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Die Wechselwirkungskräfte in der Elektrodynamik und in der

Feldtheorie der Kernkräfte. (Teil II und III)
von E. C. G. Stueekelberg.

(6. IV. 38.)

Inhalt.

Teil II. Die in Teil I angegebene Methode zur Berechnung der Wechselwirkung

zwischen zwei Ladungen wird auf ein Viererpotential verallgemeinert.
Eine positiv definite Feldenergie kann auch für ein Feld, dessen Teilchen eine
nicht verschwindende Ruhemasse besitzen, durch eine Nebenbedingung erzeugt
werden. Es wird die allgemeine Form der durch dieses Feld vermittelten Wechselwirkung

zwischen zwei Spinorteilchen gegeben.
Teil III. Die Bewegungsgleichung des Kernkraftfeldes und des Spinorfeides

der Materie werden quantenmechanisch aus einem Hamiltonoperator abgeleitet.
Es zeigt sich, dass Operatoren existieren, welche der Kontinuitätsgleichung
genügen. Verlangt man die Erhaltung der elektrischen Ladung und die Erhaltung
der Dichte der schweren Teilchen, so sind im wesentlichen vier verschiedene
Felder möglich. Ihre Teilchen sind: geladene und ungeladene leichte Teilchen
mit einer Masse, deren Comptonwellenlänge der Reichweite der Kräfte zwischen
schweren Teilchen entspricht, und geladene und ungeladene schwere Teilchen,
deren Masse grösser als Proton resp. Neutronmasse ist.

Die empirische Form der Kräfte zwischen Neutron und Proton ergibt sich
nur dann, wenn man auch für die ungeladenen leichten Teilchen' die Existenz
zweier Teilchensorten annimmt (Antiteilchen). Hingegen bestätigt sich die
Vermutung, dass eine Theorie ohne Antineutrino im Sinne Majoranas möglich ist.

TEIL II.

7. Verallgemeinerung der Theorie auf ein Viererpotential.

In einem ersten Teile12) wurde gezeigt, dass die gegenseitigen
Störungen zwischen zwei Materiepartikeln in erster Näherung aus
einer Hamiltonfunktion berechnet werden können, in welcher ein
Teil der Wechselwirkung Feld-Materie durch gewisse Wechsel-
wirkungsterme Materie-Materie ersetzt werden. Diese Terme
hatten folgende Form: Operator der retardierten Ladung des einen
Teilchens am Orte des andern mal Ladung des anderen Teilchens.

In der Ableitung beschränkten wir uns auf den skalaren Fall.
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Ein solches skalares Feld gibt aber eine Wechselwirkung
zwischen den Kernbestandteilen (Protonen und Neutronen), welche
ein falsches Vorzeichen und falsche Spinabhängigkeit besitzt:
Der skalare Anteil von (4.22) ist positiv, gibt also Abstossung.

Es soll daher als Verallgemeinerung das Feld eines
Viererpotentials behandelt werden.

Im vorliegenden zweiten Teil soll daher zuerst die Frage des

Vorzeichens der Feldenergie diskutiert werden und nachher sollen
die retardierten Potentiale berechnet werden.

Formal geschieht die Verallgemeinerung einfach dadurch,
dass den Grössen A (Potential), J (Ladung) und Sk (Polarisation)
ein Index i (i — 0,1,2,3) angehängt wird: At, J(, Sik.

Die Formeln von Teil I gelten wörtlich weiter, wenn man die
in den A, P, J und S bilinearen Terme durch entsprechende Summen

über i (von 0 bis 3) ersetzt.
So zum Beispiel:

A*A durch ^e^*^ 74, ,4)
i

(und analog für P*P)

PS0 durch^ÊjPjST,
ÒA* dA\ ] ÒYA[ dAj
dx ' dx J -f Y1 * dxk dxk

Dabei bedeutet S' eine nur über 1,2 und 3 erstreckte Summe.
Ei hat für i 1, 2, 3 den Wert +1 und für i o den Wert — 1.

Die Vertauschungsrelationen (3.2) sind durch

[P, (x), At, (x')] òw (h/i) Ò (x -x') (7.1)

zu ersetzen. Die Gleichungen (2.3) resp. (2.7) und (2.8) sind, wegen
des Auftretens et, durch

Ài 4^=ei(8nc2Pt-^ncSi0) (7.2)

p" - - ii! - " {é <J -'¦> A>+» (J« -?' *t)) p-3)

Formel (3.17) erhält deshalb im zweiten (P(x)*—) Term
ebenfalls den Faktor e {. Dieser hat zur Folge, dass die Vertauschungs-
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relationen für die explizit zeitabhängigen Operatoren Af (x) die
Form erhalten:

[A< (x)*, Ak (y)] -2 H- efôi]c D(x-y). (7.4)

Die endgültige Form für den WechselWirkungsoperator (4.22),
(4.23) und (4.24) ändert sich nur insofern, als er durch eine Summe
über i (mit st) zu ersetzen ist.

8. Erzeugung positiv definiter Energiediehte durch eine Nebenbedingung.

Den Operator der Energiedichte des Strahlungsfeldes (2.5)
formen wir ebenfalls durch die unitäre Transformation (3.14)
um. Das bedeutet, dass in (2.5) die A{ (x) durch die explizit
zeitabhängigen Operatoren At (x) und die Pt (x) durch die zeitlichen
Ableitungen der At(x) ersetzt. (Gleichung (3.21) enthält wegen
(7.2) den Faktor e*.) Man kann dann die Energiedichte als Summe
der Energiedichten einzelner Potentialkomponenten schreiben:

28 2>*2Ö(^-) (8.1)
i

mit

Der Ausdruck (8.2) ist stets positiv, da der Faktor ek nicht
auftritt (die Summe über k ist also kein skalares Produkt). Die
Energiedichte (8.1) hingegen enthält für i=0 einen negativen
Summanden. In der Elektrodynamik kann die positiv definite Energie
durch die homogene Nebenbedingung (6.1) erzeugt werden. Im
Falle l o hingegen ist diese Nebenbedingung nicht mehr mit
ihrer konjugiert komplexen vertauschbar. Führen wir aber neben
den vier Potentialkomponenten A t noch eine skalare Komponente B
ein, die ebenfalls einer Wellengleichung (1.1) mit demselben l
genügt, so ist die Nebenbedingung (6.2) am Orte y mit ihrer
konjugiert komplexen am Orte x vertauschbar. Man findet

[(6.2)*, (6.2)] 2 *< 4~ -£- D (x-y) + l2D (x-y)
% "%i "y

-(3-l2)D(x-y) 0.

Die letzte Gleichsetzung erfolgte, weil die D-funktion ihrer
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Herkunft nach (Differenz zwischen avanciertem und retardiertem
Potential) der homogenen Wellengleichung genügt.

Die Nebenbedingung kann auch in folgender Form geschrieben
werden :

^YY0-f= {-divA — lB) f. (8.3)
dx0

.04Übt man auf beide Seiten der Gleichung die Operation -r-^-
o a"0

aus und berücksichtigt, dass sie mit dem Operator der rechten
Seite vertauschbar ist, so folgt aus (8.3) und aus der conj. compi.
Bedingung (6.2) die Identität:

d A* h A -r -"^o J^o_ f (_div^* divA-l(B*div ^+div A*. B)
dx0 dx0

-l2B*B)f, (8.4)

welche einen der negativen Terme von (8.1) eliminiert.
Für den Term — grad A* grad A0 —l2A*AQ f schreiben

wir —/ + 2/ und formen den Term 2/ durch partielle Integration um

fdxs 2 f J dx3 (A* (A -l2) A0 + A* (A -l2) A0).

Berücksichtigt man, dass A0 der homogenen Wellengleichung
genügt, so folgt aus der Nebenbedingung:

At(A-l2)AoV=x4td7lA^yi -A*0(div^Ä- + -^-)y, 0.
dxi \ dxo °xo i

Die Terme, welche div linear enthalten, formen wir noch
durch partielle Integration um. Dann kann das Integral der
Energiedichte mit dem Intergranden 2B' geschrieben werden:

fdx* CZetW (A{) + W(B)\W fdx3W f
mit

23' =-— (rot A*, rot Ä) + (grad A* + —— grad A0
7i \ \ dx0 dx0

lA*—^)(lA0-^-) + (IA* + grad B*,IA + grad B)\
dx0 1 \ dx0J

Die Nebenbedingung (6.2) (oder (8.3)) ergibt also eine stets
positive Energiedichte.
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Führen wir jetzt den neuen Vierervektor des Potentials

0i Ai + eil-1^- (8.6)
dxi

ein und den antisymetrischen Feldstärkentensor

d$k d&t dAk dA(
Iiik £{ -z £k -r— «« -r e* -r— (8.7)

dx{ dxk dxt dxk

so kann die Energiedichte unter Verwendung des dreidimensionalen
Vektors

F mit Komponenten (F0i> ^02> ^03)

und des dreidimensionalen Pseudovektors

F mit Komponenten (F23, F31, F12)
die Form

28' -1- ((F*, F) + (F*, F) + l2 (&*, 0) + l2 0* 0O) (8.8)
8 n

gebracht werden. Die Energiedichte ist also positiv définit und
geht für l 0 (B verschwindet identisch) bei reellen Feldstärken
in den Energieausdruck der Maxwellschen Elektrodynamik über*).

9. Die Nebenbedingung bei Anwesenheit von Ladungen.

Bei Anwesenheit von Ladungen muss das Funktional xo nicht
nur der Nebenbedingung, sondern auch der Schroedingergleichung
(3.13) (wir schreiben im folgenden stets K für K")

K+hYYL)W=0 (9.1)
% dt I

genügen. Hier ist also K der Hamiltonoperator der Materie, in
welchem die explizit zeitabhängigen Potentiale auftreten.

Schreibt man K in Form eines Integrals über dx3 (der
Wechselwirkungsanteil Feld—Materie habe zum Beispiel die Form des

Integrals über den Ausdruck (3.22)) und führt als Schrödingerzeit
x0 et ein, so errechnet sich aus den Vertauschungsrelationen (7.4)

„ hc d
K + — 7—,Ai(y)

% dx0
_^,x3/^m. ,.v, ôK dD(*-y)ÌIdBÌoTtD{x~y)+f7^ dx0

ds0

*) 3D ist auch tatsächlich die 0—0 Komponente des Tensors

-gjj (2smFfmFkm + V ®i ®k+ conj.)-e,.ôik £,

wo S die Proca'sche Lagrangefunktionsdichte (11.8) bedeutet.
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(à/dx0 ist natürlich mit At (y) vertauschbar.) Ein analoger
Ausdruck folgt für B. Die Ladungs- und Polarisationsgrössen
($ ist der Integrand von K und hat z. B. die Form (3.22))
werden folgendermassen definiert:

d xt

0 d®
T O

d® -Q
dx,.

(9.2)

^ fdx3Udiv (J-ISB)

Wir erhalten folgende Vertauschungsrelation

Yr hc d f d .\ ,_1 hcK + ^~--, t — ,A) + lB
i dxry \dy I

+1 (J*-IT)) D (x-y) -(J0-IS*) dDidX~y) [ (9-3)

Das Argument der Ladungs- und Polarisationsoperatoren
ist x. Für den Tensor Sik wurde die einschränkende Annahme
gemacht

Sik eiòikT + S'ik, S'ik= —S'ki. (9.4)

Damit das Funktional xp gleichzeitig die Nebenbedingung und
die Schrödingergleichung erfüllt, müssen die beiden Operatoren:
„Nebenbedingung und K+hdjidt" vertauschbar sein. Das ist
aber gemäss (9.3) nicht der Fall.

Wir addieren darum zur Nebenbedingung noch einen
inhomogenen Term, d. h. wir schreiben

^-,a\+IB+ fdx3Jo'(x)D(x-y)\xf 0 (9.5)

wo Jq die O-Komponente eines combinierten Ladungsvektors ist.

Ji' Ji-lSf (9.6)
Dann gilt:

K + ^4—, fdx3J0'D(x-y)
% dx0 J

— fdx3 ((-div J' + R') D (x-y)+J0' dD[x~y)) (9.7)
% J \ '

dXry j
Der Skalar B' ist als Viererdivergenz von J/ definiert:

-A- \K, J0'] + div J' R' — J0' + div J'. (9.8)
he c
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Vergleich von (9.3) und (9.7) zeigt, dass die inhomogene
Nebenbedingung (9.5) im Laufe der Zeit erhalten bleibt, wenn die
Operatoridentität

J0' + c div J' l (JB - l T) (9.9)

identisch erfüllt ist.
Ferner muss J0' mit den Potentialoperatoren und mit J0'*

vertauschbar sein, damit die inhomogene Nebenbedingung mit sich
selbst und mit ihrer konjugiert komplexen verträglich bleibt.

In der Elektrodynamik verschwinden B und l. Ferner
verschwindet auch die Viererdivergenz des elektrischen Stromes.
(9.9) ist also erfüllt und die Nebenbedingung (9.5) ist möglich.
Sie führt bekanntlich auf die Maxwellschen Gleichungen.

Bei den Kernkräften wird sich zeigen, dass J0' nicht mit
J'* vertauschbar ist. Eine Nebenbedingung in inhomogener Form
ist daher nicht möglich. Die einzige Lösung, welche (9.9) erfüllt,
besteht darin, dass der Vierervektor J/ und damit auch seine

Viererdivergenz verschwinden, und dass JB IT.
Aus dem identischen Verschwinden der beiden Seiten der

Gleichung (9.9) und aus der Definition der Ladungs- und Po-
larisationsgrössen (9.2) (9.4) (9.6) und (9.8) folgt dann, dass U nur
von den folgenden Verbindungen des skalaren Potentials B und
des Viererpotentials At abhängen kann:

1. Vom Skalar

n^) + ,B.-Ur'*
2. Von den in (8.6) definierten Potentalen 0{.
3. Wegen der Antisymetrie des Tensors S'ik (9.4), von den

Feldstärken Fik.
Wegen der, nunmehr homogenen und mit K vertauschbaren,

Nebenbedingung verschwindet die unter 1. erwähnte skalare
Abhängigkeit. (Natürlich kann widerspruchsfrei eine weitere
Abhängigkeit von einem weiteren Skalarfeld C, welches unabhängig
von dem zur Erzeugung der 0{ verwendeten B ist, eingeführt
werden.)

Wir schreiben noch die Vertauschungsrelationen dieser neuen
Grössen :

[0* (*), 0k (y)] - 2 h4 et Uik-ek d\ D(x-y)
% \ l UXf OXk I (Q 10Ì

[Ffk(x), 0T. (y)} =-2^£iek(ôkl4 àn -$-) D (x-y).
% \ dxi oxk/

20
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Gesternte Grössen sind nach wie vor mit ungesternten
vertauschbar.

Die Nebenbedingung nimmt, wegen der Definition der 0it
die an die Vacuumelektrodynamik erinnernde Form an

A-,d>Wo. (9.11)
dx ]

Da die 0{ wie die At und die B der homogenen Wellengleichung

(U - l2) &i 0 (9.12)

genügen, so folgen für die in (8.7) definierten Feldstärken wegen
der Nebenbedingung (9.11) die Proca'schen Gleichungen10)

^dFkL_l20\ =0> (913)
k 0 Xk j

Für l 0 gehen sie in die Maxwell'sehen Gleichungen des

Vacuums über.

Mit genau gleichem Recht, wie wir (9.11) als Nebenbedingung
behandelten und daraus die vier Gleichungen (9.13) herleiteten,
können wir eine der Gleichungen (9.13) als Nebenbedingung
betrachten und daraus die drei anderen Gleichungen (und die
Gleichung (9.11)) entwickeln.

In der Elektrodynamik liess sich durch die Elimination der

Nebenbedingung die Coulomb'sehe Wechselwirkung einführen. Das
Feld hatte dann nur noch zwei transversale Komponenten. Eine
solche Elimination ist bei nicht verschwindender Ruhmasse( l ^ 0)

unmöglich. Hingegen kann die Nebenbedingung durch eine
Definition der Operatoren identisch befriedigt werden:

Man wählt die Gleichung (9.13) für i 0 als Nebenbedingung
und betrachtet 0lt 02 und 03 als unabhängige Operatoren, welche
den Vertauschungsrelationen (9.10) genügen, und die Fik (i, k 1,

2,3) als daraus abgeleitete Operatoren. Andererseits sieht man die
drei Operatoren

n^-^F*» (i l;2,3) (9.14)
OTT C

als weitere unabhängige Grössen an. Für x0 y0 gilt nach (9.10) :

[77, (x), 0k (y)] — ôik è (x -y) (x0 y0). (9.15)
%
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Die Operatoren Fk0 lassen sich also jetzt gemäss (9.14)* durch
die n{* ausdrücken. Definiert man jetzt 0O ebenfalls als abgeleiteten

Operator in der Form

0O 8 n c l-2 div 77* (9.16)

so ist die, als Nebenbedingung betrachtete, letzte Gleichung (i 0)

von (9.13) tatsächlich identisch erfüllt.
Unter Verwendung der unabhängigen Operatoren 0 und

II schreibt sich die Energiedichte (8.8)

3B' — (l2 (0*, 0) + (rot $*, rot 0))
8 71

+ 8 tic2 ((77*, 77) + l-2 div 77* • div 77). (9.17)

Zur Ableitung der Feldgleichungen können zwei Wege
eingeschlagen werden:

1. Übergang zur „einzeitigen" Theorie, d. h. Rückgängigmachen

des Formalismus, welcher auf Gleichung (3.5) folgte. Die
Hamiltonfunktion in (3.5) enthält also dann wieder einen
Feldanteil. Dieser ist nichts anderes als (9.17), wo jetzt wieder sämtliche

explizit zeitabhängigen Operatoren F (x) (=F"(x,x0))
durch die vermittels der Transformation (3.14) verbundenen, nicht
explizit zeitabhängigen Operatoren F (x) zu ersetzen sind. Das
geschieht formal einfach dadurch, dass man überall x0 0 setzt.
Dann sind die drei 0{ und ihre Ableitungen alle untereinander
vertauschbar. Dasselbe gilt für die 77,* und ihre Ableitungen. 77,

und 0i hingegen gehorchen der Relation (9.15), d. h. sie sind
kanonisch konjugiert. Der Materieanteil K bleibt derselbe, nur
sind auch hier die Feldgrössen F(x) durch F(x) zu ersetzen. Alles
dies entspricht genau dem Formalismus Kemmbrs11). Näheres
hierüber in Paragraph 11.

2. Aus der vorliegenden mehrzeitigen Theorie auf Grund
der Beziehung

±F(y) (^- + -L[K,F(y)]) (9.18)
c \ dy0 hc /y0 x0

Wir lassen die Nebenbedingung in der ursprünglichen Form,
d. h. betrachten alle vier 04 als unabhängige Operatoren. Man muss
dann an Stelle des 0O ein 0O definieren:

0O AO-~E. (9.18a)
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Die Nebenbedingung lautet dann in 0O:

div 0 + — 0O- 4 ti t2 (div J + — jS\xo 0. (9.19)

Die Feldgleichungen für die Komponenten 01; 02 und 03
lauten nach zweimaliger Anwendung der Regel (9.18) :

c2 \ -fY dxk c
(A-l2)0i~--^0\ -4on{ji-y;U-^it-A-S'io

l-2(div J + — JA). (9.20)
dx{ \ c

Für das in (9.18a) definierte 0O erhält man eine analoge
Gleichung. Nur ist d/dx0 durch —1/c mal die zeitliche Ableitung (•)
der nachfolgenden Grössen zu ersetzen.

Führt man noch die entsprechenden Feldstärken ein

Fik ^-?p- (i, k 1, 2, 3)
U Ob,- (J JuTf^ 1

(9-21)
fT Ö0O 1 -
Fi0 -A— + — &i

dxt c

so lassen sich, unter Berücksichtigung der Nebenbedingung (9.19)
die Gleichungen (9.20) schreiben

^d^ + ^Foi-l20i + 4Jji-^'^ik----S'iO))W^O. (9.22)
a- oxk e \ k Oxk c IJ

Sie entsprechen für l 0 den Maxwell'sehen Gleichungen für
die Anwesenheit von Ladungen.

10. Die Weehselwirkungsterme des Viererpotentials.

Zur Ableitung der Weehselwirkungsterme kann man
entweder explizit die Methode des Paragraphen 4 (Teil I) verwenden,
oder aber sich erinnern, dass die 0t durch die A{ und B ausdrückbar

sind (8.'6). Da für diese der wiederholt erwähnte klassische
Ausdruck „Retardiertes Potential des ersten Teilchens am Orte
des zweiten mal Ladung des zweiten" gilt, so gilt er auch für
die 0t. Dabei sind dann allerdings als Ladungen die Ausdrücke
der rechten Seite der Feldgleichungen (9.20) zu wählen.
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Wir wollen uns auf den statischen Fall beschränken. Er sei
dadurch definiert, dass

1. alle Grössen d/dx0 (oder in (9.20) die (•)) vernachlässigt
werden (Vernachlässigung der Retardierung).

2. Ebenso sollen die J, (iYfy und die S'0k vernachlässigt werden
(Vernachlässigung der Bewegung).

Dann wird gemäss (0.2) und (9.20)

0r (x)0 fdy3Jl (y) v (x -y), v (x) 6—^-

d
N (lo.i)

<Pr (*)< f dy3% SlkJ-v (\x -2/1)

der Vierervektor des Potentials, welches das r-te Teilchen am
Orte x zur Schrödingerzeit t x0/c erzeugt. Wir schreiben im
folgenden Sik für S'ik. (Es sei noch bemerkt, dass in dieser
Näherung die Potentiale Af mit den 0t identisch werden.)

Die Wechselwirkungsausdrücke werden gemäss (4.22) (man
berücksichtige auch die Anmerkung).

JJrs+JJsr i, rdj3 ^3 j/js* (J) Jr Qfì

+l:^'I1'SrAx)8lkJ^rAv(x-y) + koni

Unter Einführung des dreidimensionalen Pseudovektors S

($23j $3i, $12) und des Operatorvektors V lässt sich der letzte
Term in die Form

(S* xv,S'xy) (S\ S") A - (S°, V) (Sr, V) (10.2)

umformen.

Beschreibt man die Ladungen (Materie) durch eine Dirac'sche
Theorie, so ist

Jl(x) fefa.lò(x — qr) (10.3)

wo / eine Konstante der Dimension einer Zahl, e die elektrische
Elementarladung, aj die Dirac'sehen Geschwindigkeitsoperatoren
(Matrizen) des r-ten Teilchens, xr gewisse (im allgemeinen nicht-
hermiteische) Matrixoperatoren (isotopie Spin), die mit den c\
vertauschbar sind, und qr der Ortsvektor des r-ten Teilchens sind.
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Entsprechend wird der antisymetrische Tensor

Fmi,k^O:SlkCx) +ige~Trßr«i«lo(x-q'-)

Füri=0: Sr,kCx) -ige1rxrß^lo(x-q).
(10.4)

Hier ist g ebenfalls eine Konstante von der Dimension einer
Zahl. ßr ist die Dirac'sehe /?-Matrix des r-ten Teilchens. Wählt
man die Spinoren so, dass a0 1 und

/1 0 0 0\.0100)P 1 o 0—1 0 I

\o 0 0—1 /

wird, so sieht man, dass nur a0 und ßcHfO.,, „diagonale" Matrizen
sind. Bei Reduktion auf die „grossen Komponenten" der Dirac-
Funktion tragen daher die nichtdiagonalen Matrizen erst in der
Näherung „Kinetische Energie durch Ruhmasse mal c2" bei.
Somit sind die Vernachlässigungen unter 2. gerechtfertigt. Man
kann dann noch (für positive Energien) ß durch 1 ersetzen und für
i ß aH txk die Matrizen aik einführen. Dann wird die Wechselwirkung

U"+t7sr= — (rrTs*+Tr*Ts) (|/|2+]g|2 (ar,as

-Ijl'K.vlKvD'dî'-îl).*) (10.5)

Hierbei wurde, um den Operator A zu eliminieren, von der
Relation

(A-l2)v(x) -4ttö(5) (10.6).

Gebrauch gemacht.
Es tritt also, strenggenommen, neben den Termen (10.5)

noch ein „Nahwirkungsterm"

-4 7i\g\2&,c7°)l-2ô(qr—qs) (10.7)

innerhalb der letzten Klammer auf.
Dieser Term tritt immer (auch in der Elektrodynamik) auf,

wenn man die Umformung (10.2) vollzieht. Er wird aber leicht

*) V bedeutet in heiden Faktoren die Gradientbildung bezüglich qr (oder
beidemale bezüglich <?«).
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übersehen, wenn man die Operation V auf v (x — y) zuerst ausführt,
d. h. wenn man schreibt

(S°x V, S'X V) v (\z\) (S'xz^'xz) ~ -A- f-li V (\z\)\
| z \ o I z | \| z | /

+ 2(^,SS)~»'(|F|).
|2 |

Hier bedeutet «' (\z\) die Ableitung von » nach \z\. Formt
man jetzt den Vektorproduktterm nach der Formel

^r.
(S°xz, S'xz) (Sr,8>) \z\2-(Sr,z)(S%z) (10.8)

um, so erhält man genau (10.5) ohne den störenden Ausdruck
(10.7). Das beruht aber nur darauf, dass wir bei der Umformung
des Vektorproduktes einen Term der Ordnung |J|2/]Î|5 dazuzählen,
welcher für z 0 singular wird.

Auch bei der Berechnung der Spin-SpinWechselWirkung zweier
Elektronen tritt der gleiche Term auf:

Gehen wir nämlich in der üblichen Weise vor: Berechnung
des Breit'sehen Wechselwirkungsterms durch Entwicklung nach
1/c2 der Moeller'sehen Wechselwirkung und Reduktion der Dirac-
gleichung auf die „grossen Komponenten", so tritt die

Spinwechselwirkung tatsächlich in einer Form (as X V, ar X V) l^l-1
auf. In der Literatur wird nun, der Einfachheit halber, spätestens
an dieser Stelle die Umformung (10.8) verwendet, so dass der
Zusatzterm vergessen wird.

Erinnert man sich der Tatsache, dass die ganzen so erhaltenen
Weehselwirkungsterme (mit Ausnahme des Coulomb'schen Terms)*)
nur als Störung erster Ordnung verwendet werden dürfen, so tritt
der Zusatzterm nur als eine kleine weitere Aufspaltung proportional

e4 zwischen Singlet und Triplet in Erscheinung. Wollte
man ihn aber bei der strengen Lösung in Berücksichtigung ziehen,
so würde er im anziehenden Falle zu unendlich tiefen Termen
führen.

Wir müssen daher bei der Anwendung der so errechneten
Weehselwirkungsterme uns stets bewusst bleiben, dass wir sie,

zum Unterschiede gegen den in der Elektrodynamik auftretenden
Coulombterm, nur als Störungen betrachten dürfen.

Tatsächlich brauchen wir aber zur Lösung der Kernprobleme
d. h. zur Auffindung der stationären Zustände die strenge
Wechselwirkung. Wollen wir also die empirischen Wechselwirkungsansätze

*) Siehe Seite 306.
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mit den hier erhaltenen Resultaten vergleichen, so müssen wir
auf alle Fälle diesen zusätzlichen Nahwirkungsterm fortlassen.

Formel (10.5) hat dann bis auf den grad-Term tatsächlich
das richtige Vorzeichen und die richtige Spinabhängigkeit für die
Kräfte zwischen Neutron und Proton. Dass auch dem „isotopie
spin" Faktor die gewünschte Form gegeben werden kann, soll
im § 12 (Teil III) gezeigt werden.

III. TEIL.
11. Bewegungsgleiehung und Hamiltonoperator.

Das Kernkraftfeld werde durch mehrere Vierervektoren
0\ beschrieben. Der obere Index s unterscheidet hier, im Gegensatz

zu den vorhergehenden Paragraphen nicht mehr die
einzelnen Teilchen, sondern eine Anzahl verschiedener Procafeider,
deren Operatoren untereinander vertauschbar sind. Die daraus
abgeleiteten Sechservektoren Fsik und die 0\ selbst entsprechen
natürlich den auf Gleichung (9.18) folgenden überstrichenen
Grössen.

Das Spinorfeid der Materie beschreiben wir in der vom
Verfasser vorgeschlagenen Form durch ein 16-komponentiges Spinor-
feld2)13) cp^, wo jeder der beiden Indices von 1 bis 4 geht. Die
Matrices a,, ß der Dirac'schen Theorie und die von den „Pauli-
termen" herrührenden Matrices aik sollen auf den unteren Index /j,

wirken, während die Matrices r (und /n), welche im Paragraphen 10.

eingeführt wurden, auf den oberen Index v auszuübende lineare
Operationen darstellen. Sie sind daher mit den Dirac'schen Operatoren

vertauschbar. (In den zitierten früheren Arbeiten wurden
sie mit Q und A bezeichnet.)

Dann lauten die Bewegungsgleichungen des Feldes:

dFj^ _l20s + 4n /»_ y dßA 0 _ (111)
V dxk V V dxk I

Übt man die Operation d/dxt auf die Gleichungen aus und
addiert, so folgt

— 0s)-4tcI-2(-?-, jA= 0. (11.2)
da; / \dx j

Die Bewegungsgleichungen der Materie lauten

-ihc [cx, -?-) + mc2 ß a -y — ((j*r, 0r)
\ à x/ -jY 2

+ (sr*, F') + conj.)) cp 0. (11.3)
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Dabei sind Jr und Sr Abkürzungen für die folgenden, aus cp

gebildeten Vektoren und Tensoren:

*i=<P*ì.<P (1L4)
Sik=cp*s\kcp.

Die Grössen f und sr werden aus den numerischen Faktoren
fr und gr, dem elektrischen Elementarquant e und den auf die
Spinorindices wirkenden Matrizen in folgender Weise gebildet:

jl fr e cc( r\ oo 1

^h 9re-j-crikrr (11.5)

aik i ß a.i a.k, crci. — i ß cck

(sr*, Fr) ist das skalare Produkt der beiden Sechservektoren
(d. h. \ E E eiek...), u ist eine Matrix, deren Eigenwerte die

Massen von Elektron, Neutrino, Proton und Neutron sind
(gemessen als Vielfache der Elektronenmasse m). lr sind für jedes
Feld charakteristische reciproke Längen Masse der dem Felde r
zugeordneten Partikel mal cjh).

In einer klassischen Feldtheorie erhält man die Feldgleichungen
für Kernfeld und Materie aus der Extremumsforderung des
Raumzeitintegrals einer Lagrangefunktionsdichte £. Ihr Materieanteil
hat die Form:

£ (cp) _ <p* mai Ausdruck (11.8) (11.6)

Für den Feldanteil kann man entweder schreiben

£(<?>)= 2 N>£(^)S + £(B*)S (11.7)
s i

(mit 0\ A\ + Ij1 e> dB/dXi), wo die Summanden Ausdrücke der
Form (2.1) darstellen (mit angehängten Indices i und s und ohne
den Materieanteil, der ja in (11.6) schon steht), oder aber den
Proca'sehen Ausdruck

Z(0x)s= ^((F^P8) +l2s(0**, 0")). (11.8)
8 71

Bei Verwendung von (11.7) muss man die Gleichung (11.2)
als Nebenbedingung betrachten.

Der Übergang zur Hamiltonfunktion geschieht in der üblichen
Weise (vgl. z. B. Paragraph 2). Allerdings kann nur die Form
(11.7) verwendet werden, da in (11.8) die zeitlichen Ableitungen
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von 0O nicht auftreten. Verwendet man (11.7) so treten in der
Hamiltonfunktion die A\, Br und ihre konjugierten Momente auf.

Der in den Paragraphen 8 und 9 entwickelte Formalismus
(die „zweizeitige Formulierung" ist natürlich nicht wesentlich)
gestattet (gemäss Formel (9.17) und nachfolgender Bemerkung 1))
einen Hamiltonoperator zu schreiben, welcher nur von je drei
Feldgrössen 0\,_ 0\, 0\, ihren konjugierten Impulsen 77 J sowie
von ihren konjugiert komplexen Operatoren abhängt.

Die Hamiltonfunktionsdichte lautet:

S3 — y (l2 (&r *, 0r) + (rot 0r *, rot &))

+ 8 ti c2 2 ((&*, nr) + P2 div TP* div 77')
r

+ cp* (— ihc (a,—-r- + mc2 ß \cp

+ — V — (J', 0r*) + J'08tccI~2 div TP + konj.

-2T;^-^~ + SSo,8-C77^ + konj.
i k "^k k

+ * S (Z72 (Jro* Jro + J0 JL*) + 2 (SZ S'ok + Slk SU)) • (11.9)
r \ k I

Die zu den cp^ konjugierten Impulse sind natürlich gemäss
(11.6) die konjugiert komplexen cpv* mal ih. Die Hamiltonfunktion
ist in den Kern- und Materiefeldgrössen bilinear bis auf die letzte
Linie, welche die (symetrisierten) Terme der Anmerkung (2.6a)
enthält. Diese Terme sind biquadratisch in den cp.

Die Bewegungsgleichungen erhält man klassisch und
quantentheoretisch aus den kanonischen Gleichungen:

und einer analogen Gleichung, wo 0\ mit II\ vertauscht ist
und wo im dritten Gleichungsglied ein — steht. d77/<577f

bedeutet funktionelle Differentiation des Funktionais H
Volumintegral von i3) nach der Funktion 77j. Für cp gilt die analoge
Beziehung

-ihc^=-ihcp -^-=[H,cp]. (11.11)
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Bei der letzten Gleichsetzung in (11.11) ist bei der Differentiation

auf die Reihenfolge der Glieder zu achten, da Jg* mit
Jr0 nicht vertauschbar ist.

Die letzten Identitäten (11.10) und (11.11), welche das

Korrespondenzprinzip ausdrücken, gelten, wenn das Kernfeld
symmetrisch gequantelt wird

[77$ (x), 01 (y)] 4 òrs òik Ò (x -y) (11.12)
i

und wenn für das Materiefeld die symmetrische (—) oder
antisymmetrische (+) Quantisierung gilt:

K (x) vt(y) ± vi (y) vi (x) 0

vT (x) vi Cy) ± vi (y) vT (x) ô„x ôpq ô(x-y). (li.is)
Alle anderen Operatoren sind miteinander vertauschbar.

Da 0^ nicht auftritt, muss die quantentheoretische Ableitung der
Feldgleichungen kurz skizziert werden:

1. Differentiation nach der Zeit von (11.10) und Elimination
von H\ aus der kanonisch konjugierten Gleichung führt auf die
Gleichungen (9.20) für % 1, 2, 3.

2. Definiert man den Operator

0ro 8 n c l-;2 div TP* + 4 n l~2 J0 (11.14)

so folgt aus der zeitlichen Ableitung der kanonisch konjugierten

Gleichung (11.10) für TP (und Elimination von 0rs durch (11.10)
selbst) die vierte Gleichung (9.20).

3. Aus der zu (11.10) kanonisch konjugierten Gleichung
ergibt sich durch Divergenzbildung und Verwendung der Definition
(11.14) die Beziehung (11.2).

4. Mit Hilfe des so erhaltenen (11.2) eliminiert man die
Viererdivergenz des Stromes auf der rechten Seite der Gleichungen (9.20)
und erhält die Feldgleichungen in der Form (11.1)

Wir bemerken dazu folgendes:
Die Operatoren

d 0r, d0r-ni,0lnndFlk=°pt-^ (t,fc=l,2,8)

sind reine Feldoperatoren und daher mit den Materieoperatoren v
vertauschbar.

Die Operatoren $g (definiert durch 11.14) und die Operatoren
Fri0 00^/dXi + 0\/c sind gemischte Operatoren. Sie sind mit
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den Materieoperatoren v nicht vertauschbar. Aus den Gleichungen
(11.10) folgt direkt die Beziehung

Fl0 =8ncnr+4nS0i (11.15)

als Definition von Fri0 in Analogie zu (11.14).
Die aus (11.11) folgende Bewegungsgleichung der Materie

hat folgende Form:

- ihc U, A\ + mc2 ßf, +1 2 (- (>*, 0r) + jl* 8tic2 l~2 div TP*
xi 2

-YI 2' s«4? +2' «s*8 n c ni* + koni-)) v
i k uxk k 11

+ ^(jT27il-2(Jr0cp+cPJl)+^s^2n(Slkv + vSllc)+konj) 0.
k (11.16)

Wären also die Jg und Slk mit cp vertauschbar, so würde
(11.16) nach Einsetzen der Definitionen (11.14) und (11.15)
tatsächlich identisch mit der klassischen Bewegungsgleichung (11.3).
(11.16) ist eine in v nicht lineare Diracgleichung. Die Nichtlinearität
rührt vom Auftreten von Ableitungen der Potentiale in der
Lagrangefunktion her, wenn man die A\ und Br als primäre Grössen
ansieht (siehe Anm. Teil I, Formel (2.6a)).

12. Die Kontinuitätsgleichung der elektrischen und der schweren Ladung
und die explicite Form der Wechselwirkungskräfte im Kern.

Im allgemeinen Formalismus von Teil II ist die Elektrodynamik
mitenthalten, wenn man für eines der Felder (r 0) l0 0 setzt.
Dann existiert kein B° und man hat 0\ A? und in (9.9)
Ji Ji- Ausser dem trivialen Fall J? 0 ist dann nur die
Möglichkeit noch offen, dass JJJ mit J°* vertauschbar ist. Zerlegt
man jetzt in Real- und Imaginärteil, so teilt sich die Beschreibung
in zwei unabhängige reelle Felder auf, die je mit einem unabhängigen
reellen Strom in Wechselwirkung stehen. Beide Stromanteile
müssen einzeln der Kontinuitätsgleichung genügen. Die
Kontinuitätsgleichung und die Realität des Feldes sind somit
Konsequenzen von /0 0.

Der Formalismus vom vorhergehenden Paragraphen ist
hingegen noch nicht allgemein genug um die Elektrodynamik zu
beschreiben: Der aus den cp mit Hilfe reeller t° gebildete Strom
(11.4) und (11.5) genügt nämlich bei Anwesenheit anderer Felder
0r, deren xr mit t° nicht vertauschbar sind, nicht der
Kontinuitätsgleichung. Man muss daher zum Stromausdruck noch einen
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aus den 0r gebildeten Vierervektor addieren, d. h. die Felder 0r
müssen Ladungsträger sein.

Ausser diesem, durch die Maxwell'sehe Theorie bedingten,
Erhaltungssatz der elektrischen Ladung, gibt es aber offenbar noch
einen weiteren Erhaltungssatz: Bei allen beobachteten Umwandlungen

der Materie, wurden noch keine Umwandlungen von schweren
Partikeln (Neutron und Proton) in leichte Partikel (Elektron und
Neutrino) beobachtet. Wir wollen daher einen Erhaltungssatz der
schweren Ladung fordern.

Die Matrizen (r° X)

/1000\ /0 0 0 0\
A= J J J ; und 2'= o o o o (m)

Voooo/ v 0 0 0 1 /
welche auf den oberen Index von cp wirken, erlauben die vom
Spinorfeid getragene elektrische resp. schwere Ladungsdichte in
der Form v*0ii^V zu schreiben. Sind X" die Diagonalelemente
der Matrix X, so hat die O-Komponente die Form Z X" cpv* cpv. Die

Eigenwerte des Volumintegrals von vv* Vv sind, bei Verwendung
der Löchertheorie und der antisymetrischen Quantelung (vgl.
auch Majorana loc. cit. 12)) ganze positive oder negative Zahlen.
X" 0 oder 1 ist also die Ladung der Partikel des r-ten Spinorfeides.
Die Antipartikel haben die Ladung —Xv.

Wir berechnen jetzt die Viererdivergenz des durch die Matrizen
X geformten Stromes:

Dazu multiplizieren wir (11.16) mit cp*X von links und die
konjugiert komplexe Gleichung mit Xcp von rechts, und subtrahieren
die beiden Gleichungen voneinander. Die Viererdivergenz
verschwindet nun im allgemeinen nicht, sondern wird ein relativ
komplizierter Ausdruck. Er vereinfacht sich sehr, wenn die Matrix X

den folgenden Vertauschungsrelationen genügt:

[X,fi] =0
[X, <] AV (12.2)
[X, Tr*] —Ar* rr*
Ar Vielfaches der Einh. Matrix.

Daraus folgt, dass X hermiteisch und Ar eine reelle Zahl sein

muss. Die Divergenzgleichung nimmt dann die Form an

y -4- w* m «o =—y Ar ((&*, Jr)-8 7ic i-2 div TP • ji
i dx{ 2hcyi \

+ 2' 2'^ «.»-S'8 »cnl $ro* - w) (12-3)
i k Ud/k k I
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Dass sich die Terme vierter Ordnung in v fortheben, folgt
aus der Relationen (11.13) und aus der aus (12.2) folgenden
Beziehung

[X tr, Tr*] + \f* X, Tr] 0.

Um zu zeigen, dass die rechte Seite die Divergenz eines weiteren
Viererstromes ist, multiplizieren wir die Feldgleichung (11.1) mit
£( 0'1* von links und die konjugiert komplexe Gleichung ebenfalls
von links mit et 0\ und addieren die Summen der beiden
Gleichungen über i von 0 bis 3.

Man erhält, unter Berücksichtigung der Nichtvertauschbar-
keiten, folgende Viererdivergenz:

S^^SM^'-4«»
i I * l2

[0r*, Jr) — (Jr*, 0r) — 01* Jg+ 01 Jr0* — —- [01*, 0ro]
hc\ 471

j\Qr j) Qr* 1 \-^*2^-^2^f-4,2[n*oÄ3 • (12.4)
k UXk k UJ/k ^71 k I

Wegen der Definition von 01* (11.14) ergeben der dritte, vierte
und fünfte Term in der Klammer der rechten Seite gerade

(....- 8 n cl-2 div TP- Jl + konj. (12.5)

Der letzte Term in der rechten Klammer, nimmt wegen der
Definition der Frk0 (11.15) die Form an:

-2' 4 n Stk Si, + 2'4 * Srok Sl%) (12.6)
k klMultipliziert man also (12.4) mit der Zahl Ar und summiert

über r, so kann die Summe von (12.3) und (12.4) bei Berücksichtigung

der Definition (11.15) als Kontinuitätsgleichung geschrieben
werden :

-—, g 0 mit den Komponenten

e, £ *'(?'*<*,,,')+ £/!' (—— ^0rk*(Ftk~47cSl
k

-0l(Ffk-4nSfk)). (12.7)

8 n h c

Der Ladungsanteil des r-ten Feldes ist also der r-te Summand
der zweiten Summe, genau wie der v-te Summand der ersten
Summe den Ladungsanteil des r-ten Materiefeldes darstellt.



Wechselwirkungskräfte der Elektrodynamik i. d. Feldtheorie der Kernkräfte. 319

Der Ladungsanteil des r-ten Feldes verschwindet insbesondere
dann, wenn das Feld reell ist. Dass ein analoger Satz für Spinor-
feider existiert, hat Majorana gezeigt9).

Die O-Komponente ist die eigentliche Ladungsdichte. Sie
lautet unter Verwendung der Definition (11.15) :

e„ 2 *' (r* r) + 2 A" 2'tWt n - ni* *_.*) • (12.8)
x. «¦ h Ur

Wie bereits bemerkt, sind die Eigenwerte eines einzelnen
Summanden der ersten Summe, bei Berücksichtigung der Dirac-
schen Löchertheorie, positive und negative Vielfache von X".

Dasselbe gilt, nach der Pauli-Weisskopf'sehen Theorie6) für jeden
einzelnen Summand der zweiten Doppelsumme. Die Zahlen X"

und Ar stellen somit die Ladung der Partikel des r-ten Materie-
(Spinor)- und des r-ten Kernkraft(Tensor)-Feldes dar. Jedes der
Felder 0\ (mit Ausnahme der reellen Felder) hat Partikel und
Antipartikel. Letztere haben das umgekehrte Vorzeichen der
Ladung*).

Die Gleichungen (12.2), welche die zur Existenz einer
Kontinuitätsgleichung (12.7) notwendigen Bedingungen darstellen,
gestatten eine Bestimmung der möglichen Matrices rr.

Zuerst folgt aus der ersten Gleichung, dass X eine Diagonalmatrix

sein muss, da die Eigenwerte von fx alle verschieden sind.
Die zweite und dritte Gleichung fordern Hermiteicität für X und
bestimmen damit X" und Ar als reelle Zahlen. Die Matrices der
Gleichung (12.1), elektrische und schwere Ladung, gehorchen
offenbar diesen Anforderungen.

Um die Form der vierreihigen Matrices rr zu bestimmen,
zerlegen wir die allgemeinste vierreihige Matrix in eine Summe
von direkten Produkten von zweireihigen Matrices. Es seien 11,
21, 12 und 22 die Numerierung der vier Zustände Elektron,
Neutrino, Proton und Neutron (entsprechend den vier möglichen Werten
des oberen Index v von v)- T« L ri, t2 un(1 T3 seien die Einheit
und die drei Pauli'schen Matrices, welche auf den ersten Index
von 11, 21, usw. wirken. Ebenso seien die t/ (i 0, 1, 2, 3) die
entsprechenden auf den zweiten Index wirkenden Matrices.

Die gestrichenen und die ungestrichenen Matrices sind natürlich
miteinander vertauschbar. Ferner gilt für beide Matrices die
bekannte Regel

Ti rk — jk x4 \ fr, rk] i t,, i k l cykl. (12.9)

*) Die Summe über k von 1 bis 3 bedeutet, dass die Teilchen drei
Einstellmöglichkeiten der Spins haben.
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Die allgemeinste vierreihige Matrix lautet dann

^ 22«.*^' (12-10)
i k

und die speziellen Matrices (12.1) haben die Form

* I (t0 + r3) V ; X' i t0 (V - t3'). (12.11)

Einsetzen dieser Entwicklungen in die zweite Gleichung
(12.2) und Koeffizientenvergleich beider Seiten der Gleichung gibt
folgende Beziehungen zwischen den a\k:

A"alk 0 Aralk +ialk
/1^ 0 A*a{k -iaîh.

Für die Erhaltung der schweren Ladung folgt eine analoge
Gleichung, für den zweiten Index. Nur steht überall statt Ar die
Grösse —A'r.

Die Lösungen von (12.12) sind:

Ar 0 mit a\ k ar2k 0 oder
A* ± 1 mit arok a\k 0 und a\k ± i a\k (12.13)

und analoge Gleichungen für den zweiten Index mit A'r.
Es sind demgemäss folgende Fälle möglich:

1. Feld ohne elektrische und schwere Ladung:

Ai a;i Q und
t1 «Jo + a\o Ti + aÒi ri + a\i Ti Ti'- (I214)

Ein solches Feld ist offenbar das elektromagnetische Feld.
Diese Felder können insbesondere reell sein, da die Matrices t hermi-
teisch sind, und die Konstanten reell gewählt werden können.

Die durch dieses Feld hervorgerufene Wechselwirkung zwischen
zwei Materieteilchen im Konfigurationenraum folgt durch
Einsetzen von (12.14) in (10.5). Beschränken wir uns auf schwere
Teilchen, so kann man r3' xp Ixp setzen, und der r enthaltende
Faktor von (10.5) lautet einfach*) :

|a|2 + |o|24t| + | (ab* + a* b) (t3 + t3) (12.15)

dabei sind a und 6 beliebige komplexe Zahlen. Sind sie insbesondere
reell, so ist das Feld reell.

*) Die Indices r und s in den Gleichungen (12.15), (12.17) und (12.18)
beziehen sich natürlich nicht auf verschiedene Felder, sondern, gemäss der Kon-
figurationenraumbeschreibung des Paragraphes 10, auf zwei verschiedene schwere
Teilchen.



Wechselwirkungskräfte der Elektrodynamik i. d. Feldtheorie der Kernkräfte. 321

2. Feld mit elektrischer, aber ohne schwere Ladung.

A2 —1, A'2 0 und

T2=(r1-ir2)(a^ + a23r3'). (12.16)

Die Wechselwirkung zwischen zwei schweren Teilchen ist
wieder Formel (10.5), wo der t enthaltende Faktor

\a'\2(x{T\ + TlTD (12.17)

lautet. Will man insbesondere Kräfte zwischen Neutron und
Proton haben, welche unabhängig von der Ladung und nur
abhängig vom Symmetriecharakter der Wellenfunktion im
Konfigurationsraum der schweren Teilchen sind, so muss sich die
Wechselwirkung in der Form (10.5) mit einem t Faktor („isotopie
spin factor"14))

i«i2 + H2;|V?) (12.18)

schreiben lassen. Bildet man die Summe von (12.15) und (12.17),
indem man für beide Felder 1 und 2 dieselben Konstanten / und g
in (10.5) nimmt, so erhält man tatsächlich (12.18), wenn man a'=a
und b=ia setzt. Das führt allerdings zu der Unschönheit, dass das
Feld 1 (Feld ohne elektrische und schwere Ladung) komplex ist
und also zwei Teilchensorten (Antiteilchen) enthält. Da die

t Matrices der folgenden Felder nur noch t/ und t2' enthalten,
tragen sie nichts mehr zur Wechselwirkung zwischen schweren
Teilchen bei. Der Fall yl2 + 1, A1 0 ist identisch mit dem
behandelten (Vertauschung von Teilchen und Antiteilchen).

13. Fortsetzung der Diskussion der möglichen Felder.

Während bei den am Ende des vorhergehenden Paragraphen
diskutierten Feldtypen die Darstellung durch Vierervektoren
0\ notwendig war, um Übereinstimmung mit dem Experiment
(Anziehung im Grundzustand des Deuterons usw.) zu finden, ist
sie für die weiteren Felder nicht mehr notwendig. Diese Felder
können also z. B. auch skalaren Charakter haben. Man überzeugt
sich aber leicht, dass auch für sie analoge Gesichtspunkte gelten
und dass insbesondere die Relationen (12.2) gelten, sowie die daraus
abgeleiteten Beziehungen (12.12) und (12.13).

Bezeichnen wir die Spinorpartikel Elektron, Neutrino, Proton
und Neutron durch*) e (1,0), n (0,0), P (1,1) und N (0,1), die

*) Die beiden Indices in der auf das Symbol folgenden Klammer beziehen
sich auf elektrische und schwere Ladung der Teilchen.
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neutralen Partikel von Feld 1 (deren wegen der komplexen
Konstanten in (12.15) mindestens zwei existieren müssen) mit n (0,0)
und die geladenen Partikel des Feldes 2 mit e (1,0), so geben die
Matrices (12.14) und (12.16) zu folgenden möglichen Umwandlungen

Anlass:
Feld 1.

Spinorpartikel —> gleiche Spinorpartikel' + n (0,0) (13.1)

Dabei sind natürlich zur Zeit nur die Reaktionen mit schweren
Spinorpartikeln „beobachtet", d. h. ihre Existenz muss zur
Erklärung der Kernkräfte zwischen gleichen Teilchen gefordert
werden.

Feld 2.

P (1,1) — N (0,1) + e (1,0) (13.2)

e (1,0) n (0,0) + c (1,0). (13,3)

Die sämtlichen Symbole sind als algebraische Grössen zu
betrachten (negative Symbole bedeuten die entsprechenden
Antiteilchen). Aus (13.2) aus (13.3) folgt beispielsweise

(- e (1,0)) r=^ (_ e (1,0)) + n (0,0). (13.3')

D. h. ein (negativ geladenes) Anti-e-Teilchen (— c) kann in ein
negatives Elektron (—e) und ein Neutrino (n) zerfallen.

Auch hier sind vorerst nur die Reaktionen (13.2) „beobachtet",
da aus ihnen die Austauschkräfte zwischen Proton und Neutron
resultieren.

Da aber die e-Teilchen offenbar äusserst selten vorkommen,
erklärte (13.3') ihre endliche Lebensdauer.

Ferner gibt (13.3) eine Theorie des ß-Zevtalles :

Ein Neutron verwandelt sich in ein Proton + ein Anti-e-
Teilchen gemäss der algebraischen Umschreibung von (13.2) :

N (0,1) —* P (1,1) + (- c (1,0)). (13.2')

Hierauf tritt Reaktion (13.3') ein.
Gemäss dem Formalismus von Teil II kann das so gedeutet

werden: Ein positives Elektron in einem Zustande negativer
Energie springt unter dem Einfluss des retardierten Potentials
eines schweren Teilchens, welches sich aus einem Neutron in ein
Proton verwandelt, in einen Neutrinozustand positiver Energie.
Da die Bewegung der schweren Teilchen langsam erfolgt, kann
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die Retardierung gemäss Paragraph 10 vernachlässigt werden und
eine Wechselwirkung der Form (10.5) in die Hamiltonfunktion
eingesetzt werden.

Da die Reichweite des e-Feldes aus den heuristischen Ansätzen
über Kernkräfte als klein gegen die Wellenlänge der de Broglie-
wellen von Elektron und Neutrino erscheint, kann die
„Fernwirkung" aus Gleichung (10.5) durch eine Nahwirkung ersetzt
werden und es folgt eine der Fierz'sehen Verallgemeinerungen5)
der Fermisehen Theorie16) des /^-Zerfalles.

Nun hat aber auch diese Verallgemeinerung immer noch den
Nachteil, eine zu schwache Asymétrie der Energieverteilung im
kontinuierlichen ß-Spektrum zu liefern.

Wir werden sehen, dass die weiteren möglichen Feldtypen
eine alternative und nach Rechnungen von Wentzel17) bessere

Beschreibung des /^-Zerfalles bieten.
Das Nichteintreten der Reaktion (13.3) resp. das nur relativ

unwahrscheinliche Eintreten derselben, ergäbe eine unendlich
lange, resp. eine längere als die von Bhabha vorgeschlagene2)
Lebensdauer der C-Partikel. Die endliche Lebensdauer wäre dann
nur durch auftretende Zusammenstösse mit Neutronen in
Atomkernen bedingt (resp. für Anti-e-Teilchen mit Protonen)21).

Wir setzen unsere Diskussion der Feldtypen fort:
3. Feld ohne elektrische, aber mit schwerer Ladung.

A3 0, A'3 -1 ergibt analog (12.16)

T3=(al1 + al1Ts)(T1' + iT2'). (13.4)

Die Teilchen bezeichnen wir mit 2Ï (0,1). Sie geben zu folgenden
Reaktionen Anlass:

N (0,1) rT=^n (0,0) + 91 (0,1) (13.5)

P (1,1) *=* e (1,0) + 91 (0,1). (13.6)

Da das Proton sicher eine stabile Partikel ist, so folgt aus
(13.6), dass die Masse der 9i-Partikel grösser als die Differenz
zwischen Protonen- und Elektronenmasse ist. Da aber auch aus
den Kernspin und Kernstatistikmessungen hervorgeht, dass im
Kern nur Neutronen und Protonen aber keine Partikel mit
ganzzahligem Spin vorkommen, ist es wahrscheinlich, dass die 9l-Par-
tikel auch grössere Masse als die Neutronen besitzen und daher
instabil sind.

Gemäss den Überlegungen über die retardierten Potentiale
gibt dieses Feld 3 Anlass zu Austausch-Kräften zwischen leichten
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und schweren Partikeln von sehr kurzer Reichweite (Compton-
wellenlänge des Protons). Diese Austauschkräfte erlauben die
alternative Erklärung des /3-Zerfalles :

Nach (13.5) entsteht eine 9l-Partikel und ein Neutrino. Die
91-Partikel zerfällt nach der algebraisch umgeschriebenen Gleichung
(13.6):

91 (0,1) — P (1,1) + (-e (1,0)). (13.6')

Anders ausgedrückt lautet das: Eine Spinorpartikel geht
aus dem Zustande „kerngebundenes Neutron" in einen Zustand
„freies Neutrino" über. Das durch diesen Übergang erzeugte
retardierte oder avancierte Potential des Feldes 3 induziert den
Quantensprung einer anderen Partikel aus einem Zustand „Elektron
negativer Energie" in einen Zustand „kerngebundenes Proton".

Eine Vernachlässigung der Retardierung ist natürlich nicht
mehr möglich. Wie Wentzel17) zeigt erhält man eine stärkere
Asymétrie als diejenige der Fermi'schen Theorie, wenn das
91-Feld vom Kern beeinflusst wird (d. h. wenn „Zwischenzustände"
mit gebundenen 91-Partikeln existieren).

4. Feld mit elektrischer und schwerer Ladung gleichen Vorzeichens.

A* A'* — 1 ergibt

*4 < fa - i r2) fa' + » t,') (13.7)

Die, mit ÇJ3 (1,1) bezeichneten Teilchen, geben nur zu der
Reaktion

P (1,1) «n .(0,0)+$(1,1) (13.8)

Anlass. Damit das Proton stabil erscheint, müssen die cß-Teil-
chen eine grössere Masse als die des Protons haben.

¦'). Feld mit elektrischer und schwerer Ladung verschiedenen

Vorzeichens.

A*= +1, A's —1 gibt

r5 a6n fa + i t2) fa' + i t2') (13.19)

und ebenfalls nur die einzige Reaktion

N (0,1) r— e (1,0) + «p (- 1,1). (13,10)
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14. Erweiterung des Strombegriffes Jr..

Die Definitionen (11.4) der in den Proca'schen Gleichungen
(11.1) auftretenden Stromgrössen sind noch einer, ebenfalls in v
bilinearen, Erweiterung fähig. Fügt man ihnen die Terme

K\ cpk\cp; RK^cpr^v (14.1)

mit den Matrixoperatoren

kl teò oc, a- rf, g'" ej-ôoikx* (14.2)

hinzu, wo ô die von Fermi eingeführte Matrix 16) (s. auch Pauli 18))

bedeutet und wo xr wieder auf den oberen Index v von v"ß wirkende
Operatoren darstellen, so ändert sich an den Bewegungsgleichungen
des Feldes (11.1) und an der Divergenzgleichung des Feldes (12.4)
nichts, ausser dass J\ durch J\ + K\ ersetzt ist. Um die
Bewegungsgleichungen für cp aus der Hamiltonfunktion zu erhalten,
müssen wir noch (ausser dem erwähnten Ersetzten) die Terme

2 ti 2 (P2 (Jl* Kl + Kl* Jl + Kl* Kl) + entspr. Terme in Srok

und Rlk) (14.3)

hinzufügen. Es sei bemerkt, dass diese Terme zwar hermiteisch,
aber, im Gegensatz zu den Termen der letzten Linie von (11.9)
nicht symetrisch sind. Nur mit diesen Termen ist eine Kontinuitätsgleichung

möglich.
Bei symmetrischer Quantelung von v erhält man die klassischen

Wellengleichungen (11.3), welche aber durch Terme in v*
ergänzt sind. Bei antisymmetrischer Quantelung*) zeigt sich
ein charakteristischer Vorzeichenunterschied eines dieser Terme
gegenüber den klassischen Gleichungen. Die Divergenzgleichung
(12.3) behält ihre Form, wenn die Matrices x den Antivertauschungs-
relationen

X xr + xr X — Ar xr (14.4)

genügen. Entwickelt man die Matrices x wieder nach (12.10)
mit Konstanten bik, so folgen in Analogie mit (12.12) und (12.13)
die Beziehungen.

b\k -A*b\k,b\k -A*b\k
Kk + b3k - A' blk, b\k + %k - A' V3k. (14.5)

*) Dann gilt in (11.11) nur die Form [H, cp] und nicht mehr ôH/ôcp.
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Die Lösungen für A" lauten jetzt 0,-1,-2 statt 0, —1, +1
wie im Paragraph 12. Die Lösung —2 (doppelt geladene Elementarteilchen)

wollen wir ausschliessen.
Die im vorhergehenden Paragraphen besprochenen

Feldtypen geben dann zu folgenden zusätzlichen möglichen
Reaktionen Anlass:

1. Feld ohne elektrische und ohne rchwere Ladung.

^ Cfa-T3)(r0' + r3') (14.6)
d. h. die Reaktion :

n (0,0) ^2n (0,0). (14.7)

2. Feld mit elektrischer, aber ohne schwere Ladung.

X2=(bl0T1 + bl0T2)(T0'+T3') (14.8)

oder in der Reaktionsschreibweise

e(l,0)=s=*(-n(0,0)) + e(l,0). (14.8)

oder

3. Feld ohne elektrische, aber mit schwerer Ladung.

*3=fa-*3)(&W + &osO (I4-9)

N (0,1) «=* (- n (0,0)) + 91 (0,1). (14.10)

4. Feld mit elektrischer und schwerer Ladung
gleichen Vorzeichens.

X* (6*, T, + b^ T2)' T/ + (b'n TX + £4 T2) T2' (14.11)

mit den Reaktionen

P (1,1) *=* (- n (0,0)) + cp (1,1) (14.12)

iV(0,l)r=-(-e(l,0))+Cp(l,l). (14.13)

Das Feld 5 mit schwerer und elektrischer Ladung verschiedenen

Vorzeichens gibt nur die Matrix xs 0.

Ausser der letzten Reaktion (14.13) sind alle neuen Reaktionen
dieselben wie diejenigen der t Matrices, nur spielt überall das
Antineutrino die Rolle des Neutrinos.

Das Feld 4 gibt eine weitere Möglichkeit des /S-Zerfalles :

Ein Neutron wird eine CTj (1,1)-Partikel (14.13) und sendet ein
negatives Elektron aus. Die ty (1,1)-Partikel zerfällt hierauf,
gemäss der algebraischen Umschreibung von (14.12), in ein Proton
und ein Neutrino:

ÇP(1,1)—^P(l,l)+n(0,0). (14.12')
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Für (12.12') gilt das anlässlich (13.6') gesagte17). Das
Auftreten von Neutrino und Antineutrino hat folgende tiefergehende
Bedeutung :

a) Neutrino und Antineutrino sind verschiedene Partikel.
Dann unterscheiden sie sich durch die sogenannte Neutrinoladung.
Fordert man die Erhaltung der Neutrinoladung, so muss man auch
dem Neutron eine Neutrinoladung zusprechen. Die Matrix

X" 1 - X (14.12)

erlaubt dann die von den Spinorpartikeln getragene
Neutrinoladungsdichte zu formen. Aus (12.2) folgt dann

[X", f] A"r t/ —Ar f (14.13)

d. h. die Partikel des Kernfeldes haben gleichzeitig elektrische
und Neutrinoladung umgekehrten Vorzeichens. Aus (14.14) folgt
aber

X" xr + xr X" - A"r xr= (2 + Ar) xr (14.14)

(14.14) und (14.13) sind nur miteinander verträglich, wenn
entweder xr oder xr verschwindet, d. h. für ein bestimmtes Feld
0r treten nur entweder die Reaktionen des Paragraphen 13 oder
die Reaktionen aus diesem Paragraphen auf.

b) Es existiert kein Unterschied zwischen Neutrino und
Antineutrino. Dann können die Matrices x so gewählt werden, dass
in den Wechselwirkungstermen Feld-Materie in der Hamiltonfunktion

der Spinor des Neutrinofeldes cp2 nur in der Kombination

y2 <p2 + ô* cp2* (14.15)

auftritt. Wählt man die Matrices a,- und ß in der Form, dass die
a-i rein reell und ß rein imaginär erscheinen, so wird die Matrix ô

gleich der Einheitsmatrix und man hat \y2 ~cp*2. Majorana9)
hat gezeigt, dass man dann auch den Anteil der freien
Spinorpartikel in der Hamiltonfunktion allein unter Verwendung der
reellen Funktion Yp2 schreiben kann. Das reelle Spinorfeid kennt
also, genau wie das reelle Tensorfeld, keine Antipartikel, d. h.
es besteht aus nur einer Partikelart (vgl. dazu auch Racah19).

15. Schlusshemerkung.

Nachdem die Existenz einer Kontinuitätsgleichung bei
Abwesenheit von elektrischen Feldern gezeigt worden ist, macht die
Einführung der Wechselwirkung „Elektrisches Feld mit elektrisch
geladenen 0r und vv Feldern" keine prinzipiellen Schwierigkeiten
mehr. Klassisch ist der Fall von Proca10) bereits behandelt.
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Es sind dann u. a. folgende interessante Eigenschaften der
neuen Partikel zu behandeln (vgl. dazu auch Bhabha2)) :

1. Bremsstrahlung, Comptoneffekt und Paarerzeugung der
e-Partikel (für spinlose Partikel wurde die zur Bethe-Heitler'schen
analoge Formel bereits von Pauli und Weisskopf berechnet6)).

2. Absorption (und Streuung) eines e-Teilchens (oder eines

ungeladenen n-Teilchens) durch ein schweres Teilchen im Atomkern

Atomzertrümmerung durch e- oder n-Teilchen, da schon
die Ruhenergie dieser Teilchen genügt, um einen Kernbestandteil
aus seiner Bindung zu lösen) 21).

3. Erzeugung von Paaren von e- oder n-Teilchen, durch
Rekombination von Proton, Neutron mit Antiproton und
Antineutron. Ausstrahlung einer oder mehrerer e- und n-Partikel durch
Bremsung von schnellen Neutronen und Protonen.

Das Entstehen der doch offenbar instabilen e-Partikel (über
ihre Instabilität vgl. auch soeben veröffentlichte Beobachtungen
von Blakett20)) könnte dann eventuell, ausser durch Paarerzeugung
aus einer primären Photonenstrahlung, durch diese Rekombination
einer primären, aus schweren Antiteilchen bestehenden, kosmischen
Strahlung mit Kernbestandteilen gedeutet werden.

Institut de Physique, Université de Genève.
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