
Zeitschrift: Helvetica Physica Acta

Band: 11 (1938)

Heft: II

Artikel: Théorie de la propagation de la lumière dans un milieu atomiquement
stratifié

Autor: Weigle, J.

DOI: https://doi.org/10.5169/seals-110847

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 24.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-110847
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Théorie de la propagation de la lumière dans un milieu
atomiquement stratifié

par J. Weigle.

(22. XII. 37.)

I. Introduction.

La théorie dynamique de la propagation des rayons X dans les
cristaux, due à Ewald1), rend compte d'une façon admirable des

phénomènes de diffraction qui se produisent alors. Laue2) a donné
à cette théorie une forme un peu différente en remplaçant les
dipoles d'EwALD par une distribution continue et périodique de
constante diélectrique à l'intérieur du cristal. BRiLLOUiN3)a étudié
la propagation de la lumière dans les liquides stratifiés par les
ultrasons et montré comment les fonctions de Mathieu
intervenaient dans le problème. Extermann et Wannier4), en reprenant

la méthode de Brillouin mais en s'inspirant des travaux
d'EwALD-LAUE, ont pu donner la théorie complète du phénomène.
Enfin, Extermann5) a montré que cette méthode pouvait se
généraliser en la rattachant à la théorie des rayons X. La théorie
d'EwALD-LAUE devient alors un cas particulier d'une théorie
beaucoup plus générale.

Jusqu'ici, cette théorie générale n'avait été donnée que pour
les cas où la longueur d'onde lumineuse était de l'ordre de grandeur
de la périodicité du milieu (rayons X ou réseau optique6)), ou
alors, beaucoup plus petite que celle-ci, comme dans les ultrasons.

Il nous a semblé intéressant d'étudier le cas où la longueur
d'onde de la lumière est beaucoup plus grande que les périodicités

Ewald, ZS. für Kristall. (A), 97, 1, 1937.
2) Laue, Ergeh, der Exakt. Naturwiss., 10, 133, 1931.

3) Brillouin, La diffraction de la lumière par les ultrasons. Actualités
scientifiques, Hermann, Paris 1933.

4) Extermann et Wannier, Helv. Phys. Act. 9, 520, 1936.
5) Extermann, Helv. Phys. Act. 10, 185, 1937.
6) Patry, Helv. Phys. Act. (paraîtra sous peu).
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du milieu dans lequel elle se propage. Ce problème est, en effet,
celui de la propagation de la lumière dans les cristaux; on trouvera

sa solution dans les pages qui suivent.
Nous avons supposé, pour ne pas compliquer le problème,

que nous avions à faire à un milieu périodique dans une seule direction,

donc stratifié, représentant le cristal. La période de stratification

est de l'ordre de grandeur des dimensions atomiques (10~8cm.),
tandis que la lumière est visible, sa longueur d'onde étant de l'ordre
de 10-5 cm. Il ne serait pas difficile d'étendre nos résultats à un
cristal réel, périodique en trois dimensions ; les calculs seuls seraient
beaucoup plus compliqués, mais les résultats resteraient
essentiellement semblables à ceux auxquels nous sommes arrivés. Nous
avons aussi supposé que la constante diélectrique microscopique
(à l'intérieur même des atomes ou des molécules composant le
cristal) était donnée et qu'en plus elle était scalaire, négligeant ainsi
l'anisotropie optique des molécules. Nous verrons que le cristal
agit au point de vue macroscopique, comme s'il possédait une
constante diélectrique tensorielle, cette anisotropie étant amenée

par la répartition anisotrope des molécules dans l'espace et non
pas par les propriétés anisotropes de celles-ci. Nous devons donc
nous attendre à retrouver la théorie classique de la propagation
de la lumière dans les cristaux pour le cas où la longueur d'onde
peut être considérée comme infinie par rapport à la période du
réseau matériel. C'est bien là ce qui ressort de nos calculs, mais
ils donnent en plus une relation qui lie l'indice de réfraction
ordinaire avec l'indice de réfraction extraordinaire, tous deux devant
être calculés à partir de la constante diélectrique microscopique.
Notre théorie explique donc quelle est la propriété atomique
(pour des atomes isotropes) qui détermine la biréfringence et qui
permet de prévoir si celle-ci doit être positive ou négative.

D'autre part, si AjX A période du cristal, X longueur d'onde
de la lumière) n'est pas négligeable devant l'unité, d'autres phénomènes

interviennent, qui ne peuvent pas être donnés par la théorie
élémentaire de Fresnel. En effet, dans ce cas, les électrons d'un
même atome ne vibrent plus en phase les uns avec les autres
lorsqu'ils sont excités par la lumière (ce qui aurait été le cas avec
/l/A~0). Il y aura donc des ondes diffusées latéralement, ondes
qui sont l'analogue des ondes des rayons X diffractées ou "réfléchies"
par les plans réticulaires du cristal. Comme A/X est très petit,
elles auront une intensité très petite mais, dans certaines conditions,

elles pourront être observées.
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II. Théorie générale.

Nous supposerons le milieu stratifié donné par sa constante
diélectrique

e(x)^ene2"inb-x (1)
n

nb étant les «vecteurs d'onde» des ondes matérielles figées ou,
si l'on préfère, b étant le vecteur de base du réseau réciproque
(ô 1/A) A étant la période du milieu stratifié. Ce milieu sera
donc représenté dans l'espace réciproque par la série des vecteurs
nb ou par une série de points équidistants de b échelonnés le long
de l'axe des X (figure 1).

Nous aurons besoin, par la suite, de connaître l'expansion en
série de Fourier de l'inverse de la constante diélectrique

V(x)=--rc=yifme2»imb*. (2)
e \X) m

Elle a évidemment la même période que e (x) et par conséquent
elle fait intervenir le même vecteur réciproque b.

Si l'on désire connaître les xpm en fonction des en, il faudra
résoudre une série d'équations qui seront utiles pour les calculs

que nous aurons à faire. Nous poserons donc

1
7777 ?(*) =^^me27lHm+n)bX-
fc \J/) n m

En écrivant
n + m p

on a

1 — X1 „ 2 n t p b x S^ in p1 — 2_i 6 2-1 rn-n bn
p n

et l'on voit que, pour satisfaire cette équation, il faut avoir

2e« v-» i
n

n

Ces équations sont celles qui nous permettent de calculer les en

en fonction des xpm ou inversement.
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Surfaces de dispersion.

Calculons maintenant, pour une onde de fréquence v, la solution

des équations de Maxwell dans ce milieu. En écrivant cette
solution sous la forme

D 25Me2"i((ì"-V'()

D étant le vecteur de déplacement électrique et kn les vecteurs
d'ondes des ondes planes partielles, on sait1) qu'on doit avoir

kn fc0 + nb (4)

et que les Dn doivent satisfaire les relations fondamentales

k2 - -TJDn 2 Wn-mDm±kn. (5)
™n rn

Dm±!cn est la composante de Dm perpendiculaire au vecteur kn
et fc vjc est le vecteur d'onde de l'onde se propageant dans le
vide. La grandeur du vecteur fc0 qui, pour l'instant, est indéterminée,

sera fixée par une condition de convergence.

Fig. i.
Vecteurs d'onde des ondes formant une solution des équations de Maxwell.

L'équation (4) montre comment on obtient les vecteurs des

ondes planes partielles à partir du vecteur fc0 de l'une d'entre elles.
Si l'on a tracé celui-ci de façon à ce qu'il aboutisse en un point du
réseau réciproque auquel nous donnerons l'indice 0, les autres
vecteurs d'onde partant de la même origine que fc0 aboutiront en chacun
des points du réseau réciproque (figure 1).

Les amplitudes relatives de ces différentes ondes partielles
sont déterminées par l'équation (5). C'est alors l'ensemble de ce

groupe d'ondes qui est une solution particulière des équations
de Maxwell dans le milieu périodique.

Nous désirons maintenant connaître fc0 en fonction de son
orientation dans le réseau.

1) Extermann, loc. cit., et Laue, loc. cit.
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Remarquons tout d'abord que tous les kn se trouvent dans un
même plan contenant le réseau réciproque. Cela nous permettra de

décomposer l'équation vectorielle (5) en deux séries d'équations,
l'une donnant des relations entre les composantes des Dn
perpendiculaires au plan des kn, et l'autre entre les composantes contenues
dans ce plan. Cela signifie que si l'onde fc0 est polarisée avec son

vecteur t)0 perpendiculaire au plan des kn ou au contraire dans

le plan des fc„, toutes les autres ondes seront polarisées de la même
manière. Les équations (5) deviennent ainsi

2>-»D»'+(vo--5£)*V=0 (6)

et

K
(polarisation perpendiculaire)

fc

2'Vn-f» Dm" cos (fc„,fcm) + (xp0 — ¦—j D„" 0 (7)

(polarisation parallèle)

les sommes étant prises sur toutes les valeurs de m sauf m n.

i

Fig. 2.

Dans les équations (6) et (7), nous remplacerons les k?n par
leurs valeurs tirées de (4) en fonction de fc0. Pour cela, nous
introduirons le fait que la longueur d'onde X 1/fc de la lumière
est beaucoup plus grande que la période A I/o du milieu stratifié

atomiquement:
X ;> A ou fc << b.

En appelant alors f et rj les composantes de fc0 suivant l'axe
du réseau réciproque et perpendiculaire à celui-ci respectivement
(figure 2), on a

fc*=V+ (f + nb)2 n2b2(l+^- +4Wi •

V nb n* b* 1

Le facteur du terme Dn dans les équations (6) et (7) devient alors

fc2 1
y>o — -2-p- —tï kj~ s fo sauf pour n= °

nb n2 b2
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en supposant que fc0 est du même ordre de grandeur que fc et que,
d'autre part, k2/b2 <^.xp0.

Pour les cas qui nous intéressent, on a en effet que X est de

l'ordre de grandeur de 10~5 et A 10~8, ce qui donne pour fc2/ò2
10~6 alors que xp0 la valeur moyenne de l'inverse de la constante
diélectrique est de l'ordre de l'unité.

Nous verrons plus loin qu'il faut tenir compte des cas où fc0

est complexe et a des valeurs proches de inb.
Nous nous occuperons maintenant séparément des deux

polarisations.

A. Polarisation perpendiculaire au plan des fc.

Les équations (6) deviennent alors, avec les simplifications
données ci-dessus,

+ xp0 D_x + xp_x D0' + xp_2Dx + =0
+ Wi D-i + (¥>o-W) Do' + W~i Dx'+ 0

+ Wï. D-X + ipx D0' + xp0 Dx + =0
(8)

On sait que ces équations homogènes et linéaires pour les D' ne
donneront des solutions convergentes que si le déterminant des

coefficients s'annule:

Vo ¥-1 V-2
xpx xp0-k2jk2n xp_x

W* Vi Wo

(9)

Il faudra donc choisir fc0 de façon à satisfaire cette condition; sa
valeur sera ainsi complètement déterminée. L'équation pour k20

représentée par le déterminant (9) est, comme on le voit, du premier
degré et, par conséquent, donnera une valeur unique pour cette
inconnue. Il n'est pas possible d'exprimer fc0 en fonction des xpn,
mais nous allons voir qu'en fonction des en introduits plus haut
la solution est très, simple. Nous écrirons en effet les équations (3)

qui déterminent les e„ en fonction des xpm sous la forme

(10)

avec

+ xp0e_-i + V-ieo + W-ï. H 4- =0
+ xpxe.-i _i_ (xp0-x) g0 Y- V-i £i + =0
_L f2e.-i + Vi£o + Vo£i + =0

l/e0.
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On sait que les en sont des solutions convergentes de^ce système

d'équations; par conséquent, on peut dire que, pour qu'un système

d'équations ayant les xpm arrangés comme dans (10) pour coefficients

(sauf pour le terme xp0e0, dont le coefficient est (%— x))

donne des solutions convergentes, il faut que x soit choisi de

manière à ce que
x l/e0

£0 étant évidemment une fonction des xpm. Cette solution semble,

au premier abord, purement formelle; cependant, comme e (x)

est une donnée de notre problème, on peut toujours calculer les sn

par l'expansion en série de Fourier et par conséquent e0.

Fig. 3.

Surfaces de dispersion (polarisation perpendiculaire: onde ordinaire).

Revenant alors au déterminant (9), on voit immédiatement

qu'il faut que fc2/fc', qui joue le rôle de x, soit la fonction £0 des

xpm pour que le déterminant soit nul.

fc2^

k»

1

£o
ou fco fe V£o • (11)

Pour la polarisation envisagée, la valeur de fc0 ne dépend donc pas

de son orientation dans le réseau; lejmilieu agit comme un milieu

homogène d'indice de réfraction vV 0n Peut représenter cela

géométriquement en traçant autour d'un point du réseau réciproque
choisi arbitrairement comme origine une sphère de rayon fc Ve0 (fig-3) •

Cette sphère, qui représente le lieu des origines des vecteurs
possibles ou, si l'on veut, le spectre de direction des vecteurs d'ondes

de fréquence v, s'appelle une surface de dispersion. Nous verrons

que ces surfaces sont les surfaces de Fresnel. Si une onde de

vecteur fc0 se propage dans le cristal, d'autres^ ondes, de vecteurs

kn k0+n b, lui sont associées. Connaissant fc0 par la surface de

dispersion, nous connaissons à la fois tous les vecteurs kn. Les

équations (8) doivent alors être résolues pour les Dn' des diffé-
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rentes ondes lorsqu'on remplace fc0 par la valeur donnée dans (11).
En comparant (10) avec (8), on voit immédiatement que

D ' e

A/ e0

Ainsi le problème est entièrement résolu pour toute cette série
d'ondes.

La surface de dispersion n'est du reste pas aussi simple qu'on
pourrait l'imaginer en considérant la sphère de rayon fc \/ea.
Il faut en effet considérer une telle sphère tracée autour de chaque
point du réseau réciproque et ce sera l'ensemble de ces sphères
qui formera la nappe des surfaces de dispersion. Nous verrons
en plus que ces sphères se prolongent dans l'imaginaire donnant
alors des vecteurs d'ondes complexes qui nous aiderons à
comprendre d'une façon détaillée comment se propage la lumière
dans les milieux atomiquement périodiques.

Nous montrerons pour commencer qu'il y a bien une sphère
de rayon k0\/eQ autour de chaque point réciproque.

Si nous avions exprimé tous les fcj, en fonction de kn au lieu
de fc0, on aurait eu, en écrivant que fc| est du même ordre de

grandeur que fc,

-f Vo D'n -1 + W- iD, + xp.-2 *Yn+x + 0

+ Vi d: -1 + (Vo -V IK) Dn + xp. i Dn+X _i_ - 0

+ V2 K--1 + Vi Dn' + Wo Dn+i + 0

Alors comme précédemment,
fc» Wëo

et
D' e

Dn £0

car la numérotation des D' est arbitraire.
Cette nouvelle série d'ondes ayant pris naissance sur la sphère

de rayon k\/s0 autour du point n est aussi une solution particulière

des équations de Maxwell. Pour la différencier de la solution
précédente, nous dirons qu'elle a pris naissance sur la branche n
des surfaces de dispersion et nous indiquerons son origine par un
indice supérieur n. On a donc, d'une façon générale,

T)'n £

d': ~
£n



Théorie de la propagation de la lumière dans un milieu atomiquement stratifié. 167

Montrons enfin comment ces surfaces de dispersion se

prolongent dans l'imaginaire. On doit avoir, pour la nappe d'indice
zéro,

H0 — K £0

de façon à rendre le déterminant (9) nul. Si, en particulier, l'une
des composantes f et rj de fc0 est plus grande que fc0 mais réelle,
on voit immédiatement que l'autre est imaginaire. On a en effet,
avec !>fc0

n ± iyi2 —fc2e0.

Cette valeur de r/ est celle de l'intersection d'une droite f
constante avec la sphère de rayon fc-\/«o-

Le vecteur fc0 est alors complexe

fc0 1 + i rj

quoique sa grandeur soit réelle et égale à k\/s0.
Ces ondes sont semblables aux ondes évanescentes qui

interviennent dans la réflexion totale. En effet, on a

(>l7ii((ka-r)—vt) _ g^ 2 niiy g2 ni(èx—vt)

et l'on voit que ces ondes planes se propagent dans la direction x
avec une vitesse de phase donnée par v/£, mais leur amplitude
diminue ou augmente dans la direction y perpendiculaire à la
direction de propagation d'une façon exponentielle.

Ondes diffusées.

En considérant une des séries d'ondes formant une solution
des équations de Maxwell, on s'aperçoit que les ondes fc? par
exemple ont des vecteurs d'onde de l'ordre de grandeur de b,

c'est-à-dire beaucoup plus grands que k-\/e0. Ces ondes, dont
l'amplitude est

n'o _ n'o l1
Eo

c'est-à-dire du même ordre de grandeur que D'°, ont donc une
vitesse de propagation dans le milieu beaucoup plus petite que
l'onde fc|J. Leur indice de réfraction apparent est donc très grand.
Nous voulons montrer que ces ondes ont un vecteur électrique E"i
très petit et que l'énergie qu'elles transportent est, elle aussi,
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extrêmement petite. Les équations de Maxwell fournissent les
relations

r^n / i rn—m ^m
¦m

et

Enki2-ki(ki-En) k2î)in.

Comme les D'£ de notre problème sont tous dans la même direction
(normaux au plan des fc), la première équation montre que les F\
sont parallèles aux D\-

On a donc

(ki-Èi) 0
et

FY
fc: 2 Dn¦

Nous voyons par cette équation que si fej,2 est de l'ordre de grandeur

de n2 b2, l'amplitude électrique de l'onde est extrêmement
petite, même si Dln est fini (figure 4). L'amplitude magnétique
est donnée par

fcDlKHI
et par conséquent le vecteur de Poynting devient

I Oi I _ _!L Jf- T)i2
4n Kn

(14)

H
Fig. 4.

Ondes diffusées ordinaires.

Ces ondes, qui se propagent dans le milieu avec une vitesse très
petite, transportent donc une énergie relative extrêmement petite
(de l'ordre de fc3/fc|). Nous verrons que, dans certains cas, elles

pourraient être observables, mais que leur petite vitesse nécessiterait

des conditions spéciales pour éviter la réflexion totale et

pour leur permettre de sortir du milieu.
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B. Polarisation dans le plan des fc.

Pour pouvoir écrire les équations fondamentales (7) en fonction

de fc0, il est nécessaire d'exprimer tout d'abord les angles
entre les différents vecteurs d'ondes qui interviennent explicitement
dans les coefficients des D^. En appelant 0 l'angle que fc0 forme
avec l'axe du réseau réciproque, on trouve, pour l'angle entre
fc0 et km, la valeur

r/0

et, pour l'angle entre fcB et km,

m b

V

mpb
(p — m) si p et m sont de même signe,

et
2

n -r (p + m) si p et m sont de signes opposés.
mpb

Dans ces expressions, nous avons supposé, comme précédemment,
que k2/b2 était négligeable par rapport à l'unité. Dans cette
approximation, on obtient donc

cos (fc0, km) cos' 0
fcp

m b
sin2 0

et
+ 1 (p et m de mêmes signes)

cos (km, fc„) _ j (p et m de signes contraires).

De même que pour la polarisation précédente, on a

fc2
xp0 —-— j^ xp0 (sauf pour m 0).

km

Les équations (7) s'écrivent alors

¦ ¦+W0D-1 -V-iW
k

cos © =-sin2 ©
0 - V-2 Dj" - .=0

¦¦-V1D-1 cos©-A sin©
b

+ Do"
r fe2i

L "o -

+ y-i#i"
fc

cos©+ ^5-sin2©
0

+ .=0

¦•-»1K1 + ¥>!#(," cos 0 +^ sin2© + Vo^i" +• .=0
L J

(15)
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Le déterminant des coefficients des D" prend alors la forme

A

rsin2© - V-s ~ V-i

-V-3

+ Vo +Vi -V-a(cose-^

+ Vi +Vo ~V-i (cos©--^-sin8 81 — xp.

-y>2 Uose-^-sm* ©i-yJcos©--ysin*©) (vo-yi)+V-i(cos e+-^-sina ®\+y>Jcos ©+||sins©

~Vs ~Vi +Vi (cos6 + -ysin!©j + % +V-1

—Vl ~Vs +Vi (eos0+2~bsin*e) + Vi +Vo

En changeant les signes dans les lignes en-dessus du terme
central, puis dans les colonnes à gauche de celui-ci et en
décomposant, on arrive à l'expression

A A0 cos2 0 + (Ax + Ax') -°- cos 0 sin2 0
b

où les déterminants A0, Ax, Ax et A2 sont

fcn

Ax

Ai

sin4 0 An

Vo V-i V-i V-s V-i
Vl Vo V-l V-2 V-3

r-\ 1
V2 Wl \Wo .%8/cos2© ^1 W--

Vs Vi Vi Vo V-i
Vi Vs Vi Vi Vo

Vo V-i V-i V-s V-i
Vi Vo V-i V-i V-3

-*- -Vi o v_x ff
Vs Vi Vi Vo V-i
Vi Vs Vi Vi Vo

Vo V-i ~^Y W-3 V-i

Vi Vo -V-i V-i V-s

Vi Vi Û y>-i V-i
Vs Vi Vi Vo V-i
Vi Vs Vi Vi Vo
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Vo

Vi
Vi
2

Vs

Vi

V-i

Vo

-Vi
Vi

Vs

V-i
"Y
- V-i

0

Vi
Vî
2

V-3

V-i

V-i

Vo

Vi

V-i

V-s

V-i
~2

Vi

Vo

En réarrangeant les lignes et les colonnes de Ax et de A'x,
on peut montrer que si xpn=ip_n (pas d'absorption!)

Ax —Ax et AX' ~AX.
Ces deux déterminants sont donc nuls. On a finalement

A A0 cos2 0
k 2

4%- sin4 0 A,

Mais, comme nous négligeons les termes en (k0/b)2, on doit
avoir

Jo 0

ce qui donne, comme précédemment,

Vo
fc2

h 2

On trouve donc finalement :

1

COS2 0 Vo

v=
]/Vo 1 —cos2 (9 1 i

«oVo

(17)

f2 V2 c2
1

fc2 £0 k2/xp0 fc2/Vo

Les surfaces de dispersion sont donc des ellipsoïdes de révolution

autour de l'axe x du réseau réciproque tracés autour de chaque
point de celui-ci. On s'en rend facilement compte en écrivant (17)
sous la forme

£2 „,2 P-2

1.

Les axes de cet ellipsoïde sont donc fc-v/£o> '<7Wo e* ^/Wo ¦

Il est tangent à la sphère de rayon k\/e0 à l'intersection avec
l'axe du réseau réciproque (figures 5a et 5b).

On voit donc que le milieu est biréfringent puisque les ondes
de différentes polarisations se propagent avec différentes vitesses.
Si on néglige les ondes latérales, le milieu stratifié agit comme
un cristal uniaxe, l'axe optique étant la direction de stratification
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Si 1ly>0 est plus grand que £0, la biréfringence est négative, tandis
que, dans le cas contraire, elle est positive. La polarisation
perpendiculaire au plan des fe correspond à l'onde ordinaire, tandis que
la polarisation dans ce plan forme l'onde extraordinaire. Les
surfaces de dispersion sphère et ellipsoïde ne sont pas autre chose

que les surfaces de Fresnel (surfaces des indices de réfraction)
de l'optique cristalline. Cependant elles contiennent plus que ces
dernières car, si l'on trace un des vecteurs d'ondes possibles ayant
son origine sur ces surfaces et aboutissant à l'origine du réseau
réciproque, nous avons vu que cette onde était nécessairement
accompagnée d'une série d'autres ondes ayant la même origine,
mais aboutissant aux autres points du réseau réciproque. On pour-,
rait dire que la solution de Fresnel est la solution statique de

notre problème, solution exacte lorsque k/b—vO. Nous reviendrons
plus loin sur cette question.

klfâ HV*.

klVI,kli/e.

Fig. ô.
Surfaces de dispersion (polarisation parallèle: onde extraordinaire).

Pour terminer cette étude des ondes polarisées dans le plan
des vecteurs fc, il nous faut donner l'expression des amplitudes D'^
des différentes ondes. Comme précédemment, on trouve

COS 0
D'_

d: cos 0. m>0. (18)

Pour les autres solutions, c'est-à-dire celles dont les vecteurs
prennent naissance sur l'ellipsoïde tracé autour du point n du réseau
réciproque, on doit écrire

n"»
YYrr+i
D"» — cos 0„ et

D"n
D"n

•JLcob 0n p>0. (19)
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0n représentant l'angle que fc™ fait avec l'axe du réseau
réciproque. Ces ondes secondaires, dont l'amplitude relative du vecteur
déplacement électrique est de l'ordre de l'unité, n'ont pas, comme
les ondes polarisées perpendiculairement, un vecteur électrique
de l'ordre de k2jb2. En effet, pour ces ondes, le vecteur électrique
En n'est pas parallèle à Dn. Les équations résultant des équations
de Maxwell qui permettent de calculer les En en fonction de Dn
sont comme précédemment

En S Wn-m Dm (20)
m

et, en appelant «.„ l'angle entre En et Dn,

k2
En cos <xn —— Dn (21)

k'n

Dans l'approximation dont nous nous sommes servis, c'est-à-dire

i/, 7 N 0 (m et n de mêmes signes)
angle (km, fc„) ; r ° '

n (m et p de signes contraires)
et

i n \ & m>0
angle (fc0, fc.) ^ _ Q m<Q

les équations (20) deviennent

En sin cn — xpnD0 sin 0 ]

E_n sin <x_„ xp_„ D0 sin 0 (22)
E0sin a0=... +xp_2D2sin 0+xp_xDxsin 0-xpxD^.xsin 0-xp2D_2sin 0. J

Les équations fondamentales nous permettent de mettre cette
dernière équation sous la forme

E0 sin a0 sin 0 +xp_2D2+xp_xDx—xpxD_x—xp2D^2—...)
k2 \— - Vo) D0 tg 0

ou

E0 sin a0 D0 l ^0) sin 0 cos 0.

On voit ainsi que E0 cos <x0 est du même ordre de grandeur que
D0, ainsi que E0 sin oc0. On a en effet:

tg oc0 cotg 0—- -, j-^r •

sin 0 cos 0 (1 1
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Tandis que, pour les ondes secondaires, alors que En cos a.„ est
beaucoup plus petit que D0 à cause du facteur

fc2

1.2
/<¦¦„ n

k2

^b2

de (21), E.n sin oc„ est de l'ordre de D0. Pour ces ondes (figure 6),
le vecteur électrique est donc presque entièrement dans la direction
kn de propagation de l'onde. Le vecteur de Poynting est donc

presque à angle droit de fc„ et l'onde marchant par exemple de

gauche à droite transporte l'énergie de haut en bas.

H

Fig. 6.

Ondes diffusées extraordinaires.

Le vecteur de Poynting est approximativement

O™
C

Tn
k

nb
Wn£n

£0
D02 sin 0 cos 0 (23)

Ainsi les ondes diffusées de la polarisation dans le plan des fc,

qu'on pourrait appeler les ondes diffusées extraordinaires,
transportent beaucoup plus d'énergie que les ondes diffusées ordinaires
dont le vecteur de Poynting contenait un facteur fc3/n3 b3

III. Constante diélectrique macroscopique moyenne d'un milieu
microscopiquemcnt stratifié.

Nous avons pu montrer, dans les paragraphes précédents,
qu'un milieu dont la constante diélectrique est scalaire et périodique
donne lieu au phénomène de la biréfringence qu'on associe
ordinairement à une constante diélectrique tensorielle. Cela provenait
de ce que nous avons supposé que la longueur d'onde de la lumière
était beaucoup plus grande que la périodicité du milieu. C'est
alors la répartition anisotrope des atomes dans l'espace (et non



Théorie de la propagation de la lumière dans un milieu atomiquement stratifié. 175

pas l'anisotropie propre de ceux-ci) qui est responsable de la
biréfringence. Il est bien évident que si les atomes ou les molécules
ont une déformabilité optique tensorielle, cette anisotropie viendra
s'ajouter à celle de la distribution dans l'espace et que, d'une façon
générale, la biréfringence optique qu'on observe dans les cristaux
est due simultanément à ces deux causes car, dans la plupart des

cristaux non cubiques, les atomes et les molécules, du fait des

champs de force anisotropes qui agissent sur eux, prennent des

propriétés optiques anisotropes aussi. On pourrait du reste penser
que les deux effets pourraient être séparés par des mesures de
la biréfringence des rayons X. Ceux-ci ont en effet une longueur
onde comparable aux dimensions atomiques, donc à la période de la
constante diélectrique; dans ces conditions, les calculs que nous
avons conduits plus haut ne sont plus valables et le cristal n'agit
plus comme s'il avait une constante diélectrique tensorielle. Seules
les propriétés anisotropes des atomes entrent en jeu. Malheureusement,

les électrons diffusant la lumière et les rayons X le plus activement

ne sont pas les mêmes et le phénomène de la biréfringence des

rayons X n'a jusqu'ici pas été découvert1).
Pour bien montrer comment une constante diélectrique

microscopique scalaire peut donner à un milieu des propriétés macroscopiques

tensorielles, nous allons rapidement calculer la constante
diélectrique statique moyenne du milieu stratifié.

Considérons donc, pour un milieu de constante diélectrique
donnée par (1) et (2), la solution statique des équations de Maxwell

Dx constante Dy Dz 0 et ¦ Ey Ez 0

L'équation rot E 0 montre que Ex ne peut être fonction que
de x. On a donc

Dx e (x) E (x) ou Dx xp (x) E (x)

En prenant la moyenne2) sur x des deux côtés de cette équation,
on obtient (puisque Dx est constant)

Dxxp0 E(x)*.
On voit donc que, pour cette solution statique, la constante diélec-

Posener, Ann. der Phys. 19, 849, 1934.
2) Cette moyenne n'a de sens que si elle est faite sur un très grand nombre de

périodes du milieu. En effet, la moyenne des exponentielles de xp (x) =SVm e2nimbx
est nulle si la longueur x sur laquelle on a pris la moyenne est suffisamment grande
par rapport à A — 1/6.
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trique moyenne qui lie les valeurs moyennes du vecteur déplacement

et du vecteur électrique est

(24)
1

Vo

Prenons maintenant comme solution

E y constante Ex =EZ 0 Dx Dz 0

L'équation div D 0 montre alors que Dy ne peut être fonction
de y et par symétrie de z. On a donc

Eve(x) Dy(x)

et, en prenant de nouveau la moyenne sur un très grand nombre
de périodes du réseau, on trouve

Eye0 Dy (x)".

On trouverait évidemment le même résultat pour Ez constante,
ce qui donne, pour ces solutions, des constantes diélectriques
moyennes liant les E et D moyens.

ey £z £0 (25)

On montrerait facilement que les trois valeurs moyennes (24) et
(25) sont les constantes diélectriques macroscopiques principales
du tenseur de la constante diélectrique.

En introduisant celles-ci dans les équations de Maxwell,
nous allons retrouver partiellement les résultats des paragraphes
précédents. Les vecteurs E, D et H auront en facteur une exponentielle

de la forme
e2iti((i0-T)— vt)

fc0 étant le vecteur d'onde qu'il s'agit de déterminer en fonction
de fc vjc et de sxeyez. On sait que D et H sont perpendiculaires
à fc0, tandis que E ne l'est pas et qu'on a

Êk2-k0(k0-Ê) k2D
En posant alors

Ex Dxxpx Ey DyXpy E z D z xp z

on obtient
Dx(k2~xpxk02)+k0x(È-k0) =0

et deux expressions semblables pour les composantes selon y et z.
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En tirant Dx, D„ et Dz de ces équations et en exprimant le fait
que D est perpendiculaire à fc0 sous la forme

(D-fc0) D, kox + Dy k0y - Dz fcoz + 0

on peut écrire

li2,l0x

WxK^Y2
fco. Ir

n
xpykl~k2 V^o--fc2

°-

En appelant

cos (9= k°x
fco

eos/? -£'
k

'"0 zet cos y
fco

les cosinus directeurs de fc0 dans le système d'axes définis par le
tenseur de la constante diélectrique, cette dernière équation devient

cos2 0 cos2 ß cos2 y

_ ^ 1 fc2 1 _
fc2

r 7 2 7 2 7 2
"•o £o "-o £o "5

En réduisant au même dénominateur, on a

i-*r°et (v-9oos'e+(v^¥)(^cosïeH0'
Ces deux équations déterminent deux valeurs de fc0. La première
donne

fc0 fcV^o

tandis que la seconde fournit

h
fc,

T/vo 1— cos26>(l «oVo

Nous retrouvons ainsi les résultats précédents. La théorie classique
montre aisément que la première valeur concerne une onde polarisée

perpendiculairement à la section principale (plan fc0 — axe
optique), tandis que la seconde concerne la polarisation dans cette
section.

Gomme on le voit, la solution statique oublie systématiquement
les ondes que nous avons appelées secondaires, dont les

vecteurs d'onde prennent naissance sur la surface de dispersion
et aboutissent aux points du réseau réciproque. Elle ne tient donc
pas compte de cette diffusion de la lumière, qui, du reste, est
extrêmement petite.

12
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Comme nous l'avons dit plus haut, cette diffusion provient
de ce que les électrons d'un atome ne vibrent pas exactement en
phase les uns avec les autres lorsque le rapport k/b n'est pas
infiniment petit.

IV. Conditions aux limites. — Ondes diffusées à l'extérieur du cristal.

Les surfaces de dispersion que nous avons obtenues nous
donnent, pour une onde de fréquence v. tous les vecteurs des ondes
possibles dans le milieu. Nous allons maintenant exciter ces ondes

par une onde extérieure au cristal, se propageant donc dans le vide.

(B,)

Fis. 7.

Excitation des ondes du cristal par une onde incidente.
Nous n'avons tracé que les ondes pour deux points du réseau réciproque;

il faudrait donc compléter la figure par des images semblables autour des autres
points 2, 3..., — 1, -2, etc. L'onde incidente est A' O. Les ondes réfractées
doivent avoir la même composante tangentielle et doivent d'autre part prendre
naissance sur les figures de dispersion. On a donc tracé la normale w à la surface
de séparation S S'; aux intersections Ax et A2 on trouve l'origine des vecteurs
d'onde des ondes réfractées ordinaires et extra-ordinaires. En A", sur la
surface de dispersion pour le vide se trouve l'onde réfléchie. En réalité, on trouve
en des points imaginaires (Bx) et (iJ2) l'intersection avec les surfaces de
dispersion tracées autour du point 1 du réseau réciproque. Des ondes de vecteurs

complexes (BY 0 et (B2) 0 se propageront aussi dans le cristal. Nous savons
déjà qu'à chaque onde dont le vecteur se termine en 0 sont nécessairement
associées toute une série d'ondes dont les vecteurs ont la même origine mais
aboutissent à tous les points du réseau réciproque. Des ondes de ce type sont
dessinées en Axl, Atl, (Si) 1, (Bt)l. Remarquons enfin que toutes les ondes
dont les vecteurs aboutissent en un point déterminé du réseau réciproque ont la
même composante tangentielle de vitesse.
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On sait que lorsqu'une onde pénètre dans un milieu réfringent,
les conditions aux limites exigent que l'onde réfractée ait la même
composante de vecteur d'onde sur la surface de séparation que
l'onde incidente. Nous avons tracé, dans la figure 7, les surfaces
de dispersion pour le vide (sphère de rayon fc) et pour le milieu
stratifié. On voit ainsi comment tous les systèmes d'ondes sont
excités par l'onde incidente. Pour déterminer les amplitudes de

ces différentes ondes, il faut alors introduire les conditions aux

r -

Fig. 8.

Conditions aux limites (ondes ordinaires).
Les vecteurs des systèmes d'ondes prennent naissance aux points Alt A',

A", (Bj) et (Cj). Les points A sont les intersections de la normale avec les surfaces
de dispersion tracées autour du point 0 du réseau réciproque. Les points (Bj) et (Cx)
sont imaginaires et doubles ; ce sont les intersections de la normale à la surface de

séparation avec les surfaces de dispersion (dans le milieu et dans le vide) tracées

autour des points 1 et — 1 du réseau réciproque. L'un des vecteurs (Bt 1) est celui
de l'onde se propageant dans le cristal, l'autre est celui de l'onde « réfléchie » dans
le vide. Ils ont la même composante de propagation réelle, mais différentes com-
santes imaginaires; les deux ondes sont donc absorbées différemment dans la
direction perpendiculaire à la propagation. Il faut appliquer les conditions aux
limites séparément aux trois systèmes d'ondes dessinés. On voit qu'il y a 12 ondes
dont on désire connaître l'amplitude en fonction de celle de l'onde incidente.
On a 3x2 6 équations de conditions aux limites et 3x2 -= 6 équations liant
les amplitudes dans les systèmes (équation (13)).

limites sur les D normaux et les E tangentiels. Nous avons déjà
vu que l'intensité des ondes diffusées était très petite (car k/b
est très petit) par rapport aux ondes d'indice 0. Aussi ne donnerons-
nous pas ce calcul. Patry1) a du reste montré que les conditions
aux limites étaient suffisantes et nécessaires pour déterminer
complètement toutes les amplitudes. On trouve effectivement que
les ondes d'indice 0 sont réfractées et réfléchies comme si les
ondes diffusées n'existaient pas (à l°/00 près avec fc/6 10~3).

x) Patry, loc. cit.
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Nous avons néanmoins tracé dans la figure 8 les ondes que l'on
doit considérer pour appliquer les conditions aux limites.

Si nous négligeons maintenant les ondes diffusées, c'est que
leur intensité est très petite par rapport aux ondes normales.
Mais cette très petite intensité pourrait être mise en évidence dans
certains cas. En effet, l'ordre de grandeur de l'intensité relative
de la lumière diffusée par un gaz d'un volume de quelques cm3
est de l'ordre de 10~9 et cependant elle est observable.

Les ondes diffusées ayant dans le milieu des vitesses très
petites (indice de réfraction de l'ordre de bjk) ne sortiront du
cristal que dans un domaine angulaire d'incidence très restreint
(de l'ordre de 2 k/b). En dehors de ce domaine, elles seront réfléchies

totalement vers l'intérieur du cristal. En plus, le coefficient
do reflection est très grand à cause du grand indice de réfraction
(ordre de 1 — k/b) et par conséquent seule une fraction (k/b) de
leur énergie se retrouvera dans l'onde sortante. Pour un cristal
de A 10~8 cm. et X 10~5 cm., l'intensité relative des ondes
sortantes est de l'ordre de (fc/fr)4 10~12. donc tout à fait inobservable.

Mais, pour un cristal de A 3.10~7 cm. et X 3.10"5 cm.,
l'intensité relative devient 10 8 et donc parfaitement mesurable.
C'est donc là un nouveau phénomène de diffusion de la lumière
sans changement de longueur d'onde. Remarquons encore que si

nos instruments étaient suffisamment puissants et qu'ils puissent
séparer les différentes ondes diffusées, on pourrait, en étudiant
celles-ci, retrouver, ce que donnent les rayons X : la répartition
de la matière dans les cristaux.

Monsieur J. Patry m'a aidé à faire et à contrôler les calculs
tic ce travail; je l'en remercie.

Institut de Physique de l'Université, Genève.
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