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Die Wechselwirkungskräfte in der Elektrodynamik und in der
Feldtheorie der Kernkräfte. (Teil I)

von E. C. G. Stueekelberg.
(21. II. 38.)

Inhalt: Es wird gezeigt, dass die Quantentheorie der Wellenfelder auf die
gleichen Ausdrücke für die Wechselwirkung zwischen Ladungen führt wie die
klassische Behandlung der retardierten Potentiale.

Der Wechselwirkungsoperator hat folgende Form: Retardiertes oder
avanciertes Potential der einen Ladung am Orte der zweiten mal zweite Ladung. Kann
eine dieser beiden Ladungen in erster Näherung schon Strahlung aussenden, so
muss das retardierte Potential dieser Ladung oder aber das avancierte Potential
der andern Ladung gewählt werden.

Der vorliegende erste Teil enthält die vollständige Diskussion eines skalaren
Feldes. Die Verallgemeinerung auf ein Vierervektorfeld ist nur kurz gestreift
und wird in einem zweiten Teile behandelt werden.

Einleitung.

Obwohl die Quantentheorie der Wellenfelder grosse innere
Widersprüche enthält, ist sie zur Zeit dennoch das einzige brauchbare

Mittel, um die korpuskulare Natur der Strahlung und der
Materie zu beschreiben.

So folgt aus der Quantenelektrodynamik einerseits die
Existenz diskreter Lichtquanten, d. h. das Ergebnis, dass Strahlung
der Frequenz k0c nur in Beträgen hk0c emittiert oder absorbiert
werden kann.

Andererseits lässt sich aus ihr das klassische Ergebnis der
retardierten Wechselwirkung zwischen zwei Ladungen ableiten.

In vielen Fällen interessiert uns nur die zweite Eigenschaft
des Feldes. Da diese retardierten Wechselwirkungen die Planck'sche
Konstante nicht enthalten, so muss es möglich sein zu zeigen,
dass alle aus einer Quantentheorie der Wellenfelder folgenden
Wechselwirkungsgesetze identisch sind mit den entsprechenden
klassischen Ergebnissen.

Wir wollen dies an einem skalaren Felde A beweisen, dessen

Feldgleichung die Form hat:

0-l2)A ^-inJ. (0.1)

A(x) nennen wir in Anlehnung an die Elektrodynamik
Potential und J(x) die Ladung, x ist der Vierervektor des Ortes mit
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den Komponenten x0 et, und xx, x2,x3, welche drei letzteren wir
mit x bezeichnen. Die Wellengleichung (0.1), deren statische
Lösung für eine ruhende Punktladung am Koordinatenanfangspunkt

p—lr
A -— (0.2)

r
lautet, bildete den Ausgangspunkt der Feldtheorie Yukawas1),
welche die Kernkräfte aus der Existenz eines neuen Feldes erklärt,
dessen Partikel (welche ihm die Quantentheorie der Wellenfelder
zuordnet) die Masse hl\c haben. I ist also die reziproke Compton -

wellenlänge dieser neuen Partikel. Aus der Reichweite der
Kernkräfte ergibt sich ihre Masse grössenordnungsweise zu 100
Elektronenmassen. Wir werden im folgenden sehen, dass die Existenz
geladener und ungeladener Partikel gefordert werden muss. Die
geladenen Partikel wurden von verschiedenen Autoren in der
kosmischen Strahlung beobachtet. Näheres hierüber findet sich
in Notizen von Yukawa1), Kemmer, Bhabha und vom Verfasser2).

1. Das retardierte und avancierte Potential.

Wir suchen eine Lösung von (0.1). Dazu entwickeln wir
J(x) in ein Fourierintegral mit dem Integranden J(k), wobei k
den Vierervektor mit der (reellen) Zeitkomponente k0 und den

Raumkomponenten k (kx, k2, k3) bedeutet. dxi, dfc4und dx3, dks
bedeuten die vier- und dreidimensionalen Volumelemente im Raum
resp. im Raum der Wellenvektoren. Es sei also

J(x) ^fdkieUk'x)J(k) (1.1)

Integrale ohne Grenzen sind immer vom — oo bis + co zu
erstrecken.

Entwickelt man A(x) in analoger Weise, so folgt durch
Koeffizientenvergleich für die Koeffizienten A(k) die Beziehung:

(k,x) und (k,k) sind skalare Produkte von Vierervektoren.
Wir bezeichnen als Eigenvektoren des Feldes solche Vektoren,

deren Zeitkomponente der Beziehung

fc0 ±fc0(fc) ±]/(k,k).+ l2 (1.3)

gehorcht. Dabei ist (fc, fc) das skalare Produkt des Raumanteils
von k mit sich selbst.
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Wir setzen voraus, dass J(k) für reelle fc-Werte keine
Singularitäten besitze. Dann besitzt der Integrand A (fc) im Ausdruck
für A(x) auf der reellen fc0-Axe je eine Singularität bei fc0= +fc0(fc).
Da J(k) voraussetzungsgemäss keine Singularitäten in unmittelbarer

Nähe der reellen fc0-Axe besitzt, so können wir den
Integrationsweg über fc0 von — co bis + co in (1.1) schon vor dem
Koeffizientenvergleich deformieren. Bezeichnen wir diesen
deformierten Weg durch so können wir als Lösung von (0.1)
schreiben :

A<- •>(?/) =fdk3fdk0A(k)eHkl,)

JdxiJ(x) TX~-(y — x). (1.4)

Dabei bedeutet D(---^(z) eine Funktion, welche durch das Fourier-
integral

!><••>(z) —1— f el <i%2) - dfc4 (1.5)W (2n)3J^ (k,k)+l2 l '
definiert ist.

Zur Ableitung der zweiten Identität in (1.4) ist von der
vierdimensionalen ^-Funktion Gebrauch gemacht

ô(k) (2n)-ifdxieiik'x) (1.6)

mit der Eigenschaft

/dfc4/(fc)ó(fe)-/(0) oder^O, (1.7)
K

je nachdem ob der Punkt fc, 0 innerhalb oder ausserhalb des

Integrationsbereiches K von (2.7) liegt.
Wählt man als Integrationswege die beiden durch (+) und

(—) bezeichneten Wege, die ganz in der positiven resp. negativen
Halbebene verlaufen (Fig. 1), und berücksichtigt, dass

fdk0^=lim(-2i Jdk0 **£*• + f^ü)
(±) "-O oc=0 V ^ ""0 J "0 /-a(±)

-in (-r% ±l); {--% 0 für x0 0
Wxo\ I \Fol

(a ist hiebei eine positive kleine Grösse)

ist, so erhält man folgenden Ausdruck für E<--):

1 1
œ

y- \% I »
D<-->(a:) tf--)(x0)———fd\k\*--J-(cos (|fc| \x\ —k0x0)

0
— cos (|fc| ]5 |+fc0x0)) (1.8)
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mit

+
1 0 >
1/2, </<-> — 1/2 für a;0=0
0 -1 <

In Formel (1.4) ist daher ^4(+) nur durch die Ladungsverteilung
der Vergangenheit und ^4(~' nur durch diejenige der Zukunft
bestimmt. Sie werden, in Verallgemeinerung der Elektrodynamik,
als retardiertes und avanciertes Potential bezeichnet. D(+> und
D(-) selbst sind das retardierte resp. avancierte Potential einer
nur zur Zeit x0 0 von null verschiedenen Punktladung am
Koordinatenanfangspunkt, deren Raum-Zeitintegral den Wert eins
hat. Ihrer Ableitung gemäss sind D(+> und Dt_) in variante
Funktionen.

k0-El ent

M-^

(X
*» h

Fig. 1.

Für l 0 (elektrodynamischer Fall) wird

D<±>(z)=TJ--(5(iS| + x0)
\x\

(ò eindimensionale ô-Funktion)

Wir definieren noch die ebenfalls invariante Funktion

D(x) =ZX->(z)-D<+>(a;)

— — / d Ifcj -=— cos (Ifcl \x\+k0x0) — cos(|fc| | x\— k0xo)) (1>9)
\x\ n J kn v
I

: q 0

welche für / 0 in die Heisenberg-Pauli'sche invariante ó-Funk-
tion übergeht. Mit ihrer Hilfe schreiben sich retardiertes und
avanciertes Potential in der Form:

A(±) (y) fdx3 jdx0D(y — x) J(x). (1.10)
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Im allgemeinen sind also retardiertes und avanciertes Potential

zwei verschiedene Ausdrücke. Es gibt aber spezielle
Ladungsverteilungen, deren Fourierkoeffizienten J(k) für solche fc

verschwinden, welche Eigenvektoren des Feldes sind. In diesem
Falle ist ein Ausweichen des Integrationsweges in (1.4) nicht
notwendig, d.h. beide Integrationswege geben denselben Wert- Das
avancierte Potential dieser speziellen Ladungsverteilungen ist
gleich dem retardierten.

M0LLER3) zeigte, dass die elektrodynamische Wechselwirkung
zweier Elektronen in der Quantentheorie durch folgenden
Wechselwirkungsansatz berücksichtigt werden kann: Man berechne das
retardierte oder avancierte Potential des ersten Elektrons am Orte
des zweiten und multipliziere es mit der Ladung des zweiten
Elektrons. Für freie Elektronen führt diese Überlegung tatsächlich

auf einen symetrischen Ausdruck, da die Matrixelemente des
Stromes in ihrer Fourieranalyse keine Eigenvektoren des Feldes
enthalten.

Aus dem Meiler'sehen Ansatz lässt sich alsdann die Breit'sche
Wechselwirkung4) durch Entwicklung nach 1/c gewinnen, deren
Reduktion auf die grossen Komponenten der Diracfunktionen
tatsächlich die richtige Spin-Spin- und Spin-Bahn-Wechselwirkung
der Pauli'schen Spintheorie liefert.

Erinnert man sich der Vorschrift, dass dieser Wechselwirkungsansatz

nur als Störung erster Näherung bei Eigenwertberechnungen
verwendet werden darf, so folgt, dass nur statische
Ladungsverteilungen in Betracht kommen und somit retardiertes und
avanciertes Potential tatsächlich gleich werden.

Hulme5) hat später gezeigt, dass diese Moller'sehe Vorschrift
jeweils dann durch eine strengere zu ersetzen ist, wenn das eine
Teilchen strahlen kann: Dann muss nämlich das retardierte
Potential dieses strahlenden Teilchens am Orte des zweiten
Teilchens multipliziert mit der Ladung des zweiten Teilchens gewählt
werden, oder aber das avancierte Potential des nichtstrahlenden
Teilchens am Orte des strahlenden multipliziert mit dessen

Ladung.
Wir werden im folgenden diese Hulme'sehe Verschärfung der

Moller'schen Vorschrift als Resultat allgemeiner quantentheoretischer

Überlegungen wiederfinden. Ihr klassisches Analogon ist
eben dieses Auftreten von Eigenvektoren des Feldes in der
„gemischten Ladungsdichte" des einen Teilchens.
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2. Lagrange und Hamilton Funktion des Feldes.

Das Feld und die Ladung sollen, der Allgemeinheit halber,
als komplex angesehen werden. Dann folgt aus der Lagrangefunktion

L j dx£
mit der Lagrangefunktionsdichte

1 (idA* dA\ ,„•,„ A 1 / ,„, T IÒA* n\ \

(2.1)
(conj. bedeutet den konjugiert komplexen Ausdruck der Klammei-
terme) in der üblichen Weise (wenn man A und A* als zwei
unabhängige Funktionen betrachtet) die Formel (0.1). An Stelle von
J steht der Ausdruck

'"-j-(tp s) (2'2)

Bezeichnet man J mit Ladung, so ist (aus Dimensionsgründen)
der Vierervektor S als Polarisation aufzufassen. (2.2) ist also die
effective Ladung in Gl. (0.1).

Die konjugierten Momente folgen in der üblichen Weise zu

pòL^d^__/J ò£x_ 1 dA* 1
g.

oi ^ dî' döi 8nc dx0 2c °

und entsprechend für P*. Die Hamiltonfunktion errechnet sich
nach der Beziehung:

H=-L + f dx3(ÀP + Â*P*) IF+U. (2.4)

Dabei sind IF und F die Volumintegrale von Energiedichten ^£>
und ®D, welche ihrerseits die Form

1 / / /) A* d A \ \
tyV — l(^t-, -^) + l2A*A + 8nc2P*P (2.5)

8 tt y \ d £ dx
und

sD=-^[.4*J+(<^4*, SW conj.\-4 nc (PS0+conj.) (2.6)

haben*).

*) Formel (2.4) ergibt ausser dem angeschriebenen W und V noch einen,
nur von der Materie abhängigen (und daher für die Feldgleichungen belanglosen)
Zusatzterm der Form

+ 2nf dxsS0*S0 (2.6a)
Dieser Term ist aber, wie im zweiten Teile gezeigt werden wird, notwendig, damit
die Bewegungsgleichungen der Materie sinnvoll werden.
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Die kanonischen Gleichungen folgen durch die, im zweiten
und dritten Glied der Gl. (2.3) definierte, funktionelle Differentiation

des Hamiltonfunktionals nach A* resp. P zu

und

Ä t) TJ
=8tîc2P*-4

ÔP

ÔH

ÔA* -8>-<v+4

(2.7)

** --v/ï ö^ - nA-A-(J-(-^,S)) (2.8)

Differentiation nach der Zeit von (2.7) und Elimination von P*
aus (2.8) gibt dann tatsächlich die Gl. (0.1) mit der in (2.2)
definierten effektiven Ladung an Stelle von J.

3. Quantisierung der Feldtheorie.

Die Quantisierung der skalaren Feldtheorie wurde von Pauli
und Weisskopp6) durchgeführt. Die Operatoridentitäten

P (i/h)[H,P}=--ôHloA
À (i/h)[H,A] - ÒH/ÒP

{ ' '

folgen für jedes analytische Funktional H der Operatoren P und
A, wenn gilt

[P(x),A(x')] (h/i)ô(x-x') (3.2)

und wenn gesternte Operatoren A* und P* mit nichtgesternten
A und P vertauschbar sind. Dabei bedeutet eine eckige Klammer

[a,b] ab — ba.

Somit folgen die Bewegungsgleichungen (2.7) und (2.8) auch
für die quantentheoretischen Operatoren, wenn wir für H den
Operator verwenden, welcher aus den klassischen Gleichungen
(2.4), (2.5) und (2.6) folgt, nachdem man darin die P*, A*, P
und A durch Operatoren ersetzt, welche (3.2) erfüllen.

Dasselbe gilt noch, wenn wir statt V einen Operator K
verwenden, für welchen gilt

(W[K,P*]=-oZ/0^ |(j-(-^!§)) m
(i/h)[K,Ä\ =ÔK/ÔP =-4ncS0

Diese Gleichung kann auch als Definition der Ladungsgrössen J
und S angesehen werden.
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J und S sind Funktionen der kanonischen Variablen, welche
den Zustand der Materie beschreiben. Bezeichnen wir diese mit
p und q, so sollen aus

p (i/h)[K,p]
q =(i/h)[K,q] &A>

die (klassischen) Bewegungsgleichungen für die Materie folgen.
Das quantentheoretische Problem besteht in der Lösung der

Schroedinger-Gleichung

H+*-£)VW-0. (8.5)

Wir folgen einer von Dirac, Fock und Podolski7) vorgeschlagenen

Methode:
Es wird eine Funktion resp. Funktional W(T,f) eingeführt,

für welche gilt
W'(t,t) W(t) (3.6)

und ein Operator K'(T,t), der ebenfalls der Beziehung

K'(t,t)=K (3.7)

genügt. In (3.7) wird angenommen, dass der Operator K die Zeit t

nicht explizit enthalte. K' wird dann im allgemeinen explizit von
T und t abhängen. Genügt nun die Funktion W simultan den
beiden Gleichungen :

CTW- (w + Ì-^W'(T,t) 0 (3.8)

CtW (K'(T,t) +Y\±)jW'(T,t) - 0 (3.9)

so folgt daraus die Schroedingergleichung für das durch (3.6)
definierte einzeitige W mit H W + K.

Damit nun die beiden Gl. (3.8) und (3.9) simultan lösbar
sind, müssen die Operatoren CT und Ct vertauschbar sein. Diese
Bedingung

[CT,Ct-\ [W,K'(T,t)] +K dK'd{y't] 0 (3.10)

stellt eine Differentialgleichung für die Abhängigkeit des Operators

K' von T dar. Ihre Lösung unter Berücksichtigung der
Anfangsbedingung (3.7) ist

K'(T,t) eiira-D/AXe-iwa-m (311)
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Die Gl. (3.8) lässt sich formal lösen durch

W'(T,t)=e-iWTlhxp(t). (3.12)

Für die nur von einer Zeit abhängige Funktion xp(t) gilt dann die
aus (3.9), (3.11) und (3.12) folgende Schroedingergleichung

K"(t) + ^-^jxp(t) 0 (3.13)

wo K" (t) den Operator

K"(t) =eiW'ihKe-iW,ih (3.14)
bedeutet.

Der Hamiltonoperator K" in Gl. (3.13) ist also der ursprüngliche

Operator K, in welchem die Operatoren A(x) durch Operatoren

A" (x ,t) ersetzt sind, die sich durch dieselbe untare
Transformation (3.14) aus den A(x) errechnen lassen wie K"(t) aus K.
Sieht man vom Operatorcharakter der A ab, so ist (3.13) die
Schroedingergleichung der Materie unter dem Einfluss eines

gegebenen, explizit von der Zeit t abhängigen Potentialfeldes
A"(x,t).

Dasselbe gilt für P. Um eine explizite Form für die neuen
Operatoren A" und P" zu haben, entwickeln wir A" in die Reihe

d A" t2 d2 A"
A"(x,t)=A"(x,0)+t(-*t-(x,0) + Y-± (2,0)+

Dabei gelten folgende Beziehungen, welche aus (3.14) folgen:

A"(x,0) A(x)

^"-(5,0) (i/h)[W,A(x)] - *-J 8nc2P*(x)

^dt2 (E''0) (WW^H Snc2(i/h)[W,P*]

ÔW=,-8nc2^-Y --^c2(A-l2)A(x)
ÔA*

v ' w
usw.

Führt man den, nur auf den Parameter x wirkenden,
symbolischen Operator

b(x) ^Y^T-tYJ2 (3.15)

ein, so erhält man allgemein :

d2n A"
-d-t^(x,0)^-(icb(x))^A(x)

2„^ (5,0) =8nc2(icb)~1(icb)2n+1P*(x). (3.16)
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Zur Abkürzung der Reihenentwicklungen des symbolischen
Operators b führen wir die Ausdrücke cos (6ct) cos (bxQ) und
sin (bct) sin (bx0) ein. Dann kann man schreiben:

A"(x,t) A(x) cos (b(x)x0)A(x)
+ 8nc2b(xyisin(b(x)x0)P*(x). (3.17)

Wir werden im folgenden jeweils für A" (Je ,t) das Symbol A(x)
verwenden, wo x wieder den Weltvector bedeutet.

Diese vom Weltvector x abhängigen Potentiale gehorchen
bestimmten Vertauschungsrelationen. Seien x und y zwei Ereignisse,

so gilt

[A(x),A(y)]=[A(x)*,A(y)*\ 0 (3.18)

da A(x) und P(S)* in (3.17) vertauschbar sind.
Benützt man die Vertauschungsrelation (3.2) und die dazu

konjugierte, und schreibt man die (S-Funktion in Form ihrer
Fourierentwicklung (analog (1.6))

0(5) (2n)-3fdk3ei^
so folgt bei Berücksichtigung von

b(J)ei(î,S fc0(fe)e*OM) (3.19)

(wo fc0(fc) wieder die (positive) Quadratwurzel aus (1.3) bedeutet)
die Vertauschungsrelation

[A(x)*,A(y)] -2hc D(x-y). (3.20)

Dabei ist D wieder die, durch ihre Fourierdarstellung (1.9)
definierte invariante Funktion.

Das in K eventuell vorkommende P" (x ,f) kann durch eine
(3.17) analoge Reihe ausgedrückt werden. Man findet dann, dass

P"(x,t) P(x) - - dÄ"^'t)* (8 n c)- i dA (x)* (3.21)
O Tb C UZ U Xn

Hat der Wechselwirkungsanteil Feld-Materie von K speziell die
Form V, deren Dichte durch (2.6) gegeben ist, so ist die
entsprechende Dichte 93"(5,<) durch den invarianten Ausdruck

95"(5, t) —1 (A(x)*J(x) + (ÒAd{*]* S(30) + conj.) (3.22)

gegeben. J(x) und S(x) sind die (skalare) Ladung und der Vierervektor

ihrer Polarisation am Orte x. Falls sie, wie in der Dirac-
schen Theorie, nicht von den Potentialen A abhängen, so tritt in
ihnen t nach wie vor nicht explizit auf.
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4. Ableitung des Wechselwirkungsoperators im Konfigurationenraum.

Beschreibt man die Materie nicht durch ein Materiefeld,
sondern durch die Koordinaten qs (s 1, 2, n) von n Teilchen
(Konfigurationenraum), so sind die Schroedingerfunktionen W, W
und xp, welche wir im Paragraphen 3 verwendeten, Funktionale der
Funktionen A(x) und Funktionen der qs. Der Hamiltonoperator
der Materie K" wird sich dann in eine Summe EKS zerlegen, wo
Ks (neben Feldoperatoren) nur auf qs wirkende Operatoren
enthält. Jedes Ks selbst zerfällt in einen Term Ra(qs), welcher nur
auf qs wirkende Operatoren enthält und in einen Term

V(q;A"&,f)) V{t),
welcher ausser auf qs wirkenden Operatoren, noch Feldoperatoren
enthält, die gemäss dem vorhergehenden Paragraphen die Zeit t

explizit enthalten.
Die Schroedingergleichung (3.13)

i dt! Y \ % dt/Y v ;

(worin K" die Summe der Ks und R resp. V die Summen aus
den Rs resp. Vs bedeuten) lösen wir durch ein Näherungsverfahren.
Dazu denken wir uns den Störungsterm V proportional einer kleinen
Zahl, nach der wir entwickeln.

Es sei also
y> ip° + xp1 + xp2 + (4.2)

wo xpm der m-ten Potenz dieser kleinen Zahl proportional sei.
Setzt man die Faktoren der einzelnen Potenzen null, so erhält
man aus (4.1) das folgende Gleichungssystem:

i dt)

R + A JL) «x + Vxp° 0 (4.3)
% dt/

à

dt
P + A ö

)xp2 + VxpO 0.

Die Lösung xp1 + xp1 + xp2 der drei angeschriebenen Gin. (4.3)
ergibt somit die zweite Näherung der Lösung von (4.1). Sie
enthält neben der Einwirkung von Materie auf Feld, bereits die
Rückwirkung des durch die Materie erzeugten Feldes auf diese
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selbst. Somit ist die Wechselwirkung zweier Teilchen aufeinander
in ihrer ersten Näherung enthalten. Gelingt es uns, eine Relation

r

aufzufinden, so kann man die beiden letzten Gl. des ausgeschriebenen

Systems (4.3) durch Addition in die Gleichung

h d
R + — -— (xp1 + W2) + (F +2 S u") W° 0 (4-5)

% OX ST
zusammenziehen.

Entwickelt man die Lösung der Gl.

R + V + y, 2 ü» - -r ~) y> - - 0 (4.6)
~7 ~s"1 i dt/

wo man sich F und SETJrs mit demselben kleinen Parameter
multipliziert denkt, so erhält man als erste Gleichung (für xp°)

die erste Gl. von (4.3), während man für die erste Näherung xp1

(wo die römischen Indices die Entwicklung nach dem Störungs-
term V + ZZTJrs in (4.6) bedeuten) die Gl. (4.5) mit y»1 statt
xp1 + xp2 findet. Somit ist die erste Näherung von (4.6) identisch
mit der zweiten Näherung der richtigen Gl. (4.1). Die höheren
Näherungen von (4.6) führen aber selbstverständlich zu falschen
Ausdrücken für xp, d. h. solchen, welche der Schroedingergleichung
des Problems nicht genügen.

Der Term
TJrs JJsr> r-s (4.7)

stellt dann offenbar die Wechselwirkungsenergie erster Näherung
zwischen den Teilchen r und s dar.

Zur Auffindung einer Relation (4.4) betrachten wir das
Gleichungssystem der «-Gleichungen:

(R* + V*(t°) +
h d \ xp(t1..t°..t") 0. (4.8)

Finden wir die Lösung dieses mehrzeitigen Systems, so stellt die
Funktion

xp(t,t,,,t) xp(t) (4.9)

eine Lösung des Problems (4.1) dar. ts ist die „Partikelzeit" der
s-ten Partikel. Tatsächlich sind aber diese Gin. (4.8) nicht simultan
lösbar. Näheres hierüber findet sich bei Bloch8). Wir werden
aber sehen, dass sie in erster Näherung lösbar sind und uns
tatsächlich eine Relation (4.4) vermitteln werden.
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Dazu muss die Existenz eines Lorenzsystems gefordert werden,
in welchem Rs keine explizit zeitabhängigen Kräfte enthält. Dies
ist bei freien Teilchen natürlich der Fall. Ebenso im Ruhsystem
des Atomkernes eines gebundenen Elektrons. Es existieren dann
Eigenlösungen, für welche gilt (wenn f(z) eine beliebige, durch
Reihenentwicklung darstellbare Funktion von z ist)

/(Ps)uVl..v„ uVl..Vn-f (hvs). (4.10)

Die uVg sind von den ts unabhängige Funktionen. Die
zeitabhängigen Funktionen

vVl..vn uVl:.Vne-iS^ (4.11)

erfüllen dann die (4.8) in nullter Näherung.
Wir betrachten jetzt den Ausdruck

f(Rs + ~-^w(tK.t-), (4.12)

wo w eine beliebige Funktion der qs und ts und Funktional der
Feldvariablen ist, die in bezug auf ihre Zeitabhängigkeit in der
Form

w^yi..^e~'^^swa>1..COn (4.12a)
m, œn

darstellbar sei.

Dann wird (4.12) die Summe

*2, .y^e- Z<»sts f(Us~hœs)wmi..mn.
CO, con

Das Integral hat dann folgenden Sinn:

fdq°...-oJdq°v*Vi..vj(R°+hi .A)W

Jdq^--^~^iV^)t\f(R^hcoosruVl..vJ*wWl..mn.
CUj con

Dabei ist /* der zu / hermiteisch konjugierte Operator. Ist f(z)
eine reelle Funktion, so ist /* f(Rs — h co*), da Rs ein hermi-
teischer Operator ist. Somit kann für das Integral geschrieben
werden :

Jdq\..^Jdq^..^f(h(vs-(as))ei^^U)r)iru\..Vnwœx..VJn (4.13)
co, a>„

Da hiemit jede, durch Reihenentwicklung darstellbare, Funktion
des Operators Rs+hdfidts definiert ist, können die Gleichungen des
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zu (4.3) analogen Systems, welches durch Entwickeln von xp in (4.8)
erhalten wird, in erster Näherung durch

vi - 2 (W + % ^y V(V) xpo (4.14)

gelöst werden.
Wir haben andererseits die Beziehung

V»0 (**..*•) =e-*2'Br(<r-<)^0(<) (4.15)

Sie ist leicht zu verifizieren, wenn man in Betracht zieht, dass
xp° eine Linearkombination von Eigenfunktionen uv v sein muss,
deren Koeffizienten die Zeitabhängigkeit exp (—%Zvrt) haben.

Der Operator

U" _{(# + AJL\~V'(t') V^e-^^^M (4.16)

hat also tatsächlich die Eigenschaft (4.4).
Gemäss der Ableitung des Operators Urs dürfen wir diesen

nur in seiner ersten Näherung verwenden. Somit interessieren
uns nur solche Matrixelemente, welche zeitunabhängig sind.
Berechnet man das vorerst mehrzeitige Matrixelement*)

UZ=fdq\.fd<rfdA -»V. .*„{»¦+ ^)~V'(f)7'(fK. -v. (4-17)

und verwendet man die Beziehung (4.13), so enthält es den Faktor

i ei(vr'-cor)tr ei{v,'-o>s)e
h i(vr — ^r)

Die costs kommen von der Entwicklung von

gemäss (4.12a).
Mit Hilfe des convergement gemachten Ausdruckes

0i(v+iy)t f -,,-,,lim f — lim / dte*(»±*y)'
y=0 t(» ±ty) y=o ./

kann dieser Faktor in ein Integral umgeformt werden und man
erhält für das (mehrzeitige) Matrixelement die Form

±00

üs;r(tl.. tny-=jdtrfdq\ fdcffdA »;,'.'.„»'
*

V*(t°)Vr(V)vVl. .Vn

ir
" " (4.19)

*) JdA bedeutet Integration über den Funktionenraum A(x) z. B.
Raum der Lichtquanten).
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Berücksichtigen wir noch die Bedingung, dass nur zeitunabhängige
Matrixelemente eine Rolle spielen, so bedeutet das, dass nur
Terme deren Exponenten der Beziehung

(",' — «>«) + (V — wr) + 2 ("«•' ~~ "») ° (4.19a)

gehorchen, verwendet werden. Wählt man die vVl,,Vn in der
üblichen Weise als orthogonales Funktionensystem, so muss vm' vm

sein, da für m^r.s der Operator keine auf qm wirkenden Operatoren

enthält. Daher kann (V— wr) überall durch —(vj—cus)
ersetzt werden. Das bedeutet, in Gl. (4.18), dass das Integral
über dtr in (4.19) durch

±oo

- [df
t«

ersetzt werden kann. Addiert man also zum Matrixelement von
Usr dasjenige von 77rs um dasjenige des Wechselwirkungsoperators

(4.7) zu erhalten, und macht beim zweiten von dieser
Alternative Gebrauch, so findet man, dass die zeitfreien Matrixelemente

des Wechselwirkungsoperators den Matrixelementen des

Operators ±oo

f dVeiHr(tr~ <)-- [Vs(t), V(tr)]e~ilir(*'"-<) (4.20)
J h
t

gleich sind. Hat nun Vs die Form

Vs -\ [dx3(A(x)*Js(x)) + (dÄ("X^, S*(£))+conj. + Terme in A2

worin Js und Ss die Ladungs- und Polarisationsoperatoren bei
Abwesenheit des Feldes bedeuten (ihre Abänderung bei Anwesenheit
eines Feldes ist durch ,,+ Terme in ^42" berücksichtigt), so genügt
es in (4.20) nur die in A linearen Terme zu berücksichtigen. Die
höheren Terme mitzunehmen, wäre inkorrekt, da wir bei unserem
Näherungsverfahren die kleine Grösse, nach der wir entwickeln,
nur bis zur zweiten Potenz berücksichtigen wollen. Die Ausdrücke
Js und Ss enthalten also keine Feldoperatoren mehr und sind
daher mit den Feldoperatoren vertauschbar.

Wir führen den Operator

J'(y) eiRr(yo-et)lch js^e-%Er(y0-ct)jch (4.21)

ein, dessen Erwartungswert den Erwartungswert der Ladung des
Teilchens s am Orte *y zu der (im allgemeinen von der in der
Schroedingergleichung vorkommenden Zeit t verschiedenen) Zeit
y0/c ergibt (Operator der retardierten Ladung). Der Wechselwir-
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kungsoperator darf dann wegen der Vertauschungsrelation (3.18)
und (3.20) in der Form geschrieben werden

U"+Usr -\ fdx3hs(x)Ar(x)*+(ss(x), ?A'(X>\ + conj.) (4.22)
)x. ct

mit*)'
±00

r (x) fd y0fdy3 lj' (y) D(x~y)^ (& (y), dD(x-y)
dy

Den zweiten Term des Integranden kann man durch partielle
Integration noch umformen, da die D-Funktion auf der
Oberfläche des vierdimensionalen Halbraumes verschwindet, und erhält

± oo

A*{x) f dy0 fdy3Jllt(y)D(x-y), (4.23)

WO

Jlu(y) Jr(y)-(-^ s-(y)) (4.24)

die in (2.2) definieite effektive Ladung des Teilchens r am Orte
y zur Zeit y0/c bedeutet.

(4.23) ist aber nichts anderes als die klassische Formel (1.10)
für das retardierte oder avancierte Potential in operatoriellerForm.

Der Operator (4.22) enthält keine Feldoperatoren mehr und
führt ohne weiteres auf die Moller'sche Vorschrift. Dabei ist
offenbar retardiertes und avanciertes Potential gleich.

Kann aber das Teilchen r strahlen, so bedeutet das, dass
die Funktion xp1 in (4.14) unendlich wird, d. h., dass im Nenner
von (4.18) Glieder mit vr' cor vorkommen. Das ist immer dann
der Fall, wenn die Fourieranalyse des Matrixelementes des
Operators Jr(x) für gewisse Übergänge die im Paragraphen 1

definierten Eigenvektoren des Feldes enthält. Die erste Näherung

*) Im Zeitanteil des skalaren Produktes muss eigentlich stehen:

±œ
à

ifd&S0'(x) fdy0 -dirfdy*(Jr(y)*D.

d. h. djdx0 steht unter dem Integralzeichen nach dy0. Setzt man es, wie in Formel
(4.22), vor das Integralzeichen, so erhält man wegen der Beziehung:

x"-° l dxo U=o I dxi U-0
einen Zusatzterm von der Form

-2nfdx3(Ss0(x)S0r(x)* + conj.),

welcher sich gegen den in der Anm. zu S. 230 (2.6a) erwähnten Term forthebt.
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gibt einen wesentlichen Beitrag zur Störung der Wellenfunktion xp°.

Der Anfangszustand wird exponentiell abklingen. Trägt man dem
schon in der nullten Näherung dadurch Rechnung, dass man an
Stelle von (4.11)

— iY. v tm

vVl. .vn uVl. vn e mfrm • F(— vr+iy, tr)
mit

„, [0 für KO
F(v, t)v ; \e"1 für t>0

schreibt, so lautet, wie man sich durch Fourierdarstellung (oder
Integration nach der Zeit in der üblichen Weise) leicht überzeugt
(4-18)

-Y)- fdtF(vr' - cor + iy, t) • e«V-».)'' (4.18a)

Formel (4.19) bleibt also zu Recht bestehen, wenn man nur das
Vorzeichen — co als obere Integrationsgrenze behält.

Die Formel (4.17) für Urs enthält nach wie vor den Faktor
(4.18) mit r und s vertauscht. Fügt man jetzt den Term

i —ei(vs'-cos)t*
h i (vs' — co.)

zu diesem Faktor hinzu, so überzeugt man sich, dass dieser
Zusatz keinen Beitrag zu zeitunabhängigen Matrixelementen liefert,
wenn das s-te Teilchen nicht strahlen kann. Da y eine, im
Vergleich zu v/ — cos verschwindend kleine Grösse bedeutet, so gilt
nach wie vor die Energierelation (4.19a), welche wieder gestattet,
das mit Zusatzterm versehene (s und r vertauscht) (4.18) als

Integral über df von tr bis — co auszudrücken.
Der in (4.22) auftretende Operator (4.23) enthält also nur die

Grenze — co und ist, gemäss der Definition (1.10) der Operator des
retardierten Potentials des r-ten (strahlen könnenden) Teilchens 5).

5. Ableitung des Wechselwirkungsoperators im gewöhnlichen Raum.

Die Darstellung der Materie durch die Koordinaten von n
Raumpunkten qs ist nur dann möglich, wenn die Teilchenzahl
der Materiequanten erhalten bleibt. Das ist aber, wie das Experiment

und die Theorie zeigen, nicht der Fall (Paarerzeugung).
Man griff daher zu der Felddarstellung der Materie, deren
einfachste Form die Darstellung durch einen Schroedinger'schen Feld-
skalar q(x) ist. Seine Quantisierung ist von Pauli und Weisskopp6)

angegeben worden. Eine andere Möglichkeit (die einzige,
welche den Halbzahligen Spin der Materiequanten vermittelt) ist

16
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die Dirac'sehe Darstellung durch einen vierkomponentigen Feld-
spinor <p(x) (oc 1,2, 8, 4). Die Quantisierung des Diracfeldes
bringt gewisse Schwierigkeiten mit sich (Löchertheorie). In einer,
von Majorana9) vorgeschlagenen, Quantisierungsmethode tritt
diese Löcherdarstellung nicht explizit in Erscheinung.

Die Schroedingergleichung (3.13) kann auch bei Felddarstellung

in der Form (4.1) zerlegt werden. Nur sind R und V
nicht mehr Summen von n Termen Rs und Vs, sondern
Raumintegrale von gewissen Dichten

R^fdx3<2l(x) V f dx3lS(x)t. (5.1)

Die Überlegungen bis zu Formel (4.4) behalten ihre Gültigkeit*).

(4.4) selbst ist hingegen durch die Forderung zu ersetzen,
dass ein Operator ÌX(x,y) existiert, für den gilt

Sß(x,t)xp1 fdyaU(x,y)f° (5.2)

Gl. (4.6) enthält dann an Stelle der Doppelsumme über Ura ein

Doppelintegral über den Operator 21 (x, y). Entsprechend der
Funktion ^(t1...*") führt man ein Funktional xp(t(x)) ein, welches
der Gleichung :

fdx3ò(x-~y)9l(x) + fdx3ò(x -y)<®(x,t(y))

+ ——d- Wo (5.3)
i dt(y)r

y '

genügt. Dabei soll ô(x) vorerst noch einen endlichen Bereich
ausfüllen. Die zeitfreien Eigenfunktionen nullter Näherung u der
Gleichung (5.3) sind dann die Eigenfunktionen des Operators,
welcher der in einem durch die ^-Funktion um den Ort y
definierte Volumen enthaltenen Energie der Materie entspricht. t(y)
ist, analog der „Partikelzeit", als „Lokalzeit" zu bezeichnen. Man
kann nun leicht die weiteren Rechnungen in voller Analogie zum
vorhergehenden Paragraphen durchführen und erhält nach dem
Übergang zur ó-Funktion für den Wechselwirkungsoperator statt
(4.22)

E=-~J&3\j(x)A(x)
mit ±00

A(x)= f dy0 [

-r-(s(x) dÄ{x)) + com} (5.4),(S(x), dx + conj.j^

dy3Jett(y)D(x-y). (5.5)

*) Die Schroedingerfunktion xp ist natürlich jetzt Funktional von A(x)
und q(x).



Wechselwirkungskräfte der Elektrodynamik i. d. Feldtheorie der Kernkräfte. 243

Dabei sind J(y) und S(y) wieder die retardierten Ladungsoperatoren

nullter Näherung (^4 0), welche sich aus den Operatoren
J(y) und S(y) durch

J(y) eiR(y0-et)lhc J(ly)e-iR(yo-ct)lhc (5.5)

ergeben. Der Faktor 1/4 in (5.4) kommt davon her, dass x und y
über den ganzen Raum integriert werden und somit jedes
Volumelement doppelt gezählt worden ist. Eine Absonderung des
Selbstenergieterms, die in (4.22) durch Auslassen der Terme r s

geschieht, wird hier natürlich unmöglich. Ausser (5.4) erhält man,
wegen der Nichtvertauschbarkeit der Ladungsoperatoren miteinander,

noch Glieder, welche dem Quadrat der Feldoperatoren
proportional sind, und welche zu Selbstenergie, Doppelabsorption
und -emission und Comptoneffekt beitragen.

6. Verallgemeinerung auf mehrkomponentige Felder.

Die Verallgemeinerung auf mehrkomponentige Tensorfelder
kann formal einfach dadurch erhalten werden, dass A, J und S,-

weitere Tensorindices erhalten, z. B. für ein Vierervektorfeld At.
Ji und Sik.

Dann wird aber die Energie W ihren positiv definiten Charakter

verlieren. Dem kann nur dadurch abgeholfen werden, dass

man Nebenbedingungen einführt.
Für den Fall l 0 lautet diese Nebenbedingung im materiefreien

Raum bekanntlich7)

,A)f==Q. (6.1)
dx

Sie ist mit sich selbst und mit ihrer konjugiert komplexen (d.h. für
zwei Ereignisse x und y) verträglich.

Für den Fall i + 0 ist es nicht möglich, eine Nebenbedingung
zu finden. Führt man aber, neben dem Feld At noch ein skalares
Feld B ein, das einer Feldgleichung vom Typus (0.1) mit demselben
l genügt, so ergibt

-lß] xp 0 (6.2)
dx

eine positiv definite Energie und ist mit sich selbst und mit seiner
konjugiert komplexen vertauschbar.

Bei Anwesenheit von Materie sind die Nebenbedingungen in
bestimmter Weise abzuändern, damit sie im Laufe der Zeit t
erhalten bleiben.
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Aus (6.1) folgen in bekannter Weise die Maxwell'schen
Gleichungen. Sie besagen u. a„ dass ein Photon neben seinem
Impuls einen weiteren Freiheitsgrad besitzt: die Polarisation. Diese
ist nur zweier Werte fähig (z. B. links- und rechtszirkular), resp.
das Photon hat nur zwei Einstellmöglichkeiten des Spins. Aus
(6.2) folgen gewisse Maxwell-ähnliche und von Proca10) diskutierte

Gleichungen: Das Feld kennt drei linear unabhängige
Polarisationsformen, welche einem Teilchen mit drei Einstellmöglichkeiten

des Spins entsprechen. Die Eigenwerte des Spins sind
natürlich die ganzzahligen Vielfachen h, 0 und — h von h.

In einem zweiten Teile soll das Procafeld als Anwendung
der vorgeschlagenen Methode behandelt werden.

Wie mir Herr Dr. N. Kemmer freundlicherweise mitteilt,
sind von ihm selbst und von anderen Autoren11) verschiedene
Arbeiten im Erscheinen, welche das Procafeld und seine Anwendung

auf die Wechselwirkung zwischen Neutronen und Protonen
behandeln.

Der Vorteil der vorliegenden Methode liegt darin, dass sie,
ohne explizites Eingehen auf die Quantenstruktur der Felder
und ohne spezielle Annahmen über die Darstellung der Materie,
die Berechnung der retardierton und natürlich auch der nicht-
retardierten Wechselwirkungstermo gestattet.

In Übereinstimmung mit Kemmer scheint es mir möglich,
dass ein komplexes Procafeld (dessen Teilchen „schwere
Elektronen" und „schwere Antielektronen" sind) und ein Procafeld

(dessen Teilchen ungeladen sind) die Kernkräfte vollständig
beschreibt.

Institut de Physique, Université de Genève.
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