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Die Wechselwirkungskriafte in der Elektrodynamik und in der
Feldtheorie der Kernkréfte. (Teil II und III)

von E. C. G, Stueckelberg.
(6. IV. 38.)

Inhalt.

Teil 11. Die in Teil I angegebene Methode zur Berechnung der Wechsel-
wirkung zwischen zwei Ladungen wird auf ein Viererpotential verallgemeinert.
Eine positiv definite Feldenergie kann auch fir ein Feld, dessen Teilchen eine
nicht verschwindende Ruhemasse besitzen, durch eine Nebenbedingung erzeugt
werden. Es wird die allgemeine Form der durch dieses Feld vermittelten Wechsel-
wirkung zwischen zwei Spinorteilchen gegeben.

Terl 111. Die Bewegungsgleichung des Kernkraftfeldes und des Spinorfeldes
der Materie werden quantenmechanisch aus einem Hamiltonoperator abgeleitet.
Es zeigt sich, dass Operatoren existieren, welche der Kontinuitatsgleichung ge-
niigen. Verlangt man die Erhaltung der elektrischen Ladung und die Erhaltung
der Dichte der schweren Teilchen, so sind im wesentlichen vier verschiedene
Felder moglich. Ihre Teilchen sind: geladene und ungeladene leichte Teilchen
mit einer Masse, deren Comptonwellenldnge der Reichweite der Krafte zwischen
schweren Teilchen entspricht, und geladene und ungeladene schwere Teilchen,
deren Masse grosser als Proton resp. Neutronmasse ist.

Die empirische Form der Krafte zwischen Neutron und Proton ergibt sich
nur dann, wenn man auch fiir die ungeladenen leichten Teilchen die Existenz
zweier Teilchensorten annimmt (Antiteilchen). Hingegen bestatigt sich die Ver-
mutung, dass eine Theorie ohne Antineutrino im Sinne Majoranas moglich ist.

TEIL I1.

7. Verallgemeinerung der Theorie aul ein Viererpotential.

In einem ersten Teile!?) wurde gezeigt, dass die gegenselitigen
Storungen zwischen zwei Materiepartikeln in erster Naherung aus
emner Hamiltonfunktion berechnet werden koénnen, in welcher ein
Teil der Wechselwirkung Feld-Materie durch gewisse Wechsel-
wirkungsterme Materie-Materie ersetzt werden. Diese Terme
hatten folgende Form: Operator der retardierten Ladung des einen
Teilchens am Orte des andern mal Ladung des anderen Teilchens.

In der Ableitung beschrinkten wir uns auf den skalaren Fall.
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Ein solches skalares Feld gibt aber eine Wechselwirkung
zwischen den Kernbestandteilen (Protonen und Neutronen), welche
ein falsches Vorzeichen und falsche Spinabhingigkeit besitzt:
Der skalare Anteil von (4.22) ist positiv, gibt also Abstossung.

Es soll daher als Verallgemeinerung das Feld eines Vierer-
potentials behandelt werden.

Im vorliegenden zweiten Teil soll daher zuerst die Frage des
Vorzeichens der Feldenergie diskutiert werden und nachher sollen
die retardierten Potentiale berechnet werden.

Formal geschieht die Verallgemeinerung einfach dadurch,
dass den Grossen 4 (Potential), J (Ladung) und S, (Polarisation)
ein Index ¢ (v = 0,1,2,8) angehingt wird: 4,, J;, Sy.

Die Formeln von Teil I gelten wortlich weiter, wenn man die
in den 4, P, J und S bilinearen Terme durch entsprechende Sum-
men tber 7 (von 0 bis 3) ersetzt.

So zum Beispiel:
A*A durch M e, Af A, = (4, 4)
(and analog fiir P*P)

P35, durcth FP.8,

04* 0A - 0A} 04,
(ﬁOZE Y )durch > 2 Oa:k 01,

usw.

Dabei bedeutet 2" eine nur iiber 1,2 und 3 erstreckte Summe.
e; hat fir + = 1,2, 3 den Wert +1 und fiir 4= o den Wert —1.

Die Vertauschungsrelationen (8.2) sind durch

[P, (5), Ay (3] = bi0 (hfi) 8 (3 —F) (7.1)

zu ersetzen. Die Gleichungen (2.8) resp. (2.7) und (2.8) sind, wegen
des Auftretens e;, durch

4, = sg e;(8mct Pf —4meS,,) (7.2)

y OH 1 , 95,
P :__.“5_2_;:85(_ (A4—12) A;+}% (Jf“z: - k)) (7.8)

875 2 &y,

Formel (8.17) erhilt deshalb im zweiten (P(Z)*—) Term
ebenfalls den Faktor ;. Dieser hat zur Folge, dass die Vertauschungs-
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relationen fir die explizit zeitabhdngigen Operatoren A4, (x) die
Form erhalten:

[, (0%, 4 (9)]=—2"7 &8, D (5—1). (7.4

Die endgiiltige Form fiir den Wechselwirkungsoperator (4.22),
(4.23) und (4.24) dndert sich nur insofern, als er durch eine Summe
iber + (mit &;) zu ersetzen ist.

8. Erzeugung positiv definiter Energiedichte durch eine Nebenbedingung.

Den Operator der Energiedichte des Strahlungsfeldes (2.5)
formen wir ebenfalls durch die unitdre Transformation (3.14)
um. Das bedeutet, dass in (2.5) die 4, (z) durch die explizit zeit-
abhéngigen Operatoren 4; () und die P;{x) durch die zeitlichen
Ableitungen der A, (x) ersetzt. (Gleichung (3.21) enthélt wegen
(7.2) den Faktor ¢;.) Man kann dann die Energiedichte als Summe
der Energiedichten einzelner Potentialkomponenten schreiben:

mit
1 04* 04 )
A) = —— 12 A4*A4 ). 8.2
B (4) Sn(;()xk ()ack+ ) (8.2)

Der Ausdruck (8.2) ist stets positiv, da der Faktor & nicht
auftritt (die Summe iiber k ist also kein skalares Produkt). Die
Energiedichte (8.1) hingegen enthélt fiir =0 einen negativen Sum-
manden. In der Elektrodynamik kann die positiv definite Energie
durch die homogene Nebenbedingung (6.1) erzeugt werden. Im
Falle | = o hingegen ist diese Nebenbedingung nicht mehr mit
ihrer konjugiert komplexen vertauschbar. Fihren wir aber neben
den vier Potentialkomponenten 4, noch eine skalare Komponente B
ein, die ebenfalls einer Wellengleichung (1.1) mit demselben ! ge-
niigt, so ist die Nebenbedingung (6.2) am Orte y mit ihrer kon-
jugiert komplexen am Orte z vertauschbar. Man findet

0 0

[(62)%, (62)] = S5~ - D (e=9) +1* D (2—y)

— _(J—1)D(z—y) =0.

- Die letzte Gleichsetzung erfolgte, weil die D-funktion ihrer

*
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Herkunft nach (Differenz zwischen avanciertem und retardiertem
Potential) der homogenen Wellengleichung gentigt.
Die Nebenbedingung kann auch in folgender Form geschrieben
werden :
04,

0.z

p=(—div4d—1B) yp. (8.3)

04,
0
aus und berticksichtigt, dass sie mit dem Operator der rechten
Seite vertauschbar ist, so folgt aus (8.3) und aus der conj. compl.
Bedingung (6.2) die Identitat:

04; 04,

0xy 0x,

Ubt man auf beide Seiten der Gleichung die Operation

p=(—divA* div A1 (B*div A+div A*. B)
— 12 B*B) p, (8.4)
welche einen der negativen Terme von (8.1) eliminiert.

Fir den Term — grad A} grad 4, —12 Af Ay = f schreiben
wir —f + 2f und formen den Term 2f durch partielle Integration um

[azs2f= [dz3 (A5 (A—12) Ao+ A5 (4—12) 4,).

Beriicksichtigt man, dass 4, der homogenen Wellengleichung
geniigt, so folgt aus der Nebenbedingung:

01, Omo)wm '

02 4,

A3 A—19) 4y p =43 5
Oxo

p=— A (div

Die Terme, welche div linear enthalten, formen wir noch
durch partielle Integration um. Dann kann das Integral der
Energiedichte mit dem Intergranden W’ geschrieben werden:

jdﬁ:s(;eiqxs (4,) + B (B)) p= [dE3W

mit

- i ‘}* i
Lo

7 0z,

* > >
+ (z Ax _‘;_f) (on_gf) + (1 A* + grad B*, 1.4 + grad B)) .
0 ’ 0

Die Nebenbedingung (6.2) (oder (8.3)) ergibt also eine stets
positive Energiedichte.
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Fihren wir jetzt den neuen Vierervektor des Potentials

O, = A, + e 1100 (8.6
ox;
ein und den antisymetrischen Feldstirkentensor
0P 0D, 0A 04;
F‘i == <y "—k — 1 = &y £ — 2 8.7

so kann die Energiedichte unter Verwendung des dreidimensionalen
Vektors

F mit Komponenten (Fyy, Fog, Fos)
und des dreidimensionalen Pseudovektors

ﬁ mit Komponenten (Fgy, Fgy, Fy,)
die Form

I = % (%, F) + (F*, By +12 (8, ) + 12 05 &) (8.9)
7T

gebracht werden. Die Energiedichte ist also positiv definit und
geht fiir | = o (B verschwindet identisch) bei reellen Feldstérken
in den Energieausdruck der Maxwellschen Elektrodynamik tiber¥).

9. Die Nebenbedingung bei Anwesenheit von Ladungen.

Bel Anwesenheit von Ladungen muss das Funktional v nicht
nur der Nebenbedingung, sondern auch der Schroedingergleichung
(8.13) (wir schreiben im folgenden stets K fur K")

(K+%£)w:0 (9.1)

gentigen. Hier ist also K der Hamiltonoperator der Materie, in
welchem die explizit zeitabhingigen Potentiale auftreten.
Schreibt man K in Form eines Integrals iiber dz 3 (der Wechsel-
wirkungsanteil Feld—Materie habe zum Beispiel die Form des
Integrals tiber den Ausdruck (3.22)) und fiihrt als Schrodingerzeit
x, = ct eln, so errechnet sich aus den Vertauschungsrelatlonen (7.4)

[ he 0 8K 0D(x-y)
K+ 0 sl = —2m [ gzs g
5T ey ] T & (6A* yHa? 0zq )

0
*) W ist aueh tatsachlich die 0— (0 Komponente des Tensors
81’] (Zsm mE em+ 12 CF ®k+con3) £0;1 %,
wo £ die Proca’sche Lagrangefunktionsdichte (11.8) bedeutet.
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(0/0x, 1st natiirlich mit A4; (y) vertauschbar.) Ein analoger
Ausdruck folgt fiir B. Die Ladungs- und Polarisationsgrossen
(R 1st der Integrand von K und hat z. B. die Form (8.22))
werden folgendermassen definiert:

1 S 50 J—
“20B* == 2033*—81.
IR o8 52
Bz‘fsz'Ei _ZW:Sik‘Ei
01y,

Wir erhalten folgende Vertauschungsrelation
{K+}£—~£— ( ] A)+ lB]—fda:3|(d1v J—138)

i 0xy \0y’
+ (JE—=1T)) D (z—y) —(J,—18F) dDé%—)} (9.3)

Das Argument der Ladungs- und Polarisationsoperatoren
ist Z. Fiir den Tensor S,, wurde die einschrinkende Annahme

gemacht
Szkmsiasz'{“S;k, S’;k=_s;£‘t' (9.4:)

Damit das Funktional y gleichzeitig die Nebenbedingung und
die Schrodingergleichung erfiillt, miissen die beiden Operatoren:
»Nebenbedingung und K+ho/i0t" vertauschbar sein. Das ist
aber gemiss (9.3) nicht der Fall.

Wir addieren darum zur Nebenbedingung noch einen in-
homogenen Term, d.h. wir schreiben

((O,A>+13+fd*x‘3.fo’ (E)D(fc—y)>w=0 (9.5}

0y
wo J die 0-Komponente eines combinierten Ladungsvektors ist.
J =dJ;, —18E (9.6)

Dann gilt:

he 0 e
[K+iﬁ, fda:3J0 D(w—y)]

v
M) . (9.7)

_—_ffdw (( div J+R) D (z—y)+J, =

Der Skalar R’ ist als Viererdivergenz von J;" definiert:

LR, div S = B = L 0+ div T (9.8)
he | c
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Vergleich von (9.3) und (9.7) zeigt, dass die inhomogene
Nebenbedingung (9.5) im Laufe der Zeit erhalten bleibt, wenn die
Operatoridentitit

Jy +edivd =1 (JB—1T) (9.9)
identisch erfiillt ist.

Ferner muss J, mit den Potentialoperatoren und mit Jy'*
vertauschbar sein, damit die inhomogene Nebenbedingung mit sich
selbst und mit ihrer konjugiert komplexen vertréglich bleibt.

In der Elektrodynamik verschwinden B und [. Ferner ver-
schwindet auch die Viererdivergenz des elektrischen Stromes.
(9.9) ist also erfiillt und die Nebenbedingung (9.5) ist méglich,
Sie fithrt bekanntlich auf die Maxwellschen Gleichungen.

Bei den Kernkraften wird sich zeigen, dass Jy mnicht mit
J* vertauschbar ist. Eine Nebenbedingung in inhomogener Form
ist daher nicht méglich. Die einzige Losung, welche (9.9) erfiillt,
besteht darin, dass der Vierervektor J,” und damit auch seine
Viererdivergenz verschwinden, und dass J& = IT.

Aus dem identischen Verschwinden der beiden Seiten der
Gleichung (9.9) und aus der Definition der Ladungs- und Po-
larisationsgrossen (9.2) (9.4) (9.6) und (9.8) folgt dann, dass R nur
von den folgenden Verbindungen des skalaren Potentials B und
des Viererpotentials 4; abhingen kann:

1. Vom Skalar

0 0
(M,A)HB. (Oaz , ?).

2. Von den in (8.6) definierten Potentalen @,.

3. Wegen der Antisymetrie des Tensors S, (9.4), von den
Feldstarken K. _

Wegen der, nunmehr homogenen und mit K vertauschbaren,
Nebenbedingung verschwindet die unter 1. erwdhnte skalare Ab-
hingigkeit. (Natiirlich kann widerspruchsfrei eine weitere Ab-
héangigkeit von einem weiteren Skalarfeld C, welches unabhingig
von dem zur Erzeugung der @; verwendeten B ist, eingefiihrt
werden.) '

Wir schreiben noch die Vertauschungsrelationen dieser neuen
Grossen : |

(@} (@), @ ()] = — 22 e, (bu—ts g5 =—) D (a—)

o 12 0x; Oy,

(9.10)
[F:‘k(a:), D, (y)]= — 2 th & & (5kz “i_— 04 —0(—)—

20
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Gesternte Grossen sind nach wie vor mit ungesternten ver-
tauschbar.

Die Nebenbedingung nimmt, wegen der Definition der @,
die an die Vacuumelektrodynamik erinnernde Form an

((;)T;’ @) p—0. | (9.11)

Da die @; wie die 4, und die B der homogenen Wellengleichung
(U—13) @,=0 (9.12)

geniigen, so folgen fiir die in (8.7) definierten Feldstédrken wegen
der Nebenbedingung (9.11) die Proca’schen Gleichungen!?)

(2 0@2{3-12 )y) = 0. (9.13)

Fir 1 = 0 gehen sie in die Maxwell’schen Gleichungen des
Vacuums iiber.

Mit genau gleichem Recht, wie wir (9.11) als Nebenbedingung
behandelten und daraus die vier Gleichungen (9.13) herleiteten,
konnen wir eine der Gleichungen (9.13) als Nebenbedingung be-
trachten und daraus die drei anderen Gleichungen (und die Glei-
chung (9.11)) entwickeln.

In der Elektrodynamik liess sich durch die Elimination der
Nebenbedingung die Coulomb’sche Wechselwirkung einfithren. Das
Feld hatte dann nur noch zwei transversale Komponenten. Eine
solche Elimination ist bei nicht verschwindender Ruhmasse( [+ 0)
unmoglich. Hingegen kann die Nebenbedingung durch eine Defi-
nition der Operatoren identisch befriedigt werden:

Man wihlt die Gleichung (9.18) fiir 4 = 0 als Nebenbedingung
und betrachtet @,, @, und @, als unabhdingige Operatoren, welche
den Vertauschungsrelationen (9.10) gentiigen, und die Fy, (1, k = 1,
2,8) als daraus abgeleitete Operatoren. Andererseits sieht man die
drei Operatoren

H, == —F;"O (r=1,2,8) (9.14)
8mc

als weitere unabhdngige Grossen an. Fir x, = y, gilt nach (9.10):

[T, (), @ (D] = 808 G—TF) (0039 (9.15)
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Die Operatoren Fj, lassen sich also jetzt gemiss (9.14)* durch
die II;* ausdriicken. Definiert man jetzt @, ebenfalls als abgelei-
teten Operator in der Form

By = 87 cl-2 div II* 9.16)

so ist die, als Nebenbedingung betrachtete, letzte Gleichung (i = 0)
von (9.13) tatséchlich identisch erfillt.
Unter Verwendung der unabhingigen Operatoren @ und

IT schreibt sich die Energiedichte (8.8)

W = SL (12 (D*, ®) + (rot ®*, rot (3)) ‘
7T
+ 8 c® (II*, IT) + 1-% div IT* - div IT). (9.17)

Zur Ableitung der Feldgleichungen konnen zwei Wege ein-
geschlagen werden:

1. Ubergang zur ,einzeitigen” Theorie, d.h. Riickgingig-
machen des Formalismus, welcher auf Gleichung (3.5) folgte. Die
Hamiltonfunktion in (8.5) enthilt also dann wieder einen Feld-
anteil. Dieser ist nichts anderes als (9.17), wo jetzt wieder sdmt-
liche explizit zeitabhingigen Operatoren F () (= F"'(Z, x,))
durch die vermittels der Transformation (3.14) verbundenen, nicht
explizit zeitabhingigen Operatoren F(Z) zu ersetzen sind. Das
geschieht formal einfach dadurch, dass man {berall x, = 0 setzt.
Dann sind die drei @; und ihre Ableitungen alle untereinander ver-
tauschbar. Dasselbe gilt fir die II;* und ihre Ableitungen. I/,
und @; hingegen gehorchen der Relation (9.15), d.h. sie sind
kanonisch konjugiert. Der Materieanteil K bleibt derselbe, nur
sind auch hier die Feldgrossen F (x) durch F (z) zu ersetzen. Alles
dies entspricht genau dem Formalismus Kemmrers!l). Niheres
hieriber in Paragraph 11.

2. Aus der vorliegenden mehrzeitigen Theorie auf Grund
der Beziehung

@ = (0 K F wy), - 01

Wir lassen die Nebenbedingung in der urspriinglichen Form,
d. h. betrachten alle vier @; als unabhdingige Operatoren. Man muss

dann an Stelle des @, ein @, definieren:

D, = Ay — %‘ B. (9.18a)
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Die Nebenbedingung lautet dann in @,:
s 1z e 1
divé + — &y— 4712 (de 5 *JO) w=0. (9.19)
¢ ¢

Die Feldgleichungen fiur die Komponenten @;, @, und @,
lauten nach zweimaliger Anwendung der Regel (9.18):

1 - 08; 1 .
A —18 By By =l [ J T S
( ) t Cz n( S"c oxk c 10
“odx. I-2 (div J+ }gjo)) . (9.20)

Fir das in (9.182) definierte @, erhilt man eine analoge
Gleichung. Nur 1st 0/0x, durch —1/¢ mal die zeitliche Ableitung ()
der nachfolgenden Grossen zu ersetzen.

Fihrt man noch die entsprechenden Feldstidrken ein

00, 09D

F,, = ol L, k=1,2,3
F_ia = ._(_)@0 + *1—@@
0x; ¢

so lassen sich, unter Berticksichtigung der Nebenbedingung (9.19)
die Gleichungen (9.20) schreiben

,,OF,” 1
(z

= Omk ¢

~ B, — 12, +4n(J e ‘;ik i S;0)>w=0. (9.22)
k

k

Sie entsprechen fiir [ = 0 den Maxwell’schen Gleichungen fiir
die Anwesenheit von Ladungen.

10. Die Wechselwirkungsterme des Viererpotentials.

Zur Ableitung der Wechselwirkungsterme kann man ent-
weder explizit die Methode des Paragraphen 4 (Teil I) verwenden,
oder aber sich erinnern, dass die @, durch die 4, und B ausdriick-
bar sind (8:6). Da fiir diese der wiederholt erwdhnte klassische
Ausdruck ,,Retardiertes Potential des ersten Teilchens am Orte
des zweiten mal Ladung des zweiten* gilt, so gilt er auch fiir
die @,. Dabel sind dann allerdings als Ladungen die Ausdriicke
der rechten Seite der Feldgleichungen (9.20) zu wihlen.
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Wir wollen uns auf den statischen Fall beschrinken. Er sei
dadurch definiert, dass

1. alle Grossen 0/0z, (oder in (9.20) die (*)) vernachlissigt
werden (Vernachldssigung der Retardierung).

2. Ebenso sollen die J; (1+0) und die Sp; vernachlissigt werden
(Vernachlassigung der Bewegung).

Dann wird geméss (0.2) und (9.20)

O (2)o = [ dy*J; (@)v(%@), v (Z) =

or ((E [d 32 S@k 0 _@D

der Vierervektor des Potentials, welches das r-te Teilchen am
Orte T zur Schrodingerzeit ¢ = xzp/c erzeugt. Wir schreiben im
folgenden S;; fir S;,. (Es sei noch bemerkt, dass in dieser
Naherung die Potentiale 4; mit den @, identisch werden.)

Die Wechselwirkungsausdriicke werden gemiss (4.22) (man
berticksichtige auch die Anmerkung).

- f it b5
Urs+US?‘ — ._;_ [dmsd?3i(J(8)* (9-7) J6 (y)

0
XS SUSE G S gy g

m Owk

2

)fu(a:— ) + konj.

N
Unter Einfiihrung des dreidimensionalen Pseudovektors S

(Sag, S31, S1a) und des Operatorvektors v lisst sich der letzte
‘Term i die Form

N > N > N S N - S >
(SS X Vs ST x V) = (SSJ ST) A — (Ss: V) (Sr} V) (102)
umformen.

Beschreibt man die Ladungen (Materie) durch eine Dirac’sche
Theorie, so 1st

Ji (%) = fev al & (T — ") (10.3)

wo f eine Konstante der Dimension einer Zahl, e die elektrische
Elementarladung, «f die Dirac’schen Geschwindigkeitsoperatoren
(Matrizen) des r-ten Teilchens, 7" gewisse (im allgemeinen nicht-
hermiteische) Matrixoperatoren (isotopic Spin), die mit den of
vertauschbar sind, und §” der Ortsvektor des r-ten Teilchens sind.
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Entsprechend wird der antisymetrische Tensor

. > . 1 Foae >
Fire, k£0: 87, (z) = +zgeT T oo 0(T—q")
(10.4)

= .1 s =
Fir 1 = 0: Sf)k(g;)=~—@g6717‘ﬁ7’a§cé(:c—q),

Hier 1st g ebenfalls eine Konstante von der Dimension einer
Zahl. p71st die Dirac’sche f-Matrix des r-ten Teilchens. Wéhlt
man die Spinoren so, dass oy = 1 und '

0 0 O

_ 10 0
p= ( 0—1 0)

0 0—1

0
wird, so sieht man, dass nur oy und fe; oy ,,diagonale‘ Matrizen
sind. Bel Reduktion auf die ,,grossen Komponenten* der Dirac-
Funktion tragen daher die nichtdiagonalen Matrizen erst in der
Naherung ,,Kinetische Energie durch Ruhmasse mal ¢*‘ bei.
Somit sind die Vernachldssigungen unter 2. gerechtfertigt. Man
kann dann noch (fir positive Energien) g durch 1 ersetzen und fiir
v B a; oy die Matrizen o;; einfiihren. Dann wird die Wechselwirkung

SO =

e2 NN
Urs_I_Usr: E (TTTS*—I—TT* ‘L’s) (‘f|2+|gl2 (O'T, O-s)

o e

gl @, V) L ) TN (105)

Hierbei wurde, um den Operator A zu eliminieren, von der
Relation

(A—1®)v(E)=—4n6(Z) (10.6)-
Gebrauch gemacht.

Es tritt also, strenggenommen, neben den Termen (10.5)
noch ein ,,Nahwirkungsterm"

S N
—dlgl? (7, oY) 12 5 (3" — ) (107

imnerhalb der letzten Klammer auf.

Dieser Term tritt immer (auch in der Elektrodynamik) auf,
wenn man die Umformung (10.2) vollzieht. Er wird aber leicht

*) T bedeutet in beiden Faktoren die Gradientbildung beziiglich q-)’" (oder
beidemale beziiglich g¢s).



Wechselwirkungskréafte der Elektrodynamik i. d. Feldtheorie der Kernkrifte. 311

iibersehen, wenn man die Operation 3/ auf » ( —7) zuerst ausfihrt,
d. h. wenn man schreibt

Hier bedeutet v (]Z|) die Ableitung von v nach [z|. Formt
man jetzt den Vektorproduktterm nach der Formel

-

e

s - > . A N S e N
(Brx3, §rxd) = (8, 89 22— (3,5 (845  (108)

um, so erhilt man genau (10.5) ohne den storenden Ausdruck
(10.7). Das beruht aber nur darauf, dass wir bel der Umformung
des Vektorproduktes einen Term der Ordnung |z |?/|Z | dazuzéhlen,
welcher fir 7 = 0 singulidr wird.

Auch bei der Berechnung der Spin-Spinwechselwirkung zweier
Elektronen tritt der gleiche Term auf:

Gehen wir némlich in der iiblichen Weise vor: Berechnung
des Breit’'schen Wechselwirkungsterms durch Entwicklung nach
1/¢* der Moeller’schen Wechselwirkung und Reduktion der Dirac-
gleichung auf die ,,grossen Komponenten®, so tritt die Spin-
wechselwirkung tatsichlich in einer Form (¢® X v, o X V) Z]?
auf. In der Literatur wird nun, der Einfachheit halber, spitestens
an dieser Stelle die Umformung (10.8) verwendet, so dass der
Zusatzterm vergessen wird.

Erinnert man sich der Tatsache, dass die ganzen so erhaltenen
Wechselwirkungsterme (mit Ausnahme des Coulomb’schen Terms)*)
nur als Storung erster Ordnung verwendet werden diirfen, so tritt
der Zusatzterm nur als eine kleine weitere Aufspaltung propor-
tional e* zwischen Singlet und Triplet in Erscheinung. Wollte
man ihn aber bel der strengen Losung in Berticksichtigung ziehen,
so wiirde er im anziehenden Falle zu unendlich tiefen Termen
fiihren.

Wir missen daher bei der Anwendung der so errechneten
Wechselwirkungsterme uns stets bewusst bleiben, dass wir sie,
zum Unterschiede gegen den in der Elektrodynamik auftretenden
Coulombterm, nur als Stérungen betrachten dirfen.

Tatséchlich brauchen wir aber zur Liosung der Kernprobleme
d. h. zur Auffindung der stationiren Zusténde die strenge Wechsel-
wirkung. Wollen wir also die empirischen Wechselwirkungsansétze

*) Siehe Seite 306.



312 E. C. G. Stueckelberg.

mit den hier erhaltenen Resultaten vergleichen, so miissen wir
auf alle Falle diesen zuséitzlichen Nahwirkungsterm fortlassen.

Formel (10.5) hat dann bis auf den grad-Term tatsachlich
das richtige Vorzeichen und die richtige Spinabhéngigkeit fiir die
Krifte zwischen Neutron und Proton. Dass auch dem ,,isotopic
spin Faktor die gewiinschte Form gegeben werden kann, soll
im § 12 (Teil IIT) gezeigt werden.

III. TEIL.
11. Bewegungsgleichung und Hamiltonoperator.

Das Kernkraftfeld werde durch mehrere Vierervektoren
®@: beschrieben. Der obere Index s unterscheidet hier, im Gegen-
satz zu den vorhergehenden Paragraphen nicht mehr die ein-
zelnen Teilchen, sondern eine Anzahl verschiedener Procafelder,
deren Operatoren untereinander vertauschbar sind. Die daraus
abgeleiteten Sechservektoren [, und die @] selbst entsprechen
nattirlich den auf Gleichung (9.18) folgenden iiberstrichenen
Grossen.

Das Spinorfeld der Materie beschreiben wir in der vom Ver-
fasser vorgeschlagenen Form durch ein 16-komponentiges Spinor-
feld?) 13) ¢, wo jeder der beiden Indices von 1 bis 4 geht. Die
Matrices oy, f der Dirac’schen Theorie und die von den ,,Pauli-
termen‘‘ herrithrenden Matrices o sollen auf den unteren Index u
wirken, wiahrend die Matrices v (und u), welche im Paragraphen 10.
eingefithrt wurden, auf den oberen Index » auszuiibende lineare
Operationen darstellen. Sie sind daher mit den Dirac’schen Opera-
toren vertauschbar. (In den zitierten fritheren Arbeiten wurden
sie mit £ und A bezeichnet.)

Dann lauten die Bewegungsgleichungen des Feldes:

1 OFzz 2 s 8 ()ka L
il S +4n(J,; e ) 0. (11.1)

Ubt man die Operation 0/0z; auf die Gleichungen aus und

addiert, so folgt

(3_, qbs)_m -2 (i, Js) — 0. (11.2)
0x ox

Die Bewegungsgleichungen der Materie lauten

y 0 N\ 1 kT T
(—@hc(a,o—x) + mc? B u _%‘5((7* , D)

+ (sm*, F") + COnj.)) p=0. (11L.3)
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Dabei sind J7 und S* Abkiirzungen fiir die folgenden, aus ¢
gebildeten Vektoren und Tensoren:

Ji= "o (11.4)
Sty = @* sl .

Die Grossen 97 und s” werden aus den numerischen Faktoren
fm und g7, dem elektrischen Elementarquant e und den auf die
Spinorindices wirkenden Matrizen in folgender Weise gebildet:

= freg e, ap=1
R (11.5)

O'i]c:'iﬁaiak, Gck:_iﬁak

(s™*, F7) 1st das skalare Produkt der beiden Sechservektoren
(d. h. = %Z%' Ak‘? €:€...), u 1st eine Matrix, deren Eigenwerte die

Massen von Elektron, Neutrino, Proton und Neutron sind (ge-
messen als Vielfache der Elektronenmasse m). [, sind fiir jedes
Feld charakteristische reciproke Léngen (= Masse der dem Felde r
zugeordneten Partikel mal c¢/h).

In einer klassischen Feldtheorie erhélt man die Feldgleichungen
fiir Kernfeld und Materie aus der Extremumsforderung des Raum-
zeitintegrals einer Lagrangefunktionsdichte . Ihr Materieanteil
hat die Form:

2 (¢) = — ¢* mal Ausdruck (11.3) (11.6)
Fiir den Feldanteil kann man entweder schreiben
= Z 2 g; £ (45 + L (B, (11.7)

(mit @; = A} + 11 ¢, 0B/0x;), wo die Summanden Ausdriicke der
Form (2.1) darstellen (mit angehiingten Indices ¢ und s und ohne
den Materieanteil, der ja in (11.6) schon steht), oder aber den
Proca’schen Ausdruck

(&%), — _SL((ps*,Fs) + (D%, @), (11.8)

s

Bei Verwendung von (11.7) muss man die Gleichung (11.2)
als Nebenbedingung betrachten.

Der Ubergang zur Hamiltonfunktion geschieht in der iiblichen
Weise (vgl. z. B. Paragraph 2). Allerdings kann nur die Form
(11.7) verwendet werden, da in (11.8) die zeitlichen Ableitungen
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von @, nicht auftreten. Verwendet man (11.7) so treten in der
Hamiltonfunktion die 4%, B" und ihre konjugierten Momente auf.

Der in den Paragraphen 8 und 9 entwickelte Formalismus
(die ,,zweizeitige Formulierung® ist natiirlich nicht wesentlich)
gestattet (geméss Formel (9.17) und nachfolgender Bemerkung 1))
einen IHamiltonoperator zu schreiben, welcher nur von je drel
Feldgrossen @], @5, @5, ihren konjugierten Impulsen I77 sowie
von ihren konjugiert komplexen Operatoren abhéngt.

Die Hamiltonfunktionsdichte lautet:

§— N (B (B, &)+ (rot Br*, rot B))

8n <

+ 87 02 ((Ir*, IT) + 172 div I div II)

+ @* (— ihc(&,%) —g—mczﬂ> P

[ %E ( (J7, @) + J; 8 7 ¢l-2 div JT" + konj.
) 0@?* .
— SNV S; TOW__F S‘SOkSncﬂk—i—konJ
i k

+n2(l 5t Ty 5 T5) + 3 (ST S[)k-}—SUkSOk)) (11.9)

Die zu den g konjugierten Impulse sind natiirlich gemaéss
(11.6) die konjugiert komplexen ¢** mal ¢h. Die Hamiltonfunktion
15t in den Kern- und Materiefeldgrossen bilinear bis auf die letzte
Linie, welche die (symetrisierten) Terme der Anmerkung (2.6a)
enthélt. Diese Terme sind biquadratisch in den ¢.

Die Bewegungsgleichungen erhélt man klassisch und quanten-
theoretisch aus den kanonischen Gleichungen:

o, 1 - 0H
c

& — _ Y [H,IF] i=1,2,8 (11.10)
0z,

¢cdIT:  he

und einer analogen Gleichung, wo @; mit I} vertauscht ist
und wo im dritten Gleichungsglied ein — steht. JH/0IT; be-
deutet funktionelle Differentiation des Funktionals H (= Volum-
integral von $) nach der Funktion II;. Fir ¢ gilt die analoge
Beziehung

O o 0H

e %P ihe—_%H g oor 11.11
Lt ihg P [H, 9] (11.11)
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Bei der letzten Gleichsetzung in (11.11) ist bei der Differen-
tiation auf die Reihenfolge der Glieder zu achten, da J%* mit
J% nicht vertauschbar ist.

- Die letzten Identitédten (11.10) und (11.11), welche das Kor-
respondenzprinzip ausdriicken, gelten, wenn das Kernfeld sym-
metrisch gequantelt wird

[T (z), D (y)] = % Ore 8 0 (X —T7) (11.12)

und wenn fiir das Materiefeld die symmetrische (—) oder anti-
symmetrische (+) Quantisierung gilt:

¢r (@) ¢ () £+ 93 (4) 95 () =0
e, * (&) 95 (y) + 9f (3) ¢3* (&) = 0,,0,,0 (—F). (11.18)
Alle anderen Operatoren sind miteinander vertauschbar.

Da @} nicht auftritt, muss die quantentheoretische Ableitung der
Feldgleichungen kurz skizziert werden:

1. Differentiation nach der Zeit von (11.10) und Elimination

von II7 aus der kanonisch konjugierten Gleichung fithrt auf die
Gleichungen (9.20) fiir ¢ =1, 2, 8.

2. Definiert man den Operator
Oy = 8mcl-2divII™ +4ni-2Jd, (11.14)
so folgt aus der zeitlichen Ableitung der kanonisch konjugierten
Gleichung (11.10) fiir /7 (und Elimination von @ durch (11.10)

selbst) die vierte Gleichung (9.20).

3. Aus der zu (11.10) kanonisch konjugierten Gleichung
ergibt sich durch Divergenzbildung und Verwendung der Definition
(11.14) die Beziehung (11.2).

4. Mit Hilfe des so erhaltenen (11.2) eliminiert man die Vierer-
divergenz des Stromes auf der rechten Seite der Gleichungen (9.20)
und erhélt die Feldgleichungen in der Form (11.1)

Wir bemerken dazu folgendes:

Die Operatoren
0dr, 0D

L, k=1,2,3
0x; 0x;, Y )

r 7 r  —
It , @fund -Fi, =

sind reine Feldoperatoren und daher mit den Materieoperatoren ¢
vertauschbar., , :
Die Operatoren @7 (definiert durch 11.14) und die Operatoren

Fry = 0®7jox; + @jc sind gemischte Operatoren. Sie sind mit
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den Materieoperatoren ¢ nicht vertauschbar. Aus den Gleichungen
(11.10) folgt direkt die Beziehung

Fry=8ncllt* +4n S, (11.15)

als Definition von F%, in Analogie zu (11.14),
Die aus (11.11) folgende Bewegungsgleichung der Materie
hat folgende Form:

(— -ihc(cx, %)—F me® B u -}—;; (— (j7*, D7) + j5* 87 c? -2 div I

, 0D _
o 2’ 2’ Sgﬂ.’:‘d—l -l-Z' SS’Z 8mellL* + konJ,)) )
1. ‘ |
5 2 ( it 2 2 (Jh ot di)+ >k 2w (Sl e+ @ Sgk)+k011;,,):g,
4 k
(11.16)

Wiaren also die J7 und S}, mit ¢ vertauschbar, so wiirde
(11.16) nach Einsetzen der Definitionen (11.14) und (11.15) tat-
séichlich 1dentisch mit der klassischen Bewegungsgleichung (11.3).
(11.16) ist eine in @ nicht lineare Diracgleichung. Die Nichtlinearitit
rithrt vom Auftreten von Ableitungen der Potentiale in der La-
grangefunktion her, wenn man die 4% und B als primére Grossen
ansieht (siehe Anm. Teil I, Formel (2.6a)).

12. Die Kontinuititsgleichung der elektrischen und der schweren Ladung
und die explicite Form der Wechselwirkungskrafte im Kern.

Im allgemeinen Formalismus von Teil 11 ist die Elektrodynamik
mitenthalten, wenn man fiir eines der Felder (r = 0) [, = 0 setzt.
Dann existiert kein B° und man hat @} = 4,° und in (9.9)
J;/ = J; Ausser dem trivialen Fall J} = 0 ist dann nur die
Moglichkeit noch offen, dass J) mit Ji* vertauschbar ist. Zerlegt
man jetzt in Real- und Imaginérteil, so teilt sich die Beschreibung
in zwel unabhéngige reelle Felder auf, die je mit einem unabhéngigen
reellen Strom in Wechselwirkung stehen. Beide Stromanteile
miissen einzeln der Kontinuititsgleichung gentigen. Die Kon-
tinwitdtsgleichung und die Realitdt des Feldes sind somit Konse-
quenzen von l, = 0.

Der Formalismus vom vorhergehenden Paragraphen ist
hingegen noch nicht allgemein genug um die Elektrodynamik zu
beschreiben: Der aus den ¢ mit Hilfe reeller v° gebildete Strom
(11.4) und (11.5) gentigt nédmlich bei Anwesenheit anderer Felder
@, deren 7" mit 7° nicht vertauschbar sind, nicht der Kontinui-
titsgleichung. Man muss daher zum Stromausdruck noch einen
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aus den @" gebildeten Vierervektor addieren, d. h. die Felder @r
miissen Ladungstriiger sein.

Ausser diesem, durch die Maxwell’sche Theorie bedingten,
Erhallungssatz der elelitrischen Ladung, gibt es aber offenbar noch
einen weiteren Erhaltungssatz: Bei allen beobachteten Umwand-
lungen der Materie, wurden noch keine Umwandlungen von schweren
Partikeln (Neutron und Proton) in leichte Partikel (Elektron und
Neutrino) beobachtet. Wir wollen daher einen Erhaltungssatz der
schweren Ladung fordern.

Die Matrizen (7°= 1)

1 0 0 0 0 0

—({ 0 0 0 0}. r 10 0 '

)‘“(0 D ot 0), undl—(0 0) (12.1)
0 0 00 0 1

welche auf den oberen Index von ¢ wirken, erlauben die vom
Spinorfeld getragene elektrische resp. schwere Ladungsdichte in
der Form ¢*a;4A ¢ zu schreiben. Sind A* die Diagonalelemente
der Matrix 4, so hat die 0-Komponente die Form %’ Ar@* v, Die

Eigenwerte des Volumintegrals von ¢’* ¢” sind, ber Verwendung
der Lochertheorie und der antisymetrischen Quantelung (vgl.
auch Majorana loc. cit.12)) ganze positive oder negative Zahlen.
A" = 0 oder 1 ist also die Ladung der Partikel des »-ten Spinorfeldes.
Die Antipartikel haben die Ladung —A».

Wir berechnen jetzt die Vlererdlvergenz des durch die Matrlzen
A geformten Stromes:

Dazu multiplizieren wir (11.16) mit ¢*A von links und die
konjugiert komplexe Gleichung mit A¢ von rechts, und subtrahieren
die beiden Gleichungen voneinander. Die Viererdivergenz ver-
schwindet nun im allgemeinen nicht, sondern wird ein relativ
komplizierter Ausdruck. Er vereinfacht sich sehr, wenn die Matrix 4
den folgenden Vertauschungsrelationen gentigt:

OO |
oOHOO

[l, ul =0

[, 7] = A (12.2)
[;{', T'r‘*] _ _A'r* TT*

Ar — Vielfaches der Einh. Matrix.

Daraus folgt, dass 4 hermiteisch und A" eine reelle Zahl sein
muss. Die Divergenzgleichung nimmt dann die Form an

—

0
o0 ——(p* k) =

SV SV G = S B T S — ko) (12:9)

*

! S ((q*sr*, J) — 8z el-2 div ITr- Jg
C
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Dass sich die Terme vierter Ordnung in ¢ fortheben, folgt
aus der Relationen (11.13) und aus der aus (12.2) folgenden Be-
ziehung

) [l T, -gr*] + [.ﬂ* l, T'r] = 0.

Um zu zeigen, dass die rechte Seite die Divergenz eines weiteren
Viererstromes ist, multiplizieren wir die Feldgleichung (11.1) mit
&; D* von links und die konjugiert komplexe Gleichung ebenfalls
von links mit ¢; @] und addieren die Summen der belden Glei-
chungen iber 4+ von 0 bis 3.

Man erhilt, unter Beriicksichtigung der Nichtvertauschbar-
keiten, folgende Viererdivergenz:

Y 0 r 7
%oﬁ(m Se(Op Py — 04 F:z))

- l2
— 5 (@, Jo)— (Jre, &) — @y Ty B Tp — LB, ]

__.@:*2
k

Wegen der Definition von @5* (11.14) ergeben der dritte, vierte
und fiinfte Term in der Klammer der rechten Seite gerade
(....—8mel-2div II- J + konj. ...) (12.5)

Der letzte Term in der rechten Klammer, nimmt wegen der
Definition der F%, (11.15) die Form an:

(....—;'msa S{]k+;’4n85k s;';;;). (12.6)

08ty 1

0 - |
N G~ i I Fhl) . (124

Dl
0r,

Multipliziert man also (12.4) mit der Zahl A" und summiert
iiber 7, so kann die Summe von (12.3) und (12.4) bei Berticksichti-
gung der Definition (11.15) als Kontinuitdtsgleichung geschrieben
werden :

(T){L’ 9) = 0 mit den Komponenten
B

=S (" ) + 3 A"’(

— (;Z @1+ (Fr, — 47 8

By (Frt—4a Sg’;)) a2

Der Ladungsanteil des r-ten Feldes ist also der r-te Summand
der zweiten Summe, genau wie der »-te Summand der ersten
Summe den Ladungsanteil des »-ten Materiefeldes darstellt.
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Der Ladungsanteil des r-ten Feldes verschwindet insbesondere
dann, wenn das Feld reell ist. Dass ein analoger Satz fiir Spinor-
felder existiert, hat MasoraNA gezeigt?).

Die 0-Komponente ist die eigentliche Ladungsdichte. Sie
lautet unter Verwendung der Definition (11.15):

, 1
0o =2\ (¢** ¢7) + D /1"%‘. & W op— 1 917). (12.8)

Wie bereits bemerkt, sind die Eigenwerte eines einzelnen
Summanden der ersten Summe, bei Berticksichtigung der Dirac-
schen Lochertheorie, positive und negative Vielfache von A’
~ Dasselbe gilt, nach der Pauli-Weisskopf’schen Theorie$) fiir jeden
einzelnen Summand der zweiten Doppelsumme. Die Zahlen A’
und A" stellen somit die Ladung der Partikel des »-ten Materie-
(Spinor)- und des r-ten Kernkraft(Tensor)-Feldes dar. Jedes der
Felder @7 (mit Ausnahme der reellen Felder) hat Partikel und
Antipartikel. Letztere haben das umgekehrte Vorzeichen der
Ladung*). |

Die Gleichungen (12.2), welche die zur Existenz einer Kon-
tinwtdtsgleichung (12.7) notwendigen Bedingungen darstellen,
gestatten eine Bestimmung der moglichen Matrices 7.

Zuerst folgt aus der ersten Gleichung, dass 1 eine Diagonal-
matrix sein muss, da die Eigenwerte von u alle verschieden sind.
Die zweite und dritte Gleichung fordern Hermiteicitdt fir 42 und
bestimmen damit A* und A* als reelle Zahlen. Die Matrices der
Gleichung (12.1), elektrische und schwere Ladung, gehorchen
offenbar diesen Anforderungen.

Um die Form der vierrethigen Matrices 77 zu bestimmen,
zerlegen wir die allgemeinste vierreihige Matrix in eine Summe
von direkten Produkten von zweireithigen Matrices. KEs seien 11,
21, 12 und 22 die Numerierung der vier Zusténde Elektron, Neu-
trino, Proton und Neutron (entsprechend den vier moglichen Werten
des oberen Index » von ¢). 7, =1, 7y, T, und 75 seien die Einheit
und die drer Pauli’schen Matrices, welche auf den ersten Index
von 11, 21, usw. wirken. Ebenso seien die 7,/ (1 = 0, 1, 2, 3) die
entsprechenden auf den zweiten Index wirkenden Matrices.

Die gestrichenen und die ungestrichenen Matrices sind natiirlich
miteinander vertauschbar. Ferner gilt fiir beide Matrices die be-
kannte Regel

' Tz ch = — Ty 1"7: — %[Ii, Tk:[ — ?:Tz, ikl == Cykl. (12-9)

*) Die Summe iiber k¥ von 1 bis 3 bedeutet, dass die Teilchen drei Ein-
stellmoglichkeiten der Spins haben.
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Die allgemeinste vierreihige Matrix lautet dann

P o I R T (12.10)
Tk
und die speziellen Matrices (12.1) haben die Form
A=13(T+ 7)) 7; A =37 (7 — 7). (12.11)

Emsetzen dieser Entwicklungen in die zweite Gleichung
(12.2) und Koeffizientenvergleich beider Seiten der Gleichung gibt
folgende Beziehungen zwischen den af,:

Arah, =0 AT ay, = +vaf,
— T — ___a T
Ataj, =0 AT afy, = — 105,

(12.12)

Fiir die Erhaltung der schweren Ladung folgt eine analoge
Gleichung, fiir den zweiten Index. Nur steht iiberall statt A" die
Grosse —A'™.

Die Losungen von (12.12) sind:

A" =0 mit af, = a%; = 0 oder
A= 4+ 1mita;, =a,=0und a3, = + 10}, (12.13)

und analoge Gleichungen fiir den zweiten Index mit A
Es sind demgemiss folgende Fille moglich:

1. Feld ohne elektrische und schwere Ladung:
A= A"t = 0 und
th=ay +a, T +a, T +a, 7T (12.14)

Ein solches Feld ist offenbar das elektromagnetische Feld.
Diese Felder konnen insbesondere reell sein, da die Matrices 7 hermi-
teisch sind, und die Konstanten reell gewdhlt werden koénnen.

Die durch dieses Feld hervorgerufene Wechselwirkung zwischen
zwel Materietellchen 1m Konfigurationenraum folgt durch Ein-
setzen von (12.14) mn (10.5). Beschrénken wir uns auf schwere
Teilchen, so kann man 73" 9 = 1y setzen, und der 7 enthaltende
Faktor von (10.5) lautet emnfach*):

|a|? + [b]2 75 75 + § (ab* + a* b) (7§ + 75) (12.15)
dabei sind @ und b beliebige komplexe Zahlen. Sind sie insbesondere

reell, so 1st das Feld reell.

*) Die Indices r und s in den Gleichungen (12.15), (12.17) und (12.18) be-
ziehen sich natiirlich nicht auf verschiedene Felder, sondern, gemiss der Kon-

figurationenraumbeschreibung des Paragraphes 10, auf zwei verschiedene schwere
Teilchen.
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2. Feld mat elektrischer, aber ohne schwere Ladung.
A= —1,4'2 =0 und
T2 = (1, — 1 7p) (af, + a2, 73)). (12.16)

Die Wechselwirkung zwischen zwel schweren Teilchen ist
wieder Formel (10.5), wo der 7= enthaltende Faktor

la’|? (] 7] + 75 13) (12.17)

lautet. Will man insbesondere Krifte zwischen Neutron und
Proton haben, welche unabhiingigc von der Ladung und nur ab-
hinglg vom Symmetriecharakter der Wellenfunktion im Kon-
figurationsraum der schweren Teilchen sind, so muss sich die
Wechselwirkung in der Form (10.5) mit einem 7 Faktor (,,isotopic
spin factor‘‘14))

j=3
(W S S r) (12.18)
=1 )

schreiben lassen. Bildet man die Summe von (12.15) und (12.17),
mdem man fiir beide Felder 1 und 2 dieselben Konstanten f und g
mn (10.5) nimmt, so erhélt man tatsichlich (12.18), wenn man a'=a
und b=1a setzt. Das fithrt allerdings zu der Unschénheit, dass das
Feld 1 (Feld ohne elektrische und schwere Ladung) komplex ist
und also zwei Teilchensorten (Antiteilchen) enthilt. Da die
7 Matrices der folgenden Felder nur noch 7" und z,” enthalten,
tragen sie nichts mehr zur Wechselwirkung zwischen schweren
Teilchen bei. Der Fall A2 = 4+ 1, A! = 0 ist identisch mit dem
behandelten (Vertauschung von Teilchen und Antiteilchen).

13. Fortsetzung der Diskussion der miglichen Felder.

Wihrend bei den am Ende des vorhergehenden Paragraphen
diskutierten Feldtypen die Darstellung durch Vierervektoren
@7 notwendig war, um Ubereinstimmung mit dem Experiment
(Anziehung 1m Grundzustand des Deuterons usw.) zu finden, ist
sie fir die weiteren Felder nicht mehr notwendig. Diese Felder
konnen also z. B. auch skalaren Charakter haben. Man iiberzeugt
sich aber leicht, dass auch fiir sie analoge Gesichtspunkte gelten
‘und dass insbesondere die Relationen (12.2) gelten, sowie die daraus
abgeleiteten Beziehungen (12.12) und (12.13).

Bezeichnen wir die Spinorpartikel Elektron, Neutrino, Proton
und Neutron durch*) e (1,0), » (0,0), P (1,1) und N (0,1), die

*) Die beiden Indices in der auf das Symbol folgenden Klammer beziehen
sich auf elektrische und schwere Ladung der Teilchen.

21
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neutralen Partikel von Feld 1 (deren wegen der komplexen Kon-
stanten in (12.15) mindestens zwel existieren miissen) mit 1 (0,0)
und die geladenen Partikel des Feldes 2 mit ¢ (1,0), so geben die
Matrices (12.14) und (12.16) zu folgenden moglichen Umwand-
lungen Anlass:

Feld 1.

Spinorpartikel —> gleiche Spinorpartikel” + n (0,0)  (18.1)

Dabei sind natiirlich zur Zeit nur die Reaktionen mit schweren
Spinorpartikeln ,,beobachtet®, d.h. ihre Existenz muss zur Er-
klarung der Kernkrifte zwischen gleichen Teilchen gefordert
werden.

Feld 2.
P(1,1) =N (0,1) + ¢ (1,0) (13.2)
e (1,0) ==n (0,0) + ¢ (1,0). (13,3)

Die samtlichen Symbole sind als: algebraische Grissen zu
betrachten (negative Symbole bedeuten die entsprechenden Anti-
tellchen). Aus (13.2) aus (13.3) folgt beispielsweise

(—e (1,0)) === (— e (1,0)) + = (0,0). (18.8)

D. h. ein (negativ geladenes) Anti-e-Teilchen (—¢) kann in ein
negatives Elektron (—e) und ein Neutrino (n) zerfallen.

Auch hier sind vorerst nur die Reaktionen (13.2) ,,beobachtet®,
da aus ihnen die Austauschkréfte zwischen Proton und Neutron
resultieren.

Da aber die e-Teilchen offenbar #dusserst selten vorkommen,
erklirte (18.8") ihre endliche Lebensdauer.
Ferner gibt (13.3) eine Theorie des f-Zerfalles:

Ein Neutron verwandelt sich in ein Proton + ein Anti-e-
Teilchen gemiss der algebraischen Umschreibung von (13.2):

N (0,1) —= P (1,1) + (—e (1,0). (13.2")

Hierauf tritt Reaktion (138.8") ein.

Geméss dem Formalismus von Teil II kann das so gedeutet
werden: Ein positives Elektron in einem Zustande negativer
Energie springt unter dem FEinfluss des retardierten Potentials
eines schweren Teilchens, welches sich aus einem Neutron in ein
Proton verwandelt, in einen Neutrinozustand positiver Energie.
Da die Bewegung der schweren Teilchen langsam erfolgt, kann
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die Retardierung geméss Paragraph 10 vernachlissigt werden und-
eine Wechselwirkung der Form (10.5) in die Hamiltonfunktion
eingesetzt werden.

Da die Reichweite des e-Feldes aus den heuristischen Ansétzen
iiber Kernkrifte als klein gegen die Wellenlédnge der de Broglie-
wellen von Elektron und Neutrino erscheint, kann die ,,Fern-
wirkung® aus Gleichung (10.5) durch eine Nahwirkung ersetzt
werden und es folgt eine der Fierz’schen Verallgememerungen5)
der Fermischen Theoriel®) des S-Zerfalles.

Nun hat aber auch diese Verallgemeinerung immer noch den
Nachteil, eine zu schwache Asymetrie der Energieverteilung im
kontimuierlichen f-Spektrum zu liefern.

Wir werden sehen, dass die weiteren moglichen Feldtypen
eine alternative und nach Rechnungen von WENTZEL!?) bessere -
Beschreibung des A-Zerfalles bieten.

Das Nichteintreten der Reaktion (18.3) resp. das nur relativ
unwahrscheinliche Eintreten derselben, ergibe eine unendlich
lange, resp. eine lingere als die von BmaBma vorgeschlagene?)
Lebensdauer der e-Partikel. Die endliche Lebensdauer wire dann
nur durch auftretende Zusammenstosse mit Neutronen in Atom-
kernen bedingt (resp. fir Anti-¢-Teilchen mit Protonen)32t).

Wir setzen unsere Diskussion der Feldtypen fort:
3. Feld ohne elekirische, aber mit schwerer Ladung.
A3 =0, 4% = -1 ergibt analog (12.16)
3= (a} + o} 7)) (v, +1i7y). - (134)

Die Teilchen bezeichnen wir mit % (0,1). Sie geben zu folgenden
Reaktionen Anlass:
N (0,1) ==n (0,0) + R (0,1) (13.5)

P (1,1) == ¢ (1,0) + R (0,1). (18.6)

Da das Proton sicher eine stabile Partikel ist, so folgt aus
(13.6), dass die Masse der -Partikel grosser als die Differenz
zwischen Protonen- und Elektronenmasse ist. Da aber auch aus
den Kernspin und Kernstatistikmessungen hervorgeht, dass im
Kern nur Neutronen und Protonen aber keine Partikel mit ganz-
zahligem Spin vorkommen, ist es wahrscheinlich, dass die N-Par-
tikel auch grossere Masse als die Neutronen besitzen und daher
mstabil sind, |

Gemiss den Uberlegungen tiber die retardierten Potentiale
gibt dieses Feld 8 Anlass zu Austausch-Kriften zwischen leichten
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und schweren Partikeln von sehr kurzer Reichweite (Compton-
wellenldnge des Protons). Diese Austauschkrifte erlauben die
alternative Erklarung des p-Zerfalles:

Nach (138.5) entsteht eine -Partikel und ein Neutrino. Die
AN-Partikel zerfdllt nach der algebraisch umgeschriebenen Gleichung
(13.6):

NX(0,1)— P (1,1) + (—e(1,0)). (13.6")

Anders ausgedriickt lautet das: Eine Spinorpartikel geht
aus dem Zustande ,,kerngebundenes Neutron‘ in einen Zustand
,ireies Neutrino*“ iiber. Das durch diesen Ubergang erzeugte
retardierte oder avancierte Potential des Feldes 3 induziert den
Quantensprung einer anderen Partikel aus einem Zustand ,,Elektron
negativer Energie’‘ in einen Zustand ,,kerngebundenes Proton*‘.

Eine Vernachlassigung der Retardierung ist natiirlich nicht
mehr moglich. Wie WENTzZEL!?) zeigt erhélt man eine stidrkere
Asymetrie als diejenige der Fermi’schen Theorie, wenn das
-Feld vom Kern beeinflusst wird (d. h. wenn ,,Zwischenzusténde
mit gebundenen N-Partikeln existieren).

4. Feld mit elektrischer und schwerer Ladung gleichen Vorzeichens.
A4 = A"t = — 1 ergibt
=al (1 —i7y) (7y+17). (18.7)

Die, mit P (1,1) bezeichneten Teilchen, geben nur zu der
Reaktion
P (1,1) ==n (0,0) + P (1,1) (13.8)

Anlass. Damit das Proton stabil erscheint, miissen die P-Teil-
chen eine grissere Masse als die des Protons haben.

4. Feld mat elektrischer und schwerer Ladung verschiedenen
Vorzeichens.

A = +1, A'5 = —1 gibt
V= (1, +17) (7, +17) - (13.19)
und ebenfalls nur die einzige Reaktion

N (0,1) == ¢ (1,0) + B (—1,1). (18,10)
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14. Erweiterung des Strombegriffes J7.

Die Definitionen (11.4) der in den Proca’schen Gleichungen
(11.1) auftretenden Stromgrossen sind noch einer, ebenfalls in ¢
bilinearen, Erweiterung fahig. Figt man ihnen die Terme

Ki=ok ¢; Bihp=9@1m9¢ (14.1)
mit den Matrixoperatoren

W= reduns My =ger d0u (14.2)

r

hinzu, wo ¢ die von FermI eingefiihrte Matrix 6) (s. auch Paurr 18))
bedeutet und wo =" wieder auf den oberen Index » von ¢’, wirkende
Operatoren darstellen, so #ndert sich an den Bewegungsgleichungen
des Feldes (11.1) und an der Divergenzgleichung des Feldes (12.4)
nichts, ausser dass J7 durch J7 + K% ersetzt ist. Um die Be-
wegungsgleichungen fiir ¢ aus der Hamiltonfunktion zu erhalten,
missen wir noch (ausser dem erwihnten Ersetzten) die Terme

27 > (12 (J3* Ky + Kp* Jj + Ki* Kj) + entspr. Terme in S},
3 und Rj,) (14.3)

hinzuftigen. Es sei bemerkt, dass diese Terme zwar hermiteisch,
aber, im Gegensatz zu den Termen der letzten Linie von (11.9)
nicht symetrisch sind. Nur mit diesen Termen ist eine Kontinuitéts-
gleichung moglich.

Bei symmetrischer Quantelung von ¢ erhilt man die klassi-
schen Wellengleichungen (11.8), welche aber durch Terme in ¢*
ergdnzt sind. Bel antisymmetrischer Quantelung®) zeigt sich
ein charakteristischer Vorzeichenunterschied eines dieser Terme
gegeniiber den klassischen Gleichungen. Die Divergenzgleichung
(12.8) behlt ihre Form, wenn die Matrices » den Antivertauschungs-
relationen ' ' :

A" + #' A =—A"x" (14.4)

gentigen. Entwickelt man die Matrices » wieder nach (12.10)
mit Konstanten by, so folgen in Analogie mit (12.12). und (12.13)
die Beziehungen. |
bl =— A"y, bhp=— A" b5,
Dhp + bp = — A" by, by + bfp = — A7 VG, (14.5)

*) Dann gilt in (11.11) nur die Form [H, ¢] und nicht mehr 6H/dg.
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Die Losungen fir A" lauten jetzt 0, —1,—2 statt 0, —1, +1
wie im Paragraph 12. Die Losung —2 (doppelt geladene Elementar-
teilchen) wollen wir ausschliessen.

Die im vorhergehenden Paragraphen besprochenen Feld-
typen geben dann zu folgenden zusitzlichen moglichen Reak-
tionen Anlass:

1. Feld ohne elekirische und ohne schwere Ladung.

xt = by, (To — 73) (o' + 73) (14.6)
d. h. die Reaktion:

n (0,0) == 2= (0,0). (14.7)
2. Feld mat elektrischer, aber ohne schwere Ladung.
x: = (b3, 71 + b 7o) (7 + 73") (14.8)
oder in der Reaktionsschreibweise
e (1,0) == (—n (0,0)) + ¢ (1,0). (14.8)
3. Feld ohne elektrische, aber mit schwerer Ladung.
%8 = (19 —73) (b3, 7y" + b3, 75') (14.9)
oder
N (0,1) = (—n (0,0)) + R (0,1). (14.10)
4. Feld mit elektrischer und schwerer Ladung
gleichen Vorzeichens.
xt = (by, Ty + b, 7o) Ty + (b, 71 + b}, 72) TS (14.11)
mit den Reaktionen
P(1,1) == (—n(0,0)) + B (1,1) (14.12)
N (0,1) == (—e (1,0)) + B (1,1). (14.13)

Das Feld 5 mit schwerer und elektrischer Ladung verschie-
denen Vorzeichens gibt nur die Matrix %5 = 0.

Ausser der letzten Reaktion (14.13) sind alle neuen Reaktionen
dieselben wie diejenigen der v Matrices, nur spielt iiberall das
Antineutrino die Rolle des Neutrinos.

Das Feld 4 gibt eine weitere Moglichkeit des p-Zerfalles:
Ein Neutron wird eine P (1,1)-Partikel (14.13) und sendet ein
negatives Elektron aus. Die P (1,1)-Partikel zerfillt hierauf,
gemiss der algebraischen Umschreibung von (14.12), in ein Proton
und ein Neutrino:

PB (1,1) —> P (1,1) + n (0,0). (14.12)
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Fir (12.12") gilt das anlésslich (13.6") gesagte!?). Das Auf-
treten von Neutrino und Antineutrino hat folgende tiefergehende
Bedeutung:

a) Neutrino und Antineutrino sind verschiedene Partikel.
Dann unterscheiden sie sich durch die sogenannte Neutrinoladung.
Fordert man die Erhaltung der Neutrinoladung, so muss man auch
dem Neutron eine Neutrinoladung zusprechen. Die Matrix

e ] — 4 (14.12)

erlaubt dann die von den Spinorpartikeln getragene Neutrino-
ladungsdichte zu formen. Aus (12.2) folgt dann '

A7) = AT = —Ar (14.18)

d.h. die Partikel des Kernfeldes haben gleichzeitig elektrische
und Neutrinoladung umgekehrten Vorzeichens. Aus (14.14) folgt

aber
A” a" o ger l“ —_ Alhr u" — (2 4+ A’r) v (14.14) |

(14.14) und (14.13) sind nur miteinander vertriglich, wenn
entweder x»" oder 7" verschwindet, d. h. fiir ein bestimmtes Feld
@ treten nur entweder die Reaktionen des Paragraphen 13 oder
die Reaktionen aus diesem Paragraphen auf.

b) Es existiert kein Unterschied zwischen Neutrino und Anti-
neutrino. Dann konnen die Matrices » so gew#hlt werden, dass
in den Wechselwirkungstermen Feld-Materie in der Hamilton-
funktion der Spinor des Neutrinofeldes ¢2 nur in der Kombination

P2 = P + 8% (14.15)

auftritt. Wihlt man die Matrices «; und g in der Form, dass die
«; rein reell und f rein imaginér erscheinen, so wird die Matrix ¢
gleich der Einheitsmatrix und man hat @2 = @*2. MaJoraNA?)
hat gezeigt, dass man dann auch den Anteil der freien Spinor-
partikel iIn der Hamiltonfunktion allein unter Verwendung der
reellen Funktion ¢? schreiben kann. Das reelle Spinorfeld kennt
also, genau wie das reelle Tensorfeld, keine Antipartikel, d.h.
es besteht aus nur einer Partikelart (vgl. dazu auch Racan!®).

15. Sehlussbemerkung.

Nachdem die Existenz einer Kontinuititsgleichung bei Ab-
wesenhelt von elektrischen Feldern gezeigt worden ist, macht die
Einfithrung der Wechselwirkung ,,Elektrisches Feld mit elektrisch
geladenen @ und ¢ Feldern keine prinzipiellen Schwierigkeiten
mehr. Klassisch ist der Fall von Procal?®) bereits behandelt.
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Es sind dann u. a. folgende interessante Eigenschaften der
neuen Partikel zu behandeln (vgl. dazu auch BmABHA?)):

1. Bremsstrahlung, Comptoneffekt und Paarerzeugung der
e-Partikel (fiir spinlose Partikel wurde die zur Bethe-Heitler’schen
analoge Formel bereits von Pauri und WErisskopFr berechnet$)).

2. Absorption (und Streuung) eines e-Teilchens (oder eines
ungeladenen n-Teilchens) durch ein schweres Teilchen im Atom-
kern (= Atomzertriimmerung durch ¢- oder n-Teilchen, da schon
die Ruhenergie dieser Teilchen geniigt, um einen Kernbestandteil
aus seiner Bindung zu l6sen) 21).

3. Erzeugung von Paaren von ¢- oder n-Teilchen, durch
Rekombination von Proton, Neutron mit Antiproton und Anti-
neutron. Ausstrahlung einer oder mehrerer ¢- und n-Partikel durch
Bremsung von schnellen Neutronen und Protonen.

Das Entstehen der doch offenbar instabilen e-Partikel (iiber
ihre Instabilitdt vgl. auch soeben verdffentlichte Beobachtungen
von BrakgT129%)) kiénnte dann eventuell, ausser durch Paarerzeugung
aus einer priméren Photonenstrahlung, durch diese Rekombination
einer priméren, aus schweren Antiteilchen bestehenden, kosmischen
Strahlung mit Kernbestandteilen gedeutet werden.

Institut de Physique, Université de Genéve.
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