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Die Wechselwirkungskriifte in der Elektrodynamik und in der
Feldtheorie der Kernkrifte. (Teil I)

von E, C. G, Stueckelberg.
(21. II. 38.)

Inhalt: Es wird gezeigt, dass die Quantentheorie der Wellenfelder auf die
gleichen Ausdriicke fiir die Wechselwirkung zwischen Ladungen fiihrt wie die
klassische Behandlung der retardierten Potentiale.

Der Wechselwirkungsoperator hat folgende Form: Retardiertes oder avan-
ciertes Potential der einen Ladung am Orte der zweiten mal zweite Ladung. Kann
eine dieser beiden Ladungen in erster Naherung schon Strahlung aussenden, so
muss das retardierte Potential dieser Ladung oder aber das avancierte Potential
der andern Ladung gewahlt werden.

Der vorliegende erste Teil enthilt die vollstindige Diskussion eines skalaren
Feldes. Die Verallgemeinerung auf ein Vierervektorfeld ist nur kurz gestreift
und wird in einem zweiten Teile behandelt werden.

Einleitung.

Obwohl die Quantentheorie der Wellenfelder grosse innere
Widerspriiche enthélt, ist sie zur Zeit dennoch das einzige brauch-
bare Mittel, um die korpuskulare Natur der Strahlung und der
Materie zu beschreiben.

So folgt aus der Quantenelektrodynamik einerseits die Exi-
stenz diskreter Lichiquanten, d.h. das Ergebnis, dass Strahlung
der Frequenz kyc nur in Betrigen hfy emittiert oder absorbiert
werden kann.

Andererseits ldsst sich aus ihr das Fklassische FErgebnis der
retardierten Wechselwirkung zwischen zwei Ladungen ableiten.

In vielen Fillen interessiert uns nur die zweite Eigenschaft
des Feldes. Da diese retardierten Wechselwirkungen die Planck’sche
Konstante nicht enthalten, so muss es moglich sein zu zeigen,
dass alle aus einer Quantentheorie der Wellenfelder folgenden
Wechselwirkungsgesetze identisch sind mit den entsprechenden
klassischen Ergebnissen.

Wir wollen dies an einem skalaren Felde A beweisen, dessen
Feldgleichung die Form hat:.

(1—154A=—4xadJ. (0.1)

A(x) nennen wir in Anlehnung an die Elektrodynamik Po-
tential und J (z) die Ladung. x ist der Vierervektor des Ortes mit
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226 E. C. G. Stueckelberg.

den Komponenten x,=ct, und z,, z,, x5, welche drei letzteren wir
mit  bezeichnen. Die Wellengleichung (0.1), deren statische Lo-
sung fiir eine ruhende Punktladung am Koordinatenanfangspunkt

P (0.2)

lautet, bildete den Ausgangspunkt der Feldtheorie Yukawas?),
welche die Kernkrifte aus der Existenz eines neuen Feldes erklart,
dessen Partikel (welche ihm die Quantentheorie der Wellenfelder
zuordnet) die Masse hl|c haben. [ ist also die reziproke Compton-
wellenldnge dieser neuen Partikel. Aus der Reichweite der Kern-
krifte ergibt sich ihre Masse grissenordnungsweise zu 100 Elek-
tronenmassen. Wir werden im folgenden sehen, dass die Existenz
geladener und ungeladener Partikel gefordert werden muss. Die
geladenen Partikel wurden von verschiedenen Autoren in der
kosmischen Strahlung beobachtet. Niheres hieriiber findet sich
in Notizen von Yurawal), KemmeER, BEABHA und vom Verfasser?).

1. Das retardierte und avanecierte Potential.

Wir suchen eine Losung von (0.1). Dazu entwickeln wir
J(x) in ein Fourierintegral mit dem Integranden J(k), wobei k
den Vierervektor mit der (reellen) Zeitkomponente k&, und den
Raumkomponenten k= (ky, ks, k3) bedeutet. dx?, dk*und d 22, dk?
bedeuten die vier- und dreidimensionalen Volumelemente im Raum
resp. iIm Raum der Wellenvektoren. KEs sei also

J(z) = [ dkte © 2 I (k) (LD

Integrale ohne Grenzen sind immer vom — oo bis + oo zu er-
strecken.

Entwickelt man A4 (z) in analoger Weise, so folgt durch Ko-
effizientenvergleich fiir die Koeffizienten A4 (k) die Beziehung:

4 ad(k)
Alk) = (e, ) + 12

(k,z) und (k,k) sind skalare Produkte von Vierervektoren.
Wir bezeichnen als Figenvektoren des Feldes solche Vektoren,
deren Zeitkomponente der Beziehung
by = £ ko(R) = £ /(B )+ 12 (1.3

gehorcht. Dabei ist (E, E) das skalare Produkt des Raumanteils
von k mit sich selbst.

(1.2)
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Wir setzen voraus, dass J (k) fir reelle k-Werte keine Singu-
laritédten besitze. Dann besitzt der Integrand A (k) im Ausdruck
fiir A (z) auf der reellen k,-Axe je eine Singularitit bei ky= +k, (IT:)
Da J (k) voraussetzungsgemaiss keine Singularitdten in unmittel-
barer N&éhe der reellen k,-Axe besitzt, so konnen wir den Inte-
grationsweg iber k, von — oo bis + oo in (1.1) schon vor dem
Koeffizientenvergleich deformieren. Bezeichnen wir diesen defor-
mierten Weg durch (..), so konnen wir als Losung von (0.1)
schreiben :

At (y fdk3fdk Ak) &Y
fdac4J (x) D (y — 1) (1.4)

Dabei bedeutet D¢ (2) eine Funktion, welche durch das Fourier-
integral
N o m_.i__ ik, 2) ) 1 A ~
DY) =5 n)3{“f)e ey o (1.5)
definiert ist.
Zur Ableitung der zweiten Identitat in (1.4) ist von der vier-
dimensionalen d-Funktion Gebrauch gemacht

o(k) = (2m)~4 [ dxt &7 (1.6)
mit der Eigenschaft
[ dk*f (k)6 (k) =F(0) oder =0, (1.7)

je nachdem ob der Punkt k; = 0 innerhalb oder ausserhalb des
Integrationsbereiches K von (2.7) liegt.

Wihlt man als Integrationswege die beiden durch (+) und
(—) bezeichneten Wege, die ganz in der positiven resp. negativen
Halbebene verlaufen (Fig. 1), und beriicksichtigt, dass

—i ko2, . F sin ko Fdk
Ay ———— =1 2 dky —22 2
([) :n?}( ' f ‘o ko —]ia-[ kO )
(£)
:—*z,:rz(A*j: 1) ( Yo _ 0 fir m0:0)
EN |20

(« 1st hiebei eine positive kleine Grosse)

1st, 80 erhilt man folgenden Ausdruck fir D¢

D) = ) ) fdlkl“i'-(cos (5| 15| —Foz)

— COS (]k] |z | +k0mﬂ)) (1.8)
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mit

1 0 >
g =11/2, ¢ =1—1/2 fir z2,=0
0 —1 2

In Formel (1.4) ist daher A nur durch die Ladungsverteilung
der Vergangenheit und A nur durch diejenige der Zukunft
bestimmt. Sie werden, in Verallgemeinerung der Elektrodynamik,
als retardiertes und avanciertes Potential bezeichnet. D und
D) selbst sind das retardierte resp. avancierte Potential einer
nur zur Zeit ;=0 von null verschiedenen Punktladung am
Koordinatenanfangspunkt, deren Raum-Zeitintegral den Wert eins
hat. Threr Ableitung gemiss sind D¢ und D= in variante
Funktionen.

k,— Ebene

QR'-
ol
!

Fig. 1.
Fir | = 0 (elektrodynamischer Fall) wird

D& (x) = & S(Z| F x,) (6 = eindimensionale 6-Funktion)

z|
Wir definieren noch die ebenfalls invariante Funktion
D(x) = D) (x) — D) ()
11 7.+ |k R e
- vnufdlk’ = cos (|| | @] +hozo) —cos (|1 ||~ Kozy)) (1.9)

|2 0

welche fiir I = 0 in die Heisenberg-Pauli’sche invariante d-Funk-
tion ibergeht. Mit ihrer Hilfe schreiben sich retardiertes und
avanciertes Potential in der Form:

A (y) = [ dz* ]wdmoD(y%x) J (). (1.10)
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Im allgemeinen sind also retardiertes und avanciertes Poten-
tial zwel verschiedene Ausdriicke. Es gibt aber spezielle Ladungs-
vertellungen, deren Fourierkoeffizienten J (k) fur solche k ver-
schwinden, welche Eigenvektoren des Feldes sind. In diesem
Falle ist ein Ausweichen des Integrationsweges in (1.4) nicht not-
wendig, d. h. beide Integrationswege geben denselben Wert: Das
avancierte Potential dieser speziellen Ladungsverteilungen ist
gleich dem retardierten.

MoLLER?) zeigte, dass die elektrod ynamische Wechselwirkung
zweler Elektronen in der Quantentheorie durch folgenden Wechsel-
wirkungsansatz beriicksichtigt werden kann: Man berechne das
retardierte oder avancierte Potential des ersten Elektrons am Orte
des zweiten und multipliziere es mit der Ladung des zweiten
Elektrons. Fiir freie Elektronen fithrt diese Uberlegung tatsich-
lich auf einen symetrischen Ausdruck, da die Matrixelemente des
Stromes in ihrer Fourieranalyse keine Eigenvektoren des Feldes
enthalten.

Aus dem Mgller’'schen Ansatz lasst sich alsdann die Breit’sche
Wechselwirkung?) durch Entwicklung nach 1/¢ gewinnen, deren
Reduktion auf die grossen Komponenten der Diracfunktionen
tatsiichlich die richtige Spin-Spin- und Spin-Bahn-Wechselwirkung
der Pauli’schen Spintheorie liefert.

Erinnert man sich der Vorschrift, dass dieser Wechselwirkungs-
ansatz nur als Stérung erster Ndherung bei Eigenwertberechnungen
verwendet werden darf, so folgt, dass nur statische Ladungs-
verteilungen in Betracht kommen und somit retardiertes und
avanciertes Potential tatsichlich gleich werden.

Hurme®) hat spiter gezeigt, dass diese Meller’sche Vorschrift
jeweils dann durch eine strengere zu ersetzen ist, wenn das eine
Teilchen strahlen kann: Dann muss nédmlich das retardierte Po-
tential dieses strahlenden Teilchens am Orte des zweiten Teil-
chens multipliziert mit der Ladung des zweiten Teilchens gewihlt
werden, oder aber das avancierte Potential des nichtstrahlenden
Teilchens am Orte des strahlenden multipliziert mit dessen
Ladung.

Wir werden im folgenden diese Hulme’sche Verschirfung der
Mgller’schen Vorschrift als Resultat allgemeiner quantentheore-
tischer Uberlegungen wiederfinden. Ihr klassisches Analogon ist
eben dieses Auftreten von Eigenvektoren des Feldes in der ,,ge-

mischten Ladungsdichte” des einen Teilchens.
*
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2. Lagrange und Hamilton Funktion des Feldes.

Das Feld und die Ladung sollen, der Allgemeinheit halber,
als komplex angesehen werden. Dann folgt aus der Lagrange-

funktion
L:fdiﬁ

mit der Lagrangefunktionsdichte

\

1 (/04% 04 | 1 0. A*
_ creard) g S (arg (228 ]
. Sn((ax’ Om) )+'2( +(0$ )+Om”)

/

(2.1)
(conj. bedeutet den konjugiert komplexen Ausdruck der Klammer-
terme) in der iiblichen Weise (wenn man 4 und 4* als zwel unab-
hingige Funktionen betrachtet) die Formel (0.1). An Stelle von

J steht der Ausdruck |
JeffﬂJ"_(O: S-) (2.2)

0x
Bezeichnet man J mit Ladung, so ist (aus Dimensionsgriinden)
der Vierervektor S als Polarisation aufzufassen. (2.2) ist also die
effective Ladung in Gl. (0.1).

Die konjugierten Momente folgen in der iiblichen Weise zu

oL 08 ( 0 oz) 1 04* 1

’ F;
y
0 —

 Peall - - . S* (2.8
S5A 64 8ae 0, l~QC 0 @29

und entsprechend fiir P*. Die Hamiltonfunktion errechnet sich
nach der Beziehung:

_H:—L+/ﬂ5ﬂAP+Aﬂﬂy:W+V. (2.4)

Dabei sind W und V' die Volumintegrale von Energiedichten QU
und 9)), welche ihrerseits die Form

*
W= ((557, 24)+irara)tsaprr @)
Ba \\ oz 0x
und
1 0A4* - ) )
6)):_§ A% (0,, S)+0011J. —4 me (P Sy+conj.) (2.6)
0
haben®). |

*) Formel (2.4) ergibt ausser dem angeschriebenen W und V mnoch einen,
nur von der Materie abhangigen (und daher fiir die Feldgleichungen belanglosen)
Zusatzterm der Form

+ 2 [ dz38,* S, \ (2.6a)
Dieser Term ist aber, wie im zweiten Teile gezeigt werden wird, notwendig, damit
die Bewegungsgleichungen der Materie sinnvoll werden.
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Die kanonischen Gleichungen folgen durch die, im zweiten
und dritten Glied der Gl. (2.8) definierte, funktionelle Differen-
tiation des Hamiltonfunktionals nach 4% resp. P zu

A — -%: 8rc2P*—4mel, (2.7)
und
. oH 1 1 0 =
P¥* = R | W (R [ R TSI 2.8
dA* 897;( ) +2( (OE’ )) (28)

Differentiation nach der Zeit von (2.7) und Elimination von P*
aus (2.8) gibt dann tatsdchlich die Gl. (0.1) mit der in (2.2) defi-
nierten effektiven Ladung an Stelle von J.

3. Quantisierung der Feldtheorie.

Die Quantisierung der skalaren Feldtheorie wurde von PauLt
und WEIssgoprr®) durchgefithrt. Die Operatoridentitéten

P = (i/h)[H,P] = — 6H/8 A

A = (i/h)[H, 4] = 5H/6 P (8:1)

folgen fiir jedes analytische Funktional H der Operatoren P und
A4, wenn gilt
[P(&),4@")] = (h}i)6(E — ) (3.2)

und wenn gesternte Operatoren A* und P* mit hichtgesternten
4 und P vertauschbar sind. Dabei bedeutet eine eckige Klammer

[a,b] = ab—ba.

Somit folgen die Bewegungsgleichungen (2.7) und (2.8) auch
fir die quantentheoretischen Operatoren, wenn wir fiir H den
Operator verwenden, welcher aus den klassischen Gleichungen

(2.4), (2.5) und (2.6) folgt, nachdem man darin die P*, 4% P
und A durch Operatoren ersetzt, welche (3.2) erfiillen.

Dasselbe gilt noch, wenn wir statt V' einen Operator K ver-
wenden, fiir welchen gilt

G, ¥ = —0KJp 4= = (I (52, B)) g

(/R)[K, 4] =oK/6P = —4mcS,

Diese Gleichung kann auch als Definition der Ladungsgrossen oJ
und S angesehen werden.
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J und S sind Funktionen der kanonischen Variablen, welche
den Zustand der Materie biChI‘E‘IbeI} Bezeichnen wir diese mit
p und g, so sollen aus

p = (i/h)[ K, p]
| = (K q 34
die (klassischen) Bewegungsgleichungen fiir die Materie folgen.

Das quantentheoretische Problem besteht in der Losung der
Schroedinger- Gleichung

(H+ N a)‘[’(t) —0. (3.5)
v 0t

Wir folgen eimner von Dirac, Fock und Popornski?) vorgeschla-
genen Methode:

Es wird emme Funktion resp. Funktional ¥ (T,t) eingefiihrt,
fiir welche gilt

v (t,t) = W() (3.6)
und ein Operator K'(T,t), der ebenfalls der Beziehung
K'(t,t) = K (3.7)

gentigt. In (3.7) wird angenommen, dass der Operator K die Zeit t

nicht explizit enthalte. K’ wird dann im allgemeinen explizit von

T und t abhingen. Gentigt nun die Funktion ¥’ simultan den
beiden Gleichungen:

O - (W LA

1 0T

. )!P’(T,t)~0 (3.8)
0,9 — (K’(T £ +-ﬁ ;t) W (T 1) - (3.9)

so folgt daraus die Schroedingergleichung fir das durch (3.6)
definierte einzeitige ¥ mit H = W + K.

Damit nun die beiden Gl. (3.8) und (3.9) simultan losbar
sind, miissen die Operatoren C, und C, vertauschbar sein. Diese
Bedingung
h 0K'(T,t)
0 0T

stellt eine Differentialgleichung fiar die Abhéngigkeit des Opera-
tors K" von T1' dar. Ihre Losung unter Beriicksichtigung der An-
tangsbedingung (3.7) ist

K'(T,t) = W t~1)h K g=iW &~ 1) (3.11)

[Cp,Cf] = [W,K'(T,1)] + =0 (3.10)
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Die GIl. (3.8) ldasst sich formal lésen durch
(T, 1) = ¢ tWThp(]), (3.12)

Fiir die nur von einer Zeit abhéingige Funktion w(#) gilt dann die
aus (3.9), (8.11) und (3.12) folgende Schroedingergleichung

(K”(t) + f’)wt) 0 (3.13)
1 Ot
wo K" (t) den Operator
K" (f) = e WIh K g=iWtih (3:14)
bedeutet.

Der Hamiltonoperator K" in Gl. (3.13) ist also der urspriing-
liche Operator K, in welchem die Operatoren 4(Z) durch Opera-
toren A" (x,t) ersetzt sind, die sich durch dieselbe untére Trans-
formation (8.14) aus den 4 (Z) errechnen lassen wie K" (t) aus K.
Sieht man vom Operatorcharakter der 4 ab, so ist (3.13) die
Schroedingergleichung der Materie unter dem Einfluss eines
gegebenen, explizit von der Zeit t abhéngigen Potentialfeldes
A" (z,1). ‘

Dasselbe gilt fiir P. Um eine explizite Form fiir die neuen
Operatoren A" und P’' zu haben, entwickeln wir 4" in die Rethe

0A" t2 024"

A" (@) = 4" @0+ @0+ 5 S E,0) +

Dabei gelten folgende Beziehungen, welche aus (8.14) folgen:
4" (z,0) = A(z)

047 (Z,0) = (ifh)[W,A(T)] = ';T;) = 8 mc? P*(z)

0t
0214” > . 9 ' g y
P 0) = G [W,LW, A1) = 8 e [, P
- —8xc? szvz _ (A — 1Y) AF)
Uusw.

Fiihrt man den, nur auf den Parameter Z wirkenden, sym-
bolischen Operator

b@E) =/ — 4+ 2 8.15)
ein, so erhélt man allgemein:
02n14u i
5 = (icb(Z))2A(x
g2+l 4"

(z,0) = 8 wc2(ich)- (focb)”“P*(*m')f (8.16)

()t2n+1
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Zur Abktrzung der Reihenentwicklungen des symbolischen Ope-
rators b fithren wir die Ausdricke cos (bet) = cos (bx,) und
sin (bet) = sin (bxy) ein. Dann kann man schreiben:

A" &,8) = A(x) = cos (b(F)z,) A (%)
18 me2h(%) tsin (b(F)xzy) P*(F). (8.17)

Wir werden im folgenden jeweils fiir 4" (z,t) das Symbol 4 (x)
verwenden, wo 2 wieder den Weltvector bedeutet.

Diese vom Weltvector z abhiingigen Potentiale gehorchen
bestimmten Vertauschungsrelationen. Seien z und y zwel Ereig-
nisse, so gilt

[4(2), A(y)] = [4(x)*, A(y)*] = 0 (3.18)
da A(z) und P(Z)* in (8.17) vertauschbar sind.
Beniitzt man die Vertauschungsrelation (3.2) und die dazu
konjugierte, und schreibt man die é-Funktion in Form ihrer
Fourierentwicklung (analog (1.6))

§(F) = 2m) [ dk3ei®®
so folgt bei Beriicksichtigung von
b(@) e @D — ko (k) el D) (8.19)

(wo ko (k) wieder die (positive) Quadratwurzel aus (1.3) bedeutet)
die Vertauschungsrelation

[A(@)* A@)] = 2" Diz—y). (3.20)

Dabei 1st D wieder die, durch ihre Fourierdarstellung (1.9) defi-
nierte invariante Funktion.

Das in K eventuell vorkommende P’ (z,f) kann durch eine
(3.17) analoge Reihe ausgedriickt werden. Man findet dann, dass

1 OATEN g 2040

Pyt o= PUE) = gomy — —. (3.21)
Hat der Wechselwirkungsanteil Feld-Materie von K speziell die
Form V, deren Dichte durch (2.6) gegeben ist, so ist die ent-
sprechende Dichte V" (z,t) durch den invarianten Ausdruck

- 1 - 0A (x)*

B (x,t) = —— (A(x)*J () - e
.0 =~ (A@PTE) + (5]
gegeben. J (z) und S(Z) sind die (skalare) Ladung und der Vierer-
vektor ihrer Polarisation am Orte . Falls sie, wie in der Dirac-
schen Theorie, nicht von den Potentialen 4 abhéngen, so tritt in

ihnen ¢ nach wie vor nicht explizit auf.

s

, S(Z’v))+conj.) (3.22)
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4. Ableitung des Wechselwirkungsoperators im Konfigurationenraum.

Beschreibt man die Materie nicht durch ein Materiefeld, son-
dern durch die Koordinaten ¢* (s=1,2, ... n) von n Teilchen
(Konfigurationenraum), so sind die Schroedingerfunktionen ¥, ¥’
und 9, welche wir im Paragraphen 3 verwendeten, Funktionale der
Funktionen A4 (z) und Funktionen der ¢°. Der Hamiltonoperator
der Materie K’ wird sich dann in eine Summe X' K* zerlegen, wo
K¢ (neben Feldoperatoren) nur auf ¢° wirkende Operatoren ent-
halt. Jedes K* selbst zerfillt in einen Term R*(q®), welcher nur
auf ¢* wirkende Operatoren enthélt und in einen Term

Ve(ge, A7 (1) = Ve(1),

welcher ausser auf g* wirkenden Operatoren, noch Feldoperatoren
enthélt, die gemiss dem vorhergehenden Paragraphen die Zeit ¢
explizit enthalten. |

Die Schroedingergleichung (3.13)

Kﬁ—~)w= B+V+ . Jyp=0 4.1
( i 0t ( ioJ -1

(worin K" die Summe der K* und R resp. V die Summen aus
den Bs resp. V¢ bedeuten) losen wir durch ein Naherungsverfahren.
Dazu denken wir uns den Storungsterm V proportional einer klemen
Zahl, nach der wir entwickeln.

Es se1 also
p=y+ypl 4924 .. (4.2)

wo ™ der m-ten Potenz dieser kleinen Zahl proportional sei.
Setzt man die Faktoren der einzelnen Potenzen null, so erhalt
man aus (4.1) das folgende Gleichungssystem:

W0

B+ 2\po=0

(* m)‘”

(R+hﬂ)qp1+w°0 (4.8)
5 0t

(R—F}.badt‘)?pz—i-Vip“:O

Die Losung u!'+ 9! + 92 der drei angeschriebenen Gln. (4.3)
ergibt somit die zweite Ndherung der Losung von (4.1). Sie ent-
hélt neben der Einwirkung von Materie auf Feld, bereits die
Rickwirkung des durch die Materie erzeugten Feldes auf diese
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selbst. Somit 1st die Wechselwirkung zweier Teilchen aufeinander
in ihrer ersten Ndherung enthalten. Gelingt es uns, eine Relation

Vel pt = Z LFer o (4.4)

aufzufinden, so kann man die beiden letzten Gl. des ausgeschrie-
benen Systems (4.3) durch Addition in die Gleichung

b0

R 4 T (pr+ 93+ (V -+ };ZU”) 1t = (4.5)

zusammenziehen.
Entwickelt man die Losung der Gl.

(R + ¥+ ¥ P4 n 0) y=0, (4.8)
s el v 0t

wo man sich V und 22U mit demselben kleinen Parameter
multipliziert denkt, so erhdlt man als erste Gleichung (fiir %9
die erste Gl. von (4.3), wahrend man fir die erste Ndherung !
(wo die romischen Indices die Entwicklung nach dem Stérungs-
term V+ XX U™ in (4.6) bedeuten) die Gl. (4.5) mit ! statt
p! + p? findet. Somit ist die erste Ndherung von (4.6) identisch
mit der zweiten Ndiherung der richtigen Gl. (4.1). Die hoheren
Néherungen von (4.6) fithren aber selbstverstdndlich zu falschen
Ausdriicken fiir y, d. h. solchen, welche der Schroedingergleichung
des Problems nicht gentigen.

Der Term -
Urs + Usr, r+s (4.7)

stellt dann offenbar die Wechselwirkungsenergie erster Ndherung
zwischen den Teilchen r und s dar.
Zur Auffindung einer Relation (4.4) betrachten wir das Glei-
chungssystem der n-Gleichungen :
(RS + Ve (ts) -+ h d ) pt..te.. ) =0, (4.8)
|
Finden wir die Losung dieses mehrzeitigen Systems, so stellt die
Funktion

p(t,t,,,t) = p( (4.9)

eine Losung des Problems (4.1) dar. #° ist die ,,Partikelzeit” der
s-ten Partikel. Tatstchlich sind aber diese Gln. (4.8) nicht simultan
losbar. Néheres hiertiber findet sich bel Brocu®). Wir werden
aber sehen, dass sie in erster Néherung losbar sind und uns tat-
sichlich eine Relation (4.4) vermitteln werden.
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Dazu muss die Existenz eines Lorenzsystems gefordert werden,
in welchem R* keine explizit zeitabhiingigen Krifte enthalt. Dies
ist bei freien Teilchen natiirlich der Fall. Ebenso im Ruhsystem
des Atomkernes eines gebundenen Elektrons. KEs existieren dann
Eigenlosungen, fir welche gilt (wenn f(2) eine beliebige, durch
Reihenentwicklung darstellbare Funktion von z ist)

F(RY) thyy. 5 = sy v+ T () - (4.10)

Die wuy, sind von den # unabhingige Funktionen. Die zeitab-
héngigen Funktionen

L e—iXvt (4.11)

Vs by = Wltiaeewy,

erfiillen dann die (4.8) in nullter Naherung.
Wir betrachten jetzt den Ausdruck

f(RSJr—_S) w(tt. 17, (4.12)

wo w eine beliebige Funktion der ¢* und t* und Funktional der
Feldvariablen ist, die in bezug auf ihre Zeitabhingigkeit in der

Form ‘
wzz--ze_izwstswwl..wn (4.122)
darstellbar sei.

Dann wird (4.12) die Summe
Z T 2 s Zwstsf(ng‘,h ws) Wayy ..,

Wy Wy,

Das Integral hat dann folgenden Sinn:

qu qu v} , r(Rs ]r: Ois)w -

_jdq ”62( ~w,) i (f‘(RS—hws)*uvl.-Vn) *wwl..w“-

Dabei st f* der Zu f hermiteisch konjugierte Operator. Ist f(2)
eine reelle Funktion, so ist f* = f(R* —h o)), da R* e¢in hermi-
teischer Operator ist. Somit kann fiir das Integral geschrieben
werden :

fdg...=[dg Z Zf o)) e E O yE L w, L (4.18)

Da hiemit jede, durch Reihenentwicklung darstellbare, Funktion
des Operators Bs+ho/i0t* definiert ist, konnen die Gleichungen des
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zu (4.8) analogen Systems, welches durch Entwickeln von o in (4.8)
erhalten wird, in erster Naherung durch

pl=—2> (R 1 ---;f— R --)_1 Vr(tr) 0 (4.14)
v Ot
oelost werden.
Wir haben andererseits die Beziehung

PO (tL..4n) = =i ZRr(tr—1) 0 (4) (4.15)

Sie 1st leicht zu verifizieren, wenn man in Betracht zieht, dass

¥? eine Linearkombination von Eigenfunktionen wy, . .y, seln mMuss,

deren Koeffizienten die Zeitabhangigkeit exp (— 12'»,t) haben.
Der Operator

Uer = {(R’*ho) V() Ve (et HEEED (4.16)
U P=tt=... =t
hat also tatsdchlich die Eigenschaft (4.4).

Geméss der Ableitung des Operators U diirfen wir diesen
nur in seiner ersten Niherung verwenden. Somit interessieren
uns nur solche Matrixelemente, welche zeitunabhingig sind.
Berechnet man das vorerst mehrzeitige Matrixelement®)

- -1 :
sr __ 1 n ¥, A R T s(\T/r (#r . 1
7= [dg. [dg fdAz,,,l._,,n(R = M) V() V() vy, o, (417)

1
und verwendet man die Beziehung (4.18), so enthélt es den Faktor

1(v, —w,) ",

s » (v, — o)t

e _ ¢ o (4.18)
h (v, — o)

Die wgt* kommen von der Entwicklung von

w = V(t5) V(i) vp,. v, (t1..17)
gemiss (4.12a).
Mit Hilfe des convergement gemachten Ausdruckes
lim & EE i [ arestrint

y=0 b( +®?) y=0

kann dieser Faktor in ein Integral umgeformt werden und man
erhélt fiir das (mehrzeitige) Matrixelement die Form

Uy, (@) fdt'"qu a1 Vo )

*)" f dA bedeutet Integratlon itber den Funktionenraum A(m) (=z B.
Raum der Lichtquanten).
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Berticksichtigen wir noch die Bedingung, dass nur zeitunabhéngige
Matrixelemente eine Rolle spielen, so bedeutet das, dass nur
Terme deren Exponenten der Beziehung
(vy — ) + (v, — o,) + Z (v — ) =0 (4.19a)
mEs, r
gehorchen, verwendet werden. Wéhlt man die vy,..», In der iib-
lichen Weise als orthogonales Funktionensystem, so muss »," = »,
sein, da fiir m4r,s der Operator keine auf g™ wirkenden Opera-
toren enthilt. Daher kann (», — ,) iiberall durch — (v, — o)
ersetzt werden. Das bedeutet, in Gl. (4.18), dass das Integral
tiber dt" in (4.19) durch oo
—[ar
'ts'

ersetzt werden kann. Addiert man also zum Matrixelement von
Usr dasjenige von U um dasjenige des Wechselwirkungsopera-
tors (4.7) zu erhalten, und macht beim zweiten von dieser Alter-
native Gebrauch, so findet man, dass die zeitfreien Matrixele-
mente des Wechselwirkungsoperators den Matrixelementen des

Operators

fdt"e’i LT (tut);’b [Vet), Vr(tr)] et 7 =8 (4.20)
t
gleich sind. Hat nun V* die Form
*
Vs = 12 /dE A (x)*J? (E))+ (01%([)(@ . (E))—,Lconj. +Terme in A2
%

worin J¢ und S* die Ladungs- und Polarisationsoperatoren bei
Abwesenheit des Feldes bedeuten (ihre Abdnderung bet Anwesenheit
eines Feldes ist durch ,,+ Terme in 42 berticksichtigt), so geniigt
es in (4.20) nur die in 4 linearen Terme zu beriicksichtigen. Die
hoheren Terme mitzunehmen, wire inkorrekt, da wir bel unserem
Néherungsverfahren die kleine Grésse, nach der wir entwickeln,
nur bis zur zweiten Potenz beriicksichtigen wollen. Die Ausdriicke
J* und S* enthalten also keine Feldoperatoren mehr und sind
daher mit den Feldoperatoren vertauschbar.
Wir fithren den Operator

Jo(y) = et B (go—ct)jch Js @)eﬁm(yom et)fch (4.21)

ein, dessen Erwartungswert den Erwartungswert der Ladung des
Teilchens s am Orte i zu der (im allgemeinen von der in der
Schroedingergleichung vorkommenden Zeit ¢ verschiedenen) Zeit
Yo/c ergibt (Operator der retardierten Ladung). Der Wechselwir-
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kungsoperator darf dann wegen der Vertauschungsrelation (3.18)
und (3.20) in der Form geschrieben werden

T S
Ures U [ 53192 (E) (@) +(8°(8), P4+ coni| @22)
z

F jx.,=ct
mit*y
Y S e L 0D(z—
Ar(a) ~ [dy, [a7° (J, WDy + (), gy))) .
% Y
Den zweiten Term des Integranden kann man durch partielle

Integration noch umformen, da die D-Funktion auf der Ober-
fliche des vierdimensionalen Halbraumes verschwindet, und erhilt

Ar(@) = [ dyo [ 4G T(y) Dz —y), (4.29
WO "
0o g
Taly) = )~ 5, S'O) (4.24)

die in (2.2) definieite effektive Ladung des Teilchens r am Orte
y zur Zeit yo/c bedeutet.

(4.23) 1st aber nichts anderes als die klassische Formel (1.10)
fiir das retardierte oder avancierte Potential in operatorieller Form.

Der Operator (4.22) enthilt keine Feldoperatoren mehr und
tihrt ohne weiteres auf die Meller’sche Vorschrift. Dabei ist
offenbar retardiertes und avanciertes Potential gleich.

Kann aber das Teilchen » strahlen, so bedeutet das; dass
die Funktion ¢! in (4.14) unendlich wird, d.h., dass im Nenner
von (4.18) Glieder mit »,'=w, vorkommen. Das ist immer dann
der Fall, wenn die Fourieranalyse des Matrixelementes des Ope-
rators J7(x) fiir gewisse Ubergéinge die im Paragraphen 1 defi-
nierten Figenvektoren des Feldes enthilt. Die erste Naherung

’;) iMIEMZeitanteil des skalaren Produktes muss eigentlich stehen:

d. h. 0/0 x, steht unter dem Integralzeichen nach dy,. Setzt man es, wie in Formel
(4.22), vor das Integralzeichen, so erhilt man wegen der Beziehung:

! dajo Ty=0 l ()xi lxn=0
einen Zusatzterm von der Form e

-2 nfda:"(ﬁ‘so(z) So"(')x—)* -+ conj.),
welcher sich gegen den in der Anm. zu S. 230 (2.6a) erwiahnten Term forthebt.
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gibt einen wesentlichen Beitrag zur Stérung der Wellenfunktion ¢°.
Der Anfangszustand wird exponentiell abklingen. Trigt man dem

schon 1n der nullten Nidherung dadurch Rechnung, dass man an
Stelle von (4.11)

-1 tm )
‘ Upy. vy, = Uy p, € Wiffvm B (— vy, 1) ] ‘
e 0 fiir £<0 (4.25)
P, §) =4 © HE ]
| ei*t fiir >0

schreibt, so lautet, wie man sich durch Fourierdarstellung (oder
Integration nach der Zeit in der iiblichen Weise) leicht tiberzeugt
(4.18)

_%-t[dt F (5 — o, iy, 1) e (@)t (4.182)
Formel (4.19) bleibt also zu Recht bestehen, wenn man nur das
Vorzeichen — oo als obere Integrationsgrenze behélt.

Die Formel (4.17) fur U™ enthélt nach wie vor den Faktor
(4.18) mit r und s vertauscht. Figt man jetzt den Term

i — el (v —m)t*

o (vy — w,)

zu diesem Faktor hinzu, so iiberzeugt man sich, dass dieser Zu-
satz keinen Beitrag zu zeitunabhéngigen Matrixelementen liefert,
wenn das s-te Teilchen nicht strahlen kann. Da ¢ eine, im Ver-
gleich zu %, — w, verschwindend kleine Grosse bedeutet, so gilt
nach wie vor die Energierelation (4.19a), welche wieder gestattet,
das mit Zusatzterm versehene (s und r vertauscht) (4.18) als
Integral iiber df" von # bis — oo auszudriicken. |

Der in (4.22) auftretende Operator (4:23) enthalt also nur die
Grenze — co und ist, gemiss der Definition (1.10) der Operator des
retardierten Potentials des r-ten (strahlen kénnenden) Teilchens %).

5. Ableitung des Wechselwirkungsoperators im gewoéhnlichen Raum.

Die Darstellung der Materie durch die Koordinaten von n
Raumpunkten ¢° ist nur dann moglich, wenn die Teilchenzahl
der Materiequanten erhalten bleibt. Das ist aber, wie das Experi-
ment und die Theorie zeigen, nicht der Fall {Paarerzeugung).
Man griff daher zu der Felddarstellung der Materie, deren ein-
fachste Form die Darstellung durch einen Schroedinger’schen Feld-
skalar q(z) ist. Seine Quantisierung ist von PAurr und Wgeiss-
KOPF®) angegeben worden. Eine andere Moglichkeit (die einzige,
welche den Halbzahligen Spin der Materiequanten vermittelt) ist

16
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die Dirac’sche Darstellung durch einen vierkomponentigen Feld-
spinor ¢*(z) («=1,2,8,4). Die Quantisierung des Diracfeldes
bringt gewisse Schwierigkeiten mit sich (Lochertheorie). In einer,
von MajoranNa®) vorgeschlagenen, Quantisierungsmethode tritt
diese Locherdarstellung nicht explizit in Erscheinung.

Die Schroedingergleichung (3.13) kann auch bei Felddar-
stellung in der Form (4.1) zerlegt werden. Nur sind E und V
nicht mehr Summen von 7 Termen R* und V3, sondern Raum-
integrale von gewissen Dichten

R=[dz*R{) V= [dz33 @)t (5.1)

Die Uberlegungen bis zu Formel (4.4) behalten ihre Giiltig-
keit*). (4.4) selbst 1st hingegen durch die Forderung zu ersetzen,
dass ein Operator U(z, y) existiert, fir den gilt

BE, hyt = [ AP UE, §)y° (5.2)

Gl. (4.6) enthilt dann an Stelle der Doppelsumme iiber U™ ein
Doppelintegral iber den Operator U (z, 7). Entsprechend der
Funktion 4 (t'...#*) fithrt man ein Funktional ¢ (¢t(Z)) ein, welches
der Gleichung:

7/

([d&sa(:z — ) RE) + [dEE —7) BE, UD))

oo
[= gt tega = 0 H.S
T3 Ot(y))w (5:5)

gentigt. Dabeir soll d(Z) vorerst noch einen endlichen Bereich
ausfillen. Die zeitfreien Eigenfunktionen nullter Ndherung u der
Gleichung (5.8) sind dann die Eigenfunktionen des Operators,
welcher der in einem durch die ¢-Funktion um den Ort ¥y defi-
nierte Volumen enthaltenen Energie der Materie entspricht. ¢ ()
1st, analog der ,,Partikelzeit, als ,,Lokalzeit'* zu bezeichnen. Man
kann nun leicht die weiteren Rechnungen in voller Analogie zum
vorhergehenden Paragraphen durchfiithren und erhélt nach dem
Ubergang zur d-Funktion fiir den Wechselwirkungsoperator statt
(4.22)

| U= —%fdﬁ{J(E)A(w)Jr(S &), 4@

0x

) ) conj.] (5.4)
ro=ct
mit

Afa)= [ dyo [ 4G Ty Dz —y). (5.5)

*) Die Schroedingerfunktion v ist natiirlich jetzt Funktional von A(z)
und ¢(x).
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Dabei sind J(y) und S(y) wieder die retardierten Ladungsopera-
toren nullter Néherung (4 = 0), welche sich aus den Operatoren
J(y) und S(y) durch

J(y) — el B (yy—ct)/he J@)6~—?JR(y0~ct)/hc (5'6)

ergeben. Der Faktor 1/4 in (5.4) kommt davon her, dass Z und ¥
iiber den ganzen Raum integriert werden und somit jedes Volum-
element doppelt geziahlt worden ist. Eine Absonderung des Selbst-
energieterms, die in (4.22) durch Auslassen der Terme r = s ge-
schieht, wird hier natirlich unmdoglich. Ausser (5.4) erhélt man,
wegen der Nichtvertauschbarkeit der Ladungsoperatoren mitein-
ander, noch Glieder, welche dem Quadrat der Feldoperatoren
proportional sind, und welche zu Selbstenergie, Doppelabsorption
und -emission und Comptoneffekt beitragen.

6. Verallgemeinerung auf mehrkomponentige Felder.

Die Verallgemeinerung auf mehrkomponentige Tensorfelder
kann formal einfach dadurch erhalten werden, dass 4, J und S;
weitere Tensorindices erhalten, z. B. fiir ein Vierervektorfeld A4,,
J; und S;.

Dann wird aber die Energie W ihren positiv definiten Charak-
ter verlieren. Dem kann nur dadurch abgeholfen werden, dass
man Nebenbedingungen einfiihrt.

Fir den Fall | = 0 lautet diese Nebenbedingung im materie-
freten Raum bekanntlich?)

(‘), A) p=0. (6.1)
0x

Sie ist mit sich selbst und mit ihrer konjugiert komplexen (d.h. fir
zwel Ereignisse z und y) vertriglich.

Fir den Fall [ 4 0 1st es nicht moglich, eine Nebenbedingung
zu finden. Fiihrt man aber, neben dem Feld A; noch ein skalares
Feld B ein, das einer Feldgleichung vom Typus (0.1) mit demselben
| geniigt, so ergibt

(( 2 A)+1B)w:0 6.2)

ox’
eine positiv definite Energie und ist mit sich selbst und mit seiner
konjugiert komplexen vertauschbar.
Bei Anwesenheit von Materie sind die Nebenbedingungen in

bestimmter Weise abzuindern, damit sie im Laufe der Zeit ¢
erhalten bleiben.
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Aus (6.1) folgen in bekannter Weise die Maxwell’schen Glei-
chungen. Sie besagen u. a., dass emn Photon neben seinem Im-
puls einen weiteren Freiheitsgrad besitzt: die Polarisation. Diese
1st nur zweler Werte fihig (z. B. links- und rechtszirkular), resp.
das Photon hat nur zwei Einstellmoglichkeiten des Spins. Aus
(6.2) folgen gewisse Maxwell-dhnliche und von Procal?) disku-
tierte Gleichungen: Das Feld kennt drei linear unabhéngige Polari-
sationsformen, welche einem Teilchen mit drer Einstellmoglich-
keiten des Spins entsprechen. Die Eigenwerte des Spins sind
natiirlich die ganzzahligen Vielfachen h, 0 nnd —h von h.

In einem zweiten Teile soll das Procafeld als Anwendung
der vorgeschlagenen Methode behandelt werden.

Wie mir Herr Dr. N. Kemmer freundlicherweise mitteilt,
sind von ithm selbst und von anderen Autoren!!) verschiedene
Arbeiten im Erscheinen, welche das Procafeld und seine Anwen-
dung auf die Wechselwirkung zwischen Neutronen und Protonen
behandeln.

Der Vorteil der vorliegenden Methode legt darin, dass sie,
ohne explizites Eingehen auf die Quantenstruktur der Felder
und ohne spezielle Annahmen tber die Darstellung der Materie,
die Berechnung der retardierten und nattrlich auch der nicht-
retardierten Wechselwirkungsterme gestattet.

In Ubereinstimmung mit Kemmer scheint es mir moglich,
dass ein komplexes Procafeld (dessen Teilchen ,,schwere Elek-
tronen’’ und ,,schwere Antielektronen®* sind) und ein Proca-
feld (dessen Teilchen ungeladen sind) die Kernkréfte vollstindig
beschreibt.

Institut de Physique, Université de Genéve.
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