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Sup la théorie du réseau optique

par J. F. C. Patpy.

(24. II. 38.)

I. Introduction.

Lord Rayleigh a le premier donné les principes d'une théorie
dynamique du réseau optique1). Il considérait la surface sur laquelle
les traits sont gravés comme une sorte de surface ondulée dont
l'expression en série de Fourier était connue. En écrivant alors
les conditions aux limites pour une onde électromagnétique sur
cette surface il parvint à donner approximativement l'expression
des ondes réfléchies et des ondes transmises. Il est arrivé ainsi à
des résultats importants valables dans des conditions bien
déterminées.

Voigt2) reprit plus tard cette méthode pour l'appliquer aux
réseaux métalliques opaques; il cherchait à expliquer certains
phénomènes décrit par Wood3).

Extermann4) a récemment donné une théorie dynamique de
la diffraction de la lumière par les ondes ultrasonores. Sa méthode
qui généralise celle qu'EwALD et Laue ont employé pour étudier
la diffraction des rayons X par les cristaux, a pu aussi servir à
décrire la propagation de la lumière dans les cristaux5). Il nous a
semblé intéressant de l'appliquer au problème d'un réseau optique.
Ce réseau sera décrit d'une façon un peu différente de celle de

Raleigh; nous supposerons en effet que le réseau est formé d'une
plaque à faces parallèles dont la constante diélectrique varie
périodiquement dans une direction perpendiculaire à l'épaisseur. Notre
réseau est donc formé en réalité par une tranche d'un milieu
stratifié, tranche coupée perpendiculairement aux stratifications.

Lord Rayleigh, Proc. Roy. Soc. 79, 399, 1907.
2) Voigt, Gott. Nachr., p. 40, 1911 et p. 385, 1912.
3) Wood, Phil. Mag. 4, 396, 1902 et 23, 310, 1912; Phys. Rev. 48, 928,

1935. — Strong, Phys. Rev. 49, 185, 1936.
4) Extermann et Wannier, Helv. Phys. Acta 9, 520, 1936. — Extermann,

Helv. Phys. Acta 10, 185, 1937.
5) Weigle, Helv. Phys. Acta II, 159, 1938.
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Dans le cas d'une constante diélectrique sautant brusquement d'une
valeur constante à une autre à chaque stratification notre réseau
correspond aux réseaux lamelles de Wood, réseaux dont le creux
des traits a une forme rectangulaire. Dans la théorie de Rayleigh,
la forme des creux était quelconque ; mais la matière, dans laquelle
les traits étaient tracés, était homogène; dans notre théorie ce
sont les propriétés de la matière qui varient périodiquement. On
voit ainsi que ces deux théories dissemblables se recouvrent dans
un cas particulier seulement celui des réseaux à traits rectangulaires.

Comme nous l'avons dit plus haut, la méthode dont nous nous
servirons a permis de résoudre des problèmes très variés ; la longueur
d'onde des ondes électromagnétiques pouvait être soit beaucoup
plus grande que la périodicité du milieu (lumière et cristaux), soit
beaucoup plus petite (lumière-ultra-sons), soit du même ordre de

grandeur (rayons X et cristaux). Mais le phénomène de la propagation

des ondes électromagnétiques dans les milieux périodiques
ne sont pas caractérisés uniquement par le rapport de la longueur
d'onde à la périodicité, il intervient un autre paramètre qui modifie,
lui-aussi, l'aspect du problème: l'amplitude des fluctuations de la
constante diélectrique. Le problème du réseau optique dont nous
donnons la solution ci-dessous, s'apparente par le rapport des

longueurs d'ondes à celui des rayons X dans les cristaux, mais alors

que pour ce dernier, les fluctuations de la constante diélectrique
sont de l'ordre de 10~5, elles seront pour nous de l'ordre de l'unité.

Dans la méthode que nous emploierons, on doit tout d'abord
calculer les champs d'ondes de fréquence donnée dynamiquement
stables dans le milieu et cela pour différentes orientations. On les
obtient en résolution les équations de Maxwell dans le milieu
infini à constante diélectrique périodique. Ensuite sur le milieu
fini on fait tomber une onde extérieure et les conditions aux limites
déterminent les ondes excitées parmi celles constituant les champs
d'ondes dynamiquement stables.

II. Principes de la méthode.

Le milieu est décrit par une constante diélectrique de période

A - qu'on peut représenter par une série do Fourier (ainsi

que son inverse) :

e(r) :>je»e V(r) 11, ZjWnd W

b étant le vecteur perpendiculaire aux plans de stratification.
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On cherche alors des solutions des équations de Maxwell sous la
forme :

5 yàe2"U(,f'",-"!
ti

B H yHne^i[i

E yX.e2ni

et

D s(r)E
(2) ou (3)

È xp(r)D

Il résulte des équations matérielles (3) les relations:

kn k0 + nb (4)

En 2 V«~™ Dm; (5) Dn V en_mEm. (6)

En introduisant ces valeurs dans les équations de Maxwell,
on trouve soit:

fc2 *
-*Az / Wn—ni -*-^m J_ Kn \ 1

soit
fc«

li2

k„

En y, en-m Em± kn avec k — (8)

suivant qu'on a éliminé les E ou les D.
La dernière équation (8) n'est vraiment utile que si on connaît

la direction des En par rapport aux fc„ tandis que, les Dn étant
toujours perpendiculaires aux kn, la résolution des équations (7)
est ainsi facilitée.

L'équation (4) détermine tous les vecteurs d'onde à partir de

l'un d'entre eux, fc0 par exemple. Il est donc nécessaire de calculer
celui-ci et la condition qui permet de le faire est donnée par le fait
que les \En\ et les j Dn j doivent converger. Cette condition est
en général remplie si le déterminant qu'on peut former avec les

coefficients des \Dn\ ou des | En |, respectivement dans les équations

(7) ou (8) s'annulle. Cependant ce déterminant est en général
trop compliqué qu'on puisse résoudre le problème de cette façon.
Nous emploierons pour cela une méthode indirecte. On trouve alors

toute une série de valeurs propres de fc0 faisant converger les

expressions (7) et (8). Du reste il est plus facile et plus commode

pour l'introduction des conditions aux limites de rechercher les

valeurs propres non pas de fc0, mais de la composante perpendiculaire

à b de ce vecteur pour une composante le long de b donnée.
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III. Méthode d'Extermann.

Dans ses travaux sur la diffraction de la lumière par les ondes
ultra-sonores Extermann est parti des équations (8) en supposant

que le vecteur E„ est perpendiculaire à kn. Cela est toujours
approximativement vrai lorsque les fluctuations de la constante diélectrique

sont petites. Pour les rayons X dans les cristaux et pour la
lumière dans les ondes ultra-sonores, il est absolument inutile de

considérer l'angle entre Dn et En. Ce parallélisme est par contre
tout-à-fait exact, même si les fluctuations de la constante diélectrique

sont grandes, pour un état particulier de polarisation de la
lumière : celui dans lequel tous les Dn sont perpendiculaires au plan
des kn.

En effet, les équations vectorielles (7) peuvent se décomposer
en deux groupes d'équations scalaires:

fc2

— Dn' y xpn_m DJ (9)
™rt. »,

Dn" ---- y xpn_m Dm" cos (km kn) (10)
fc2

où D' et D" sont les composantes respectivement perpendiculaire
et parallèle au plan des kn du vecteur D. On voit ainsi que les ondes
sont séparées en deux polarisations puisque l'amplitude des ondes
perpendiculaires est indépendante de celle des ondes parallèles.
Les ondes perpendiculaires en particulier forment donc une solution

de notre problème. D'autre part, les équations (5) montrent
que lorsque tous les Dn sont parallèles entre eux, les E„ ont la
même direction que les Dn, ils sont donc normaux aux kn.

Par conséquent les résultats d'Extermann sont valables pour
cet état de polarisation dans tous les cas de propagation d'ondes
électromagnétiques dans les milieux périodiques. La valeur des

paramètres :

fi)
k2

c« - en
bz

liant intimement le rapport fc2/ò2 et les fluctuations de la constante
diélectrique, détermine ainsi complètement le problème.

Extermann a donné les valeurs numériques des solutions
pour une constante diélectrique sinusoïdale de la forme:

e (r) eo + 2Si cos 2 n (br)

et pour différentes valeurs du paramètre 0X — ex k2/b2. Pour les
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ultra-sons, ex est de l'ordre de 10~* et fc2/ò2 de l'ordre de 104, ce

qui donne à 0X une valeur de l'ordre de l'unité : pour notre problème
par contre ex et fc2/ò2 sont tous les deux de l'ordre de grandeur de

l'unité et par conséquent les résultats numériques d'Extermann
peuvent être employés sans autre.

Comme nous l'avons dit toutefois, ces calculs ne sont valables

que pour un état particulier de polarisation. Il nous faut donc
envisager un mode de calcul différent pour avoir des résultats
complets. Nous donnons plus loin à titre de comparaison quelques
valeurs numériques déduites directement des tables d'ExTERMANN.

IV. Méthode générale.

Dans les équations (9) et (10) on a décomposé les vecteurs Dn
en deux composantes : Dn' perpendiculaires au plan des fc„ et D'„ dans
ce plan. Il est commode de désigner l'ensemble des Dn' sous le nom
de polarisation perpendiculaire et les D'à par polarisation parallèle.
Ces deux polarisations correspondent du reste, la première aux
ondes ordinaires et la seconde aux ondes extraordinaires de l'optique
cristalline. Pour simplifier la résolution des équations (9) et (10)

nous supposerons que l'inverse xp (r) de la constante diélectrique
est une fonction sinusoïdale:

xp (r) xp0 + 2 xpx cos 2 n (br). (11)

A. Polarisation perpendiculaire.

Les équations (9) deviennent grâce à (11) :

*(D.-i+*>.„) + (*-_|^-)Z)M 0.

En appelant /ib la composante de fc0 parallèle à b et lb la
composante perpendiculaire, cette équation prend la forme:

^[l2+(/l+n)2](D^x+Dn+x)
Vo

l2 + (F + n)2-^-
xp0b2

Dn=0. (12)

Nous devons résoudre ce système d'équations pour les D„ et il
faut en plus que ces valeurs convergent. Il faut donc, étant donné

/i, trouver les valeurs propres de l, qui donnent cette convergence.
Pour cela, nous avons employé une méthode qui rappelle celle
d'Extermann. Elle consiste à calculer les rapports

Un-i xJn +1et zr
Dn Dn

13



194 J. F. C. Patry.

au moyen de fractions continues, en partant d'une valeur approchée
de l. En plaçant les valeurs de ces rapports dans (12) et en résolvant

pour l, on trouve en général une nouvelle valeur, avec laquelle
on recommence le calcul. On trouvera dans l'appendice une
description détaillée de cette méthode.

B. Polarisation p irallèle.

Si l'on exprime les cosinus des équations (10) en fonction des

composantes des kn, elles deviennent

^1 [l2 + (,t^ n-l)(/c + «)]©„_! +
Vo

k2 i
l2 + (/j.+ n)2 —

Vo b2
©M

+ Wl
\l2 + (/i + n) (/t +n + 1)] $>B+1 0 (13)

Vo

avec

^ D„
7.
<^n

Ce système se résoud de la même manière que (12). On remarquera
que (12) et (13) dépendent de deux paramètres

Wl^0 et - fc'2.
Vo Vo b2

Les résultats numériques que nous donnerons plus loin ne s'appliquent

plus à une variété du problème aussi étendue que ceux de la
première méthode.

V. Surfaces de dispersion.

On appelle surface de dispersion le lieu des origines des vecteurs
des ondes de fréquence pouvant se propager dans le réseau. On

suppose ces vecteurs tracés dans le réseau réciproque qu'on choisit
arbitrairement comme origine.

La figure (1) donne une coupe de la surface de dispersion
calculée pour une valeur particulière des deux paramètres 0 et fc'.

On a pris

— 2 et xp(r) - [3 - cos 2 n (òr)]

et donc

ö -l fc<2 ^.6 3

Ces valeurs correspondent à un milieu de constante diélectrique
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2.5

- «=ç

0.5

Fig. 1.

Surfaces de dispersion.
En trait plein polarisation perpendiculaire, en pointillé polarisation parallèle.

Les surfaces ont été calculées pour
1 1

e(x)
(3 — cos 2 n b x) et 2.

La longueur d'onde est donc deux fois plus petite que la période du réseau
et la constante diélectrique varie presque sinusoïdalement entre les valeurs 1 et 2.

On remarquera que la différence entre les deux polarisation est surtout
sensible pour les premières nappes des surfaces de dispersion.
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moyenne 1,415. La constante diélectrique elle-même fluctue
presque sinusoïdalement entre les valeurs 1 et 2. Nous ne
donnons pas ici les caractéristiques du milieu en fonction de l'indice
de réfraction, car celui-ci n'a plus de signification précise, la vitesse
des ondes variant avec leur orientation comme on peut le voir
clairement sur la fig. 1.

Les deux polarisations ne donnent évidemment pas les mêmes
surfaces de dispersion, les équations (12) et (13) différant, par les

coefficients de Dn_x et Dn+1. Ces coefficients contiennent — 0
Vo

en facteur et par conséquent l'effet de polarisation sera proportionnel
à ce paramètre, qui mesure l'amplitude des fluctuations de

l'inverse de la constante diélectrique. Cette différence entre les
deux surfaces de dispersion donne à notre milieu des propriétés de

biréfringence. Mais cette double réfraction ne se fera pas sentir
sur la direction des ondes réfléchies ou transmises par une plaque à

faces parallèles; ces ondes seront par contre partiellement polarisées.

Dans le paragraphe suivant, considérant les conditions aux
limites à la surface du milieu, nous aurons l'occasion de montrer
que les ondes transmises sortent d'un milieu prismatique avec des

directions différentes pour les deux polarisations.

VI. Conditions aux limites.

Nous avons étudié jusqu'ici le « spectre en direction » des ondes
de fréquence v pouvant se propager dans le milieu stratifié supposé
infini. Nous allons maintenant laisser tomber sur le milieu, limité
par un plan, une onde extérieure et chercher quelles seront les
ondes intérieures qui se trouvent ainsi excitées. Il est bien évident
que ces ondes devront être choisies parmi celles du « spectre en
direction ». Les conditions aux limites électromagnétiques nous
permettront de calculer exactement, soit les directions de ces

ondes, soit leurs amplitudes et leurs phases.

Les problèmes rayons X — cristaux et lumière — ultrasons,
traités par la méthode que nous avons employés, ne font pas intervenir

d'ondes réfléchies directement. En effet, les fluctuations
autour de l'unité de la constante diélectrique sont alors trop petites
pour qu'il soit nécessaire de considérer que E diffère de D. Il n'en
est plus de même pour le réseau optique et pour l'optique cristalline6).

Il nous faudra donc introduire les conditions rigoureuses de

l'électromagnétisme.
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A. Direction et vitesse des ondes.

Nous avons dessiné dans la figure 2 quelques points du réseau

réciproque et des surfaces de dispersion schématiques ainsi que la
surface de dispersion pour le vide autour du point 0, qui est simplement

une sphère de rayon fc. Nous avons supposé que le milieu
était limité par une surface plane perpendiculaire au plan du papier

-7

Fig. 2.

Conditions aux limites géométriques.
Les points —1,0,1 etc. forment le réseau réciproque. Les surfaces de

dispersion sont schématiques, le cercle pointillé représentant la surface de

dispersion pour le vide. La composante tangentielle de k est A' 0' et les ondes

A00, Ä[D, etc., de l'ordre zéro, ont la même composante tangentielle. car A' A3

est la normale à la surface SS'. A chacune des ondes A 0 sont associées les ondes

Al, A— 1, etc., formant la couche.

donnant une trace SS'. Si maintenant une onde extérieure tombe
sur le milieu, on sait que les ondes réfractées doivent avoir la même

composante de vitesse selon la surface de séparation, ou, ce qui
revient au même, même composante de vecteur d'onde selon cette
surface. D'autre part, les vecteurs des ondes réfractées doivent
prendre naissance sur les surfaces de dispersion. Si donc on a
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tracé le vecteur fc de l'onde incidente aboutissant à 0, il suffira de
faire passer par son origine une normale à la surface SS' pour
trouver aux intersections de celle-ci avec les surfaces de dispersion
les origines des vecteurs des ondes réfractées aboutissant donc au
point 0. Mais, comme nous le savons, chaque onde réfractée est
accompagnée d'ondes diffractées, dont les vecteurs ont même
origine, mais aboutissent chacun des points du réseau réciproque.
Nous dirons que toutes les ondes ayant des vecteurs d'onde prenant
naissance au même point des surfaces de dispersions forment une
couche, tandis que toutes les ondes dont les vecteurs se terminent
sur le même point du roseau réciproque forment un ordre. Ainsi
toutes les ondes d'un même ordre ont même composante de vitesse
tangentielle. Les amplitudes des ondes auront deux indices
Dlm, m indiquant l'ordre et l la couche; les ordres sont numérotés
d'après les points du réseau réciproque et les couches d'après les

nappes des surfaces de dispersion en appelant 0 la plus éloignée
de l'origine.

B. Amplitude des ondes.

Les conditions aux limites qui expriment la continuité de la
composante normale à la surface de D et la continuité de la composante

de E le long de la surface s'appliqueront séparément à chaque
ordre puisque seules toutes les ondes d'un même ordre ont
même composante de vitesse le long de la surface. On aura donc

Ei+E0 ^Ei; E'm VWm (m + 0)
i i

(El - EO cotg <p\ 2 E\ cotg cp\ ;

l

K cotg <n S K cotg cpl
I (m* 0) (14)

i i

pour la polarisation perpendiculaire, et

(Dj+Dl) smyj=Vfl5 sin cp\;D'm sin cp'm=^Dlm sin <)j (m*0)
i i \

(E\- El) cos cp\

=^E\ cos (tf+«ì) ; El cos ^=2X cos «+<) (m + 0) (15)
i i

pour la polarisation parallèle.
Dans ces expressions, nous avons écrit séparément les

conditions aux limites pour l'ordre zéro car, pour celui-ci, seul intervient

l'onde incidente désignée par un indice supérieur i. L'indice r
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indique les ondes réfléchies. L'angle cp\ est l'angle d'incidence, les
<plm les angles de réfraction et de diffraction, les cprm ceux de réflexion
et les af, sont les angles entre les vecteurs D1 et E1 de la polari-
sation parallèle.

Comme il y a autant d'ondes que de couches, on peut montrer
facilement que ces équations déterminent entièrement le système.

Ces conditions sont valables sur la face d'entrée du milieu.
Ce sont celles avec lesquelles nous avons fait nos calculs. Si le
milieu est limité par une face de sortie plane, il se produit sur celle-
ci des réflexions internes et il est nécessaire de considérer à nouveau
les conditions aux limites pour les directions et pour les amplitudes
des ondes. Nous avons concentré dans l'appendice 2 quelques
remarques générales à ce sujet.

£-^ S—2

VS. /t\\ 1\\ /\ \ / 1

\ \ / 1
\ \ / /\ \

* \ 3-
e-1,5 \ \2 J!

3J1 /2/
/

1

1 £-1,5
0 \ X / i 21/

\ \ / i
\ \ / /
\ \ / /
\ \ / /\ \

s. \N^V
£-1 "V ^" £-1

Fig. 3.

Les fonctions e(x).
Les calculs du texte ont été faits pour ces deux valeurs de e(x). La courbe

en trait plein correspond à e(x) 1/2 [3 + cos2 Tibx] (méthode d'ExTERMANN),
4

la courbe en trait pointillé à e (x) 7. _—-— (méthode générale).
à — COS x, JT u X

La moyenne de e(x) sur une période est plus faible pour le second cas que
dans le premier.

Résultats numériques.

On trouvera dans la table ci-dessous et dans les figures 4 et 5
les résultats de nos calculs. Nous nous sommes spécialement
intéressés aux réflexions se produisant sur la face d'entrée du réseau,
sans- introduire les réflexions internes. Le réseau est donc représenté
par un milieu semi infini de constante diélectrique donnée par (11).
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Ht—«*»—
11 -0 "t

4

(i --

ii -i Y
Polarisation
perpendiculaire

Polarisation
parallèle

Fig. 4.
Amplitudes des ondes réfléchies pour différents angles d'incidence.

Ces figures représentent les résultats de nos calculs numériques sur le réseau
représenté par \ \

— (3— cos 2jibx)e{x) 4

avec X J A. La petite flèche indique la direction de l'onde incidente, les autres
flèches la direction des ondes réfléchies, leur longueur étant proportionnelle aux
amplitudes des ondes. Le paramètre /x se réfère à l'incidence. A gauche, les
figures sont tracées pour la polarisation perpendiculaire, tandis qu'à droite, on
a la polarisation parallèle. Les réflexions ont lieu évidemment dans les mêmes
directions pour ces deux polarisations. On remarquera que si l'on avait envoyé
sur le réseau de la lumière naturelle, tous les ordres auraient été partiellement
polarisés.
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I

V -V.U =0

Il -1
Fig. 5a

1

M 7 Rg.5b

Fig. 5.

Amplitude des ondes réfléchies pour différents angles d'incidence.
Les figures a) représentent face à face des amplitudes des ondes réfléchies

pour les polarisations perpendiculaires de deux réseaux de même période, mais
de constantes diélectriques données par

e(*)== 3-coatis e(z)=4(3 + cos2*6a).

Alors que la différence des constantes diélectriques a peu d'influence sur les
surfaces de dispersion, on voit qu'il n'en est pas de même pour les amplitudes des
ondes réfléchies. Les figures b) bonnent deux autres incidences du réseau de
droite.
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Table.
Ondes réfléchies: Méthode générale.

\ Polarisa- fl 0 fi % P '- 1

^\tion
ordre \^ i // X // .1 //

E-3 - 0,001 0,002

E-, - 0,009 0,008 - 0,078 0,041 - 0,003 0,001

E-i - 0,053 0,037 - 0,040 0,045 - 0,043 0,126
E0 - 0,077 0,253 - 0,074 0,075 - 0,086 0,057

Ei - 0,053 0,037 -0,138 0,042 - 0,190 0,026
E2 - 0,009 0,008 — — —

Méthode d'Extermann (polarisation perpendiculaire).

ordre H 0 ß - Vi u y2 fi % fi 1

E-3 __ - 0,001
V•ß-2 0,018 0,009 - 0,090 - 0,054 + 0,006

E-i - 0,053 - 0,047 - 0,049 - 0,041 - 0,044
E0 - 0,092 - 0,099 - 0,093 - 0,103 - 0,120

Ei - 0,053 - 0,059 -0,144 - 0,077 - 0,163
E2 0,018 — — —

Amplitude des ondes réfléchies.
Cette table correspond aux figures 4 et 5.
Les amplitudes sont normalisées, l'amplitude de l'onde incidente ayant

été prise comme unité.
On remarquera que l'intensité totale réfléchie est faible; elle atteint 5%

dans le cas le plus favorable. Cela provient de ce que la constante diélectrique
moyenne est faible, 1,4 environ, ce qui correspond à un indice de réfraction
moyen de 1,2 environ.

Conclusion.

La théorie du réseau optique transparent que nous avons
donnée est évidemment très incomplète; en effet, elle ne s'applique
qu'à un milieu dont l'inverse de la constante diélectrique est
sinusoïdal et qui est infiniment épais. Il serait difficile de résoudre
les équations fondamentales de récurrence avec plus de trois termes
(constante non sinusoïdale) par la méthode employée; il serait par
contre relativement facile de tenir compte des réflexions internes
pour étudier un réseau très peu épais. Nous pensons cependant
que les phénomènes principaux que nous avons mis en évidence
seront encore justes pour un réseau plus général.
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La théorie du réseau métallique n'aurait aucun avantage à

s'inspirer des méthodes qui nous ont servi pour le réseau
transparent. En effet, les ondes lumineuses sont si rapidement absorbées
dans le métal que les ondes intérieures ne doivent jouer qu'un rôle
très effacé alors qu'au contraire c'étaient elles qui déterminaient
le problème du réseau transparent.

Appendice 1.

Méthode de résolution des systèmes (12) et (13).
Pour assurer la convergence des inconnues d'un système

linéaire et homogène, il faut, en général, annulier le déterminant
infini formé avec les coefficients de ces inconnues. Mais il est
impossible, dans notre cas, de résoudre le problème de cette manière :

les déterminants ainsi formés sont beaucoup trop compliqués.
C'était d'ailleurs déjà le cas pour Extermann et Wannier1).
Ils sont alors généralisé une méthode donnée par Ince2) pour un
système du même genre. Nos systèmes (12 et (13) sont plus généraux

que ceux qu'on a considérés jusqu'ici et nous avons pensé
bien faire en décrivant la méthode inspirée d'iNCE dont nous nous
sommes servi.

Considérons 3 équations du système (13) pour 3 valeurs successives

de n:

-1)1 S>„_2 + -[l2+(U + n - l)2 - fc'2] $n_x
+0[l2 + (/i+n-l) (u + n)]®n 0;

n)]®n„x + [l2+ (ci + n)2 -fc'2]©„
+0[l2+(lu+n)(fi + n + l)]^n+x=O;

l)]5>„ + [/2 + (^ + n + l)2-fc'2]©n+1
+0[l2+(fi+n+l) (pt+n+2)] ®„+2=0.

Si 0 0, l'équation b) donne /2 fc'2 — (/i + n)2. Il y aura donc
une valeur propre de l2 associée à fc'2 — (fi + n)2; désignons-la par a"
et cherchons sa valeur.

Posons en_x -%±- et ôn+x
®"+1

(1)

L'équation b) peut alors se transformer pour donner la relation:

an J<'* + + n)&(e -ôn+x)
1 + 0 [en^x + ôn+x]

a) 0[l2-^(,u+n --2) (fjL+n

b) 0[l2 -r(fA + n -!)(/* +

c) 0[l2 + (tu + n) (/j, + n +

x) Extermann et Wannier, Helv. Phys. Acta 9, 520, 1936. — Extermann,

Helv. Phys. Acta 10, 185, 1937.
3) Ince, Proc. Roy. Soc. Edinburgh 46, 20—29, 1925; 46, 316—322, 1926;

47, 294—301, 1927.
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Nous avons donc une expression de an en fonction des
paramètres du problème et des deux quantités en_x et ôn+x. Ces
dernières peuvent se calculer indirectement de (2) dès que l'on se

donne une valeur pour an. En effet, considérons tout d'abord à;
l'équation c) peut s'écrire:

0 [an + (pi + 'ri) (/j, + n + 1)] l/ôn+x + [an + (p. + n + l)2 — k'2]
+ 0 [an + (pi + n + l) (fi + n + 2)] <5n+2 0

d'où l'on tire:
0 [an +(fj +n) (n + n + 1)]

n+1 ~ aF+(fi+n+ï)2 — k'2+0[an+(fi+n+l)(/i+n+2)]ôn+2'
En remplaçant de proche en proche ôn+m en fonction de ôn+m+x par
des formules semblables, on obtient facilement pour ôn+x la fraction
continue suivante :

ô _ _ 0[an+(/j,+n)(pi+n+l)] 02\an+(/i+n+l) (pi+n+2)]2
n+1~ an+(/i+n+l)2~k'2- an+(fi + n + 2)2 — k'2- ' {)

Pour en_x, en procédant de la même manière à partir de l'équation

a), on peut obtenir une fraction continue du même type:
0[an+(fi+n) (fi+n-ï)] 02[an+(/n+n-l) (u+n-2)]2

(pi+n — l)2 — k'2~ an + (u + n-2)2 — k'i
(4)

Ces fractions continues sont convergentes, comme on peut le
démontrer. Pour avoir une solution approchée, on peut donc les

interrompre au terme d'ordre Nx pour ôn+x et au terme d'ordre (—iV2)

pour en_x. Il est alors possible de les calculer après avoir choisi
une valeur a™ pour an. Nous avons pris comme première approximation

a™ k'2—(pt + n)2. Les résultats obtenus pour en_x et
ô„+x, portés dans la relation (2) nous ont donné alors une valeur
<x'" différente de a". Il est théoriquement possible d'établir une
formule donnant la seconde approximation a" en fonction de o"
et de a'1. Cette formule s'écrit toujours:

<+i < + -«-<)¦ (5)

Mais l'expression de c est trop compliquée, aussi nous avons fait
le calcul pour deux valeurs différentes de a": a™ donnant a'" et
o" donnant a'", on peut ainsi facilement déterminer c, car la
valeur o™ trouvée doit être la même dans les deux cas:

< + — (a'ô — O < + — (a'ï — a")
c c

d'où l'on tire 1/e.
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Ayant une valeur de 1/c, nous l'avons portée dans (5). On
arrive ainsi très rapidement à un résultat suffisamment approché,
dont on connaît en plus l'approximation: l'erreur ne peut pas
dépasser I a'1 — a'n I.

± im ml
Pour la polarisation perpendiculaire, le système (12) se

résoud lui aussi par cette méthode grâce aux équations suivantes :

fc'2
— (u+n)2

1 + 0 [en_x + ôn+x]

0[an+(u+n — l)2] 02[an+(fjJ+n-l)2][an+(fi+n~2)2]

<W

an+(u+n~l)2-k'2- an + (pi + n — 2)2 — k'2 —

0 [an+ (fi+n+1)2] 02[an + (fLi+n+l)2][an + (/j,+n+2)2]

(6)

-(/j,+n+l)2-k'2- a2 + (fi + n + 2)2 — k'2-

Il faut remarquer en plus que les surfaces de dispersion
sont périodiques avec la période b c'est-à-dire que an (pi) est
périodique avec la période 1; de plus elle est symétrique. Les
calculs pour 0 < /i < J donnent donc la fonction l (pi) pour toutes
les valeurs de fi. La méthode précédente ne peut cependant pas
s'appliquer directement pour pi 0 et fi \ car, par suite de
la symétrie des formules, l'équation b) qui est le critère de
l'exactitude des valeurs propres choisies est implicitement
contenue dans une des fractions continues. Le moyen de tourner la
difficulté nous est donné par la symétrie même:

Pour pi 0, on peut poser Dm -t D_m et §>m Yz ®-m-
Si, dans ces conditions, on examine les équations pour n 0,
on remarque alors que les fractions continues peuvent être
interrompues à ce terme:

Prenons par exemple le système (12). L'équation avec
n 0 s'écrit alors : (an — k'2) Do+0 an (Dx+D_x) 0. Si l'on pose
Dm D_m (solutions symétriques) l'équation donne alors:

(an - fc'2) D0 + 2 0an Dx 0 (7)

Si, par contre, Dm —D„m (solutions antisymétriques) la même
équation montre que D0 0 et l'équation pour n 1 peut
s'écrire:

(are + l-fc'2)D1 + 6'(o" + l)D2 0. (8)

Pour le système (13), les relations correspondantes s'écrivent:

(an — fc'2) So + 2 0fl»51 O

(a" + l-fc'2)S)1 + 6>[a" + 2]!S>2 0. (9)



[o" + i -- fc'2 + 0(an + i)] Dx + 0 (a» + i) Z)2 0

[an + 1 -- fc'2 - 0 (a* + ¦!)] Dx + 0(a» + i) D2 0

La" + ï --k'2 + 0 (a" - I)] ©! + 0 (a« + î) ©g 0

[a" + 1 -- fc'2- 6» (a" - i)] S>! + 0 (a™ + f) ©2 0
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Pour fi=%, on a le même phénomène: On peut poser Dm+1=iö^„
et ©m+i=zb ©-m- m>0. Les relations (7—9) s'écrivent alors:

(10)

(H)

Cette méthode de résolution d'équations linéaires et homogènes

en nombre infini et à une infinité d'inconnues peut être
appliquée à des systèmes plus généraux que ceux auxquels .la
théorie du réseau nous a amené. Il serait intéressant de la
généralier.

Appendice 2.

Remarques sur les réflexions internes.

Si on considère une des ondes se propageant à l'intérieur du
milieu, arrivant sur la face de sortie, elle va en partie se réfracter
pour sortir du milieu, en partie se réfléchir et se diffracter. Si
la face de sortie est parallèle à la face d'entrée, toutes les ondes
d'un même ordre ont même composante tangentielle de vitesse
et donnent ainsi naissance à une seule onde sortante. Il n'y a

donc à la sortie qu'un nombre d'ondes égal au nombre des ordres.
Il en va différemment lorsque la face de sortie n'est plus parallèle
à la face d'entrée, c'est-à-dire lorsque le milieu a la forme d'un
prisme. En effet, les ondes d'un même ordre n'ont plus les mêmes
composantes de vitesse tangentielles et donnent chacune une
onde sortante dans une direction bien déterminée. Alors que
dans le premier cas toutes ces ondes interféraient pour donner
une onde sortante, elles sont maintenant indépendantes. Il y
aura donc une sorte de « Aufspaltung », chaque raie spectrale
étant divisée en deux fois autant de raies partielles qu'il y avait
d'ondes dans l'ordre, car chaque polarisation agit cette fois
pour elle-même. Ces phénomènes qui, à notre connaissance
n'ont jamais été observés, mériteraient d'être étudiés
expérimentalement aussi bien pour les rayons X et les cristaux que
pour les réseaux optiques.

Je remercie en terminant le Professeur Weigle, qui m'a proposé
ce problème et qui m'a guidé dans mon travail.
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