach.

§ 2. Die Grenzbedingungen.
Die Grenzbedingungen an der Trennungsfläche zwischen

Flüssigkeit und fester Platte sind die folgenden:
1. Die Schubspannungen an der Grenzfläche verschwinden.
2. An der Grenzfläche sind die Normalspannungen die gleichen

für den festen Körper und die Flüssigkeit.
3. Die Normalkomponenten der Verschiebung sind an der

Grenze in beiden Medien die gleichen.
Hätten wir an Stelle der Flüssigkeit einen zweiten festen

Körper, der mit der Platte starr verbunden ist, so wäre die erste
Bedingung zu ersetzen durch die Forderung, dass die
Schubspannungen an der Grenzfläche stetig sind, und es würde ausserdem

eine weitere Grenzbedingung auftreten, die die Gleichheit
der tangentiellen Verschiebungen in beiden Medien fordert.

Die oben formulierten Grenzbedingungen sind die gleichen,
die auch Reissner seiner Arbeit zugrunde legt. Sie sind ausserdem
vielfach1), zuerst wohl von Knott2), zur Lösung von Problemen
der Erdbebenwellen herangezogen worden.

§ 3. Reine Longitudinalwellen und reine Transversalwellen in der Platte.

Im allgemeinen werden in der Platte sowohl transversale als
auch longitudinale elastische Wellen erregt. Es existiert jedoch
je ein Einfallswinkel, bei dem nur eine der beiden Wellenarten
entsteht. Diese beiden Fälle können wir nun ohne jede
mathematische Formulierung schon einigermassen behandeln, wenn wir
uns nur an einige Eigenschaften der Longitudinal- und Transversalwellen

erinnern.
Im Fall einer Longitudinalwelle liegt eine der drei

Hauptspannungsrichtungen in der Fortpflanzungsrichtung der Wellen,
die beiden anderen Richtungen sind entartet und stehen senkrecht
auf der Richtung der Schallfortpflanzung. Infolge dessen treten
keine Schubspannungen auf in Ebenen senkrecht zur
Fortpflanzungsrichtung und in Ebenen, die diese Richtung enthalten.

x) Handb. d. Exp. Phys. XXV 2, 450 oder Handb. d. Geophys. IV 42.
2) C. G. Knott, Phil. Mag. V. 48, 64 (1899).
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Im Fall der Transversalwellen liegen zwei der drei
Hauptspannungsrichtungen in einer Ebene, die die Fortpflanzungsrichtung

und die Schwingungsrichtung enthält, so dass sie mit
diesen Richtungen Winkel von 45° bilden. Die Schubspannungen
verschwinden also in zwei Ebenen, welche zu diesen Hauptrichtungen

senkrecht stehen, also mit der Schallfortpflanzung ebenfalls
einen Winkel von 45° einschliessen und ausserdem senkrecht zur
Schwingungsrichtung stehen.

Wir haben nun im ganzen sechs Grenzbedingungen zu erfüllen,
nämlich drei für jede Seite der Platte. Es werden also im
allgemeinen ausser der einfallenden Welle noch sechs verschiedene
Wellen existieren. Es sind dies: in der Flüssigkeit eine von der
ersten Grenzfläche reflektierte sowie die durchgelassene Welle;
in der Platte je eine von der ersten zur zweiten Grenzfläche laufende
Longitudinal- und Transversalwelle, und je eine Welle, die von
der zweiten Grenzfläche zur ersten läuft. Da nun in der Flüssigkeit
alle Schubspannungen verschwinden, müssen die ersten
Grenzbedingungen, die das Verschwinden der Schubspannungen an der
Grenze verlangen, durch die vier im festen Körper laufenden Wellen
erfüllt werden.

a) Die einfallende Welle trifft senkrecht auf die Grenzfläche.
Infolge des Snellius'schen Gesetzes, das in bekannter Weise aus
den Grenzbedingungen und der Wellengleichungen folgt, müssen
in diesem Fall alle Wellen in der gleichen Richtung laufen. Die
Longitudinalwellen geben keinen Beitrag zu Schubspannungen in
der Grenzfläche, da diese senkrecht auf der Wellennormalen steht.
Transversalwellen in der gleichen Richtung geben Beiträge zu
Schubspannungen in der Grenzfläche; damit diese verschwinden,
müssen die Amplituden der Transversalwellen selber verschwinden.
Bei senkrechter Inzidenz der Schallwellen laufen also nur Longitudinalwellen

in der Platte. In diesem Fall folgt aus genau den gleichen
Überlegungen wie in der Optik, dass die Platte ein Maximum der
Schalldurchlässigkeit besitzt, wenn ihre Dicke l mit der Wellen-
Ad der Longitudinalwellen in der Platte in der Beziehung

l n Ad/2 (1)

steht, wo n eine beliebige positive ganze Zahl ist.
b)1) Die einfallende Welle trifft unter einem solchen Winkel

auf die Grenzfläche, dass die in die Platte gebrochene Transversal-

Den Fall des Einfalls einer Transversalwelle unter 45° im festen Körper
auf eine Grenzfläche fester Körper-Vakuum, der mit unserm allgemeinen Fall
verwandt ist, hat H. Poincaré, Leçons sur la théorie de l'élasticité, 134, (1892)
ausführlich behandelt.
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welle mit der Normalen einen Winkel von 45° einschliesst. In
diesem Fall geben die Transversalwellen keinen Beitrag zu den
Schubspannungen an der Grenzfläche. Die Longitudinalwellen
bilden mit der Grenzfläche einen von 90° verschiedenen Winkel
und geben also Beiträge zu den Schubspannungen; genau wie in
Fall a) folgt daraus das Verschwinden der Longitudinalwellen
in der Platte. Bedeutet also

& den Einfallswinkel der Schallwellen in der Flüssigkeit,
&r den Brechungswinkel der Transversalwellen in der Platte,
wx die Geschwindigkeit der Longitudinalwellen in der Flüssigkeit,
wd die Geschwindigkeit der Longitudinalwellen in der Platte,
wr die Geschwindigkeit der Transversalwellen in der Platte,
Ar die Wellenlänge der Transversalwellen,

so treten für

sin & _^L Sin &r —^ (2)
wr wry2

in der Platte nur Transversalwellen auf. Wir können nun wieder,
genau wie in Fall a) schliessen, dass die Durchlässigkeit ein Maximum

hat, wenn

l=^-nAr (3)

ist. Dieser Spezialfall bildet die Grundlage der ersten Methode, die
Walti 1. c. zur Bestimmung der Geschwindigkeit der Transversalwellen

benutzt hat1).
Aus (2) folgt nun aber

Wd wd

oder, da ja

sin êd sin i^r-^^ V (4)
wr wr y 2

„.- ./*+*/•

Vf-wr

wenn X und /j, die Laméschen Elastizitätskonstanten sind, und q die
Dichte des festen Körpers bedeutet.

sin #d "j/i+iü > 1 falls X > 0. (6)
v 2 /u

Es fällt also dieser Spezialfall immer in das Gebiet der
Totalreflexion der Longitudinalwellen.

Vgl. auch R. Bär, 1. c.
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§ 4. Reflexion und Brechung an einer Grenzfläche.

(In diesem Paragraphen werden wir uns eng an die zitierte
Arbeit von H. Reissner halten, jedoch teilweise eine andere
Bezeichnung verwenden. Wir wollen vor allem darin Reissner
folgen, dass wir die Wellengleichungen der Deformation der
Betrachtung zu Grunde legen, und nicht zu den Gleichungen der
Verschiebungen übergehen. Auf diese Weise ist von Reissner nämlich
eine wesentliche Vereinfachung gegenüber den früheren (§ 2 Fuss-
note zitierten) Lösungen erzielt worden.)

Im Folgenden wollen wir nun zunächst die Vorgänge
betrachten, die sich an einer Grenzfläche abspielen, um so die akustischen

Analoga der Fresnelschen Formeln zu gewinnen. Es sei

y 0 die Grenzfläche. Der Halbraum y > 0 sei von der Flüssigkeit

mit der Dichte q1 und der Laméschen elastischen Konstanten

Xx erfüllt, der Halbraum y < 0 vom festen Körper mit den
Laméschen Konstanten X und p, und der Dichte q.

Sind u, v, w, die Verrückungen in der x, y und z Richtung, so
ist bekanntlich die Dilatation gegeben als

du dv dw ,_.

ox dy dz

die Rotation hat die Komponenten

dw dv

(8)

dy dz

du dw
dz dx
dv du
dx dy

für e und m gelten bekanntlich die Wellengleichungen

g d2 e
Ae - K

X + 2fi dt2

Q d2 Cü
Am - —

/j, dt2

(9)

im festen Körper und

Ae - Ql dUl (10)
li dt2

in der Flüssigkeit.
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Wir betrachten ausschliesslich ebene Wellen, deren Normale
in der xy-~Ebene liegt. Dabei wollen wir alle Schallwellen als
Wellen der Dilatation und der Rotation selber darstellen. Um
den Umstand hervorzuheben, dass also alle unsere Amplituden
nicht Amplituden der Verrückung sondern entweder Amplituden
der Dilatation oder der Rotation sind, wollen wir im Folgenden von
Dilatationswellen und Rotationswellen sprechen und nicht von
Longitudinal- und Transversaiwellen.

Die Geschwindigkeit der Dilatationswellen im festen Körper
ist also

Wd -|/A+2^ (11)
V p

die der Rotationswellen im festen Körper

wr VA (12)

und die der Dilatationswellen in der Flüssigkeit

w1=l/^. (13)
' 6i

Eine ebene Dilatationswelle in der Flüssigkeit mit dem
Einfallswinkel & ist dann dargestellt als

/ x sin &+U cos ê \
h-k.-.'"? 5 (14">

dabei ist v die Frequenz der Wellen und Ax wjv ihre Wellenlänge.
Eine an der Grenzfläche reflektierte Welle ist dann

/ x sin ¦& - y cos ê \2ni\vt-- l

e1 Kte \ Al '. (14b)

Eine Dilatationswelle im festen Körper, die aus (14a) durch
Brechung entsteht, ist dann

2ni(vt-XSia&d+y0OSêd
e Abe v Ad '

(14c)

und eine entsprechende Rotationswelle

/ xsindr+ Mcosd,
2711 [vt —-

wz Bbe v /lr l, (14d)
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dabei gilt für die Winkel &d und &r das Snellius'sche Gesetz

sin # sin &d sm (15)
w-, wa wr

Ad wdjv ist die Wellenlänge der Dilatationswellen,
Ar wr/v die der Rotationswellen.

Wir müssen ferner noch Wellen betrachten, die im festen Körper

auf die Grenzfläche zulaufen, und aus denen (14c) und (14d)
durch Reflexion entstehen. Diese sind dargestellt als

2ni [v
A„e

2 ni[vt-
Bne

er. sin #d-y cos#d\
^d

x sin »r- y cos &r
Ar

(14e)

(14f)

Das negative Vorzeichen in dieser Darstellung ist notwendig,
um die im nächsten Paragraphen verlangte Symmetrie des gesamten
Systems herzustellen.

Fig. l.

Fig. 1 gibt eine Übersicht über die verschiedenen Wellen.
Allgemein sind alle Dilatationswellen im festen Körper mit einer

Amplitude A bezeichnet, alle Rotationswellen mit einer Amplitude B
und alle Wellen in der Flüssigkeit mit einer Amplitude K.

Wir haben nun folgende Fälle zu betrachten:
1. In der Flüssigkeit fällt eine Welle Kx der Form (14a) ein.

Es existieren dann noch: in der Flüssigkeit die reflektierte Welle
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K°2 der Form (14b) ; im festen Körper eine gebrochene Dilatationswelle

Bl der Form (14c) und eine gebrochene Rotationswelle BJ
der Form (14d). Die in § 2 formulierten Grenzbedingungen lassen
sich dann schreiben als

A°1sin2ûd-B°1cos2&r 0

Al wl q cos 2&r + Bl wl q sin 2&r= (Kx + Kl) w\ qx (15)
A l wd cos &d + Bl wr sin &r (Kx — Kl) wx cos &.

Führen wir nun als Abkürzung ein

owl sin 2 & cos2 2 &r >..„/ -^-t ^T^ (16a)
qxw[ sm 2 <jd

_i«L sin 2 # gin 2 *„ (16b)

so können die Lösungen von (15) geschrieben werden als

K-J^K> (17a)

AI —2 C0S 2 *' Sin 2 g Kx (17b)
/ + g + l sin2^ x

Bi
2

„ sin 2&KX. (17c)
/-

Es ist also z. B.

Kl
_

f + g-1
Kx f + g + 1

der Reflexionskoeffizient der ersten Grenzfläche für Wellen in der
Flüssigkeit.

2. Im festen Körper fällt eine Dilatationswelle Al der Form (14e)
ein, es existieren dann ausserdem: im festen Körper eine reflektierte
Dilatationswelle AR der Form (14c) und eine reflektierte Rotationswelle

BR der Form (14d) ; in der Flüssigkeit eine durchgelassene
Welle KR der Form (14b). In diesem Fall lauten die Grenzbedingungen

(A1 -AR) sin 2&d + BR cos 2 »r 0

(A1 + AR) wd q cos 2&r + BRw2ro sin 2&r KR wx qx (18)

(A1 —AR) wd cos &d — BR wr sin &r wx cos & KR.
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Die Lösungen sind dann

AR^-f + g + i ÄI
f + g + l

BR -2/ .Sin 2 *' A' (19)

KR^ 2/ Sln 2 &ä _Ajf + g + l cos 2 &r sin 2 *
3. Im festen Körper fällt eine Rotationswelle B der Form (14f)

ein, es existieren dann ausserdem im festen Körper eine reflektierte

Rotationswelle BR der Form (14d) und eine reflektierte
Dilatationswelle AR der Form (14c) ; in der Flüssigkeit eine
gebrochene Welle KR der Form (14b). Die Grenzbedingungen lauten

AR sin 2 &d + (B!~BR) cos 2 &r 0

AR w\ q cos 2 &r + (B1 + BR) w\ q sin 2 &r KR wl qx (20)
—AR wd cos #d + (B1— BR) wr sin #r KR wx cos #.

Die Lösungen sind

br i=ff+L B/

B' (21)

f + g + l
AR ~2g C0S 2 #r

/ + 9 + 1 sin2#d

i£* *1 --B'./ + g + 1 sin 2 #

Um nun im weiteren Verlauf der Rechnung von den in (17),
(19), (21) explizit auftretenden goniometrischen Faktoren frei zu
sein, wollen wir ausser den im natürlichen Masstab gemessenen
Amplituden K, A, B noch in einem neuen Mass gemessene Amplituden

einführen, die wir mit den entsprechenden kleinen
Buchstaben fc, a, b bezeichnen und die wir jeweils mit den gleichen
Indices versehen wie K, A und B. Der neue Masstab ist gegeben
durch

K kKx

^ Bing*c6B2 0r
(22)

sin 2 &d
x v '

B bsin2&Kx.
(Wir bemerken, dass wir im nächsten § diese Definition noch

etwas verändern werden.)
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In diesem Masstab können wir also schreiben :

2
al bl

an Stelle von (17b, c)

aR a1 —L

f + 9 + 1

9 + 1

a

kR=a'

f + g + 1

i -2/
f + g + i

2/
/ + 9 + 1

an Stelle von (19) und endlich

2gaR V
f

<*-dd a

ocdr a

-¦— ito,, aL

<dV

bR vl g + 1
=aL.V

k1

f+g + i
29

f + g + i
b1 —a.'rd¥

417

(23a)

(23b)

(23c)

an Stelle von (21).

§ 5. Der allgemeine Ansatz der multiplen Reflexion.

Wenn wir nun die Vorgänge in einer Platte beschreiben wollen,
ist es zweckmässig, ausser dem bisher benutzten Koordinatensystem

x, y, z ein neues x, rj, z, einzuführen, das relativ zur zweiten

Fig. 2.

27
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Grenzfläche genau so festgelegt ist, wie x, y, z relativ zur ersten —
vgl. Fig. 2. —. Die beiden Systeme entstehen also auseinander
durch Spiegelung an einer Ebene y 1/2. Bei dieser Spiegelung
geht eine Welle der Form (14c) gerade in eine Welle der Form (14e)
über und eine Welle der Form (14d) in eine solche der Form (14f).
Die in die Flüssigkeit gebrochene Welle nimmt, wenn wir sie im
System der brechenden Fläche darstellen, beide Male die Form
(14b) an.

Beim Übergang von der Beschreibung der Wellen im einen
System zur Beschreibung im anderen sind ausserdem die Amplituden

der Dilatationswellen mit dem Phasenfaktor e~i,p die der
Rotationswellen mit dem Phasenfaktor e~iw zu multiplizieren,
dabei haben wir zur Abkürzung gesetzt

cp 2 n —— cos &d (24a)

tp 2 n cos &r. (24b)

Betrachten wir nun nach diesen Bemerkungen die Vorgänge
in der Platte im einzelnen. Eine auf die erste Grenzfläche auf-
treffende Welle wird an der Fläche nach (17a) reflektiert und nach
(17b, c) oder (23a) gebrochen, d. h. also die Welle wird in eine
Dilatationswelle mit der Amplitude al und eine Rotationswelle mit
der Amplitude bl aufgespalten. Beide Wellen laufen zur zweiten
Grenzfläche und werden dort wiederum jede in eine reflektierte
Dilatationswelle und in eine reflektierte Rotationswelle aufgespalten,

und ausserdem wird jede in die Flüssigkeit hineingebrochen.
Wollen wir auf diese Vorgänge an der zweiten Grenze die
Gleichungen des § 4 anwenden, so müssen wir zur Beschreibung im
System x, rj, z übergehen. In diesem System entsteht also aus der
einfallenden Dilatationswelle und der einfallenden Rotationswelle
zusammen eine neue Dilatationswelle mit der Amplitude

< *dd c-iv o* + *rd e~iv bl, (25a)

eine neue Rotationswelle mit der Amplitude
b\ *dì. e-** al + a„ e^ bl (25b)

und eine in die Flüssigkeit gebrochene Welle mit der Amplitude

k]=- adr e-*f oî - «;„ e-'* K (25c)

Die beiden Wellen mit den Amplituden a\ und b\ laufen
nun wieder zur ersten Grenzfläche. Zur Beschreibung der
Reflexion und Brechung müssen wir jetzt wieder zur Darstellung im
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System x, y, z übergehen; wir erhalten dann ganz analog neue
Wellen, die gegeben sind durch

< *'dd e-i9 < + a.'rd e-*" b\

b\ a'dr tr» al + *„ e~^ b\ (25d)

k\= -c:dre-^a\-cArde-^b\.
Die Wellen a\, b\ laufen zur zweiten Grenzfläche zurück und

das gleiche Spiel wiederholt sich. Wir wollen nun alle von der
ersten zur zweiten Grenze laufenden Wellen mit dem unteren
Index 1, alle von der zweiten Grenzfläche fortlaufenden Wellen
mit dem unteren Index 2 versehen. Alle Amplituden a2, b2, ks
sollen zur Darstellung der Wellen im x, i], z- System gehören,
alle Amplituden ax, bx, kx, k2 ausserdem aber auch die Amplituden
Ax, A2, Bx, B2, Kx, K2 zur Beschreibung im System x, y, z. Wir
wollen jetzt also genauer an Stelle von (22) schreiben

sin2»cos2^g
1 l sin2#d 1

sin 2 & cos 2 &. Tr

B^ ò« sin 2 & Kx

B^ bl sin 2 & e-tf Kx.

Um weiter noch die Schreibweise der Formeln (25) zu
vereinfachen, wollen wir die Phasenfaktoren e-**1 und e-t> mit den
verschiedenen Reflexions- und Transmissionskoeffizienten
zusammenziehen. Wir wollen also die folgenden Übergangskoeffizienten
definieren :

-/+0+1-A—» e-"» ard a— e-»
/ + 9 + 1

-2/' n — lW

-2g
f + g + i
f-g + i

(26)

/+9+1 f+g+i
e~lv.

Es beschreibt also z. B. der Übergangskoeffizient a.dr den
Übergang von einer Dilatationswelle zu der aus ihr durch Reflexion
entstehenden Rotationswelle, dabei ist jede Welle in demjenigen
Koordinatensystem dargestellt, das zu der Grenzfläche gehört,
an der die betreffende Welle entstanden ist. Durch — adr und — a.rd
wird gleichzeitig der Übergang von einer Dilatationswelle bzw. einer
Rotationswelle im festen Körper zur zugehörigen gebrochenen
Welle in der Flüssigkeit beschrieben.
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Mit den Übergangskoeffizienten (26) können wir nunmehr die
allgemeinen Gleichungen der multiplen Reflexion schreiben als

o? «m «»î + «r* &J (27a)
b" cLdr o» + <*.„ ftj

< «« «r1 + «rd &?-1 (27b)
b\ «.dran-i + v.rrb\-x.

Die insgesamt von der ersten Grenzfläche reflektierte Welle
ist dann

CO CO

k2 ki-^alddr-^btdrd. (28a)
i i

Die insgesamt durchgelassene Welle

CO 00

ks -^a»ddr-^bldrd. (28b)
0 0

Der Index n läuft dabei in (27a) und (27b) von 1 an.
Bezeichnen wir noch die

2«?
o

mit ax

00

0

mit bi

GO

S «2
1

mit a2

00

ZK
i

mit h

so können wir, indem wir alle Gleichungen (27a) und (27b) von
1 bis co summieren, schreiben

aH *«% + V-rdbx
b2 adrax + arr bx (28c)

ax — o*= <zdda2 + a.rdb2
bx — b°1 «.dra2 + arr b2; (28d)

dabei ist a° und ò° nach (23a) gegeben durch

o? 6? - (23a)
1 ' f+g+i

y '

Wir können nunmehr die Gleichungen (28c) und (28d)
auflösen, die erhaltenen Werte in (28a) und (b) einsetzen und so die
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allgemeine Lösung unseres Problems anschreiben. Bevor wir diese

allgemeine Lösung durchführen, wollen wir im § 6 zunächst einige
Spezialfälle betrachten.

An dieser Stelle sei noch folgende Bemerkung über die Grössen
/ und g nachgetragen, die in den Definitionsgleichungen unserer
Übergangskoeffizienten vorkommen. Wie man aus (16a, 16b) ohne
weiteres sieht, ist für kleine Winkel & sowohl / als auch g zunächst
positiv reell, für solche $, das sin &d > 1 wird — d. h. im
Gebiet der Totalreflexion der Dilatationswellen — wird zuerst /
rein imaginär, und für solche &, dass ausserdem auch noch sin &r>l,
— d. h. im Gebiet der Totalreflexion beider Wellenarten — wird
dann auch g rein imaginär.

Für den späteren Gebrauch merken wir noch an, dass nach
unseren Definitionen die insgesamt in der Platte herrschende
Dilatation gegeben ist durch

_ / xsm&d+ycos&d\ a .1 x sin &d - y cos êd \
2n%[vt i-r-2 <L\ 2ni[vt -~ -e Axe \ Ad !+A2e \ Ad j,

(29a)

die insgesamt herrschende Rotation durch

/ a;sin#r+ y cos#,.\ „ / a;sin#r + «cos #_\

ft)2=Bxe \ Ar l-B2e \ Ar /(29b)

§ 6. „Wechselwellen", sowie ein weiterer Spezialfall.

Wir wollen hier zunächst die folgenden drei Spezialfälle
behandeln

1. a2 bx 0

2. 62 ax 0

3. a2 b2 0.

Fall 1 und 2 sind also identisch mit den kürzlich von Bär (1. c.)
auf Grund der Reissnerschen Theorie diskutierten ,,Wechselwellen".
Rein formal wäre noch ein Spezialfall ax bx 0 denkbar. Man
sieht aber leicht ein, dass dieser Fall erfordern würde / + 9 0,
was nach der Bemerkung am Schluss des letzten Paragraphen
unmöglich ist, man sieht auch leicht, dass dieser Fall zu völlig
absurden physikalischen Resultaten führen würde.

Fall 1. In diesem Fall heissen die Gleichungen (28c) und (28d).

V-dd 0 ax — at Cf.ri b2 mm
b2 adr ax —b\=—a\ arr b2.
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Daraus folgen aber für die Übergangskoeffizienten die
Bedingungen

xdd 0 (30a)

«dr (<*rd —«-rr) 1 ¦ (30b)

Unter Benutzung der Definitionsgleichungen (26) können wir
diese Bedingungen aber schreiben

/-9 1 (30c)

e-i(<p+v) i oder cp + y, 2nn, (30d)

wobei n eine beliebige ganze Zahl ist.
Bei gegebenen elastischen Konstanten, d. h. bei gegebenen

Materialien, ist nun (30c) offenbar eine Bedingung für den
Einfallswinkel, und zwar besagt nach (30a) diese Bedingung, dass der
innere Einfallswinkel &d der Dilatationswellen so gewählt sein

muss, dass die Dilatationswellen als reine Rotationswellen reflektiert

werden. Wird nun dank der Phasenbedingung (30d), die wir
ausführlicher als

l cos &d l cos #r
A, '

Ar
(80e)

schreiben können, gerade die von der ersten zur zweiten Platte
laufende Rotationswelle durch Interferenz vernichtet, so laufen
von der ersten zur zweiten Fläche nur Dilatationswellen von der
zweiten zur ersten nur Rotationswellen. (30e) zeigt, dass dies nur
bei einer diskreten Menge von Plattendicken möglich ist. In diesem
Fall ist dann die Amplitude der durchgelassenen Welle nach (28b)
gegeben zu

fc, - adr ax - *är - o? er**. (30f)
(1— aarara)

Die Amplitude der durchgelassenen Welle hat also den gleichen
Betrag wie die der einfallenden Welle, d. h. aber die Durchlässigkeit
ist gleich 1. Wir erhalten also für diesen Fall exakt die von Bär
und Walti (1. c.) allgemein vermuteten Bedingungen, genau wie
es kürzlich Bär (1. c. § 4) zeigen konnte.

Fall 2. Dieser Fall erledigt sich völlig analog wie Fall 1.

Wir schreiben darum ohne nähere Erläuterung die den Beziehungen
(30—30/) entsprechenden Gleichungen an.

&dd a2 /q-l \

"1 acJr ^2

(31a)

H — ard bx -<
0 oirr bx, -a\

Oir 0
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<*-rd (adr &dd) 1 (31b)

/-9 1 (31c)

cp + tp 2 n n (81d)

lcos &d lcos &r

Ad Ar
n (Sie)

fe3 e~*v. (31f)

Wie eine Diskussion des Wertes von / und g zeigt, gibt es im
allgemeinen für jeden der Fälle 1 und 2 genau je zwei Winkel1).

Fall 3. In diesem Fall findet überhaupt keine Reflexion in
der Platte statt. Einsetzen von a2 b2 0 in (28c), (28d) ergibt

0'-r r
-n- (32)

daraus folgen die Bedingungen

/ + 9 1 (32a)

cp - tp 2 n n. (32b)

Auch in diesem Fall ist die Durchlässigkeit gleich Eins. Die
numerische Diskussion zeigt allerdings, dass für die meisten
Kombinationen Flüssigkeit —- fester Körper die Beziehung (32a) für
keinen Einfallswinkel erfüllbar ist.

§ 7. Die allgemeine Durchlässigkeitsformel.

Wir kehren nunmehr zu der Aufgabe der allgemeinen Lösung
der Gleichungen (28c) (28d) zurück. Bei der Auflösung sind die
folgenden Beziehungen nützlich, die unmittelbar aus den
Definitionsgleichungen (26) der Übergangskoeffizienten folgen:

^dd-«.dr e-{f (33a)

acrd — arr e-»> (33b)

o.dr ccTd - 0Lrr ocad -j^1—^- e-*<«•+*>. (33c)
f + g + 1

*) Eine ausführliche numerische Diskussion unserer Ergebnisse wird in
einer demnächst erscheinenden Arbeit gegeben werden.
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Die Lösungen von (28c), (28d) lassen sich dann schreiben in
der Form

1 x» p-i<p a p-iv
a°. a° j ii ^1 ïuf

^

(34a)
|(1 — oc^j— a,jr ard) (1 — ccrr— a.dr a.rd) — (xdd+a.rr) a.rda.dr^

0 l-a^e-^-a^e-'*11 {}
0 IZ-ädY- 0-rd+ (v-rd&rr ~-arr add) e **

{ }

r0 ^-dr \ 3-rr ~r x&rd ^dr ~- a„ oc^) e *

(34b)

(34c)

-r o «r i ^rr i \^-rd "-dr ^rr ^-dd] ^ l^\AtX\

Dabei haben wir den im Nenner auf der rechten Seite stehenden
Ausdruck in (34b —d) als { } wiederholt. Indem wir nun die
Definitionen (26) einführen, erhalten wie die Ausdrücke

g(cos <p<io&\p—\)- (/ + 1) sin cp sin ip+iUf+1) cos ç>sin^+ g cos^sin q>\ ,Q_ax — '- (ooa)
L|2 / g (cos <p cos ip-l)-(f2+g2 + l) sin 93 sin ip\ + 2 i\f cos 9? sin ip + g cos ip sin <pjj

/ (cos cpcosip- 1)- (g+1) sin qpsin y+i{/cos 9; sin ip+(g+l) cos 9) sin cp} ,„,,,0X
1^—- (dDD)

-im g (cos cp cos y> — 1) — (f — 1) sin <p sin y> — i \(f — 1) cos cp sin ip + g cos y> sin q>j ,„_ \
a2e — j=—^ ^qoc)

L _,•„, f{cosipoosip- l)-(g — l)sinç)sint/'-*{/cos73siny + (g-l)cos^;sin9;} ,„.,,02 6 — f—t-5" ,(öO<lJ

wo wiederum [ ] als leicht verständliche Abkürzung steht. Die
Amplitude der reflektierten und der durchgelassenen Welle in
der Flüssigkeit ist dann nach (28a), (28b)

fc
(1 - /2 - 92) sin y sin y + 2 /g (cos cp cos tp-1)

fc3
2 * (/sin y+gsin tL (36)

Gehen wir nun wieder zu den natürlichen Masstäben zurück, so
erhalten wir Ausdrücke, die sich als mit den von Reissner gegebenen
identisch erweisen. (Reissners B2 entspricht unserem —B2). Die
Durchlässigkeit, die definiert ist als lifsj2/].^]2, erhalten wir zu

£ 4 (/sin y + g sin 9p)2
g

[(/2 + g2 — 1) sin 9? sin ip — 2 f g (cos (pcosip- l)]2 + 4 (/siny + c/sincj)2 ¦ '
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Für kleine Einfallswinkel, d. h. / und g reell, folgt die Richtigkeit

von (37) ohne weiteres, die Formel bleibt aber auch in den
Gebieten der Totalreflexion gültig, da sin cp zusammen mit / und
sin tp zusammen mit g rein imaginär wird. Mit den Gebieten der
Totalreflexion werden wir uns in § 9 näher beschäftigen.

Die Formel (37) unterscheidet sich nur äusserlich von Reiss-
ners Formel (27), unsere Schreibweise, die im wesentlichen mit
derjenigen identisch ist, die Walti und auch Bär ihren Diskussionen

zu Grunde legen, erweist sich für das Weitere als etwas
bequemer.

Aus (37) erhält man als Bedingung für vollkommene
Durchlässigkeit D 1

0 (f2 + g2—l) sin <p sin tp —2 f g (cos cp cos tp — 1) (38)

unter der Voraussetzung, dass / sin tp + g sin cp endlich bleibt oder
schwächer als die rechte Seite von (38) verschwindet. Wir wollen
(38) noch in etwas anderer Form schreiben

sin cp sin tp 2 f g

oder auch
cos c; cosy — 1 f2 + g2—1

y+yiä

(38a)

sm-

sin^ ^ÉL±. (38b)
(/ + 9)2 + l V '

Entsprechend ist die Bedingung für völlige Undurchlässigkeit
D 0 zu schreiben als

/ sin tp + g sin cp 0, (39)

dies unter der Bedingung, dass die rechte Seite von (38) endlich
bleibt oder genügend schwach verschwindet.

§ 8. Spezialfälle der Durchlässigkeitsformel.

Alle bisher behandelten Sonderfälle geben auch besonders
einfache Ausdrücke in unserer Formel (38b).

Fall 1 und 2 des § 6, d. h. die Fälle der „Wechselwellen".
In diesen Fällen gilt entweder

,(/.-9)=l oder (/-fl) -l,
also allgemein (/ — g)2 1 ; dann folgt aber aus (38b)

cp + tp 2nn; D 1.

Fall 3 des § 6 ergibt wegen f + g 1: cp — tp 2nn; D 1.
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Aus (16b) folgt ferner, dass für senkrechte Inzidenz, d. h.
für & 0, 9 0 wird. Aus (38b) folgt dann als Bedingung
vollkommener Durchlässigkeit zunächst

sin y + * =±sin y~y (40)
2 " 2

das heisst aber entweder cp n n oder tp — nn. Im letzteren Fall
ist aber auch (39) erfüllt. Geht man nun zur allgemeinen
Durchlässigkeitsformel (37) zurück, so sieht man, dass sich diese für
senkrechte Inzidenz schreiben lässt als

4/2
0=0 (/2-l)2sin2<p + 4/2 ^

also unabhängig von tp, wie es ja auch physikalisch ohne weiteres
klar ist, da ja bei senkrechter Inzidenz, wie wir in § 3 sahen, gar
keine Rotationswellen in der Platte erregt werden.

Es wird / 0 für den ebenfalls in § 3 behandelten Fall, dass
die Rotationswellen mit der Plattennormalen einen Winkel von
45° bilden. Ähnlich wie im vorigen Fall ergeben sich hier wieder
für vollkommene Durchlässigkeit die Bedingungen tp nn oder
cp nn. Ganz analog wie oben ist die letztere Bedingung aus-
zuschliessen. Die Durchlässigkeit lautet hier nämlich

D«,-*/4 - („t_-l\air,%.nA.An* ^(g2-l) sin2tp + 4g2

also unabhängig von cp wie es sein muss.
Man sieht aus (41) und (42), dass in den beiden zuletzt

behandelten Fällen die Durchlässigkeit niemals Null werden kann;
(41) gibt für

cp (n+ y2) n; l l/4 (2 n + 1) Ad (41a)

ein Minimum vom Betrag
4/2

(/2+l)2
Analog gibt (42) ein Minimum für

(41b)

W (n+y2)n; l -Ji^- (2 n +1) Ar (42a)

vom Betrag
4 g2

(42b)
(92 + l)2
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Die Formel für die Durchlässigkeit Null nimmt eine besonders
einfache Gestalt an für den Fall

f g. (43)
Dann wird D 0 für

cp + tp 2 nn oder cp — tp (2n — 1) n. (43a)

Unsere Formel (37) versagt, wenn

sin cp sin tp 0

COS Cp cos tp + 1.

In unseren bisherigen Rechnungen hatten wir diesen Fall,
der eintritt wenn cp und tp beides gerade oder beides ungerade
Vielfache von n sind, ausdrücklich ausgeschlossen. Seine Behandlung

erfordert ein Zurückgehen auf die allgemeinen Gleichungen
der multiplen Reflexion (28c und 28d). Wir wollen hier den Fall
cp=2nn, tp=2mn; m, n ganze Zahlen, behandeln. Der andere Fall
ist völlig gleich zu behandeln, und führt auch zum gleichen Resultat.

In unserem Fall ist e~i,p e~iv 1, also wird

-/ + 9 + 1
„ _ -2/

ar

/+9+1 /+9+1
-2g _ _ f-g+1

(45)

/+9+1 /+9+1
Es ist also

(«¦dd — «<ir) (v-rd — «-rr) 1, (46)

dann folgt aber aus (28d)

und darauf aus (28c)

bx (47)

a2 b2. (47a)

Die Gleichungen (28c, d) können dann geschrieben werden

al + ax (acdd + a.rd) a2 (4.7h')
a2 (add + y-rd) al :

es ist dann also

«i =¦ h - a\ —— ——
1 — (U-rd + Zä...

(47c)
>-rd T ,J-dd)

«rd + Cf-n

1 —(<*-rd + «dd)
a9 b9 ac "rd-r^dd
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oder die durchgelassene Amplitude ist dann

k3 — a-dr ax — cf-rd bx (47d)
oder

h ~^" + **r\. < 1 • daa?= —— (47e)
l-(0Lrd + adr)2

» » / + 9+1
Die Durchlässigkeit ist also ebenfalls gleich Eins.

§ 9. Die Gebiete der Totalreflexion.

Wir fügen diesen Paragraphen der Vollständigkeit halber bei.
Die meisten hier aufgeführten Formeln finden sich, im wesentlichen
identisch, bei Reissner (1. c. siehe auch Helv. Phys. Acta 11, 268.)

Steigert man den Einfallswinkel, von Null beginnend, allmählich,

so bleiben zunächst /, g und alle auftretenden Winkel reell.
Wird dann sin & > wxjwd, so wird &d und damit cp und / imaginär,
wir sprechen von Totalreflexion der Dilatationswellen. Wächst
dann & weiter, so dass auch sin & > wx/wr wird, so wird auch &r und
damit tp und g imaginär. Wir sprechen von Totalreflexion beider
Wellenarten. Es ist daran zu erinnern, dass genau wie im Fall der
Optik, auch im Gebiet der Totalreflexion die Deformation im
zweiten Medium durchaus nicht verschwindet. Wir können also
das Gebiet der möglichen Einfallswinkel in drei Teilgebiete
einteilen, die durch zwei Grenzwinkel voneinander getrennt werden.
Es sind dies

Gebiet 1, 0 < sin # < wxfwd.
Erster Grenzwinkel sin & wx/wd.
Gebiet 2, wx/wd < sin # < wx/wr. Totalreflexion der

Dilatationswellen.

Zweiter Grenzwinkel sin & wx/w2.

Gebiet 3, wx/wr < sin &• < 1 Totalreflexion beider Wellenarten.
Im Gebiet 1 sind alle nicht explizit mit der imaginären Einheit

multiplizierten Grössen reell. Dies Gebiet verlangt keine weitere
Diskussion. Im ersten Grenzwinkel &x wird sin &x wx/wd, daher
cos ûd 0, sin &d 1. / wird unendlich wie 1/cos &d, sin cp wird

2orvlNull wie —r— cos &d. Wir können daher die Durchlässigkeit in
diesem Fall schreiben

ü*i= /OCOS&. \2r231W tz~. z : : ~" lirü : (48)
1 QCOSil,\2\ 2jivI oOQ,o • 0. ¦ Ci Q. iI 1

—2— cosz 2 §r + 2 ivr sm iTr sin 2 irr tg v



Theorie des Durchganges von Ultraschallwellen. 429

Rechnen wir nach (35a) bis (35d) die Deformation in der Platte für
den Grenzwinkel aus, so ergibt sich, dass Ax und A2 beide
unendlich werden wie 1/cos &d. Die in der Platte herrschende Dilatation
wird aber nach (29a) zu

x sm2jtî [vt — r) {(Ai+A2) eos^f-(Ax-A2) sin C0Sjf-]
(48a)

nun bleibt aber Ax + A2 endlich, während Ax — A2 wie 1/cos &a
unendlich wird, für cos êd 0 bleibt also die Dilatation selber
durchaus endlich.

Aus (48) folgt, dass im ersten Grenzwinkel die Durchlässigkeit
Null wird für tp/2 (n + %) n, d. h. für l (n + %) Ar/eos &r.
Die Durchlässigkeit wird 1 für

tg Wg
__

ti cos2 2 flr
^ ,48b.

I 2 ylr sin #r sin 2 #r

Um auch im Gebiet 2 alle imaginären Teile in Evidenz zu
setzen, führen wir eine neue reelle Veränderliche d-f, ein, so dass

dann wird

i Sin *ì -"|/l3-4sin2 0, (49a)
r to ï

Soo #J, sin #d

©in 9? i 6in 9?1 (49b)

sin2 &d — i 6in2 #d

2 jr e

^ï7
cp1 — Sin &l,

mit der neuen Abkürzung / i f1

q wd sin 2 & cos2 2 #r
/.

eL wl ©in 2 #d

erhalten wir dann für die Durchlässigkeit den Ausdruck

D= 4(/isiny + g@in9)i)2 .g„
[(<72-/l2-l)<SiH9)isiny+2/i </(£t>6ç>r cosy-l)]2 + 4(/isint/>+g<5inçn)2° *• '

*
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Im zweiten Grenzwinkel wird sin &2 wx/w2 und daher cos &r 0 ;
sin tp 0; g 0. Dagegen nimmt g/sin tp den Wert

r 4g^2 - cos &r (51a)
Qxwx2n vi

an. Die Durchlässigkeit wird dann

m Hremcp^ + f)
2 [(/I2+l)0m95I+2/r((i:oô9?I-l)]2+4(r@in9?I+/1)2*

v ;

Ähnlich wie im ersten Grenzwinkel wird im zweiten Bx und B2
unendlich. Analog wie im ersten Grenzwinkel lässt sich aber auch
hier zeigen, dass die Rotation in der Platte endlich bleibt.

Im Gebiet 3 führen wir in analoger Weise wie in Gebiet 2
eine neue reelle Variable &l ein, so dass

i Sin ê] =-l/J^_ sin2 &
V w2r

Cvoô &l sin &r
2 n l

sintp i Sin tp1 tu1 Sin &j

cos f Cvoô tp1.

An Stelle von f1 schreiben wir hier /n

q w\ sin 2 & Cvoô2 2 &r

(52)

/TI
qx w\ Sin 2 &r

und führen ferner durch g ig1

gi JL JYl gin 2 & Sin 2 fl1

ein. Mit diesen Bezeichnungen wird die Durchlässigkeit zu

4(/IISiny>I + 9IStnyI)

* * [(/II2+ 9I2+1) Sin cp1 Sin ^-2 fn g1 (Cvoô y1 Cvoô ^-l)]2
+ 4 [/n Sin f1 + gl Sin y1]2

Einfache Spezialfälle des vorliegenden Problems sind in der
Literatur häufig behandelt, wir erwähnen vor allem Rayleigh,
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Theory of sound II § 271, wo der Durchgang von Schall durch eine
aus einer Flüssigkeit gebildete planparallele Schicht behandelt ist.

Die vorliegende Arbeit entstand — (während eines
Ferienaufenthalts des einen von uns [N. S. N-N.] in Zürich) — angeregt
durch eingehende Besprechungen mit Herrn Prof. Dr. R. Bär
über die Resultate der Arbeiten von Bär, Walti und Reissner
und über das Auftreten der 1. c. behandelten Sonderfälle. Es
ist uns ein Bedürfnis, Herrn Prof. Bär auch an dieser Stelle unseren
Dank für viele fördernde Diskussionen auszusprechen.

Zürich, Physikalisches Institut der Universität.
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