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Théorie de la propagation de la lumiére dans un milieu
atomiquement stratifié

par J. Weigle.
(22. XII. 37.)

I. Introduection.

La théorie dynamique de la propagation des rayons X dans les
cristaux, due & Ewarp?), rend compte d'une facon admirable des
phénomenes de diffraction qui se produisent alors. LAUE?) a donné
4 cette théorie une forme un peu différente en remplacant les
dipoles d’EwALp par une distribution continue et périodique de
constante diélectrique & I'intérieur du cristal. BriLLovin®)a étudié
la propagation de la lumiére dans les liquides stratifiés par les
ultrasons et montré comment les fonctions de MArmHiEU Inter-
venalent dans le probleme. ExTeErRMANN et WANNIERY), en repre-
nant la méthode de BriLLouiNn mais en s’inspirant des travaux
d’EwALp-LAUE, ont pu donner la théorie compléte du phénomeéne.
Enfin, EXTERMANN®) & montré que cette méthode pouvait se géné-
raliser en la rattachant & la théorie des rayons X. La théorie
d’EwaLp-LAve devient alors un cas particulier dune théorie
beaucoup plus générale.

Jusqu’ici, cette théorie générale n’avait été donnée que pour
les cas ol la longueur d’onde lumineuse était de I’ordre de grandeur
de la périodicité du milieu (rayons X ou réseau optique®)), ou
alors, beaucoup plus petite que celle-ci, comme dans les ultrasons.

Il nous a semblé intéressant d’étudier le cas ou la longueur
d’onde de la lumiére est beaucoup plus grande que les périodicités

1) Ewarp, ZS. fir Kristall. (A), 97, 1, 1937.
?) Lavug, Ergeb. der Exakt. Naturwiss., 10, 133, 1931.

®) BriLLouiN, La diffraction de la lumiére par les ultrasons. Actualités
scientifiques, Hermann, Paris 1933.

1) EXTERMANN et WANNIER, Helv. Phys. Act. 9, 520, 1936.
) EXTERMANN, Helv. Phys. Act. 10, 185, 1937.
6) Patry, Helv. Phys. Act. (paraitra sous peu).
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du milieu dans lequel elle se propage. Ce probléme est, en effet,
celul de la propagation de la lumiére dans les cristaux; on trou-
vera sa solution dans les pages qui suivent.

Nous avons supposé, pour ne pas compliquer le probléme,
que nous avions a faire & un milieu périodique dans une seule direc-
tion, donc stratifié, représentant le cristal. La période de stratifi-
cation est de ’ordre de grandeur des dimensions atomiques (10-3cm.),
tandis que la lumiére est visible, sa longueur d’onde étant de ’ordre
de 10-% cm. Il ne serait pas difficile d’étendre nos résultats & un
cristal réel, périodique en trois dimensions; les calculs seuls seraient
beaucoup plus compliqués, mais les résultats resteralent essen-
tiellement semblables & ceux auxquels nous sommes arrivés. Nous
avons aussl supposé que la constante diélectrique microscopique
(& I'mtérieur méme des atomes ou des molécules composant le
cristal) était donnée et qu’en plus elle était scalaire, négligeant ainsi
I’anisotropie optique des molécules. Nous verrons que le cristal
agit au pomt de vue macroscopique, comme s’il possédait une
constante diélectrique tensorielle, cette anisotropie étant amenée
par la répartition anisotrope des molécules dans D’espace et non
pas par les propriétés anisotropes de celles-ci. Nous devons donc
nous attendre a retrouver la théorie classique de la propagation
de la lumiére dans les cristaux pour le cas ou la longueur d’onde
peut étre considérée comme infinie par rapport & la période du
réseau matériel. C’est bien 14 ce qui ressort de nos calculs, mais
ils donnent en plus une relation qui lie I'indice de réfraction ordi-
naire avec l'indice de réfraction extraordinaire, tous deux devant
étre calculés & partir de la constante diélectrique microscopique.
Notre théorie explique donc quelle est la propriété atomique
(pour des atomes isotropes) qui détermine la biréfringence et qui
permet de prévoir si celle-ci doit étre positive ou négative.

D’autre part, si A/A ( A période du cristal, 4 longueur d’onde
de la lumiére) n’est pas négligeable devant 1'unité, d’autres phéno-
meénes interviennent, qui ne peuvent pas étre donnés par la théorie
élémentaire de FreEsNeEL. En effet, dans ce cas, les électrons d’un
méme atome ne vibrent plus en phase les uns avec les autres lors-
qu’ils sont excités par la lumiére (ce qui aurait été le cas avec
AJA ~0). 11 y aura donc des ondes diffusées latéralement, ondes
qui sont ’analogue des ondes des rayons X diffractées ou “réfléchies*
par les plans réticulaires du cristal. Comme //4 est trés petit,
elles auront une intensité trés petite mais, dans certaines condi-
tions, elles pourront étre observées.
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II. Théorie gémnérale.

Nous supposerons le milieu stratifié donné par sa constante
diélectrique

8(&7) :ggﬂ 62ninb.a: (1)

nb étant les «vecteurs d’onde» des ondes matérielles figées ou,
s1 l'on préfere, b étant le vecteur de base du réseau réciproque
(b=1/4) A é&tant la période du milieu stratifié, Ce milieu sera
donc représenté dans I'espace réciproque par la série des vecteurs
nb ou par une série de points équidistants de b échelonnés le long
de I'axe des X (figure 1).

Nous aurons besoin, par la suite, de connaitre ’expansion en
série de Fourier de l'inverse de la constante diélectrique

1/)(;1;) - :ZmeQ mimba , (2)

Elle a évidemment la méme période que ¢ (x) et par conséquent
elle fait intervenir le méme vecteur réciproque b.

Si l'on désire connaitre les v, en fonction des ¢,, il faudra
résoudre une série d’équations qui seront utiles pour les calculs
que nous aurons & faire. Nous poserons donec

1 .
1 = w(w) _ £y me‘.an(m-!—n)bx.
sy P = 22y
En écrivant
n+m=7p

on a

1 = Z e?nipbe Ypn &
n

D

et 'on voit que, pour satisfaire cette équation, il faut avoir

Esn Y_n =
287; Yp_n = 0 P* 0. (3)

Ces équations sont celles qui nous permettent de calculer les e,
en fonction des v, ou inversément.

11
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Surfaces de dispersion.

Calculons maintenant, pour une onde de fréquence », la solu-
tion des équations de MaxweLL dans ce milieu. En écrivant cette
solution sous la forme

D= Z D, o2 71 Wkn 1))
T

D étant le vecteur de déplacement électrique et k. les vecteurs
d’ondes des ondes planes partielles, on sait!) qu’on doit avoir

ke, = ko +nb (4)
et que les D,, doivent satisfaire les relations fondamentales
k2 -
FDn=§|V)n—-mDm_Lkn- (5)

By 1xn ©st la composante de D, perpendiculaire au vecteur k,
et k=w/c est le vecteur d’onde de l'onde se propageant dans le
vide. La grandeur du vecteur k, qui, pour 'instant, est indéter-
minée, sera fixée par une condition de convergence.

Fig. 1.
Vecteurs d’onde des ondes formant une solution des équations de MAXWELL.

L’équation (4) montre comment on obtient les vecteurs des

ondes planes partielles & partir du vecteur iy de 1'une d’entre elles.
Si Pon a tracé celui-ci de fagon a ce qu’il aboutisse en un point du
réseau réciproque auquel nous donnerons l'indice 0, les autres vec-
teurs d’onde partant de la méme origine que k, aboutiront en chacun
des points du réseau réciproque (figure 1).

Les amplitudes relatives de ces différentes ondes partielles
sont déterminées par l’équation (5). C’est alors l'ensemble de ce
groupe d’ondes qui est une solution particuliére des équations
de MaxweLL dans le milieu périodique.

Nous désirons maintenant connaitre k, en fonction de son
orientation dans le réseau.

1) EXTERMANN, loc. cit.,, et LAUE, loc. cit.
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Remarquons tout d’abord que tous les k,, se trouvent dans un
méme plan contenant le réseau réciproque. Cela nous permettra de
décomposer ’équation vectorielle (5) en deux séries d’équations,

I'une donnant des relations entre les composantes des D, perpen-
diculaires au plan des En, et I’autre entre les composantes contenues
dans ce plan. Cela signifie que si 'onde k, est polarisée avec son
vecteur D, perpendiculaire au plan des ki, ou au contraire dans

le plan des k,,, toutes les autres ondes seront polarisées de la méme
maniére, Les équations (5) deviennent ainsi

2
2, t/)n—m Dfm'+ (TI)O “‘%) D%’ = 0 (6)
(polarisation perpendiculaire)
et :
; " k2 7"
Z Yn—m D’m CcOos (knakm) o (7{)0 — kz) D'n, = 0 (7)

(polarisation paralléle)

les sommes étant prises sur toutes les valeurs de m sauf m = n.

-2 =] 0 7 2

Fig. 2.

Dans les équations (6) et (7), nous remplacerons les k; par
leurs valeurs tirées de (4) en fonction de ky. Pour cela, nous in-
troduirons le fait que la longueur d’onde A =1/k de la lumiere
est beaucoup plus grande que la période A = 1/b du milieu stra-
tifié atomiquement:

i>A  ou  k<b.

En appelant alors & et 7 les composantes de k, suivant I’axe
du réseau réciproque et perpendiculaire & celui-ci respectivement
(figure 2), on a

B = n® 4 (& + nb)?=n? b2 (1 +

2& K\
5t )
Le tacteur du terme D, dans les équations (6) et (7) devient alors

k2 .
Yoo a2, B =W

nb - nh?

sauf pour n = 0
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en supposant que k, est du méme ordre de grandeur que k et que,
d’autre part, k%/b% << v,. :

Pour les cas qul nous intéressent, on a en effet que 4 est de
Vordre de grandeur de 10-3 et A 10-%, ce qui donne pour k2/b?
10-% alors que y, la valeur moyenne de I'inverse de la constante
diélectrique est de l'ordre de l'unité.

Nous verrons plus loin qu’il faut tenir compte des cas ou k,
est complexe et a des valeurs proches de i n b.

Nous nous occuperons maintenant séparément des deux pola-
risations.

A. Polarisation perpendiculaire au plan des k.

Les équations (6) deviennent alors, avec les simplifications
données ci-dessus,

+ %Dy Dy +yp D+ .. =0

+yy Dy’ + (pg—k?/k) Dy’ +p_y Dy + . =0 (8)

+1P2D_1’+QPID0’+T[)OD1,+ . w @ W ::O

On sait que ces équations homogenes et linéaires pour les D’ ne
donneront des solutions convergentes que si le déterminant des
coefficients s’annule:

- Yo Y ‘/’~2----1‘

- P po—k¥ky, poy . = 0. (9)
- Y2 Y1 %o J

Il faudra donc choisir k, de facon a satisfaire cette condition; sa
valeur sera ainsi complétement déterminée. I’équation pour k2
représentée par le déterminant (9) est, comme on le voit, du premier
degré et, par conséquent, donnera une valeur unique pour cette
inconnue. Il n’est pas possible d’exprimer k, en fonction des y,,
mais nous allons voir qu’en fonction des ¢, introduits plus haut
la solution est trés simple. Nous écrirons en effet les équations (3)
qui déterminent les &, en fonction des v, sous la forme

[ . 3 . + 1/)0 8,1 + 1/)___1 80 + wmz 81 _E'" . == 0
et e+ (Por®) g + Yoy 8+ =0 (10
l T Yol T Y1 & + Yo &1 T - =1

avec &= 1jg;.
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On sait que les e, sont des solutions convergentes de ce systéme
d’équations; par conséquent, on peut dire que, pour qu’un systéme
d’équations ayant les v, arrangés comme dans (10) pour coeffi-
cients (sauf pour le terme ,¢,, dont le coetficient est (wo—))
donne des solutions convergentes, il faut que  soit choisi de
maniere a ce que

xr = 1/gg

g, étant évidemment une fonction des .. Cette solution semble,
au premier abord, purement formelle; cependant, comme e ()
est une donnée de notre probléme, on peut toujours calculer les &,
par I’expansion en série de FoURIER et par conséquent &,.

Fig. 3.
Surfaces de dispersion (polarisation perpendiculaire: onde ordinaire).

Revenant alors au déterminant (9), on voit immediatement
qu’il faut que k%/k2, qui joue le role de «, soit la fonction &, des
v,, pour que le déterminant soit nul. "

. ;
e _ L ou ko =k Ve, - (11)

2
kq €9

Pour la polarisation envisagée, la valeur de k, ne dépend donec pas
de son orientation dans le réseau; le milieu agit comme un milieu
homogéne d’indice de réfraction 4/gy. On peut représenter cela
géométriquement en tragant autour d un point du réseau réciproque
choisi arbitrairement comme origine une sphére de rayon k+/g (f1g. 3).
Cette sphére, qui représente le lieu des origines des vecteurs pos-
sibles ou, si I’on veut, le spectre de direction des vecteurs d’ondes
de fréquence v, s’appelle une surface de dispersion. Nous verrons
que ces surfaces sont les surfaces de FRESNEL. Si une onde de

-

vecteur k, se propage dans le cristal, d’autres ondes, de vecteurs
k, = ky+n b, lui sont associées. Connaissant k, par la surface de

>

dispersion, nous connaissons a la fols tous les vecteurs k,. Les
équations (8) doivent alors étre résolues pour les D, des diffé-
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rentes ondes lorsqu’on remplace k, par la valeur donnée dans (11).
En comparant (10) avec (8), on voit immédiatement que

D' _ tm (12)

0 €o

Ainsi le probléme est entitrement résolu pour toute cette série
d’ondes.

La surface de dispersion n’est du reste pas aussi simple qu’on
pourrait 'imaginer en considérant la sphére de rayon k 4/¢.
Il faut en effet considérer une telle spheére tracée autour de chaque
point du réseau réciproque et ce sera l’ensemble de ces sphéres
qui formera la nappe des surfaces de dispersion. Nous verrons
en plus que ces spheres se prolongent dans I'imaginaire donnant
alors des vecteurs d’ondes complexes qui nous aiderons & com-
prendre d’une fagon détaillée comment se propage la lumiére
dans les milieux atomiquement périodiques.

Nous montrerons pour commencer qu’il y a bien une sphére
de rayon ky4/¢, autour de chaque point réciproque.

S1 nous avions exprimé tous les k2 en fonction de k, au lieu
de ky, on aurait eu, en écrivant que k2 est du méme ordre de
grandeur que Fk,

c o+ Dy + 9, DY + 9 oDpn+ . .=
co Doy (kR DY) 4y Doy + . L =
+ e Dy + 9 Dy + Yo Dpy + . . =

o o o

Alors comme précédemment,

kn = k\/‘;n
et

D Baei

D;e €o

car la numérotation des D’ est arbitraire.

~ Cette nouvelle série d’ondes ayant pris naissance sur la sphere
de rayon k4/g, autour du point n est aussi une solution particu-
liere des équations de MaxweLrL. Pour la différencier de la solution
précédente, nous dirons qu’elle a pris naissance sur la branche n
des surfaces de dispersion et nous indiquerons son origine par un
indice supérieur n. On a done, d’une facon générale,

Zz,
qu Em—n

n _ (13)
Dnn €o
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Montrons enfin comment ces surfaces de dispersion se pro-
longent dans I'imaginaire. On doit avoir, pour la nappe d’indice
7610,

2 _ 2
k= k? ey

de facon & rendre le déterminant (9) nul. Si, en particulier, I'une
des composantes & et n de k, est plus grande que k, mais réelle,

on voit immédiatement que ’autre est imaginaire. On a en effet,
avec §>k, :

o = £ iy E e,

Cette valeur de # est celle de I'intersection d’une droite & = cons-
tante avec la sphére de rayon k4/g,.

Le vecteur k, est alors complexe

-

quoique sa grandeur soit réelle et égale a k4/g,.

Ces ondes sont semblables aux ondes évanescentes qui inter-
viennent dans la réflexion totale. En effet, on a

eQni (ko - 1)—2t) — et 2any eEni(Sx-—vt}

et I'on voit que ces ondes planes se propagent dans la direction x
avec une vitesse de phase donnée par »/&, mais leur amplitude
diminue ou augmente dans la direction y perpendiculaire a la
direction de propagation d’une facon exponentielle.

Ondes diffusées.

En considérant une des séries d’ondes formant une solution
des équations de MaxwsLy, on s’apercoit que les ondes A par
exemple ont des vecteurs d’onde de l'ordre de grandeur de b,
c’est-a-dire beaucoup plus grands que k4/g,. Ces ondes, dont
I'amplitude est

D’l(): D’OU el

€y
c’est-a-dire du méme ordre de grandeur que D), ont donc une
vitesse de propagation dans le milieu beaucoup plus petite que
I’'onde kj. Leur indice de réfraction apparent est donc trés grand.

Nous voulons montrer que ces ondes ont un vecteur électrique FE’3
trés petit et que l’énergie qu’elles transportent est, elle aussi,
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extrémement petite. Les équations de Maxwert, fournissent les
relations
Hy= D Ve D

et "

By k2 —EL (b, Bj) = k2 D
Comme les D;! de notre probléme sont tous dans la méme direction
(normaux au plan des k), la premiére équation montre que les
sont paralleles aux Di.

On a donc
(ki E)=0
et _
- k2 .
En = k?ﬂB Dn

n
Nous voyons par cette équation que si ki? est de l'ordre de gran-
deur de m?b2%, I'amphtude électrique de I'onde est extrémement
petite, méme si D¢ est fini (figure 4). L’amplitude magnétique
est donnée par
i — kL

et par conséquent le vecteur de Povynting devient

. k3
IS:z - Z%z ;i3 D:f (14)
| D
AE k
H
Fig. 4.

Ondes diffusées ordinaires.

Ces ondes, qui se propagent dans le milieu avec une vitesse tres
petite, transportent donc une énergie relative extrémement petite
(de Vordre de k3/k2). Nous verrons que, dans certains cas, elles
pourraient étre observables, mais que leur petite vitesse nécessi-
terait des conditions spéciales pour éviter la réflexion totale et
pour leur permettre de sortir du milieu. '
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B. Polarisation dans le plan des k.

169

Pour pouvoir écrire les équations fondamentales (7) en fonc-
tion de kg, il est nécessaire d’exprimer tout d’abord les angles
entre les différents vecteurs d’ondes qui interviennent explicitement
dans les coefficients des D,,. En appelant @ I'angle que k, forme
avec l'axe du réseau réciproque, on trouve, pour l’angle entre

ko et k,,, la valeur _
o—_"
m b
et, pour l'angle entre Ep et %oy,

on
mpb

(p — m) s1 p et m sont de méme signe,
et

7 + 2 (p +m) si p et m sont de signes opposés.
mpb

Dans ces expressions, nous avons supposé, comme précédemment,
que k2/b? était négligeable par rapport & I'unité. Dans cette appro-

ximation, on obtient donc

cos (ky, Ii,,) = cos @ + Fio sin? @
m

et
— +1 (p et m de mémes signes)
008 (km, p) = _ 1 (p et m de signes contraires).

De méme que pour la polarisation précédente, on a

8

e
b

Wo =~ Py (sauf pour m =0).

Les équations (7) s’écrivent alors

Y L —y_q Dy [cos O— %”— sin? @] ~y D/ —..=0
17 kO * 7 k® s kﬂ 20
o=y DI cos@——b—sm@ + D, Yoo i +y Dy cos@—i-?mn @l+..=0
0
o=y, DI + 1, Dy’ lcos @+k—g sin? @]-Hpo D +..=0

------------------------------------

(15)
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Le déterminant des coefficients des D'’ prend alors la forme

ko '
<Y + 1 —Y_a (005 9‘2—;, sin® @) Y3 ~Y_4
Y + Y —Y, (‘305@'1;;“31“2 @) — Y2 Y3
kn P ko s k* ku P ko Y
Yo (cos @_ﬁ sin @)—zpl(cos @—Tsm 6) (zpo—sz)+q)_1(cos @+—b— sin @) +w_2(cos Q-I-ﬂsm @)
' — Yy + 44 (cos@+%sin2@)+w0 +Y_
s Yy — Y3 + Y, ("05@+é’%5in29)+1l)1 + Yo

En changeant les signes dans les lignes en-dessus du terme
central, puis dans les colonnes & gauche de celui-c1 et en dé-
composant, on arrive & l’expression

A= Ayc082 O + (4, + 4;) kT)O cos @ sin? @ + (L]b(l)z sin* @ A,

ou les déterminants A,, 4,, 4, et A, sont

- Yo Y Y2 Y3 Y_g - :
- Y1 Yo Y Y_o 2 !
Ag=1| -« - ¥ Ll "Po“kd —1~ Y ’Po---i
0 k% | cos? & - -
- Y3 Ys (51 Yo Y1 - -
< Yy Y3 Yo 1 Yo o - - ;
Yo Y3 Y g Y_3 Y_4q - . }
L% Yo Y Y o Y 5 . -
Ya YP_ i
Al == - 2 — ¥ 0 Y_1 —é—z . ‘
i
Vs (725 Y Yo Yog « « =
Yy Y3 Yo 1 Yo ‘
Y_.
Yo T - Yy Yy -
L3 Yo Y. Y o Ys -
A r
1 = Yo ¥ 0 Y Y_o
| Y3 Ya Y1 Yo Y1 -
i Y4 Y3 Ya W1 Wy
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V_q
Yo Y ) Y3 Y_a
Y1 Yo s Y o Y3
L% y_
dy= - “Qg‘ - 0 P "23
Vs Vs (%1 Yo L4
P
Yy Y3 72 L%1 Yo

En réarrangeant les lignes et les colonnes de 4; et de Ay,
on peut montrer que si y,=w_, (pas d’absorption!)

Al Z_Al et All =—A1’.
Ces deux déterminants sont donc nuls. On a finalement

, g
A= Ayco82 O + %%_ sin® @ 4,.

Mais, comme nous négligeons les termes en (k,/b)2, on doit
avolr

ce qui donne, comme précédemment,

kP 1 _iv
(% kez) cos2@ 0 g

On trouve donc finalement:
k

Jrg s ===,
Vi —ewoli— ]

Les surfaces de dispersion sont donc des ellipsoides de révolu-
tion autour de 'axe x du réseau réciproque tracés autour de chaque
point de celui-ci. On s’en rend facilement compte en écrivant (17)
sous la forme

(17)

52 7]2 C2

+ e

k2eq K2y, K2y,

Les axes de cet ellipsoide sont donc kv/eq. k/A/y, et k/4/y, .

Il est tangent a la sphére de rayon k4/g, & lintersection avec
I'axe du réseau réciproque (figures 5a et 5b).

On voit donc que le milieu est biréfringent puisque les ondes
de différentes polarisations se propagent avec différentes vitesses.
S1 on néglige les ondes latérales, le milieu stratifié agit comme
un cristal uniaxe, I’axe optique étant la direction de stratification

=1,




172 ' J. Weigle.

S1 Yy, est plus grand que ¢, la biréfringence est négative, tandis
que, dans le cas contraire, elle est positive. La polarisation per-
pendiculaire au plan des k correspond a ’onde ordinaire, tandis que
la polarisation dans ce plan forme l'onde extraordinaire. Les sur-
faces de dispersion sphére et ellipsoide ne sont pas autre chose
que les surfaces de FreESNEL (surfaces des indices de réfraction)
de 'optique cristalline. Cependant elles contiennent plus que ces
derniéres car, si I’on trace un des vecteurs d’ondes possibles ayant
son origine sur ces surfaces et aboutissant a I'origine du réseau
réciproque, nous avons vu que cette onde était nécessairement
accompagnée d’'une série d’autres ondes ayant la méme origine,
mais aboutissant aux autres points du réseau réciproque. On pour-,
rait dire que la solution de FresneL est la solution statique de
notre probléme, solution exacte lorsque k/b—-0. Nous reviendrons
plus loin sur cette question.

ki, \ \
k /
kiVe, kiye,
, 0

Fig. 5.
Surfaces de dispersion (polarisation paralléle: onde extraordinaire).
Pour terminer cette étude des ondes polarisées dans le plan

des vecteurs k, il nous faut donner ’expression des amplitudes D),
des différentes ondes. Comme précédemment, on trouve

D _ s Pon 2w 9. m>o0. (18)
Dy £ D} €0

Pour les autres solutions, c’est-a-dire celles dont les vecteurs
prennent naissance sur l’ellipsoide tracé autour du point n du réseau
réciproque, on doit écrire

Dlln 8 Dlln 8"—3)

n;%ll = —-"cos &, et 1;,,_7: =
80 n 80

cos @, p>0. (19)
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©, représentant 'angle que Tcx fait avec l'axe du réseau réci-
proque. Ces ondes secondaires, dont 'amplitude relative du vecteur
déplacement électrique est de 'ordre de 'unité, n’ont pas, comme
les ondes polarisées perpendiculairement, un vecteur électrique
de 'ordre de k2/b2. En effet, pour ces ondes, le vecteur électrique
B, n’est pas paralléle & D,. Les équations résultant des equatlons
de MAXWELL qui permettent de calculer les E,z en fonction de Dn
sont comme precedemment

Z W, B (20)
et, en appelant «, 'angle entre E, et D,,
J2

A9 n
k‘n

K, cos &, =

(21)

Dans l'approximation dont nous nous sommes servis, ¢’est-a-dire

0 (m et p de mémes signes)
angle (km, F,) = m  (m et p de signes contraires)
et '
o m>0

a‘ngle (k’o: km) :J'E — @ m<0

les équations (20) deviennent

E,smoa, = —y, Dysin @ l
E ,sino_,=1y_,Dysin O (22)

Egsin ag=. .. +y_gDysin @+vy_; D;sin O—yp; D_;sin O—yp, D_,sin 6. I

‘Les 6quations fondamentales nous permettent de mettre cette
derniére équation sous la forme

EG SiIl ao = SiIl @ (. % & +w 2D2+wﬁ1D1—¢1D—1"1/’2D*2_- W .)
Je2
(hz %) D, tg ©
ou

1

€o

Eqysin o = DO( — %) sin @ cos 0.

On voit ainsi que E, cos «, est du méme ordre de grandeur que
Dy, ainsi que E,sin oy. On a en effet:

1
sin_@ cos @ (1 2 ) .

€0 Yo

tg oy = cotg O —
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Tandis que, pour les ondes secondaires, alors que K, cos a, est
beaucoup plus petit que D, a cause du facteur

;2 k2
k2 T n2be

de (21), E, sin «, est de 'ordre de D,. Pour ces ondes (figure 6),
le vecteur électrique est donc presque entiérement dans la direction

k, de propagation de 'onde. Le vecteur de Poy~TIiNG est donc

presque a angle droit de k, et I"onde marchant par exemple de
gauche & droite transporte l’énergie de haut en bas.

AD

H

Fig. 6.
Ondes diffusées extraordinaires.

Le vecteur de PovynTING est approximativement

|18,] = -2 ke D2 sin @ cos 6 . (23)
47 nb g
Ainsi les ondes diffusées de la polarisation dans le plan des &,
qu’on pourrait appeler les ondes diffusées extraordinaires, trans-
portent beaucoup plus d’énergie que les ondes diffusées ordinaires
dont le vecteur de Poy~TING contenait un facteur k3/n3 b3 .

ITI. Constante diélectrique maeroscopique moyenne d’un milieu
microscopiquement stratifié.

Nous avons pu montrer, dans les paragraphes précédents,
qu'un milieu dont la constante diélectrique est scalaire et périodique
donne lieu au phénomene de la biréfringence qu’on associe ordi-
nairement & une constante diélectrique tensorielle. Cela provenait
de ce que nous avons supposé que la longueur d’onde de la lumiére
était beaucoup plus grande que la périodicité du milieu. Cest
alors la répartition anisotrope des atomes dans l’espace (et non
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pas ’anisotropie propre de ceux-ci) qui est responsable de la biré-
fringence. Il est bien évident que si les atomes ou les molécules
ont une déformabilité optique tensorielle, cette anisotropie viendra
sajouter a celle de la distribution dans I’espace et que, d’une fagon
générale, la biréfringence optique qu’on observe dans les cristaux
est due simultanément & ces deux causes car, dans la plupart des
cristaux non cubiques, les atomes et les molécules, du fait des
champs de force anisotropes qui agissent sur eux, prennent des
propriétés optiques anisotropes aussi. On pourrait du reste penser
que les deux effets pourraient étre séparés par des mesures de
la biréfringence des rayons X. Ceux-ci ont en effet une longueur
onde comparable aux dimensions atomiques, donc & la période de la
constante diélectrique; dans ces conditions, les calculs que nous
avons conduits plus haut ne sont plus valables et le cristal n’agit
plus comme 8’1l avait une constante diélectrique tensorielle. Seules
les propriétés anisotropes des atomes entrent en jeu. Malheureuse-
ment, les électrons diffusant la lumiére et les rayons X le plus active-
ment ne sont pas les mémes et le phénoméne de la biréfringence des.
rayons X n’a jusqu’ici pas été découvert?).

Pour bien montrer comment une constante diélectrique micros-
copique scalaire peut donner & un milieu des propriétés macrosco-
piques tensorielles, nous allons rapidement calculer la constante
diélectrique statique moyenne du milieu stratifié.

Considérons donc, pour un milieu de constante diélectrique
donnée par (1) et (2), la solution statique des équations de Max-
WELL

D, =constante D,=D,=0 et - E,=F,=0.

L’équation rot E = 0 montre que F, ne peut étre fonction que
de z. On a donec

D,=c¢(x) B (2) ou D,y (x)=E(x).

En prenant la moyenne?) sur x des deux cotés de cette équation,
on obtient (puisque D, est constant)

On voit done que, pour cette solution statique, la constante diélec-

1) PoSENER, Ann. der Phys. 19, 849, 1934.

2) Cette moyenne n’a de sens que si elle est faite sur un trés grand nombre de
périodes du milieu. En effet, la moyenne des exponentielles de v () = X y,, e27imbe
est nulle si la longueur z sur laquelle on a pris la moyenne est suffisamment grande
par rapport & A = 1/b.

L ]
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trique moyenne qui lie les valeurs moyennes du vecteur déplace-
ment et du vecteur électrique est

1
Yo

Prenons maintenant comme solution

(24)

&, =

E , = constante E,=F,=0 D, =1) =10.

L’équation div D = 0 montre alors que D, ne peut étre fonction
de y et par symétrie de z. On a donc

Eyg(m) = D’y(w)

et, en prenant de nouveau la moyenne sur un trés grand nombre
de périodes du réseau, on trouve

By 8y = Dy 12} %,

On trouverait évidemment le méme résultat pour E, = constante,
ce qui donne, pour ces solutions, des constantes diélectriques
movyennes liant les F et D moyens.

Ey =&, = & . (25)

On montrerait facilement que les trois valeurs moyennes (24) et
(25) sont les constantes diélectriques macroscopiques principales
du tenseur de la constante diélectrique.

En introduisant celles-ci dans les équations de MAXwELL,
nous allons retrouver partiellement les résultats des paragraphes
précédents. Les vecteurs E, D et H auront en facteur une exponen-
tielle de la forme

e2 i (o 1) —vt)

k, étant le vecteur d’onde qu’il s’agit de déterminer en fonction
de k = v/c et de ¢,¢,¢,. On sait que D et H sont perpendiculaires
a ky, tandis que F ne l'est pas et qu'on a
Ekg—Ty (ko B) =k2D .
En posant alors
By=Dsyw, H,=Dyp, H,=D,y,
on obtient
D, (k2 — p, ked) + g (B-Top) = 0

et deux expressions semblables pour les composantes selon y et 2.
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En tirant D,, D, et D, de ces équations et en exprimant le fait
que D est perpendiculaire a k sous la forme

(D'ko) =Dy koy+ Dy lgy + D, ko, + 0

on peut écrire

2 2
kOm 4 ILOU L ]{;Dz e
gy 5T 5 = U
y, ke —Kk* v,k — 2 p, k2 —k*
En appelant
- B o k
cos @ = 2% cosp= """ et cosy= 2°
ko o Feo

les cosinus dirvecteurs de k, dans le svstéme d’axes définis par le
- 0 . . - .
tenseur de la constante diélectrique, cette derniére équation devient

cos® @ cos? cos? y 0
L A
ki By k2 &g k3

En réduisant au méme dénominateur, on a

-2 .2 B
E -~L——r:() et (—}—~ i )C 082 6 + ( ~k~)(

49 D a2
g k &0 Ji2 2 k2

082 0) =0.

Ces deux équations déterminent deux valeurs de k,. La premiére

donne
tandis que la seconde fournit

k

VQPO 1= LUSH?O (1 o Sol‘Po)]'

Nous retrouvons ainsi les résultats précédents. La théorie classique
montre aisément que la premiére valeur concerne une onde pola-
risée perpendiculairement & la section principale (plan k, — axe
optique), tandis que la seconde concerne la polarisation dans cette
section.

]{'U =

Comme on le voit, la solution statique oublie systématique-
ment les ondes que nous avons appelées secondaires, dont les
vecteurs d’onde prennent naissance sur la surface de dispersion
et aboutissent aux points du réseau réciproque. Elle ne tient donc
pas compte de cette diffusion de la lumiére, qui, du reste, est
extrémement petite.

12
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Comme nous 'avons dit plus haut, cette diffusion provient
de ce que les électrons d’'un atome ne vibrent pas exactement en
phase les uns avee les autres lorsque le rapport k/b n’est pas in-
finiment petit.

IV. Conditions aux limites. — Ondes diffusées a Pextérieur du eristal.

Les surfaces de dispersion que nous avons obtenues nous
donnent, pour une onde de fréquence », tous les vecteurs des ondes
possibles dans le milieu. Nous allons maintenant exciter ces ondes
par une onde extérieure au cristal, ce propageant done dans le vide.

S
Fig. 7.
Excitation des ondes du cristal par une onde incidente.

Nous n’avons tracé que les ondes pour deux points du réseau réciproque;
il faudrait done compléter la figure par des images semblables autour des autres
points 2, 3..., —1, —2, etc. L’onde incidente est A4’ 0. Les ondes réfractées
doivent avoir la méme composante tangentielle et doivent d’autre part prendre
naissance sur les figures de dispersion. On a done tracé la normale % a la surface
de séparation S §’; aux intersections 4, et 4, on trouve lorigine des vecteurs
d’onde des ondes réfractées ordinaires et extra-ordinaires. Kn A”, sur la sur-
face de dispersion pour le vide se trouve l'onde réfléchie. En réalité, on trouve
en des points imaginaires (B,) et (B,) l'intersection avec les surfaces de dis-
persion tracées autour du point 1 du réseau réciproque. Des ondes de vecteurs

complexes (B;) 0 et (B,) 0 se propageront aussi dans le cristal. Nous savons
déja qu’a chaque onde dont le vecteur se termine en 0 sont nécessairement
associées toute une série d’ondes dont les vecteurs ont la méme origine mais
aboutissent a tous les points du réseau réciproque. Des ondes de ce type sont

dessinées en 4,1, 4,1, (B;)1, (B,)1. Remarquons enfin que toutes les ondes
dont les vecteurs aboutissent en un point déterminé du réseaun réciproque ont la
méme composante tangentielle de vitesse.
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On sait que lorsqu’une onde pénétre dans un milieu réfringent,
les conditions aux himites exigent que I'onde réfractée ait la méme
composante de vecteur d’onde sur la surface de séparation que
Ponde incidente. Nous avons tracé, dans la figure 7, les surfaces
de dispersion pour le vide (sphére de rayon k) et pour le milieu
stratifié. On voit ainsi comment tous les systémes d’ondes sont
excités par l'onde incidente. Pour déterminer les amplitudes de
ces différentes ondes, il faut alors introduire les conditions aux

Fig. 8.
Conditions aux limites (ondes ordinaires).

Les vecteurs des systémes d’ondes prennent naissance aux points 4;, 47,
A", (By) et (C,). Les points A sont les intersections de la normale avec les surfaces
de dispersion tracées autour du point 0 du réseau réciproque. Les points ( B,) et (C,)
sont imaginaires et doubles; ce sont les intersections de la normale & la surface de
séparation avec Jes surfaces de dispersion (dans le milieu et dans le vide) tracées

autour des points 1 et — 1 du réseau réciproque. L'un des vecteurs (B, | f) est celui
de I’onde se propageant dans le cristal, Pautre est celui de 'onde «réfléchie » dans
le vide. Ils ont la méme composante de propagation réelle, mais différentes com-
santes imaginaires; les deux ondes sont donc absorbées différemment dans la
direction perpendiculaire & la propagation. Il faut appliquer les conditions aux
limites séparément aux trois systémes d’ondes dessinés. On voit qu’il y a 12 ondes
dont on désire conmaitre 'amplitude en fonction de celle de 'onde incidente.
On a 3x2 =: 6 équations de conditions aux limites et 32 == 6 équations liant
les amplitudes dans les systémes (équation (13)).

hmites sur les D normaux et les ff tangentiels. Nous avons déja
vu que l'intensité des ondes diffusées était treés petite (car k/b
est trés petit) par rapport aux ondes d’indice 0. Aussi ne donnerons-
nous pas ce calcul. Patry?!) a du reste montré que les conditions
aux limites étaient suffisantes et nécessaires pour déterminer
complétement toutes les amplitudes. On trouve effectivement que
les ondes d'indice 0 sont réfractées et réfléchies comme si les
ondes diffusées n’existaient pas (& 19/, prés avec k/b = 10-3),

1}y Patry, loc. cit.
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Nous avons néanmoins tracé dans la figure 8 les ondes que l'on
doit considérer pour appliquer les conditions aux limites.

S1 nous négligeons maintenant les ondes diffusées, c’est que
leur intensité est trés petite par rapport aux ondes normales.
Mais cette trés petite intensité pourrait étre mise en évidence dans
certains cas. En effet, U'ordre de grandeur de 'intensité relative
de la lumiere diffusée par un gaz dun volume de quelques cm?®
est de P'ordre de 10-® et cependant elle est observable.

Les ondes diffusées ayant dans le milieu des vitesses trés
petites (indice de réfraction de l'ordre de b/k) ne sortiront du
cristal que dans un domaine angulaire d’incidence tres restreint
(de 'ordre de 2 k/b). En dehors de ce domaine, elles seront réflé-
chies totalement vers I'intérieur du cristal. En plus, le coefficient
de réflection est trés grand & cause du grand indice de réfraction
(ordre de 1 —Kk/b) et par conséquent seule une fraction (k/b) de
leur énergie se retrouvera dans 'onde sortante. Pour un cristal
de A4 =10"% cm. et 2 =10"% cm., U'intensité relative des ondes
sortantes est de l'ordre de (k/b)* = 1012, donc tout & fait inobser-
vable. Mais, pour un cristal de A = 8.10-7 em. et 4 = 3.10-% cm.,
Iintensité relative devient 10-% et donc parfaitement mesurable.
(’est donc 14 un nouveau phénomene de diffusion de la lumiére
sans changement de longueur d’onde. Remarquons encore que si
nos mmstruments ¢taient suffisamment puissants et qu’ils puissent
séparer les différentes ondes diffusées, on pourrait, en étudiant
celles-ci, retrouver, ce que donnent les rayons X: la répartition
de la matiere dans les cristaux.

Monsteur J. Parry m’a aidé a faire et a contrdler les calculs
de ce travail; je 'en remercie.

Institut de Physique de 'Université, Geneéve.
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