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Théorie de la propagation de la lumière dans un milieu
atomiquement stratifié. II

par J. Weigle et J. Patry.
(10. II. 38.)

Dans la première partie de ce travail1), l'un de nous a montré
comment la lumière se propage dans un milieu stratifié lorsque
la constante diélectrique de ce milieu est scalaire et périodique.
Il était ressorti de cette étude le fait suivant: si la période de
la structure du milieu est beaucoup plus petite que la longueur
d'onde, le milieu est biréfringent quoique sa constante diélectrique
soit scalaire. Cette biréfringence est due à la répartition anisotrope

de la matière dans l'espace. En effet la lumière, dont la
longueur d'onde englobe un très grand nombre de stratifications,
prend alors une moyenne de la constante diélectrique et cette
moyenne macroscopique aura des valeurs différentes suivant la
direction dans laquelle elle sera prise (dans la direction de la
stratification ou dans une direction perpendiculaire à celle-ci par
exemple). Pour la lumière, le milieu est donc anisotrope (comme
il l'est évidemment pour un champ électrique statique).

Dans les cristaux, dont notre milieu stratifié est un modèle
fort simplifié, les atomes et les molécules sont en général eux-
mêmes anisotropes. Pour les décrire, dans une forme continue,
il est alors nécessaire d'attribuer au milieu une constante diélectrique
microscopique tensorielle, périodique avec le réseau ou avec la
stratification.

Il est alors intéressant de calculer comment la lumière se

propage dans un tel milieu, c'est-à-dire calculer les valeurs moyennes
macroscopiques de la constante diélectrique dans les différentes
directions. On pourra ainsi connaître quels rôles l'anisotropie des

atomes et l'anisotropie de la distributions des atomes dans l'es-

x) Helv. Phys. Acta, 11, 159, 1938. La numérotation des formules du
présent article fait suite à celle du précédent; nous renverrons aux formules
précédentes en citant leur numéro sans indiquer qu'elles se trouvent dans la première
partie.
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pace jouent respectivement dans la biréfringence. Ce sont ces
calculs qui forment l'objet du présent travail.

Supposons que le milieu est stratifié selon la direction x
avec la période A I/o et que la constante diélectrique microscopique

est un tenseur symétrique. Ses axes principaux sont dans
les directions x, y, z, que nous désignerons par les indices 1,2,3.
Les constantes diélectriques principales seront des fonctions
périodiques de x avec la période A. On aura donc

et

èxl(x)=~~yje^ë2:limbx

e22(x) e33 (x) V £33ë1 "imbx

D (iE).

(26)

Nous n'indiquerons pas les vecteurs par des flèches, pour ne pas
alourdir les notations.

Molière1), dans un travail important se rapportant à

l'optique cristalline, a discuté d'une façon détaillée les propriétés du
tenseur i qui, dans un cristal non absorbant, peut être hermi-
tique ou réel et symétrique. Ces considérations sont fondamentales

pour ce qui concerne l'activité optique des réseaux. Nous
ne tiendrons pas compte de ces propriétés dans ce travail, réservant

cette discussion pour une publication ultérieure.

Nous aurons besoin, dans la suite, d'exprimer E en fonction
de D

E (y>D)

Pour calculer le tenseur xp en fonction de e, on remarque que

(xp~e) - ï
1 étant une matrice unité. Pour les composantes des tenseurs,
cette équation devient

N1 w>v evk $**
V

ce qui, dans notre cas, donne

y11-^- et ^33 xp22 --- • (28)
gli e&A

l) Molière, Ann. der Phys. 24, 591, 1934.
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On peut donc écrire

yn(x)= Vu11«2""'1xp'me--¦""¦' WH=WU-1

xpzz(x)=y,xp™e2nimbx „,33 33*
Tm r—m

(29)

Pour calculer les Ym en fonction des e™, on aura donc des équations

exactement semblables à (3).
En cherchant des solutions des équations de Maxwell sous

la forme
D — V J) e2ni((k„-r)-vt)

E=Y,Ene^i^«-r)-'t)
n

(30)

on trouve facilement que

fc2

fc:2
Un I-Jn j_ j » avec fc

V

c
(31)

Enj_]cn étant le vecteur composante de En perpendiculaire au vecteur
d'onde kn; Dn est évidemment perpendiculaire à ce dernier. D'autre
part, en introduisant (29) et (30) dans l'équation (27), on trouve

27i?Me2»<«*.-'>-'ö 22(^Dje*»< U'km+Pi) ¦ r)-vf\

(WpDm) est le vecteur qu'on obtient en multipliant le vecteur Dm

par le tenseur dont les composantes sont tp"pl, c'est-à-dire le
tenseur ayant pour composantes les pièmes coefficients des séries de
Fourier (29). Dans l'équation ci-dessus, b est un vecteur ayant
la direction x (b=l/A). L'égalité des sommes d'exponentielles nous
conduit à écrire

km+pb ou k0+nb (32)

et, en posant n + p q

n q m

On voit alors que
En 2 (Wn-m Dm)

m

et, en introduisant cette expression dans (30), on a, finalement,

2 n / \ \Wn-m D<m) i. fc ft » (33)
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Les deux systèmes d'équations (32) et (33) sont les équations
fondamentales du problème. On voit que (32), qui détermine
tous les vecteurs d'onde à partir de l'un d'entre eux, est exactement

l'équation (4) valable pour les constantes diélectriques
scalaires. Les équations (33) sont, elles, très semblables à (5) et
permettent de calculer les Dn.

Les équations (33) sont tout à fait générales et s'appliquent
aussi bien aux milieux périodiques à trois dimensions, avec une
constante diélectrique tensorielle dont les axes principaux ne
coïincident pas nécessairement avec les directions de périodicité,
qu'au problème plus restreint pour la solution duquel nous allons
les employer. Elles ont déjà été données par Posen er1) dans un
travail sur la biréfringence des rayons X.

L'expression (xpn-mDm)±kn représente le vecteur composante
de (xpn-mDm) perpendiculaire au vecteur d'onde kn.

Nous écrirons maintenant les équations (33) en exprimant
explicitement les composantes des DTC. Les équations (32) montrent
que tous les vecteurs d'onde sont dans un même plan contenant
l'axe x de stratification. Nous placerons donc l'axe y dans ce

plan et l'axe z perpendiculaire au plan des fc. On a ainsi

-ï (Di + Dl + Dl) 2 (Wl1-™ Dm Y yf_m D2m + yr^m D3 )± ,„.
™n m

On voit que ces équations se décomposent en deux groupes

et

fc;

fc2

k„

- Ds y m33 D3 (34)

(D\ + Dl) yi (xp^_m Di + xp^m Dl)± kn.

Ces deux groupes d'équations étant indépendants, les ondes Ds
de polarisation perpendiculaire au plan des fc se propagent
indépendamment des ondes de polarisation comprise dans le plan des fc.

Les ondes sont donc décomposées en deux polarisations et il y
aura biréfringence si les vecteurs des ondes D3 sont différents
des vecteurs des ondes D1'2.

Nous considérerons séparément ces deux polarisations.

Poseneb, Ann. der Phys. 19, 849, 1934.
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A. Polarisation perpendiculaire au plan des fc (ondes ordinaires).

L'équation (34) étant exactement semblable à (6) et les
relations (28) correspondant à (2), l'artifice de calcul représenté par
(3) et (10) peut donc être employé et l'on trouve immédiatement

fco fc l/if • (36)

La polarisation perpendiculaire donne donc une sphère comme
figure de dispersion, l'onde se propage dans toutes les directions
avec la même vitesse. L'amplitude des ondes diffusées est donnée

par
2)3 33

D3 ~ £33
'

Tout ce que nous avons dit au sujet des ondes diffusées dans
l'article précédent s'applique exactement ici et, par conséquent,
nous n'y reviendrons pas.

B. Polarisation parallèle au plan des k (ondes extraordinaires).

Pour résoudre les équations (35), il est nécessaire d'introduire
les angles oc„ entre les vecteurs kn et l'axe x. On a

«« £ tg a„ A. sin 0 1 - k°- cos 0)
nb \ b 1

L'expression générale du vecteur projeté sur la perpendiculaire
à fc.„, qui intervient au second membre de (35), devient ainsi,
au signe près, en négligeant les termes en (k0/b)2 devant l'unité

Dm (Wn-m sm an sm am + Wf-m cos a» C0S am) A» W.
,83
n—m

sauf pour les termes contenant des indices n ou m de valeur nulle.
Pour ceux-ci, on a

D0 (^ A-sin2 <9 + yf cos©

ou

Dm (w~m —r sin2 0 + W-m cos 0)
\ mb
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Les équations (35) prennent alors la forme

+ V'iSD-i+ V-l D-i- [V-i cosQ-y>Ll ^r sin2 ©W- V-Ïdi- V-l Di~ ¦ ¦ ¦ ^0

+ VÏ3o-2+ Vo3D-i-(v-ì cos 0-y)L{ -j- sin2 ©W- ipï\Dx- y»»fla-...=0

y?8 cos 0- vi i A.sin2 @\ D_2- LplScose-^-ç.'1 sin2 &\ D_±

+ (yj03 cos2© + yii sin2©-—r|Z)0+l^ï cos@ + yi; sin2 0)0-^

k,

-V-Y^-i- vV^-i+ivl3 COS0 + VJ1 -°-sin2@ÎD0+ y«])^ u>î3Z>2+...

+ uii« cos 0 + roil —-°- sin2 0 #,+ 0

0

p'Ì3D..2- y*3D_1+(y>}<>cos0 + y>l2l-£'sm20)Do+ v1s Dx+ y>l3 ö2+

Comme dans la première partie de ce travail, le déterminant
des coefficients de ces équations doit être nul et peut être
décomposé en quatre déterminants partiels :

A A0 cos2 0 + (Ax + Ax')
fe°

sin2 0 cos 0+ (^ì'sin4 © Y\2 0.

On trouve alors que les deux déterminants Ax et Ax s'anullent.
Si d'autre part, on néglige le ternie en (k0/b)2. il faut que

A„

W-\ «,-

Vï3 [Vl3 cos2 0 + vi - sin2 0- ¥) —-^ y«

Vii

=0

Un raisonnement semblable à celui employé précédemment
nous donne alors

fc2 \ 1 1
^3 cos2 0 + xpl1 sin2 0 - -j- —— - yf - -s

re0 / cos u eQ
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ce qui détermine fc0.

7
fr

y;« [f_ ooB-öfi-^-)
On voit donc que, pour cette polarisation, les surfaces de
dispersion seront des ellipsoïdes tangents le long de l'axe x aux sphères
de la polarisation normale. L'axe de stratification est donc l'axe
optique du milieu.

Il y a des ondes diffusées latéralement comme pour l'autre
polarisation, mais il n'est pas possible de donner une expression
simple pour leurs amplitudes. Elles sont du même ordre de grandeur

que celles des ondes ordinaires.

Nous pouvons maintenant comparer ces résultats avec ceux
obtenus pour un milieu à constante diélectrique scalaire. Pour
cela, nous nous servirons des indices de réfraction ordinaires et
extraordinaires pour les constantes diélectriques scalaire et
tensorielle respectivement. On voit, d'après les formules (36), (37)
et (11) (17), que

1

K ]/s0 v"f=~J~

i
Vv<r

nj ni et rY0 n\ se rapportant aux milieux scalaires et tensoriels

respectivement.
Les deux anisotropies se marquent nettement. En effet,

l'anisotropie de la répartition des atomes dans l'espace provient
de la différence entre £0 et lfxp0, c'est-à-dire entre la moyenne de

e(x) et l'inverse de la moyenne de l'inverse de e(x). L'anisotropie
des atomes eux-mêmes fait intervenir les deux constantes
diélectriques principales £33 et f11. Si cette dernière anisotropie avait
été seule, autrement dit s'il n'y avait pas eu d'anisotropie dans
la répartition dans l'espace des atomes anisotropes, on aurait
obtenu

K y£33 K — lA11-

On voit donc que l'anisotropie spaciale a, sur la biréfringence
d'un milieu microscopiquement anisotrope, une influence
semblable à celle qu'elle avait sur un milieu isotrope. C'est de
nouveau la différence entre e" et ljxpl1 qui exprime cet effet.

Ve? " t _ /„„Il
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U serait utile d'étendre ces études aux milieux périodiques
à trois dimensions, aux cristaux. Cependant, les conclusions
auxquelles nous sommes parvenus grâce au modèle extrêmement
simplifié dont nous nous sommes servis, nous semblent être générales

et ne seront pas essentiellement différentes pour les cristaux
réels.

Institut de Physique, Université de Genève.
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