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Théorie de la propagation de la lumiére dans un milieu
atomiquement stratifié. II

par J. Weigle et J. Patry.
(10. II. 38.)

Dans la premiére partie de ce travaill), I'un de nous a montré
comment la lumiére se propage dans un milieu stratifié lorsque
la constante diélectrique de ce milieu est scalaire et périodique.
Il était ressorti de cette étude le fait suivant: si la période de
la structure du milieu est beaucoup plus petite que la longueur
d’onde, le milieu est biréfringent quoique sa constante diélectrique
soit scalaire. Cette biréfringence est due & la répartition aniso-
trope de la matiére dans l'espace. En effet la lumiere, dont la
longueur d’onde englobe un trés grand nombre de stratifications,
prend alors une moyenne de la constante diélectrique et cette
moyenne macroscopique aura des valeurs différentes suivant la
direction dans laquelle elle sera prise (dans la direction de la
stratification ou dans une direction perpendiculaire & celle-ci par
exemple). Pour la lumiére, le milieu est donc anisotrope (comme
il I'est évidemment pour un champ électrique statique).

Dans les cristaux, dont notre milieu stratifié est un modéle
fort simplifié, les atomes et les molécules sont en général eux-
-mémes anisotropes. Pour les décrire, dans une forme continue,
il est alors nécessaire d’attribuer au milieu une constante diélectrique
microscopique tensorielle, périodique avec le réseau ou avec la
stratification.

Il est alors intéressant de calculer comment la lumiére se
propage dans un tel milieu, ¢’est-a-dire calculer les valeurs moyennes
macroscopiques de la constante diélectrique dans les différentes
directions. On pourra ainsi connaitre quels roles ’anisotropie des
atomes et l’anisotropie de la distributions des atomes dans I’es-

1) Helv. Phys. Acta, |1, 159, 1938. La numérotation des formules du pré-
sent article fait suite a celle du précédent; nous renverrons aux formules précé-
dentes en citant leur numéro sans indiquer qu'elles se trouvent dans la premiére

partie.
%



182 J. Weigle.

pace jouent respectivement dans la biréfringence. Ce sont ces
calculs qui forment 'objet du présent travail. '

Supposons que le milieu est stratifié selon la direction x
avec la période A4 =1/b et que la constante diélectrique microsco-
pique est un tenseur symétrique. Ses axes principaux sont dans
les directions z, y, 2, que nous désignerons par les indices 1, 2, 3.
Les constantes diélectriques principales seront des fonctions pério-
diques de x avec la période 4. On aura donc

811 (.T) — }_:Slnlz 62 ximbx 81,} — Fl—lr: l (26)
622 (.’13)':8'53 (m): Eg?seznimbx 83?::‘: Ei}; l

et
D= (¢EK).

Nous n’indiquerons pas les vecteurs par des fléeches, pour ne pas
alourdir les notations.

Moruitrel), dans un travail important se rapportant a l'op-
tique cristalline, a discuté d'une facon détaillée les propriétés du
tenseur & qui, dans un cristal non absorbant, peut étre hermi-
tique ou réel et symétrique. Ces considérations sont fondamen-
tales pour ce qui concerne l'activité optique des réseaux. Nous
ne tiendrons pas compte de ces propriétés dans ce travail, réser-
vant cette discussion pour une publication ultérieure.

Nous aurons besoin, dans la suite, d’exprimer £ en fonction
de D

Pour calculer le tenseur p en fonction de &, on remarque que

(78 =1

1 étant une matrice unité. Pour les composantes des tenseurs,
cette équation devient

‘1 A 8:}].‘ - 19.27{:
et =

v

ce qui, dans notre cas, donne

11 1 = 7{,

LTI € (28)
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1) MoLIERE, Ann. der Phys. 24, 591, 1934.
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On peut donc écrire

11 e O, 2 mimb 1m___ , 11%

¥ (Q?) L Ym e Y = Y—m
- (29)

330y — NY,33 2wimbz 33 __ , 33%

¥ (l) 2 w-m e ,(/)m =Y _

n

Pour calculer les 2! en fonction des &, on aura donc des équa-
tions exactement semblables & (3).

En cherchant des solutions des équations de MAXWELL sous
la forme '

D = /\"‘ Dn_‘ 82 ai((kp - 7)—ri)

P E En 82 at (kp-1)—rit) (30)

n
H =\'H 7itknnN=rd)
| n

n

on trouve facilement que

k2 v

— D, =E, , avec k= — (31)

[l ¢
E, |1 étant le vecteur composante de E,, perpendiculaire au vecteur
d’onde k,,; D, est évidemment perpendiculaire & ce dernier. D’autre
part, en introduisant (29) et (80) dans ’équation (27), on trouve

VB, il =0 VN (5 D) ) g2 il pt) D
7! pom

(ppDy) est le vecteur qu’on obtient en multipliant le vecteur D,
par le tenseur dont les composantes sont %%, c’est-a-dire le ten-
seur ayant pour composantes les p®mes coefficients des séries de
Fourier (29). Dans ’équation ci-dessus, b est un vecteur ayant
la direction z (b=1/4). L’égalité des sommes d’exponentielles nous
conduit & écrire

kmip = km+pb  ou  k, =ky+nb (32)

et, en posant n 4 p = ¢
2 ai(kem - 2nt kg~ Y L
zEne t(kp-r) 28) i (kq r)Z(qu_m Dm) .
q

n (3

On voit alors que

m
et, en iIntroduisant cette expression dans (30), on a, finalement,
ke? s

2
iy

m
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Les deux systémes d’équations (32) et (83) sont les équations
fondamentales du probléme. On voit que (82), qui détermine
tous les vecteurs d’onde & partir de I'un d’entre eux, est exacte-
ment ’équation (4) valable pour les constantes diélectriques sca-
laires. Les équations (33) sont, elles, trés semblables & (5) et
permettent de calculer les D,.

Les équations (33) sont tout & fait générales et s’appliquent
aussl bien aux milieux périodiques & trols dimensions, avec une
constante diélectrique tensorielle dont les axes principaux ne
coiincident pas nécessairement avec les directions de périodicité,
qu’au probléme plus restreint pour la solution duquel nous allons
les employer. Elles ont déja été données par Posenger?') dans un
travail sur la biréfringence des rayons X.

L’expression (9,_mDp) ixn représente le vecteur composante
de (¥p_mDy) perpendiculaire au vecteur d’onde k,.

Nous écrirons maintenant les équations (33) en exprimant
explicitement les composantes des D,,. Les équations (32) montrent
que tous les vecteurs d’onde sont dans un méme plan contenant
I'axe z de stratification. Nous placerons donc l'axe y dans ce
plan et I'axe z perpendiculaire au plan des k. On a ainsi

g2

k2 (Dl - D2+D3) '"2(%—le +-Tlurz—«mD;2n_%‘ 33—m m)Lan

On voit que ces équations se décomposent en deux groupes

k?
e D} = S‘ v, D (84)

et

k 9 -
(Dl + D;t Z n——m + y)nmm DS )_L kp® (30)

Ces deux groupes d’équations étant indépendants, les ondes D3
de polarisation perpendiculaire au plan des k se propagent indé-
pendamment des ondes de polarisation comprise dans le plan des k.
Les ondes sont donc décomposées en deux polarisations et il vy
aura biréfringence si les vecteurs des ondes D32 sont différents
des vecteurs des ondes D12,

Nous considérerons séparément ces deux polarisations.

1) POSENER, Ann. der Phys. 19, 849, 1934.
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A. Polarisation perpendiculaire au plan des k (ondes ordinaires).

L’équation (34) étant exactement semblable & (6) et les rela-
tions (28) correspondant a (2), 'artifice de calcul représenté par
(3) et (10) peut donc étre employé et 1’on trouve immédiatement

o = b /7. (36)

La polarisation perpendiculaire donne donc une sphére comme
figure de dispersion, 1’onde se propage dans toutes les directions
avec la méme vitesse. L’amplitude des ondes diffusées est donnée
par

3 33

D, _ &

3 .33
Dy &

Tout ce que nous avons dit au sujet des ondes diffusées dans
Varticle précédent s’applique exactement ici et, par conséquent,
nous n’y reviendrons pas.

B. Polarisation paralléle aw plan des k (ondes extraordinaires).

Pour résoudre les équations (35), il est nécessaire d’introduire
les angles o, entre les vecteurs k, et I'axe 2. On a

&y, L2 tg Oy == —}E—O——f sin © (1 — ,EO, cos @) .
' nb b

L’expression générale du vecteur projeté sur la perpendiculaire
a k,, qui intervient au second membre de (35), devient ainsi,
au signe pres, en négligeant les termes en (ko/b)? devant ['unité

11 s s 33 . s 33
D, (y,!, sin a, sin a,, + »**_ cos a, cos o) = D, v¥

sauf pour les termes contenant des indices n ou m de valeur nulle.
Pour ceux-ci, on a

By (gujz‘ %‘% sin? @ + y? cos @)
ou

ko . \
D (wﬂm %% sin? @ + ¥, cos @) .
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Les équations (35) prennent alors la forme

k
ot p3t D+ 33D - ('tpi't_i cos @ —ytl 2% sin? @)Dog p33D,— w2iDy,— ...=0
SVEEN ) 33 ) / 33 G 11k0 inze D 38 33
TPt U .+l ,1—(1;)_‘ cos ©—yli - sin O\Dy— wP3iDi— wyitD,—...=0

- (1,0%;3 cos O@— it 2£°busin2 @) D_,— (ftp;” cos 6)~k—§ pl1 sin® @) i
2
k3

+ (wg” cos? @+l sin? G — ) Dy+ (wi’f cos @+ pl! sin? @) Dy

+ (wi’_g cos @+ yil —2‘%— sin? @) Dyt ... =0

Vi L 3

ky .
—ywiED — wi33D_ 4+ (’lp:l‘s eos@%—@p}lf.z*smz @)D@+ P33 D+ y3iDy+...=0
PP D= i D+ (wﬁ"* cos O+ 1y}t o5 sin? @)Do+ wi* Dt yit Dyt ... =0
Comme dans la premiére partie de ce travail, le déterminant

des coefficients de ces équations doit étre nul et peut étre dé-
composé en quatre déterminants partiels:

4 = Ay cos? O + (A, + 4y) ’;“ $in2 @ cos G- (—%ﬂ—)“smﬁz O Ay = 0.

On trouve alors que les deux déterminants 4, et 4, s’anullent.
St d’autre part, on néglige le terme en (k,/b)2, il faut que

- gt w3 Y3,
Ao = ... i3 P23 cos? @+y,1 1gin2 @ — E) __1, RS =)
! ! k3] cos? @ !
a3 53 33
- Y Vi Yoo

Un raisonnement semblable & celui emplové précédemment
nous donne alors

_ B q‘u —
cos? @ v g3l

_ , , k2 1 " 1
(gug‘ cos? @ 4 ' sin? 6 — —) .
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ce qui détermine k,.
- k
i o _— = . (37)
il .2 S S
]/’lpo [1 COS @ (1 83 3 pit )]

On voit done que, pour cette polarisation, les surfaces de dis-
persion seront des ellipsoides tangents le long de I'axe z aux sphéres
de la polarisation normale. IL’axe de stratification est donc l'axe
optique du milieu.

Il y a des ondes diffusées latéralement comme pour 'autre
polarisation, mais il n’est pas possible de donner une expression
simple pour leurs amplitudes. Elles sont du méme ordre de gran-
deur que celles des ondes ordinaires.

Nous pouvons maintenant comparer ces résultats avec ceux
obtenus pour un milieu & constante diélectrique scalaire. Pour
cela, nous nous servirons des indices de réfraction ordinaires et
extraordinaires pour les constantes diélectriques scalaire et ten-
sorielle respectivement. On voit, d’aprés les formules (86), (37)
et (11) (17), que

n = n=
/e e
\/ Yo
i 33 ¢
i — 12 ni— —
0= Ve e /il
VY,

ng nS et wf m! se rapportant aux milieux scalaires et tensoriels
respectivement.

Les deux anisotroples se marquent nettement. En effet,
I'anisotropie de la répartition des atomes dans l'espace provient
de la différence entre g, et 1/yp,, c¢’est-a-dire entre la moyenne de
e(x) et 'imverse de la moyenne de 'inverse de &(x). L’anisotropie
des atomes eux-mémes fait intervenir les deux constantes diélec-
triques principales £33 et e'l. Si cette derniére anisotropie avait
été seule, autrement dit s’il n’'y avait pas eu d’anisotropie dans
la répartition dans l'espace des atomes anisotropes, on aurailt
obtenu

t__ 1/.33 t__ /011

nh=1/e ng = y/etl.
On voit donc que l'anisotropie spaciale a, sur la biréfringence
d’'un milieu microscopiquement anisotrope, une influence sem-

blable & celle qu’elle avait sur un milieu i1sotrope. C’est de nou-
veau la différence entre &' et 1/y)' qui exprime cet effet.
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Il serait utile d’étendre ces études aux milieux périodiques
a trols dimensions, aux cristaux. Cependant, les conclusions aux-
quelles nous sommes parvenus grdce au modeéle extrémement
simplifié dont nous nous sommes servis, nous semblent &tre géné-
rales et ne seront pas essentiellement différentes pour les cristaux
réels.
Institut de Physique, Université de Genéve.
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