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Sur la théorie du réseau optique
par J. F. C. Patry.
(24. T1. 38.)

I. Introduetion.

Lord Ravrerer a le premier donné les principes d’'une théorie
dynamique du réseau optique?). Il considérait la surface sur laquelle
les traits sont gravés comme une sorte de surface ondulée dont
Iexpression en série de FoUuRrIER était connue. En écrivant alors
les conditions aux limites pour une onde électromagnétique sur
cette surface il parvint & donner approximativement 1’expression
des ondes réfléchies et des ondes transmises. Il est arrivé ainsi a
des résultats importants valables dans des conditions bien déter-
minées.

VoieT?) reprit plus tard cette méthode pour I'appliquer aux
réseaux meétalliques opaques; 1l cherchait & expliquer certains
phénomenes décrit par Woon3).

ExTERMANNY) a récemment donné une théorie dynamique de
la. diffraction de la lumiére par les ondes ultrasonores. Sa méthode
qui généralise celle qu'EwALp et LAUE ont employé pour étudier
la diffraction des rayons X par les cristaux, a pu aussi servir a
décrire la propagation de la lumiére dans les cristaux®). Il nous a
semblé intéressant de I'appliquer au probléme d'un réseau optique.
Ce réseau sera décrit d’une fagon un peu différente de celle de
RALEI6H; nous supposerons en effet que le réseau est formé d’une
plaque a faces paralléles dont la constante diélectrique varie pério-
diquement dans une direction perpendiculaire & I’épaisseur. Notre
réseau est donc formé en réalité par une tranche dun milieu
stratifié, tranche coupée perpendiculairement aux stratifications.

1). Lord RayreigH, Proc. Roy. Soc. 79, 399, 1907.

%) Vorer, Gott. Nachr., p. 40, 1911 et p. 385, 1912.

) Woop, Phil. Mag. 4, 396, 1902 et 23, 310, 1912; Phys. Rev. 48, 928,
1935. — StrRONG, Phys. Rev. 49, 185, 1936.

*) EXTERMANN et WaNNIER, Helv. Phys. Acta 9, 520, 1936. — EXTER-
MANN, Helv. Phys. Acta 10, 185, 1937.

°) WEeIGLE, Helv. Phys. Acta 11, 159, 1938.
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Dans le cas d’une constante diélectrique sautant brusquement d’une
valeur constante & une autre a chaque stratification notre réseau
correspond aux réseaux lamellés de Woon, réseaux dont le creux
des traits a une forme rectangulaire. Dans la théorie de RayLricH,
la forme des creux était quelconque; mais la matiére, dans laquelle
les traits étalent tracés, était homogeéne; dans notre théorie ce
sont les propriétés de la matiere qui varient périodiquement. On
volt ainsi que ces deux théories dissemblables se recouvrent dans
un cas particulier seulement celui des réseaux & traits rectangulaires.

Comme nous 'avons dit plus haut, la méthode dont nous nous
servirons a permis de résoudre des problémes trés variés; la longueur
d’onde des ondes électromagnétiques pouvait étre soit beaucoup
plus grande que la périodicité du milieu (lumieére et cristaux), soit
beaucoup plus petite (lumiere-ultra-sons), soit du méme ordre de
grandeur (rayons X et cristaux). Mais le phénoméne de la propa-
gation des ondes électromagnétiques dans les milieux périodiques
‘ne sont pas caractérisés uniquement par le rapport de la longueur
d’onde a la périodicité, il intervient un autre parameétre qui modifie,
lui-aussi, 'aspect du probléme: 'amplitude des fluctuations de la
constante diélectrique. Le probléme du réseau optique dont nous
donnons la solution ci-dessous, s’apparente par le rapport des
longueurs d’ondes a celui des rayons X dans les cristaux, mais alors
que pour ce dernier, les fluctuations de la constante diélectrique
sont de l'ordre de 103, elles seront pour nous de l'ordre de 'unité.

Dans la méthode que nous emploierons, on doit tout d’abord
calculer les champs d’ondes de fréquence donnée dynamiquement
stables dans le milieu et cela pour différentes orientations. On les
obtient en résolution les équations de MaxweLL dans le milieu
infini & constante diélectrique périodique. Ensuite sur le milieu
fini on fait tomber une onde extérieure et les conditions aux limites
déterminent les ondes excitées parmi celles constituant les champs
d’ondes dynamiquement stables.

II. Principes de la méthode.

Lie milieu est décrit par une constante diélectrique de période
1 r i ; o
A — - qu’on peut représenter par une seérie de FOURIER (ainsi

que son Inverse):

o 5 : i > 1 - B . o
€ (T) — Z e, 6') ai(nb, r n {’) sy g g 4:1 », 8_) ai (o, 1) (1)
n € (?) "

b étant le vecteur perpendiculaire aux plans de stratification.
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On cherche alors des solutions des équations de MAXWELL sous la
torme:

D =N D, e2nillEnh-rn D=ec(nE
E:I%*}:Hﬂez’”.” J E-y®D
11 résﬁrite des équations matérielles (3) les relations:
Jen = g mb (4)
et
=N D () =T .. (6

En introduisant ces valeurs dans les équations de MAXWELL,
on trouve soit:

B _
Y Do =3 pun D L1 ()
solt
k;zl _,:7 1 T | g T4 2
— B, =N, mEnl k, avec k=— (8)

suivant qu'on a éliminé les E ou les D.
La derniére équation (8) n’est vraiment utile que si on connait

la direction des H, par rapport aux k, tandis que, les D, étant

tougours perpendiculaires aux k,, la résolution des equa,tlons (7)
est ains1 facilitée.

I’équation (4) détermine tous les vecteurs d’onde a partir de

I'un d’entre eux, 'I;O par exemple. Il est donc nécessaire de calculer
celui-ci et la condition qui permet de le faire est donnée par le fait
que les | K, | et les | D, | doivent converger. Cette condition est
en général remplie si le déterminant qu'on peut former avec les
coefficients des | D, | ou des | I/, |, respectivement dans les équa-
tions (7) ou (8) s’annulle. Cependant ce déterminant est en général
trop compliqué qu’on puisse résoudre le probleme de cette fagon.
Nous emploierons pour cela une méthode indirecte. On trouve alors

toute une série de valeurs propres de EO faisant converger les ex-
pressions (7) et (8). Du reste il est plus facile et plus commode
pour l'introduction des conditions aux limites de rechercher les

valeurs propres non pas de k,, mais de la composante perpendwu-
laire & b de ce vecteur pour une composante le long de b donnée.
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III. Méthode d’Extermann.

Dans ses travaux sur la diffraction de la lumiére par les ondes
ultra-sonores EXTERMANN est parti des équations (8) en supposant

que le vecteur E,, est perpendiculalre & %,. Cela est toujours appro-
ximativement vrai lorsque les fluctuations de la constante diélec-
trique sont petites. Pour les rayons X dans les cristaux et pour la
lumiére dans les ondes ultra-sonores, 1l est absolument inutile de

considérer l'angle entre D, et E,. Ce parallélisme est par contre
tout-a-fait exact, méme si les fluctuations de la constante diélec-
trique sont grandes, pour un état particulier de polarisation de la

lumiére : celu1l dans lequel tous les D, sont perpendiculaires au plan

-

des k,.
En effet, les équations vectorielles (7) peuvent se decomposer
en deux groupes d’équations scalalres:

kﬂ ’ "\ ) f
” "
e D,"” =N yy_n D" cos (ky k) (10)

o D" et D" sont les composantes respectivement perpendiculaire

et paralléle au plan des k, du vecteur D. On voit ainsi que les ondes
sont séparées en deux polarisations puisque 'amplitude des ondes
perpendiculaires est indépendante de celle des ondes paralléles.
Les ondes perpendiculaires en particulier forment donc une solu-
tion de notre probléeme. D’autre part, les équations (5) montrent

que lorsque tous les f)n sont paralléles entre eux, les E, ont la

méme direction que les ﬁn, 1ls sont donc normaux aux k,.
Par conséquent les résultats d’ExTErRMANN sont valables pour

cet ¢tat de polarisation dans tous les cas de propagation d’ondes

¢lectromagnétiques dans les milieux périodiques. La valeur des

parameétres:

k2

b2

liant iIntimement le rapport k2/b? et les fluctuations de la constante

diélectrique, détermine ainsi complétement le probléme.
ExTERMANN a donné les valeurs numériques des solutions

pour une constante diélectrique sinusoidale de la forme:

6, = &,

€ (7) =g+ 26 c082m (b;—)

et pour différentes valeurs du parametre @; = & k2/b% Pour les
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ultra-sons, e, est de 'ordre de 10-% et k2/b% de 'ordre de 104, ce
qul donne & @; une valeur de ’ordre de 'unité: pour notre probléme
par contre & et k%/b? sont tous les deux de I'ordre de grandeur de
I'unité et par conséquent les résultats numériques d’EXTERMANN
peuvent étre employés sans autre.

Comme nous ’avons dit toutefois, ces calculs ne sont valables
que pour un état particulier de polarisation. Il nous faut donc
envisager un mode de calcul différent pour avoir des résultats
complets. Nous donnons plus loin & titre de comparaison quelques
valeurs numériques déduites directement des tables d’EXTERMANN,

IV. Méthode générale.

-

Dans les équations (9) et (10) on a décomposé les vecteurs D,
en deux composantes: D,’ perpendiculaires au plan des k, et D, dans
ce plan. Il est commode de désigner 1’ensemble des D, sous le nom
de polarisation perpendiculaire et les D, par polarisation paralléle.
Ces deux polarisations correspondent du reste, la premieére aux
ondes ordinaires et la seconde aux ondes extraordinaires de 'optique
cristalline. Pour simplifier la résolution des équations (9) et (10)

nous supposerons que l'inverse y (r) de la constante diélectrique
est une fonction sinusoidale:

v (1) =y, + 2 p, cos 27 (br). (11)

A. Polarisation perpendiculavre.

Les équations (9) deviennent grace a (11):

_ L2
D, , +D,.;) + (wg—— ;—)Dﬁo.
Py ( 1 +1) + ("/’0 (gt nb)2

En appelant pb la composante de %, parallele a b et Ib la
composante perpendiculaire, cette équation prend la forme:

2
124 (02} (D g D) H]12 4 (et 2 — ] D=0, (12
Yo Yo b

Nous devons résoudre ce systéme d’équations pour les D, et il
faut en plus que ces valeurs convergent. Il faut donc, étant donné
u, trouver les valeurs propres de [, qui donnent cette convergence.
Pour cela, nous avons employé une méthode qui rappelle celle
d’ExTERMANN. Elle consiste & calculer les rapports

D,.s

13
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au moyen de fractions continues, en partant dune valeur approchée
de I. En placant les valeurs de ces rapports dans (12) et en résol-
vant pour [, on trouve en général une nouvelle valeur, avec laquelle
on recommence le calcul. On trouvera dans 'appendice une des-
cription détaillée de cette méthode.

B. Polarisation parallele.

Si Pon exprime les cosinus des équations (10) en fonction des
composantes des k,, elles deviennent

y .2
¢! B+ (p+n—1 (t+n)]9, 1+ |2+ (p+n)2— i = Dy,
%Yo ' - 1y 0%
+ L2 () (04 1)] Dy = 0 (13)
Yo
avec
@ﬂ o VDTl
K

Je systéeme se résoud de la méme maniére que (12). On remarquera,
que (12) et (13) dépendent de deux parameétres
) i
yl s @ Otu ) "2
Yo o b
Les résultats numériques que nous donnerons plus lom ne s’appli-
quent plus a une variété du probléme aussi étendue que ceux de la
premiére meéthode.

~ kR,

V. Surfaces de dispersion.

On appelle surface de digpersion le lieu des origines des vecteurs
des ondes de fréquence pouvant se propager dans le réseau. On
suppose ces vecteurs tracés dans le réseau réciproque qu’on choisit
arbitralrement comme origine.

La figure (1) donne une coupe de la surface de dispersion
calculée pour une valeur particuliére des deux parametres @ et k'
On a pris

ll; =2 et y (7) = i [8 —cos 27 (E?)]
et donc
1 16
e i Py
6 3

Ces valeurs correspondent & un milien de constante diélectrique
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Fig. 1.
Surfaces de dispersion.
En trait plein polarisation perpendiculaire, en pointillé polarisation paralléle.
Les surfaces ont été calculées pour

1 1 k
—— = — (3 cos 2 b ==,
s 1 (3—cos2mbax) e i
La longueur d’onde est donc deux fois plus petite que la période du réseau
et la constante diélectrique varie presque sinusoidalement entre les valeurs 1 et 2.
On remarquera que la différence entre les deux polarisation est surtout
sensible pour les premiéres nappes des surfaces de dispersion.
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moyenne 1,415. La constante diélectrique elle-méme fluctue
presque sinusoidalement entre les valeurs 1 et 2. Nous ne don-
nons pas ici les caractéristiques du milieu en fonction de I'indice
de réfraction, car celui-ci n’a plus de signification précise, la vitesse
des ondes variant avec leur orientation comme on peut le voir
clairement sur la fig. 1.

Les deux polarisations ne donnent évidemment pas les mémes
surfaces de dispersion, les équations (12) et (13) différant, par les

coefficients de D,_; et D,.;. Ces coefficients contiennent % =@
0

en facteur et par conséquent 'effet de polarisation sera proportion-
nel & ce parametre, qui mesure I'amplitude des fluctuations de
I'inverse de la constante diélectrique. Cette différence entre les
deux surfaces de dispersion donne & notre milieu des propriétés de
biréfringence. Mais cette double réfraction ne se fera pas sentir
sur la direction des ondes réfléchies ou transmises par une plaque a
faces paralleles; ces ondes seront par contre partiellement polari-
sées. Dans le paragraphe suivant, considérant les conditions aux
limites & la surface du milieu, nous aurons 1’occasion de montrer
que les ondes transmises sortent d’'un milieu prismatique avec des
directions différentes pour les deux polarisations.

VI. Conditions aux limites.

Nous avons étudié jusqu’ici le « spectre en direction » des ondes
de fréquence » pouvant se propager dans le milieu stratifié supposé
infini. Nous allons maintenant laisser tomber sur le milieu, limité
par un plan, une onde extérieure et chercher quelles seront les
ondes intérieures qui se trouvent ainsi excitées. Il est bien évident
que ces ondes devront étre choisies parmi celles du «spectre en
direction ». Les conditions aux limites électromagnétiques nous
permettront de calculer exactement, soit les directions de ces
ondes, soit leurs amplitudes et leurs phases.

Les problémes rayons X — cristaux et lumiére — ultrasons,
traités par la méthode que nous avons employés, ne font pas inter-
venir d’ondes réfléchies directement. En effet, les fluctuations
autour de 'unité de la constante diélectrique sont alors trop petites
pour qu’il soit nécessaire de considérer que E différe de D. Il n’en
est plus de méme pour le réseau optique et pour l'optique cristal-
line%). Il nous faudra donc introduire les conditions rigoureuses de
I’électromagnétisme.
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A. Direction et vitesse des ondes.

Nous avons dessiné dans la figure 2 quelques points du réseau
réciproque et des surfaces de dispersion schématiques ainsi que la
surface de dispersion pour le vide autour du point 0, qui est simple-
ment une sphére de rayon k. Nous avons supposé que le milieu
était limité par une surface plane perpendiculaire au plan du papier

Fig. 2.

Conditions aux limites géométriques.

Les points —1,0,1 etc. forment le réseau réciproque. Les surfaces de
dispersion sont schématiques, le cercle pointillé représentant la surface de dis-
persion pour le vide. La composante tangentielle de l; est 4’0" et les ondes
?1;6, Z:ﬁ, etc., de Pordre zéro, ont la méme composante tangentielle, car A’ . A,
est la normale & la surface SS’. A chacune des ondes 4 0 sont associées les ondes
Al, A-1, etc., formant la couche.

donnant une trace SS’. Si maintenant une onde extérieure tombe
sur le milieu, on sait que les ondes réfractées doivent avoir la méme
composante de vitesse selon la surface de séparation, ou, ce qui
revient au méme, méme composante de vecteur d’onde selon cette
surface. D’autre part, les vecteurs des ondes réfractées doivent

prendre naissance sur les surfaces de dispersion. Si donc on a
#*
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tracé le vecteur k de ’onde incidente aboutissant a 0, il suffira de
faire passer par son origine une normale & la surface S5’ pour
trouver aux intersections de celle-ci avec les surfaces de dispersion
les origines des vecteurs des ondes réfractées aboutissant donc au
point 0. Mais, comme nous le savons, chaque onde réfractée est
accompagnée d’ondes diffractées, dont les vecteurs ont méme
origine, mais aboutissent chacun des points du réseau réciproque.
Nous dirons que toutes les ondes ayant des vecteurs d’onde prenant
naissance au méme point des surfaces de dispersions forment une
couche, tandis que toutes les ondes dont les vecteurs se terminent
sur le méme point du réseau réciproque forment un ordre. Ainsi
toutes les ondes d’un méme ordre ont méme composante de vitesse
tangentielle. Les amplitudes des ondes auront deux indices
Dt,, m indiquant 'ordre et I la couche; les ordres sont numérotés
d’apres les points du réseau réciproque et les couches d’apres les
nappes des surfaces de dispersion en appelant 0 la plus éloignée
de l'origine.

B. Amplitude des ondes.

Les conditions aux limites qui expriment la continuité de la
composante normale & la surface de D et la continuité de la compo-
sante de K le long de la surface s’appliqueront séparément & chaque
ordre puisque seules toutes les ondes d’'un méme ordre ont
méme composante de vitesse le long de la surface. On aura donc

By +H =2 Bl B, = B, (m+0)
] l
(B} — E) cotg ¢} = DB cotg ¢}
i
Er cotg ¢ = > E! cotg ¢l | (m%0) (14)
‘ l

pour la polarisation perpendiculaire, et

(Di+Dr) sin (p{;——%: Di sin ¢! ; D" sin (p’?;zz‘%: Dt sin ¢!} (m+0)

(B — I) cos g
:;Ei cos (gh+al); BT cos 99;1_21E5n cos (@b +ol ) (m£0) (15)

pour la polarisation parallele.

Dans ces expressions, nous avons écrit séparément les con-
ditions aux limites pour 'ordre zéro car, pour celui-ci, seul inter-
vient 'onde incidente désignée par un indice supérieur ¢. L’indice r
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indique les ondes réfléchies. L’angle ¢i est I'angle d’incidence, les
@5, les angles de réfraction et de diffraction, les ¢7, ceux de réflexion
et les af sont les angles entre les vecteurs D} et E! de la polari-
sation paralléle.

Comme il y a autant d’ondes que de couches, on peut montrer
facilement que ces équations déterminent entiérement le systéme.

Ces conditions sont valables sur la face d’entrée du milieu.
Ce sont celles avec lesquelles nous avons fait nos calculs. Si le
milieu est limité par une face de sortie plane, il se produit sur celle-
c1 des réflexions internes et il est nécessaire de considerer & nouveau
les conditions aux limites pour les directions et pour les amplitudes
des ondes. Nous avons concentré dans l'appendice 2 quelques
remarques générales & ce sujet.

&—=2

Fig. 3.
Les fonctions &(zx).
Les calculs du texte ont été faits pour ces deux valeurs de &(x). La courbe

en trait plein carrespond a &(z) = 1/2[3 + cos 2 nbx] (méthode d’EXTERMANN),

la courbe en trait pointillé & ¢ (z) = i B (méthode générale).

La moyenne de £(x) sur une période est plus faible pour le second cas que
dans le premier.

Résultats numériques.

On trouvera dans la table ci-dessous et dans les figures 4 et 5
les résultats de nos calculs. Nous nous sommes spécialement
intéressés aux réflexions se produisant sur la face d’entrée du réseau,
sans introduire les réflexions internes. Le réseau est done représenté
par un milieu semi infini de constante diélectrique donnée par (11).
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-
Polarisation Polarisation
L perpendiculaire parallele

Fig. 4.
Amplitudes des ondes réfléchies pour différents angles d’incidence.
Ces figures représentent les résultats de nos calculs numériques sur le réseau
représenté par 1 1
——— == — (3—cos 2mbx)
&(x) 4
avec . = 4 /. La petite fleche indique la direction de ’onde incidente, les autres
fleches la direction des ondes réfléchies, leur longueur étant proportionnelle aux
amplitudes des ondes. Le paramétre u se référe i l'incidence. A gauche, les
figures sont tracées pour la polarisation perpendiculaire, tandis qu’a droite, on
a la polarisation paralléle. Les réflexions ont lieu évidemment dans les mémes
directions pour ces deux polarisations. On remarquera que si 'on avait envoyé

sur le réseau de la lumiére naturelle, tous les ordres auraient été partiellement
polarisés.



Sur la théorie du réseau optique. 201

4 v

{
i
N~

QZ.L
Ny
\,

\T ¥
< “ ] 4
Sa

Fig.

L NLoY

k=g Fg. 5b g =

Fig. 5.
Amplitude des ondes réfléchies pour différents angles d’incidence.

Les figures a) représentent face & face des amplitudes des ondes réfléchies
pour les polarisations perpendiculaires de deux réseaux de méme période, mais
de constantes diélectriques données par

4
e(2) = 3—cos2nabzx
Alors que la différence des constantes diélectriques a peu d’influence sur les sur-
faces de dispersion, on voit qu’il n’en est pas de méme pour les amplitudes des

ondes réfléchies. Les figures b) bonnent deux autres incidences du réseau de
droite.

e(x) = —%(3 + cos2mbx).
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Table.
Ondes réfléchies: Méthode générale.
. Polarisa- - 5 e 1Y -
S tion | }uw . p=" =1

ordre \‘\\ L /1 L [l L i
E_, o _— — ] e — 0,001 0,002
E_, — 0,009 0,008 -0,078 0,041 —0,003 0,001
E_, —~0,063 | 0,037 | —-0,040 0,045 | —-0,043 0,126
E, — 0,077 0,253 —-0,074 = 0,075 - 0,086 0,057
B, - 0,053 0,037 —0,138 1 0,042 -0,190 ’ 0,026
E, - 0,009 0,008 — \ — e I -

Méthode & Extermann (polarisation perpendiculaire).

Ordre JU,ZO ‘“,?::% M:’:l/z ML“:% M:l

B, — — _ - 0,001

E_, 0,018 0,009 | —0,090 | —0,054 +0,006
E 4 -0,053 | —-0,047 0,049 | —0,041 — 0,044
E, —-0,092 | —0,099 | —0,093 | —0,103 -0,120
E, 0,063 | — 0,059  —-0,144 | — 0,077 -0,163
B, 0,018 — — e —

- Amplitude des ondes réfléchies.
Cette table correspond aux figures 4 et 5.
Les amplitudes sont normalisées, I'amplitude de ’onde incidente ayant
été prise comme unité.
On remarquera que l'intensité totale réfléchie est faible; elle atteint 5%,
dans le cas le plus favorable. Cela provient de ce que la constante diélectrique

moyenne est faible, 1,4 environ, ce qui correspond & un indice de réfraction
moyen de 1,2 environ.

Conclusion.

La théorie du réseau optique transparent que nous avons
donnée est évidemment tres incompléte ; en effet, elle ne s’applique
qu'a un milieu dont l'inverse de la constante diélectrique est
sinusoidal et qui est infiniment épais. Il serait difficile de résoudre
les équations fondamentales de récurrence avec plus de trois termes
(constante non sinusoidale) par la méthode employée; il serait par
contre relativement facile de tenir compte des réflexions internes
pour étudier un réseau trés peu épais. Nous pensons cependant
que les phénomenes principaux que nous avons mis en évidence
seront encore justes pour un réseau plus général.
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La théorie du réseau métallique n’aurait aucun avantage 2
s'inspirer des méthodes qui nous ont servi pour le réseau trans-
parent. En effet, les ondes lumineuses sont si rapidement absorbées
dans le métal que les ondes intérieures ne doivent jouer qu'un role
tres effacé alors qu’au contraire c’étaient elles qm déterminaient
le probléme du réseau transparent.

Appendice 1.
Méthode de résolution des systemes (12) et (13).

Pour assurer la convergence des inconnues dun systéme
linéaire et homogene, il faut, en général, annuller le déterminant
infini formé avec les coefficients de ces inconnues. Mais 1l est 1m-
possible, dans notre cas, de résoudre le probléme de cette maniére:
les déterminants ainsi formés sont beaucoup trop compliqués.
C’était d’ailleurs déja le cas pour ExrerMANN et WANNIER!).
Ils sont alors généralisé une méthode donnée par INce?) pour un
systéme du méme genre. Nos systéemes (12 et (13) sont plus géné-
raux que ceux qu’on a considérés jusqu’icl et nous avons pensé
bien faire en décrivant la méthode inspirée d’INnce dont nous nous
sommes Servi.

Considérons 3 équations du systéme (13) pour 3 valeurs succes-
sives de m:

a) O [P+(u+n —2) (ptn—1)] Dpg + [P+ (u+n—1)* — k2] 9,
+O 12+ (p+n—1) (u+n)] D, =0;
b) @[+ (p+n—1) (p+n)]Dpy +[12+(u+n)2—FK? 9D,
+O[1*+ (p4n) (p+n+1)]Dpyy = 0;
Q) O+ (u+m) (un+ )] D+ [+ (u+n+ 1) — k3D,
+O[124+(u+n+1) (p+n+2)] 9, ,5=0.
S1 @ = 0, 'équation b) donne 12 = k'2 — (u+mn)2% Il y aura donc
une valeur propre de [? associée & k'?2 — (u + n)?; désignons-la par a®
et cherchons sa valeur. - "
2;4 Qgﬂ (1)

L’équation b) peut alors se transformer pour donner la relation:

k2 4+ (p+n) O (eny — Oniy)
1+0[en g+ 0niy]
1) EXTERMANN et WaNNIER, Helv. Phys. Acta 9, 520, 1936. — EXTER-
MANN, Helv. Phys. Acta 10, 185, 1937.

2) INcE, Proc. Roy. Soc. Edinburgh 46, 20—29, 1925; 46, 316—322, 1926;
47, 294301, 1927.

Posons ¢, ; = et  Opy =

ar = — — (u+mn)2. (2)
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Nous avons donc une expression de a" en fonction des para-
meétres du probléme et des deux quantités e, ; et d,,,. Ces der-
niéres peuvent se calculer indirectement de (2) dés que l'on se
donne une valeur pour a®. En effet, considérons tout d’abord 4;
I’équation ¢) peut s’écrive:

Olan+ (p+mn) (utn+1)]1/0,4 + [a*+ (u+n+1)"—F"?]
O+ (prn+1) (et n+2)] g =0
d’ou 'on tire:
5 Olar+ (p+n) (u+n+1)]
e (A1) — k2 O an+ (ptn+1) (pn+2)] G|

En remplacant de proche en proche 6,,,, en fonction de 0y pa,r-

des formules semblables, on obtient facilement pour d,., la fraction

continue suivante:

_ Ola+(p+n)(u+n+1)] O2a"+(u+n+1) (p+n+2)]? )
ar+(u+n+1)2—k2— @+ (p+n+2)2—k2—

~ Pour ¢, 4, en procédant de la méme maniére a partir de I’équa-

tion a), on peut obtenir une fraction continue du méme type:

_ Olam+(utn) (ut+n-1)] @*[a"+(u+n—1) (p+n—2)]? @)
ar+(u+n—1)2—k2— @'+ (u+n—22—F2—

6n+1 =

6')’&—1 =

Ces fractions continues sont convergentes, comme on peut le dé-
montrer. Pour avoir une solution approchée, on peut donc les inter-
rompre au terme d’ordre N; pour 4,,, et au terme d’ordre (—N,)
pour &, ;. Il est alors possible de les calculer apres avoir choisi
une valeur a? pour a®. Nous avons pris comme premiére approxi-
mation a? = k'2— (u + n)2. Les résultats obtenus pour e, ; et
Ony1, portés dans la relation (2) nous ont donné alors une valeur
a’ différente de a?. Il est théoriquement possible d’établir une
formule donnant la seconde approximation a? en fonction de a?
et de a?. Cette formule s’écrit toujours:

n n 1 n n

Upy+1 = Oy, + W;; (am T a’-m) : (5)
Mais I'expression de ¢ est trop compliquée, aussi nous avons fait
le calcul pour deux valeurs différentes de a?: a® donnant a'? et
a” donnant @, on peut ainsi facilement déterminer ¢, car la
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valeur a? trouvée doit étre la méme dans les deux cas:

1 1
@b+ — (@ —a) —at+ - (@1 —a))

d’ou I'on tire 1/e.



Sur la théorie du réseau optique. 205

Ayant une valeur de 1/¢, nous I'avons portée dans (5). On
arrive ainsi trés rapidement & un résultat suffisamment approché,
dont on connait en plus 'approximation: I'erreur ne peut pas
dépasser | a® —a™ |.

Pour la polarisation perpendiculaire, le systéme (12) se
résoud lul aussi par cette méthode grice aux équations suivantes:

k'? |

W = — (pu+mn)?
1 + @ [en—l + 6n+1] (M )

_ O [a"+(p+n—1)2] O%[a+(ptn-1)*[a"+ (ptn-2)°]

&

(6)

’nv—li

a+ (u+n-1)2-Fk'2— ar + (u+n—2)2—k'2—
5. —_ Ofor+ (uint1)?] @[a"+(ptn+1)*][a"+(u+n+2)%]
" o+ (p+n+1)°-k'2- a®+ (u+n+2)2—k2— |

Il faut remarquer en plus que les surfaces de dispersion
sont périodiques avec la période b c’est-a-dire que a® (u) est
périodique avec la période 1; de plus elle est symétrique. Les
calculs pour 0= u < } donnent donc la fonction ! (x) pour toutes
les valeurs de u. La méthode précédente ne peut cependant pas
s’appliquer directement pour g =0 et w =} car, par suite de
la symétrie des formules, ’équation b) qui est le critére de
I'exactitude des valeurs propres choisies est implicitement con-
tenue dans une des fractions continues. Le moyen de tourner la
difficulté nous est donné par la symétrie méme:

Pour 4 =0, on peut poser D,, = + D_, et ®,, = 4+ 9O_,,.
S1, dans ces conditions, on examine les équations pour n = 0,
on remarque alors que les fractions continues peuvent étre inter-
rompues 4 ce terme:

Prenons par exemple le systéme (12). L’équation avec
n =0 s’écrit alors: (a"—k'2) Dy+6 a* (D;+D_;) =0. Si I'on pose
D,, = D_,, (solutions symétriques) 1’équation donne alors:

(a» — k') D, + 20arD; =0. (7)

Si, par contre, D,, = —D_,, (solutions antisymétriques) la méme
¢équation montre que D, = 0 et l’équation pour n =1 peut
s’écrire : |

(@ +1—FEk*D;+0(a"+1)Dy=0. - (8)

Pour le systéme (18), les relations c.orrespondantes s’écrivent :

(a" —£'2) 9y +20a" D, =0
(a"+1—k%)9,+0[a"+2]9D,=0. (9)
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Pour =%, on a le méme phénomene: On peut poser D, ;==4+D _,
et O,,,=+9_,. m>0. Les relations (7—9) s’écrivent alors:

[e"+3—k?+ 0 (@ +1]Dy+6(a"+1) D } i
[a"+1—k2— O (a*+ 1] D;+ 6 (a"+ }) 2*0 '
a4+ k2 4+ O (an— 1] D+ 0 (a"+ 3) O, } (11)
[aﬂ+1ﬂk’2w@(a"_z)]01+@(an+"f)02:O

Cette méthode de résolution d’équations linéaires et homo-
génes en nombre infini et 4 une infinité d’inconnues peut étre
appliquée & des systémes plus généraux que ceux auxquels.la
théorie du réseau nous a amené. Il serait intéressant de la
généralier.

Appendice 2.
Remarques sur les réflexions internes.

S1 on considére une des ondes se propageant & I'intérieur du
milieu, arrivant sur la face de sortie, elle va en partie se réfracter
pour sortir du milieu, en partie se réfléchir et se diffracter. Si
la face de sortie est parallele a la face d’entrée, toutes les ondes
d’'un méme ordre ont méme composante tangentielle de vitesse
et donnent ainsi naissance & une seule onde sortante. Il n’y a
donc a la sortie qu un nombre d’ondes égal au nombre des ordres.
Il en va différemment lorsque la face de sortie n’est plus paralléle
a la face d’entrée, c’est-a-dire lorsque le milicu a la forme d’un
prisme. En effet, les ondes d’un méme ordre n’ont plus les mémes
composantes de vitesse tangentielles et donnent chacune une
onde sortante dans une direction bien déterminée. Alors que
dans le premier cas toutes ces ondes interféraient pour donner
une onde sortante, elles sont maintenant indépendantes. Il y
aura donc une sorte de « Aufspaltung », chaque raie spectrale
étant divisée en deux fois autant de raies partielles qu’il y avait
d’ondes dans P'ordre, car chaque polarisation agit cette fois
pour elle-méme. Ces phénomeénes qui, & notre connalssance
n’ont jamais été observés, mériteraient d’étre étudiés expéri-
mentalement aussi bien pour les rayons X et les cristaux que
pour les réseaux optiques.

Je remercie en terminant le Professeur Weigle, qui m’a proposé
ce probléeme et qui m’a guidé dans mon travail.

Institut de Physique de 'Université.
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